1
|
Mohsin NY, Demir H, Hadwan MH, Hadwan AM, Mohammed RM. A New Fluorescent Method for Measuring Peroxiredoxin Enzyme Activity Using Monobromobimane. J Fluoresc 2024:10.1007/s10895-024-03991-4. [PMID: 39441257 DOI: 10.1007/s10895-024-03991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
A novel fluorometric method is presented for accurately quantifying peroxiredoxin (Prx) enzyme activity in vitro. The rate-limiting step in the Prx-catalyzed reaction is the dissociation of peroxide. To avoid interference from catalase, we developed an assay using tert-butyl hydroperoxide (t-BOOH) as a substrate for specific Prx activity measurement. The assay involves incubating the enzyme substrates 1,4-dithio-DL-threitol (DTT) and t-BOOH in a suitable buffer at 37 °C for 10 min in a known volume of Prx enzyme. Following incubation, the reagent monobromobimane (mBB) is added to terminate the enzymatic reaction and produce a fluorescent product. Prx activity is subsequently determined by measuring thiol fluorescence, with reaction conditions optimized using a Bland-Altman plot. The efficacy of this novel protocol was rigorously validated by comparing Prx activity measurements from paired samples with those generated by a reference assay. A correlation coefficient of 0.995 was observed between the two methods, demonstrating superior precision and reliability compared to existing methods. The mBB-Prx protocol offers a significant safety advantage by using t-BOOH as a substrate for Prx activity measurement. As catalase does not catalyze t-BOOH dissociation, including sodium azide is unnecessary. Moreover, the method obviates the need for concentrated acids to terminate the Prx enzymatic reaction, as the mBB reagent efficiently inhibits Prx activity. This streamlined approach simplifies the assay and significantly improves its safety and usability, providing users with a reliable and convenient tool. The convenience of this method allows users to focus on their research without worrying about safety or complex procedures.
Collapse
Affiliation(s)
- Nawar Yaseen Mohsin
- Faculty of Science, Department of Chemistry, Van Yüzüncü Yıl Üniversitesi, Van, Turkey
| | - Halit Demir
- Faculty of Science, Department of Chemistry, Van Yüzüncü Yıl Üniversitesi, Van, Turkey
| | - Mahmoud Hussein Hadwan
- Chemistry Department, College of Science, University of Babylon, Babylon Governorate, Hilla City, PO, 51002, Iraq.
| | - Asad M Hadwan
- Al-Manara College for Medical Sciences, Al-Amarah City, Iraq
| | - Rawaa M Mohammed
- Department of Medical Physics, University of Al-Mustaqbal, Babylon Governorate p.o. 51001, Hilla City, Iraq
| |
Collapse
|
2
|
Chen HR, Sun Y, Mittler G, Rumpf T, Shvedunova M, Grosschedl R, Akhtar A. MOF-mediated PRDX1 acetylation regulates inflammatory macrophage activation. Cell Rep 2024; 43:114682. [PMID: 39207899 DOI: 10.1016/j.celrep.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Signaling-dependent changes in protein phosphorylation are critical to enable coordination of transcription and metabolism during macrophage activation. However, the role of acetylation in signal transduction during macrophage activation remains obscure. Here, we identify the redox signaling regulator peroxiredoxin 1 (PRDX1) as a substrate of the lysine acetyltransferase MOF. MOF acetylates PRDX1 at lysine 197, preventing hyperoxidation and thus maintaining its activity under stress. PRDX1 K197ac responds to inflammatory signals, decreasing rapidly in mouse macrophages stimulated with bacterial lipopolysaccharides (LPSs) but not with interleukin (IL)-4 or IL-10. The LPS-induced decrease of PRDX1 K197ac elevates cellular hydrogen peroxide accumulation and augments ERK1/2, but not p38 or AKT, phosphorylation. Concomitantly, diminished PRDX1 K197ac stimulates glycolysis, potentiates H3 serine 28 phosphorylation, and ultimately enhances the production of pro-inflammatory mediators such as IL-6. Our work reveals a regulatory role for redox protein acetylation in signal transduction and coordinating metabolic and transcriptional programs during inflammatory macrophage activation.
Collapse
Affiliation(s)
- Hui-Ru Chen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany; Albert-Ludwigs-University Freiburg, Faculty of Biology, Freiburg, Baden-Württemberg, Germany
| | - Yidan Sun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Tobias Rumpf
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany.
| |
Collapse
|
3
|
Fujii J. Redox remodeling of central metabolism as a driving force for cellular protection, proliferation, differentiation, and dysfunction. Free Radic Res 2024:1-24. [PMID: 39316831 DOI: 10.1080/10715762.2024.2407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
The production of reactive oxygen species (ROS) is elevated via metabolic hyperactivation in response to a variety of stimuli such as growth factors and inflammation. Tolerable amounts of ROS moderately inactivate enzymes via oxidative modification, which can be reversed back to the native form in a redox-dependent manner. The excessive production of ROS, however, causes cell dysfunction and death. Redox-reactive enzymes are present in primary metabolic pathways such as glycolysis and the tricarboxylic acid cycle, and these act as floodgates for carbon flux. Oxidation of a specific form of cysteine inhibits glyceraldehyde-3-phosphate dehydrogenase, which is reversible, and causes an accumulation of upstream intermediary compounds that increases the flux of glucose-6-phosphate to the pentose phosphate pathway. These reactions increase the NADPH and ribose-5-phosphate that are available for reductive reactions and nucleotide synthesis, respectively. On the other hand, oxidative inactivation of mitochondrial aconitase increases citrate, which is then recruited to synthesize fatty acids in the cytoplasm. Decreases in the use of carbohydrate for ATP production can be compensated via amino acid catabolism, and this metabolic change makes nitrogen available for nucleic acid synthesis. Coupling of the urea cycle also converts nitrogen to urea and polyamine, the latter of which supports cell growth. This metabolic remodeling stimulates the proliferation of tumor cells and fibrosis in oxidatively damaged tissues. Oxidative modification of these enzymes is generally reversible in the early stages of oxidizing reactions, which suggests that early treatment with appropriate antioxidants promotes the maintenance of natural metabolism.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
4
|
Ježek P, Dlasková A, Engstová H, Špačková J, Tauber J, Průchová P, Kloppel E, Mozheitova O, Jabůrek M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol Res 2024; 73:S217-S242. [PMID: 38647168 PMCID: PMC11412358 DOI: 10.33549/physiolres.935269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Mitochondria (mt) represent the vital hub of the molecular physiology of the cell, being decision-makers in cell life/death and information signaling, including major redox regulations and redox signaling. Now we review recent advances in understanding mitochondrial redox homeostasis, including superoxide sources and H2O2 consumers, i.e., antioxidant mechanisms, as well as exemplar situations of physiological redox signaling, including the intramitochondrial one and mt-to-cytosol redox signals, which may be classified as acute and long-term signals. This review exemplifies the acute redox signals in hypoxic cell adaptation and upon insulin secretion in pancreatic beta-cells. We also show how metabolic changes under these circumstances are linked to mitochondrial cristae narrowing at higher intensity of ATP synthesis. Also, we will discuss major redox buffers, namely the peroxiredoxin system, which may also promote redox signaling. We will point out that pathological thresholds exist, specific for each cell type, above which the superoxide sources exceed regular antioxidant capacity and the concomitant harmful processes of oxidative stress subsequently initiate etiology of numerous diseases. The redox signaling may be impaired when sunk in such excessive pro-oxidative state.
Collapse
Affiliation(s)
- P Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Margaritelis NV, Cobley JN, Nastos GG, Papanikolaou K, Bailey SJ, Kritsiligkou P, Nikolaidis MG. Evidence-based sports supplements: A redox analysis. Free Radic Biol Med 2024; 224:62-77. [PMID: 39147071 DOI: 10.1016/j.freeradbiomed.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Despite the overwhelming number of sports supplements on the market, only seven are currently recognized as effective. Biological functions are largely regulated through redox reactions, yet no comprehensive analysis of the redox properties of these supplements has been compiled. Here, we analyze the redox characteristics of these seven supplements: bicarbonates, beta-alanine, caffeine, creatine, nitrates, carbohydrates, and proteins. Our findings suggest that all sports supplements exhibit some degree of redox activity. However, the precise physiological implications of these redox properties remain unclear. Future research, employing unconventional perspectives and methodologies, will reveal new redox pixels of the exercise physiology and sports nutrition picture.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - James N Cobley
- School of Life Sciences, The University of Dundee, Dundee, Scotland, UK
| | - George G Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | | | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Paraskevi Kritsiligkou
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
6
|
Jin SY, Ha JM, Kum HJ, Ma JS, Ha HK, Song SH, Yang YR, Lee H, Bae YS, Yamamoto M, Suh PG, Bae SS. Phospholipase C-β3 is dispensable for vascular constriction but indispensable for vascular hyperplasia. Exp Mol Med 2024; 56:1620-1630. [PMID: 38945956 PMCID: PMC11297146 DOI: 10.1038/s12276-024-01271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 07/02/2024] Open
Abstract
Angiotensin II (AngII) induces the contraction and proliferation of vascular smooth muscle cells (VSMCs). AngII activates phospholipase C-β (PLC-β), thereby inducing Ca2+ mobilization as well as the production of reactive oxygen species (ROS). Since contraction is a unique property of contractile VSMCs, signaling cascades related to the proliferation of VSMCs may differ. However, the specific molecular mechanism that controls the contraction or proliferation of VSMCs remains unclear. AngII-induced ROS production, migration, and proliferation were suppressed by inhibiting PLC-β3, inositol trisphosphate (IP3) receptor, and NOX or by silencing PLC-β3 or NOX1 but not by NOX4. However, pharmacological inhibition or silencing of PLC-β3 or NOX did not affect AngII-induced VSMC contraction. Furthermore, the AngII-dependent constriction of mesenteric arteries isolated from PLC-β3∆SMC, NOX1-/-, NOX4-/- and normal control mice was similar. AngII-induced VSMC contraction and mesenteric artery constriction were blocked by inhibiting the L-type calcium channel Rho-associated kinase 2 (ROCK2) or myosin light chain kinase (MLCK). The activation of ROCK2 and MLCK was significantly induced in PLC-β3∆SMC mice, whereas the depletion of Ca2+ in the extracellular medium suppressed the AngII-induced activation of ROCK2, MLCK, and vasoconstriction. AngII-induced hypertension was significantly induced in NOX1-/- and PLC-β3∆SMC mice, whereas LCCA ligation-induced neointima formation was significantly suppressed in NOX1-/- and PLC-β3∆SMC mice. These results suggest that PLC-β3 is essential for vascular hyperplasia through NOX1-mediated ROS production but is nonessential for vascular constriction or blood pressure regulation.
Collapse
Affiliation(s)
- Seo Yeon Jin
- Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jung Min Ha
- Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hye Jin Kum
- Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ji Soo Ma
- Department of Immunoparasitology, Osaka University, Suita, Japan
| | - Hong Koo Ha
- Department of Urology, Pusan National University Hospital, Busan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Yong Ryoul Yang
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ho Lee
- Carcinogenesis and Metastasis Research Branch, National Cancer Center, Goyang, Republic of Korea
| | - Yoon Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | | | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Sun Sik Bae
- Medical Research Institute, Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
7
|
Du J, Zhou W, Sun Z, Zhang W, Luo W, Liu S. Peroxiredoxin 1 promotes proliferation and inhibits differentiation of MC3T3-E1 cells via AKT1 / NF-κB signaling pathway. J Oral Biosci 2024; 66:403-411. [PMID: 38663496 DOI: 10.1016/j.job.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/12/2024] [Accepted: 04/20/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVES Osteoporosis is the most common metabolic bone disease worldwide. The decrease in bone mass is primarily accompanied by a decrease in the number and activity of osteoblasts. Peroxiredoxins (PRDXs) are proteins that detect extremely low peroxide levels and act as sensors that regulate oxidation signals, thereby regulating various cellular functions. This study aimed to evaluate the effects of PRDX1 and estrogen on the biological behavior of osteoblasts, including their proliferation and differentiation. METHODS Ovariectomized (OVX) mice were used to establish a model of osteoporosis and perform morphological and immunohistochemical analyses. Prdx1 gene knockout and overexpression were performed in mouse MC3T3-E1 pre-osteoblasts to assess proliferation and osteogenic differentiation using the cell counting kit-8, quantitative reverse transcription polymerase chain reaction, western blotting (WB), Alizarin Red S staining, etc. RESULTS: The OVX mice exhibited osteoporosis and PRDX1 expression increased. In vitro experiments showed that during the osteogenic differentiation of osteoblasts, PRDX1 expression decreased, while the expression of COL1 and RUNX2 increased. After Prdx1 knockout, the proliferation of osteoblasts decreased; expression of Runx2, ALP, and COL1 increased; and mineralization increased. However, after Prdx1 overexpression, osteoblast proliferation was enhanced, whereas osteogenic differentiation and mineralization were inhibited. Estrogen inhibits the H2O2-induced decrease in osteoblastic differentiation and increase in PRDX1 expression. WB revealed that when LY294002 inhibited the AKT signaling pathway, the levels of p-AKT1, p-P65, and PRDX1 protein in MC3T3-E1 cells decreased. However, when pyrrolidine dithiocarbamate (PDTC) inhibited the NF-κB signaling pathway, the expression of p-AKT1 and PRDX1 did not change except for a significant reduction of p-P65 expression. Furthermore, PDTC reversed the decreased expression of RUNX2, ALP, and COL1 caused by PRDX1 overexpression. CONCLUSIONS PRDX1 promotes the proliferation of osteoblasts and inhibits osteogenic differentiation. Estrogen regulated osteoblastic differentiation by affecting the expression of PRDX1 in osteoblasts, and the effect is related to the AKT1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Juan Du
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Weilong Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Luo
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shanshan Liu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China; School of Stomatology, Shandong First Medical, University and Shandong Academy of Medical Sciences, Jinan, 250024, Shandong, China.
| |
Collapse
|
8
|
Jo SI, Kim S, Lim JM, Rhee SG, Jeong BG, Cha SS, Chang JB, Kang D. Control of the signaling role of PtdIns(4)P at the plasma membrane through H 2O 2-dependent inactivation of synaptojanin 2 during endocytosis. Redox Biol 2024; 71:103097. [PMID: 38442648 PMCID: PMC10924134 DOI: 10.1016/j.redox.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is implicated in various processes, including hormone-induced signal transduction, endocytosis, and exocytosis in the plasma membrane. However, how H2O2 accumulation regulates the levels of PtdIns(4,5)P2 in the plasma membrane in cells stimulated with epidermal growth factors (EGFs) is not known. We show that a plasma membrane PtdIns(4,5)P2-degrading enzyme, synaptojanin (Synj) phosphatase, is inactivated through oxidation by H2O2. Intriguingly, H2O2 inhibits the 4-phosphatase activity of Synj but not the 5-phosphatase activity. In EGF-activated cells, the oxidation of Synj dual phosphatase is required for the transient increase in the plasma membrane levels of phosphatidylinositol 4-phosphate [PtdIns(4)P], which can control EGF receptor-mediated endocytosis. These results indicate that intracellular H2O2 molecules act as signaling mediators to fine-tune endocytosis by controlling the stability of plasma membrane PtdIns(4)P, an intermediate product of Synj phosphoinositide dual phosphatase.
Collapse
Affiliation(s)
- Su In Jo
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Suree Kim
- Fluorescence Core Imaging Center and Bioimaging Data Curation Center, Ewha Womans University, Seoul, Republic of Korea
| | - Jung Mi Lim
- Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sue Goo Rhee
- Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Sun-Shin Cha
- R&D Division, TODD PHARM CO. LTD., Seoul, Republic of Korea; Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea; Fluorescence Core Imaging Center and Bioimaging Data Curation Center, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
10
|
Qian W, Yang Y, Chou S, Ge S, Li P, Wang X, Zhuang LL, Zhang J. Effect of N/P ratio on attached microalgae growth and the differentiated metabolism along the depth of biofilm. ENVIRONMENTAL RESEARCH 2024; 240:117428. [PMID: 37875171 DOI: 10.1016/j.envres.2023.117428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023]
Abstract
Attached microalgae cultivation coupled with wastewater treatment could convert pollutants into bioresource with high efficiency and low cost. Nitrogen to phosphorus ratio (N/P ratio) is considered as an important factor on microalgae growth. Due to spatially heterogeneous distribution of nutrient, how N/P ratio affected attached microalgae growth in both macro- and micro-scopes was explored in this study. The findings revealed that an optimal N/P ratio of 10:1 promoted attached microalgae growth, while unsuitable ratios hampered algal growth by inhibiting photosynthesis, lowering oxidative resistance and decreasing metabolism activity. Long-term cultivation with improper N/P ratios resulted in a gradual decrease in actual photosynthetic rates, implying 50 days as the upper culture time limit for high-efficiency growth. Moreover, the study highlighted the uneven distribution of light and nutrients in algal biofilms, causing cells in different biofilm layers with variability of metabolism and composition. However, the 15N isotopic distribution demonstrated that even bottom cells were equally capable of nitrogen assimilation.
Collapse
Affiliation(s)
- Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Sai Chou
- China-Japan Friendship Hospital, Chaoyang District, Beijing, 100192, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Peihua Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong, 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| |
Collapse
|
11
|
Bellanti F, Mangieri D, Vendemiale G. Redox Biology and Liver Fibrosis. Int J Mol Sci 2023; 25:410. [PMID: 38203581 PMCID: PMC10778611 DOI: 10.3390/ijms25010410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatic fibrosis is a complex process that develops in chronic liver diseases. Even though the initiation and progression of fibrosis rely on the underlying etiology, mutual mechanisms can be recognized and targeted for therapeutic purposes. Irrespective of the primary cause of liver disease, persistent damage to parenchymal cells triggers the overproduction of reactive species, with the consequent disruption of redox balance. Reactive species are important mediators for the homeostasis of both hepatocytes and non-parenchymal liver cells. Indeed, other than acting as cytotoxic agents, reactive species are able to modulate specific signaling pathways that may be relevant to hepatic fibrogenesis. After a brief introduction to redox biology and the mechanisms of fibrogenesis, this review aims to summarize the current evidence of the involvement of redox-dependent pathways in liver fibrosis and focuses on possible therapeutic targets.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
12
|
Yu G, Song X, Chen Q, Zhou Y. Silencing of peroxiredoxin III inhibits formaldehyde-induced oxidative damage of bone marrow cells in BALB/c mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2836-2844. [PMID: 37584494 DOI: 10.1002/tox.23915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Formaldehyde (FA) is associated with the occurrence of leukemia, and oxidative stress is considered to be a major reason. As an endogenous biomarker of oxidative stress, few studies focus on the relationship between peroxiredoxin III (PrxIII) and FA toxicity. Our previous research observed high expression of PrxIII occurred in the process of apoptosis of bone marrow cells (BMCs) induced by FA, however the exact mechanism is unclear. Therefore, this paper aimed to explore the possible association between FA toxicity and PrxIII gene. METHODS We first, used a Cell Counting Kit-8 (CCK-8) to detect the viability of BMCs after they were exposed to different doses of FA (50, 100, 200 μmol/L) for different exposure time (12, 24, 48 h), then chose 24 h as an exposure time to detect the expression of PrxIII for exposing different doses of FA by Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analysis. Based on our preliminary experimental results, we chose 100 μmol/L FA as an exposure dose to expose for 24 h, and used a small interfering RNA (siRNA) to silenced PrxIII to examine the cell viability by CCK-8, reactive oxygen species (ROS) level by DCFH-DA, apoptosis by Annexin V/PI double staining and cell cycle by flow cytometry (FCM) so as to explore the possible regulatory effect of PrxIII silencing on FA-induced bone marrow toxicity. RESULTS High expression of PrxIII occurred in the process of FA-induced oxidative stress. Silencing of PrxIII prevented FA from inducing oxidative stress, thus increasing cell viability, decreasing ROS level, rescuing G0 -G1 and G2 -M arrest, and reducing cell apoptosis. CONCLUSION PrxIII silencing might be a potential target for alleviating FA-induced oxidative damage.
Collapse
Affiliation(s)
- Guangyan Yu
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Xiangfu Song
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Qiang Chen
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| | - Yutong Zhou
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
13
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
14
|
Ježek P. Pitfalls of Mitochondrial Redox Signaling Research. Antioxidants (Basel) 2023; 12:1696. [PMID: 37759999 PMCID: PMC10525995 DOI: 10.3390/antiox12091696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Redox signaling from mitochondria (mt) to the cytosol and plasma membrane (PM) has been scarcely reported, such as in the case of hypoxic cell adaptation or (2-oxo-) 2-keto-isocaproate (KIC) β-like-oxidation stimulating insulin secretion in pancreatic β-cells. Mutual redox state influence between mitochondrial major compartments, the matrix and the intracristal space, and the cytosol is therefore derived theoretically in this article to predict possible conditions, when mt-to-cytosol and mt-to-PM signals may occur, as well as conditions in which the cytosolic redox signaling is not overwhelmed by the mitochondrial antioxidant capacity. Possible peroxiredoxin 3 participation in mt-to-cytosol redox signaling is discussed, as well as another specific case, whereby mitochondrial superoxide release is diminished, whereas the matrix MnSOD is activated. As a result, the enhanced conversion to H2O2 allows H2O2 diffusion into the cytosol, where it could be a predominant component of the H2O2 release. In both of these ways, mt-to-cytosol and mt-to-PM signals may be realized. Finally, the use of redox-sensitive probes is discussed, which disturb redox equilibria, and hence add a surplus redox-buffering to the compartment, where they are localized. Specifically, when attempts to quantify net H2O2 fluxes are to be made, this should be taken into account.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| |
Collapse
|
15
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
16
|
Zhou M, Guo J, Li S, Li A, Fang Z, Zhao M, Zhang M, Wang X. Effect of peroxiredoxin 1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. J Assist Reprod Genet 2023:10.1007/s10815-023-02820-0. [PMID: 37227568 DOI: 10.1007/s10815-023-02820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE PE is a pregnancy-specific syndrome and one of the main causes of maternal, fetal, and neonatal mortality. PRDX1 is an antioxidant that regulates cell proliferation, differentiation, and apoptosis. The aim of this study is to investigate the effect of PRDX1 on the regulation of trophoblast function by affecting autophagy and oxidative stress in preeclampsia. METHODS Western blotting, RT-qPCR, and immunofluorescence were used to examine the expression of PRDX1 in placentas. PRDX1-siRNA was transfected to knockdown PRDX1 in HTR-8/SVneo cells. The biological function of HTR-8/SVneo cells was detected by wound healing, invasion, tube formation, CCK-8, EdU, flow cytometry, and TUNEL assays. Western blotting was used to detect the protein expression of cleaved-Caspase3, Bax, LC3II, Beclin1, PTEN, and p-AKT. DCFH-DA staining was used to detect ROS levels by flow cytometry. RESULTS PRDX1 was significantly decreased in placental trophoblasts in PE patients. Following the exposure of HTR-8/SVneo cells to H2O2, PRDX1 expression was significantly decreased, LC3II and Beclin1 expression was notably increased, and ROS level was also markedly increased. PRDX1 knockdown impaired migration, invasion, and tube-formation abilities and promoted apoptosis, which was accompanied by an increased expression of cleaved-Caspase3 and Bax. PRDX1 knockdown induced a significant decrease in LC3II and Beclin1 expression, along with an elevated p-AKT expression and a decreased PTEN expression. PRDX1 knockdown increased intracellular ROS levels, and NAC attenuated PRDX1 knockdown-induced apoptosis. CONCLUSION PRDX1 regulated trophoblast function through the PTEN/AKT signaling pathway to affect cell autophagy and ROS level, which provided a potential target for the treatment of PE.
Collapse
Affiliation(s)
- Meijuan Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Junjun Guo
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Man Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China.
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, 238 Jingshi East Road, Jinan, 250014, Shandong, China.
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Street, Jinan, 250021, Shandong, China.
| |
Collapse
|
17
|
Nava-Ramírez T, Gutiérrez-Terrazas S, Hansberg W. The Molecular Chaperone Mechanism of the C-Terminal Domain of Large-Size Subunit Catalases. Antioxidants (Basel) 2023; 12:antiox12040839. [PMID: 37107214 PMCID: PMC10135305 DOI: 10.3390/antiox12040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
Large-size subunit catalases (LSCs) have an additional C-terminal domain (CT) that is structurally similar to Hsp31 and DJ-1 proteins, which have molecular chaperone activity. The CT of LSCs derives from a bacterial Hsp31 protein. There are two CT dimers with inverted symmetry in LSCs, one dimer in each pole of the homotetrameric structure. We previously demonstrated the molecular chaperone activity of the CT of LSCs. Like other chaperones, LSCs are abundant proteins that are induced under stress conditions and during cell differentiation in bacteria and fungi. Here, we analyze the mechanism of the CT of LSCs as an unfolding enzyme. The dimeric form of catalase-3 (CAT-3) CT (TDC3) of Neurospora crassa presented the highest activity as compared to its monomeric form. A variant of the CAT-3 CT lacking the last 17 amino acid residues (TDC3Δ17aa), a loop containing hydrophobic and charged amino acid residues only, lost most of its unfolding activity. Substituting charged for hydrophobic residues or vice versa in this C-terminal loop diminished the molecular chaperone activity in all the mutant variants analyzed, indicating that these amino acid residues play a relevant role in its unfolding activity. These data suggest that the general unfolding mechanism of CAT-3 CT involves a dimer with an inverted symmetry, and hydrophobic and charged amino acid residues. Each tetramer has four sites of interaction with partially unfolded or misfolded proteins. LSCs preserve their catalase activity under different stress conditions and, at the same time, function as unfolding enzymes.
Collapse
|
18
|
Qiu X, Li L, Wei J, An X, Ampadu JA, Zheng W, Yu C, Peng C, Li X, Cai X. The protective role of Nrf2 on cognitive impairment in chronic intermittent hypoxia and sleep fragmentation mice. Int Immunopharmacol 2023; 116:109813. [DOI: 10.1016/j.intimp.2023.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/16/2023]
|
19
|
Hussein MJ, Hadwan MH. Fluorometric Protocol for Estimating Peroxiredoxin Activity in Biological Tissues. J Fluoresc 2023; 33:721-730. [PMID: 36508000 DOI: 10.1007/s10895-022-03111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
This protocol describes a detailed fluorometric method for measuring peroxiredoxin (Prx) enzyme activity in vitro. Peroxide dissociation is the rate-limiting step in the Prx-controlled enzymatic reaction. To prevent interference by the catalase enzyme, we developed a peroxiredoxin assay that measures Prx activity using the substrate tert-Butyl hydroperoxide (t-BOOH). Prx enzyme activity is measured by incubating the enzymatic substrates 1,4-dithio-DL-threitol (DTT) and t-BOOH in a suitable buffer at 37 °C for 10 min in the presence of the desired volume of Prx enzyme. Next, the reagent N-(9-Acridinyl)maleimide (NAM) is used to stop the enzymatic reaction and form a fluorescent end product. Finally, Prx activity is measured by thiol fluorometry using a Box-Behnken design to optimize reaction conditions. This novel protocol was validated by evaluating Prx activity in matched samples against a reference assay. The correlation coefficient between our protocol and the reference assay was 0.9933, demonstrating its precision compared with existing methods. The NAM-Prx protocol instead uses t-BOOH as a substrate to measure Prx activity. Because catalase does not participate in the dissociation of t-BOOH, this approach does not require sodium azide. Furthermore, the method eliminates the need for concentrated acids to terminate the Prx enzymatic reaction since the NAM reagent can inhibit the enzymatic reaction regulated by the Prx enzyme.
Collapse
Affiliation(s)
- Marwah Jaber Hussein
- Chemistry Department, College of Science, University of Babylon, 51002, Hilla City, Babylon Governorate, PO, Iraq
| | - Mahmoud Hussein Hadwan
- Chemistry Department, College of Science, University of Babylon, 51002, Hilla City, Babylon Governorate, PO, Iraq.
| |
Collapse
|
20
|
Hewitt OH, Degnan SM. Antioxidant enzymes that target hydrogen peroxide are conserved across the animal kingdom, from sponges to mammals. Sci Rep 2023; 13:2510. [PMID: 36781921 PMCID: PMC9925728 DOI: 10.1038/s41598-023-29304-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Oxygen is the sustenance of aerobic life and yet is highly toxic. In early life, antioxidants functioned solely to defend against toxic effects of reactive oxygen species (ROS). Later, as aerobic metabolisms evolved, ROS became essential for signalling. Thus, antioxidants are multifunctional and must detoxify, but also permit ROS signalling for vital cellular processes. Here we conduct metazoan-wide genomic assessments of three enzymatic antioxidant families that target the predominant ROS signaller, hydrogen peroxide: namely, monofunctional catalases (CAT), peroxiredoxins (PRX), and glutathione peroxidases (GPX). We reveal that the two most evolutionary ancient families, CAT and PRX, exhibit metazoan-wide conservation. In the basal animal lineage, sponges (phylum Porifera), we find all three antioxidant families, but with GPX least abundant. Poriferan CATs are distinct from bilaterian CATs, but the evolutionary divergence is small. Amongst PRXs, subfamily PRX6 is the most conserved, whilst subfamily AhpC-PRX1 is the largest; PRX4 is the only core member conserved from sponges to mammals and may represent the ancestral animal AhpC-PRX1. Conversely, for GPX, the most recent family to arise, only the cysteine-dependent subfamily GPX7 is conserved across metazoans, and common across Porifera. Our analyses illustrate that the fundamental functions of antioxidants have resulted in gene conservation throughout the animal kingdom.
Collapse
Affiliation(s)
- Olivia H Hewitt
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sandie M Degnan
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
21
|
Kong A, Xu D, Hao T, Liu Q, Zhan R, Mai K, Ai Q. Role of acyl-coenzyme A oxidase 1 (ACOX1) on palmitate-induced inflammation and ROS production of macrophages in large yellow croaker (Larimichthys crocea). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104501. [PMID: 35961593 DOI: 10.1016/j.dci.2022.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Acyl-coenzyme A oxidase 1 (ACOX1) is the rate-limiting enzyme in peroxisomal β-oxidation, and it plays an essential role in mediating the inflammatory response and reactive oxygen species (ROS) metabolism in mammals. However, the role of ACOX1 in fish has not been completely elucidated. Herein, this study was conducted to investigate the role of large yellow croaker (Larimichthys crocea) ACOX1 (Lc-ACOX1) on palmitate (PA)-induced inflammation and ROS production. In this study, Lc-ACOX1 was cloned and characterized. The full-length CDS of Lc-acox1 was 1986 bp, encoding 661 amino acids. Tissue distribution results showed that the gene expression of Lc-acox1 was the highest in the intestine and the lowest in the spleen. Moreover, results showed that the mRNA expression of Lc-acox1 was upregulated by PA, with elevated pro-inflammatory gene expression, including il-1β, il-6, il-8, tnf-α, cox2 and ifn-γ, as well as ROS content in macrophages of large yellow croaker. Furthermore, the role of Lc-ACOX1 in inflammation induced by PA was investigated by using the ACOX1 inhibitor TDYA. Treatment of macrophages with TDYA reduced the mRNA expression of pro-inflammatory genes induced by PA. Moreover, inhibition of ACOX1 reduced the elevated level of ROS caused by PA and increased the mRNA expression of antioxidant genes. In conclusion, this study first identified that fish ACOX1 was involved in the PA-induced inflammatory response and ROS production.
Collapse
Affiliation(s)
- Adong Kong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Rui Zhan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, PR China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, PR China.
| |
Collapse
|
22
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying Nrf2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling. Free Radic Biol Med 2022; 191:191-202. [PMID: 36064071 DOI: 10.1016/j.freeradbiomed.2022.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen peroxide is an aerobic metabolite playing a central role in redox signaling and oxidative stress. H2O2 could activate redox sensitive transcription factors, such as Nrf2, AP-1 and NF-κB by different manners. In some cells, treatment with non-lethal levels of H2O2 induces rapid activation of Nrf2, which upregulates expression of a set of genes involved in glutathione (GSH) synthesis and defenses against oxidative damage. It depends on two steps, the rapid translational activation of Nrf2 and facilitation of Nrf2 nuclear translocation. We review the molecular mechanisms by which H2O2 induces nuclear translocation of Nrf2 in cultured cells by highlighting the role of neutral sphingomyelinase 2 (nSMase2), a GSH sensor. H2O2 enters cells through aquaporin channels in the plasma membrane and is rapidly reduced to H2O by GSH peroxidases to consume cellular GSH, resulting in nSMase2 activation to generate ceramide. H2O2 also activates p38 MAP kinase, which enhances transfer of nSMase2 from perinuclear regions to plasma membrane lipid rafts to accelerate ceramide generation. Low levels of ceramide activate PKCζ, which then activates casein kinase 2 (CK2). These protein kinases are able to phosphorylate Nrf2 to stabilize and activate it. Notably, Nrf2 also binds to caveolin-1 (Cav1), which protects Nrf2 from Keap1-mediated degradation and limits Nrf2 nuclear translocation. We propose that Cav1serves as a signaling hub for the control of H2O2-mediated phosphorylation of Nrf2 by kinases, which results in release of Nrf2 from Cav1 to facilitate nuclear translocation. In summary, H2O2 induces GSH depletion which is recovered by Nrf2 activation dependent on p38/nSMase2/ceramide signaling.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
23
|
Wang K, Song Y, Li H, Song J, Wang S. Identification of differentially expressed ferroptosis-related genes in abdominal aortic aneurysm: Bioinformatics analysis. Front Cardiovasc Med 2022; 9:991613. [PMID: 36247434 PMCID: PMC9558826 DOI: 10.3389/fcvm.2022.991613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Ferroptosis plays a crucial role in the development and progression of abdominal aortic aneurysm (AAA). The aim of this study was to identify differentially expressed genes associated with ferroptosis in AAA through bioinformatics analysis combined with experimental validation. Materials and methods Firstly, the mRNA expression profile datasets GSE57691 and GSE47472 from Gene Expression Omnibus database were screened, and principal component analysis was carried out. Next, the R software (version 4.0.0) was used to analyze potentially differentially expressed genes associated with AAA and ferroptosis. Subsequently, protein–protein interaction analysis, gene ontology enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed on the selected candidate genes. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of the first five selected abnormal ferroptosis-related genes in clinical samples obtained from patients with AAA and healthy controls. Results Based on the information contained in the two datasets, a total of 20 differentially expressed ferroptosis-related genes (three upregulated genes and 17 downregulated genes) were selected. Protein–protein interaction analysis demonstrated interaction between these genes, while gene ontology enrichment analysis of ferroptosis genes with differential expression indicated that some enrichment items were associated with oxidative stress. The qRT-PCR results showed that the expression levels of interleukin-6 (IL-6), peroxiredoxin 1 (PRDX1), and stearoyl-CoA desaturase (SCD) were consistent with the bioinformatics prediction results obtained from the mRNA chip. Conclusion Bioinformatics analysis identified 20 potential ferroptosis-related differentially expressed genes in AAA. Further verification by qRT-PCR showed that IL-6, PRXD1, and SCD might affect the process of AAA by regulating ferroptosis. Our results might assist in further understanding the pathogenesis of AAA and guiding treatment.
Collapse
Affiliation(s)
- Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Clinical Laboratory, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Jianshu Song
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shizhong Wang,
| |
Collapse
|
24
|
Carbonell-M B, Zapata Cardona J, Delgado JP. Post-amputation reactive oxygen species production is necessary for axolotls limb regeneration. Front Cell Dev Biol 2022; 10:921520. [PMID: 36092695 PMCID: PMC9458980 DOI: 10.3389/fcell.2022.921520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction: Reactive oxygen species (ROS) represent molecules of great interest in the field of regenerative biology since several animal models require their production to promote and favor tissue, organ, and appendage regeneration. Recently, it has been shown that the production of ROS such as hydrogen peroxide (H2O2) is required for tail regeneration in Ambystoma mexicanum. However, to date, it is unknown whether ROS production is necessary for limb regeneration in this animal model. Methods: forelimbs of juvenile animals were amputated proximally and the dynamics of ROS production was determined using 2′7- dichlorofluorescein diacetate (DCFDA) during the regeneration process. Inhibition of ROS production was performed using the NADPH oxidase inhibitor apocynin. Subsequently, a rescue assay was performed using exogenous hydrogen peroxide (H2O2). The effect of these treatments on the size and skeletal structures of the regenerated limb was evaluated by staining with alcian blue and alizarin red, as well as the effect on blastema formation, cell proliferation, immune cell recruitment, and expression of genes related to proximal-distal identity. Results: our results show that inhibition of post-amputation limb ROS production in the A. mexicanum salamander model results in the regeneration of a miniature limb with a significant reduction in the size of skeletal elements such as the ulna, radius, and overall autopod. Additionally, other effects such as decrease in the number of carpals, defective joint morphology, and failure of integrity between the regenerated structure and the remaining tissue were identified. In addition, this treatment affected blastema formation and induced a reduction in the levels of cell proliferation in this structure, as well as a reduction in the number of CD45+ and CD11b + immune system cells. On the other hand, blocking ROS production affected the expression of proximo-distal identity genes such as Aldha1a1, Rarβ, Prod1, Meis1, Hoxa13, and other genes such as Agr2 and Yap1 in early/mid blastema. Of great interest, the failure in blastema formation, skeletal alterations, as well as the expression of the genes evaluated were rescued by the application of exogenous H2O2, suggesting that ROS/H2O2 production is necessary from the early stages for proper regeneration and patterning of the limb.
Collapse
Affiliation(s)
- Belfran Carbonell-M
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Belfran Carbonell-M, ; Jean Paul Delgado,
| | - Juliana Zapata Cardona
- Grupo de Investigación en Patobiología Quiron, Escuela de MedicinaVeterinaria, Universidad de Antioquia, Medellín, Colombia
| | - Jean Paul Delgado
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
- *Correspondence: Belfran Carbonell-M, ; Jean Paul Delgado,
| |
Collapse
|
25
|
Nascè A, Gariani K, Jornayvaz FR, Szanto I. NADPH Oxidases Connecting Fatty Liver Disease, Insulin Resistance and Type 2 Diabetes: Current Knowledge and Therapeutic Outlook. Antioxidants (Basel) 2022; 11:antiox11061131. [PMID: 35740032 PMCID: PMC9219746 DOI: 10.3390/antiox11061131] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by ectopic fat accumulation in hepatocytes, is closely linked to insulin resistance and is the most frequent complication of type 2 diabetes mellitus (T2DM). One of the features connecting NAFLD, insulin resistance and T2DM is cellular oxidative stress. Oxidative stress refers to a redox imbalance due to an inequity between the capacity of production and the elimination of reactive oxygen species (ROS). One of the major cellular ROS sources is NADPH oxidase enzymes (NOX-es). In physiological conditions, NOX-es produce ROS purposefully in a timely and spatially regulated manner and are crucial regulators of various cellular events linked to metabolism, receptor signal transmission, proliferation and apoptosis. In contrast, dysregulated NOX-derived ROS production is related to the onset of diverse pathologies. This review provides a synopsis of current knowledge concerning NOX enzymes as connective elements between NAFLD, insulin resistance and T2DM and weighs their potential relevance as pharmacological targets to alleviate fatty liver disease.
Collapse
Affiliation(s)
- Alberto Nascè
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (F.R.J.); (I.S.)
| | - Ildiko Szanto
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
- Correspondence: (F.R.J.); (I.S.)
| |
Collapse
|
26
|
Jovanović M, Podolski-Renić A, Krasavin M, Pešić M. The Role of the Thioredoxin Detoxification System in Cancer Progression and Resistance. Front Mol Biosci 2022; 9:883297. [PMID: 35664671 PMCID: PMC9161637 DOI: 10.3389/fmolb.2022.883297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intracellular redox homeostasis is a dynamic balancing system between the levels of free radical species and antioxidant enzymes and small molecules at the core of cellular defense mechanisms. The thioredoxin (Trx) system is an important detoxification system regulating the redox milieu. This system is one of the key regulators of cells’ proliferative potential as well, through the reduction of key proteins. Increased oxidative stress characterizes highly proliferative, metabolically hyperactive cancer cells, which are forced to mobilize antioxidant enzymes to balance the increase in free radical concentration and prevent irreversible damage and cell death. Components of the Trx system are involved in high-rate proliferation and activation of pro-survival mechanisms in cancer cells, particularly those facing increased oxidative stress. This review addresses the importance of the targetable redox-regulating Trx system in tumor progression, as well as in detoxification and protection of cancer cells from oxidative stress and drug-induced cytotoxicity. It also discusses the cancer cells’ counteracting mechanisms to the Trx system inhibition and presents several inhibitors of the Trx system as prospective candidates for cytostatics’ adjuvants. This manuscript further emphasizes the importance of developing novel multitarget therapies encompassing the Trx system inhibition to overcome cancer treatment limitations.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mikhail Krasavin
- Organic Chemistry Division, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milica Pešić, , orcid.org/0000-0002-9045-8239
| |
Collapse
|
27
|
Lismont C, Revenco I, Li H, Costa CF, Lenaerts L, Hussein MAF, De Bie J, Knoops B, Van Veldhoven PP, Derua R, Fransen M. Peroxisome-Derived Hydrogen Peroxide Modulates the Sulfenylation Profiles of Key Redox Signaling Proteins in Flp-In T-REx 293 Cells. Front Cell Dev Biol 2022; 10:888873. [PMID: 35557958 PMCID: PMC9086853 DOI: 10.3389/fcell.2022.888873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
The involvement of peroxisomes in cellular hydrogen peroxide (H2O2) metabolism has been a central theme since their first biochemical characterization by Christian de Duve in 1965. While the role of H2O2 substantially changed from an exclusively toxic molecule to a signaling messenger, the regulatory role of peroxisomes in these signaling events is still largely underappreciated. This is mainly because the number of known protein targets of peroxisome-derived H2O2 is rather limited and testing of specific targets is predominantly based on knowledge previously gathered in related fields of research. To gain a broader and more systematic insight into the role of peroxisomes in redox signaling, new approaches are urgently needed. In this study, we have combined a previously developed Flp-In T-REx 293 cell system in which peroxisomal H2O2 production can be modulated with a yeast AP-1-like-based sulfenome mining strategy to inventory protein thiol targets of peroxisome-derived H2O2 in different subcellular compartments. By using this approach, we identified more than 400 targets of peroxisome-derived H2O2 in peroxisomes, the cytosol, and mitochondria. We also observed that the sulfenylation kinetics profiles of key targets belonging to different protein families (e.g., peroxiredoxins, annexins, and tubulins) can vary considerably. In addition, we obtained compelling but indirect evidence that peroxisome-derived H2O2 may oxidize at least some of its targets (e.g., transcription factors) through a redox relay mechanism. In conclusion, given that sulfenic acids function as key intermediates in H2O2 signaling, the findings presented in this study provide valuable insight into how peroxisomes may be integrated into the cellular H2O2 signaling network.
Collapse
Affiliation(s)
- Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Iulia Revenco
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Cláudio F Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Lenaerts
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Mohamed A F Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jonas De Bie
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Bernard Knoops
- Group of Animal Molecular and Cellular Biology, Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,SyBioMa, KU Leuven, Leuven, Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Beaussart A, Canonico F, Mazon H, Hidalgo J, Cianférani S, Le Cordier H, Kriznik A, Rahuel-Clermont S. Probing the mechanism of the peroxiredoxin decamer interaction with its reductase sulfiredoxin from the single molecule to the solution scale. NANOSCALE HORIZONS 2022; 7:515-525. [PMID: 35234779 DOI: 10.1039/d2nh00037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peroxiredoxins from the Prx1 subfamily (Prx) are highly regulated multifunctional proteins involved in oxidative stress response, redox signaling and cell protection. Prx is a homodimer that associates into a decamer. The monomer C-terminus plays intricate roles in Prx catalytic functions, decamer stability and interaction with its redox partner, the small reductase sulfiredoxin (Srx), that regulates the switching between Prx cellular functions. As only static structures of covalent Prx-Srx complexes have been reported, whether Srx binding dissociates the decameric assembly and how Prx subunit flexibility impacts complex formation are unknown. Here, we assessed the non-covalent interaction mechanism and dynamics in the solution of Saccharomyces cerevisiae Srx with the ten subunits of Prx Tsa1 at the decamer level via a combination of multiscale biophysical approaches including native mass spectrometry. We show that the ten subunits of the decamer can be saturated by ten Srx molecules and that the Tsa1 decamer in complex with Srx does not dissociate in solution. Furthermore, the binding events of atomic force microscopy (AFM) tip-grafted Srx molecules to Tsa1 individual subunits were relevant to the interactions between free molecules in solution. Combined with protein engineering and rapid kinetics, the observation of peculiar AFM force-distance signatures revealed that Tsa1 C-terminus flexibility controls Tsa1/Srx two-step binding and dynamics and determines the force-induced dissociation of Srx from each subunit of the decameric complex in a sequential or concerted mode. This combined approach from the solution to the single-molecule level offers promising prospects for understanding oligomeric protein interactions with their partners.
Collapse
Affiliation(s)
| | | | - Hortense Mazon
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Jorge Hidalgo
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS CEA, 67087 Strasbourg, France
| | | | - Alexandre Kriznik
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Biophysics and Structural Biology core facility, F-54000 Nancy, France.
| | - Sophie Rahuel-Clermont
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, Biophysics and Structural Biology core facility, F-54000 Nancy, France.
| |
Collapse
|
29
|
Lipopolysaccharide Modifies Sodium Current Kinetics through ROS and PKC Signalling in Induced Pluripotent Stem-Derived Cardiomyocytes from Brugada Syndrome Patient. J Cardiovasc Dev Dis 2022; 9:jcdd9040119. [PMID: 35448095 PMCID: PMC9025958 DOI: 10.3390/jcdd9040119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Studies have suggested a connection between inflammation and arrhythmogenesis of Brugada syndrome (BrS). However, experimental studies regarding the roles of inflammation in the arrhythmogenesis of BrS and its underlying mechanism are still lacking. This study aimed to investigate the influence of inflammation on BrS-phenotype features using human-induced stem cell-derived cardiomyocytes (hiPSC-CMs) from a BrS-patient carrying an SCN10A variant (c.3749G > A). After LPS treatment, the peak sodium current decreased significantly in SCN10A-hiPSC-CMs, but not in healthy donor-hiPSC-CMs. LPS also changed sodium channel gating kinetics, including activation, inactivation, and recovery from inactivation. NAC (N-acetyl-l-cysteine), a blocker of ROS (reactive oxygen species), failed to affect the sodium current, but prevented the LPS-induced reduction of sodium channel currents and changes in gating kinetics, suggesting a contribution of ROS to the LPS effects. Hydrogen peroxide (H2O2), a main form of ROS in cells, mimicked the LPS effects on sodium channel currents and gating kinetics, implying that ROS might mediate LPS-effects on sodium channels. The effects of H2O2 could be attenuated by a PKC blocker chelerythrine, indicating that PKC is a downstream factor of ROS. This study demonstrated that LPS can exacerbate the loss-of-function of sodium channels in BrS cells. Inflammation may play an important role in the pathogenesis of BrS.
Collapse
|
30
|
Camargo LL, Montezano AC, Hussain M, Wang Y, Zou Z, Rios FJ, Neves KB, Alves-Lopes R, Awan FR, Guzik TJ, Jensen T, Hartley RC, Touyz RM. Central role of c-Src in NOX5- mediated redox signalling in vascular smooth muscle cells in human hypertension. Cardiovasc Res 2022; 118:1359-1373. [PMID: 34320175 PMCID: PMC8953456 DOI: 10.1093/cvr/cvab171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
AIMS NOX-derived reactive oxygen species (ROS) are mediators of signalling pathways implicated in vascular smooth muscle cell (VSMC) dysfunction in hypertension. Among the numerous redox-sensitive kinases important in VSMC regulation is c-Src. However, mechanisms linking NOX/ROS to c-Src are unclear, especially in the context of oxidative stress in hypertension. Here, we investigated the role of NOX-induced oxidative stress in VSMCs in human hypertension focusing on NOX5, and explored c-Src, as a putative intermediate connecting NOX5-ROS to downstream effector targets underlying VSMC dysfunction. METHODS AND RESULTS VSMC from arteries from normotensive (NT) and hypertensive (HT) subjects were studied. NOX1,2,4,5 expression, ROS generation, oxidation/phosphorylation of signalling molecules, and actin polymerization and migration were assessed in the absence and presence of NOX5 (melittin) and Src (PP2) inhibitors. NOX5 and p22phox-dependent NOXs (NOX1-4) were down-regulated using NOX5 siRNA and p22phox-siRNA approaches. As proof of concept in intact vessels, vascular function was assessed by myography in transgenic mice expressing human NOX5 in a VSMC-specific manner. In HT VSMCs, NOX5 was up-regulated, with associated oxidative stress, hyperoxidation (c-Src, peroxiredoxin, DJ-1), and hyperphosphorylation (c-Src, PKC, ERK1/2, MLC20) of signalling molecules. NOX5 siRNA reduced ROS generation in NT and HT subjects. NOX5 siRNA, but not p22phox-siRNA, blunted c-Src phosphorylation in HT VSMCs. NOX5 siRNA reduced phosphorylation of MLC20 and FAK in NT and HT. In p22phox- silenced HT VSMCs, Ang II-induced phosphorylation of MLC20 was increased, effects blocked by melittin and PP2. NOX5 and c-Src inhibition attenuated actin polymerization and migration in HT VSMCs. In NOX5 transgenic mice, vascular hypercontractilty was decreased by melittin and PP2. CONCLUSION We define NOX5/ROS/c-Src as a novel feedforward signalling network in human VSMCs. Amplification of this system in hypertension contributes to VSMC dysfunction. Dampening the NOX5/ROS/c-Src pathway may ameliorate hypertension-associated vascular injury.
Collapse
Affiliation(s)
- Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Misbah Hussain
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Yu Wang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Zhiguo Zou
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Fazli R Awan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Thomas Jensen
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, G12 8QQ Glasgow, UK
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, G12 8QQ Glasgow, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
31
|
Szanto I. NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation. Int J Mol Sci 2022; 23:ijms23052702. [PMID: 35269843 PMCID: PMC8910662 DOI: 10.3390/ijms23052702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cells can survive and maintain their high proliferation rate in spite of their hypoxic environment by deploying a variety of adaptative mechanisms, one of them being the reorientation of cellular metabolism. A key aspect of this metabolic rewiring is the promotion of the synthesis of antioxidant molecules in order to counter-balance the hypoxia-related elevation of reactive oxygen species (ROS) production and thus combat the onset of cellular oxidative stress. However, opposite to their negative role in the inception of oxidative stress, ROS are also key modulatory components of physiological cellular metabolism. One of the major physiological cellular ROS sources is the NADPH oxidase enzymes (NOX-es). Indeed, NOX-es produce ROS in a tightly regulated manner and control a variety of cellular processes. By contrast, pathologically elevated and unbridled NOX-derived ROS production is linked to diverse cancerogenic processes. In this respect, NOX4, one of the members of the NOX family enzymes, is of particular interest. In fact, NOX4 is closely linked to hypoxia-related signaling and is a regulator of diverse metabolic processes. Furthermore, NOX4 expression and function are altered in a variety of malignancies. The aim of this review is to provide a synopsis of our current knowledge concerning NOX4-related processes in the oncogenic metabolic adaptation of cancer cells.
Collapse
Affiliation(s)
- Ildiko Szanto
- Service of Endocrinology, Diabetology, Nutrition and Patient Education, Department of Internal Medicine, Geneva University Hospitals, Diabetes Center of the Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
32
|
Loeser RF, Coryell PR, Armstrong AR, Collins JA, Gopalakrishnan P, McDermott KA, Ran Q, Carlson CS. Overexpression of Peroxiredoxin 3 in Cartilage Reduces the Severity of
Age‐Related
Osteoarthritis But Not Surgically Induced Osteoarthritis in Mice. ACR Open Rheumatol 2022; 4:441-446. [PMID: 35191223 PMCID: PMC9096510 DOI: 10.1002/acr2.11420] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Objective The study objective was to determine whether overexpression of the mitochondrial antioxidant peroxidase, peroxiredoxin 3 (Prx3), reduces the severity of osteoarthritis (OA) in mice. Methods Age‐related OA (age 18 and 24 months) and OA induced by destabilization of the medial meniscus (DMM at age 6 months) were assessed in male mice that overexpress a human Prdx3 transgene encoding the Prx3 protein. Lox‐stop‐lox‐Prdx3 (iPrdx3) mice were crossed with aggrecan‐CreERT2 mice to produce iPrdx3AgCreERT2 or with Col2Cre to produce iPrdx3Col2Cre mice. Germline transgenics (Prdx3Tg) were also evaluated. Prx3 protein level was assessed by immunoblotting and functionally after induction of elevated mitochondrial hydrogen peroxide (H2O2) using menadione. Histological sections of stifle joints were scored for cartilage damage (Articular Cartilage Structure score [ACS]), osteophytes, and synovial hyperplasia and were evaluated by histomorphometry. Results Overexpression of Prx3 maintained mitochondrial membrane integrity and inhibited p38 phosphorylation in the presence of elevated H2O2. ACS scores of 18‐month‐old iPrdx3AgCreERT2 mice (mean ± SD, 4.88 ± 5.05) were significantly lower than age‐matched iPrdx3 controls (11.75 ± 6.34, P = 0.002) and trended lower in the 18‐month Prdx3Tg group (P = 0.14), whereas no significant differences between experimental and control groups at 24 months of age or in OA induced by DMM surgery were noted. Osteophyte scores trended lower in the 18‐month‐old Prdx3Tg group (P = 0.09) and at 24 months in the iPrdx3Col2Cre mice (P = 0.05). There were no significant group differences in synovial hyperplasia or histomorphometric measures. Conclusion Overexpression of the mitochondrial peroxidase Prx3 reduced the severity of age‐related OA, but not at advanced ages and not in DMM‐induced OA in younger mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qitao Ran
- UT Health San AntonioSan AntonioTexas
| | | |
Collapse
|
33
|
Peroxiredoxin-5 Knockdown Accelerates Pressure Overload-Induced Cardiac Hypertrophy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5067544. [PMID: 35132351 PMCID: PMC8817848 DOI: 10.1155/2022/5067544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
Abstract
A recent study showed that peroxiredoxins (Prxs) play an important role in the development of pathological cardiac hypertrophy. However, the involvement of Prx5 in cardiac hypertrophy remains unclear. Therefore, this study is aimed at investigating the role and mechanisms of Prx5 in pathological cardiac hypertrophy and dysfunction. Transverse aortic constriction (TAC) surgery was performed to establish a pressure overload-induced cardiac hypertrophy model. In this study, we found that Prx5 expression was upregulated in hypertrophic hearts and cardiomyocytes. In addition, Prx5 knockdown accelerated pressure overload-induced cardiac hypertrophy and dysfunction in mice by activating oxidative stress and cardiomyocyte apoptosis. Importantly, heart deterioration caused by Prx5 knockdown was related to mitogen-activated protein kinase (MAPK) pathway activation. These findings suggest that Prx5 could be a novel target for treating cardiac hypertrophy and heart failure.
Collapse
|
34
|
Yang C, Miao G, Sarbacker E, He H, Dong L, Wu B, Li G, Janik MJ, Xiao J. Ultra‐deep desulfurization of mercaptan by cyclic selective adsorption‐reactive regeneration at room‐temperature. AIChE J 2022. [DOI: 10.1002/aic.17590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cuiting Yang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou People's Republic of China
| | - Guang Miao
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou People's Republic of China
| | - Eric Sarbacker
- Department of Chemical Engineering Pennsylvania State University State College Pennsylvania USA
| | - Haoran He
- Department of Chemical Engineering Pennsylvania State University State College Pennsylvania USA
| | - Lei Dong
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou People's Republic of China
| | - Bowen Wu
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou People's Republic of China
| | - Guoqing Li
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou People's Republic of China
| | - Michael J. Janik
- Department of Chemical Engineering Pennsylvania State University State College Pennsylvania USA
| | - Jing Xiao
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou People's Republic of China
| |
Collapse
|
35
|
Vargas-Mendoza N, Angeles-Valencia M, Morales-González Á, Madrigal-Santillán EO, Morales-Martínez M, Madrigal-Bujaidar E, Álvarez-González I, Gutiérrez-Salinas J, Esquivel-Chirino C, Chamorro-Cevallos G, Cristóbal-Luna JM, Morales-González JA. Oxidative Stress, Mitochondrial Function and Adaptation to Exercise: New Perspectives in Nutrition. Life (Basel) 2021; 11:life11111269. [PMID: 34833151 PMCID: PMC8624755 DOI: 10.3390/life11111269] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 02/07/2023] Open
Abstract
Cells have the ability to adapt to stressful environments as a part of their evolution. Physical exercise induces an increase of a demand for energy that must be met by mitochondria as the main (ATP) provider. However, this process leads to the increase of free radicals and the so-called reactive oxygen species (ROS), which are necessary for the maintenance of cell signaling and homeostasis. In addition, mitochondrial biogenesis is influenced by exercise in continuous crosstalk between the mitochondria and the nuclear genome. Excessive workloads may induce severe mitochondrial stress, resulting in oxidative damage. In this regard, the objective of this work was to provide a general overview of the molecular mechanisms involved in mitochondrial adaptation during exercise and to understand if some nutrients such as antioxidants may be implicated in blunt adaptation and/or an impact on the performance of exercise by different means.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| | - Marcelo Angeles-Valencia
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n Esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico
- Correspondence: (Á.M.-G.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (Á.M.-G. & J.A.M.-G.)
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
| | - Mauricio Morales-Martínez
- Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Ciudad de México 14420, Mexico;
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu, Col., Lindavista, Ciudad de México 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional A. López Mateos, Av. Wilfrido Massieu, Col., Lindavista, Ciudad de México 07738, Mexico; (E.M.-B.); (I.Á.-G.)
| | - José Gutiérrez-Salinas
- Laboratorio de Bioquímica y Medicina Experimental, Centro Médico Nacional “20 de Noviembre”, ISSSTE, Ciudad de México 03229, Mexico;
| | - César Esquivel-Chirino
- Área de Básicas Médicas, División de Estudios Profesionales, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Ciudad de México 07738, Mexico; (G.C.-C.); (J.M.C.-L.)
| | - José Melesio Cristóbal-Luna
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Del. Gustavo A. Madero, Ciudad de México 07738, Mexico; (G.C.-C.); (J.M.C.-L.)
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (N.V.-M.); (M.A.-V.); (E.O.M.-S.)
- Correspondence: (Á.M.-G.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (Á.M.-G. & J.A.M.-G.)
| |
Collapse
|
36
|
Alkyl Hydroperoxide Reductase as a Determinant of Parasite Antiperoxide Response in Toxoplasma gondii. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1675652. [PMID: 34603593 PMCID: PMC8481037 DOI: 10.1155/2021/1675652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
Toxoplasma gondii is a protozoan parasite that is widely parasitic in the nucleated cells of warm-blooded animals. Bioinformatic analysis of alkyl hydroperoxide reductase 1 (AHP1) of T. gondii is a member of the Prxs family and exhibits peroxidase activity. Cys166 was certified to be a key enzyme active site of TgAHP1, indicating that the enzyme follows a cysteine-dependent redox process. TgAHP1 was present in a punctate staining pattern anterior to the T. gondii nucleus. Oxidative stress experiments showed that the ∆Ahp1 strain was more sensitive to tert-butyl hydroperoxide (tBOOH) than hydrogen peroxide (H2O2), indicating that tBOOH may be a sensitive substrate for TgAHP1. Under tBOOH culture conditions, the ∆Ahp1 strain was significantly less invasive, proliferative, and pathogenic in mice. This was mainly due to the induction of tBOOH, which increased the level of reactive oxygen species in the parasites and eventually led to apoptosis. This study shows that TgAHP1 is a peroxisomes protein with cysteine-dependent peroxidase activity and sensitive to tBOOH.
Collapse
|
37
|
Attaran S, Skoko JJ, Hopkins BL, Wright MK, Wood LE, Asan A, Woo HA, Feinberg A, Neumann CA. Peroxiredoxin-1 Tyr194 phosphorylation regulates LOX-dependent extracellular matrix remodelling in breast cancer. Br J Cancer 2021; 125:1146-1157. [PMID: 34389806 PMCID: PMC8505437 DOI: 10.1038/s41416-021-01510-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Peroxiredoxin 1 (PRDX1) belongs to an abundant family of peroxidases whose role in cancer is still unresolved. While mouse knockout studies demonstrate a tumour suppressive role for PRDX1, in cancer cell xenografts, results denote PRDX1 as a drug target. Probably, this phenotypic discrepancy stems from distinct roles of PRDX1 in certain cell types or stages of tumour progression. METHODS We demonstrate an important cell-autonomous function for PRDX1 utilising a syngeneic mouse model (BALB/c) and mammary fibroblasts (MFs) obtained from it. RESULTS Loss of PRDX1 in vivo promotes collagen remodelling known to promote breast cancer progression. PRDX1 inactivation in MFs occurs via SRC-induced phosphorylation of PRDX1 TYR194 and not through the expected direct oxidation of CYS52 in PRDX1 by ROS. TYR194-phosphorylated PRDX1 fails to bind to lysyl oxidases (LOX) and leads to the accumulation of extracellular LOX proteins which supports enhanced collagen remodelling associated with breast cancer progression. CONCLUSIONS This study reveals a cell type-specific tumour suppressive role for PRDX1 that is supported by survival analyses, depending on PRDX1 protein levels in breast cancer cohorts.
Collapse
Affiliation(s)
- Shireen Attaran
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - John J Skoko
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Barbara L Hopkins
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan K Wright
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Laurel E Wood
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alparslan Asan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Adam Feinberg
- Department of Materials Science and Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Carola A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Sharapov MG, Gudkov SV, Lankin VZ. Hydroperoxide-Reducing Enzymes in the Regulation of Free-Radical Processes. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1256-1274. [PMID: 34903155 DOI: 10.1134/s0006297921100084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The review presents current concepts of the molecular mechanisms of oxidative stress development and describes main stages of the free-radical reactions in oxidative stress. Endogenous and exogenous factors of the oxidative stress development, including dysfunction of cell oxidoreductase systems, as well as the effects of various external physicochemical factors, are discussed. The review also describes the main components of the antioxidant defense system and stages of its evolution, with a special focus on peroxiredoxins, glutathione peroxidases, and glutathione S-transferases, which share some phylogenetic, structural, and catalytic properties. The substrate specificity, as well as the similarities and differences in the catalytic mechanisms of these enzymes, are discussed in detail. The role of peroxiredoxins, glutathione peroxidases, and glutathione S-transferases in the regulation of hydroperoxide-mediated intracellular and intercellular signaling and interactions of these enzymes with receptors and non-receptor proteins are described. An important contribution of hydroperoxide-reducing enzymes to the antioxidant protection and regulation of such cell processes as growth, differentiation, and apoptosis is demonstrated.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Sergey V Gudkov
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow, 119991, Russia.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.,All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, 143050, Russia
| | - Vadim Z Lankin
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| |
Collapse
|
39
|
Abstract
Significance: During aging, excessive production of reactive species in the liver leads to redox imbalance with consequent oxidative damage and impaired organ homeostasis. Nevertheless, slight amounts of reactive species may modulate several transcription factors, acting as second messengers and regulating specific signaling pathways. These redox-dependent alterations may impact the age-associated decline in liver regeneration. Recent Advances: In the last few decades, relevant findings related to redox alterations in the aging liver were investigated. Consistently, recent research broadened understanding of redox modifications and signaling related to liver regeneration. Other than reporting the effect of oxidative stress, epigenetic and post-translational modifications, as well as modulation of specific redox-sensitive cellular signaling, were described. Among them, the present review focuses on Wnt/β-catenin, the nuclear factor (erythroid-derived 2)-like 2 (NRF2), members of the Forkhead box O (FoxO) family, and the p53 tumor suppressor. Critical Issues: Even though alteration in redox homeostasis occurs both in aging and in impaired liver regeneration, the associative mechanisms are not clearly defined. Of note, antioxidants are not effective in slowing hepatic senescence, and do not clearly improve liver repopulation after hepatectomy or transplant in humans. Future Directions: Further investigations are needed to define mutual redox-dependent molecular pathways involved both in aging and in the decline of liver regeneration. Preclinical studies aimed at the characterization of these pathways would define possible therapeutic targets for human trials. Antioxid. Redox Signal. 35, 832-847.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
40
|
Brown OI, Bridge KI, Kearney MT. Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Glucose Homeostasis and Diabetes-Related Endothelial Cell Dysfunction. Cells 2021; 10:cells10092315. [PMID: 34571964 PMCID: PMC8469180 DOI: 10.3390/cells10092315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress within the vascular endothelium, due to excess generation of reactive oxygen species (ROS), is thought to be fundamental to the initiation and progression of the cardiovascular complications of type 2 diabetes mellitus. The term ROS encompasses a variety of chemical species including superoxide anion (O2•-), hydroxyl radical (OH-) and hydrogen peroxide (H2O2). While constitutive generation of low concentrations of ROS are indispensable for normal cellular function, excess O2•- can result in irreversible tissue damage. Excess ROS generation is catalysed by xanthine oxidase, uncoupled nitric oxide synthases, the mitochondrial electron transport chain and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Amongst enzymatic sources of O2•- the Nox2 isoform of NADPH oxidase is thought to be critical to the oxidative stress found in type 2 diabetes mellitus. In contrast, the transcriptionally regulated Nox4 isoform, which generates H2O2, may fulfil a protective role and contribute to normal glucose homeostasis. This review describes the key roles of Nox2 and Nox4, as well as Nox1 and Nox5, in glucose homeostasis, endothelial function and oxidative stress, with a key focus on how they are regulated in health, and dysregulated in type 2 diabetes mellitus.
Collapse
|
41
|
Andreadou I, Efentakis P, Frenis K, Daiber A, Schulz R. Thiol-based redox-active proteins as cardioprotective therapeutic agents in cardiovascular diseases. Basic Res Cardiol 2021; 116:44. [PMID: 34275052 DOI: 10.1007/s00395-021-00885-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Thiol-based redox compounds, namely thioredoxins (Trxs), glutaredoxins (Grxs) and peroxiredoxins (Prxs), stand as a pivotal group of proteins involved in antioxidant processes and redox signaling. Glutaredoxins (Grxs) are considered as one of the major families of proteins involved in redox regulation by removal of S-glutathionylation and thereby reactivation of other enzymes with thiol-dependent activity. Grxs are also coupled to Trxs and Prxs recycling and thereby indirectly contribute to reactive oxygen species (ROS) detoxification. Peroxiredoxins (Prxs) are a ubiquitous family of peroxidases, which play an essential role in the detoxification of hydrogen peroxide, aliphatic and aromatic hydroperoxides, and peroxynitrite. The Trxs, Grxs and Prxs systems, which reversibly induce thiol modifications, regulate redox signaling involved in various biological events in the cardiovascular system. This review focuses on the current knowledge of the role of Trxs, Grxs and Prxs on cardiovascular pathologies and especially in cardiac hypertrophy, ischemia/reperfusion (I/R) injury and heart failure as well as in the presence of cardiovascular risk factors, such as hypertension, hyperlipidemia, hyperglycemia and metabolic syndrome. Further studies on the roles of thiol-dependent redox systems in the cardiovascular system will support the development of novel protective and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Katie Frenis
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.,Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr 1, 55131, Mainz, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
42
|
Shen Y, Xu H, Li L, Lu Y, Zhang M, Huang X, Tang X. Assessment of Potential Prognostic Value of Peroxiredoxin 1 in Oral Squamous Cell Carcinoma. Cancer Manag Res 2021; 13:5725-5737. [PMID: 34290530 PMCID: PMC8289334 DOI: 10.2147/cmar.s319048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose The role of the peroxiredoxin (PRDX) family in oral squamous cell carcinoma (OSCC) remains unclear. This study aimed to investigate the expression of PRDXs and their effects on the prognosis in OSCC. Methods The expression of PRDXs and their effects on prognosis were analysed in 216 OSCC samples from The Cancer Genome Atlas (TCGA) database. OSCC tissues and adjacent noncancerous tissues (ANTs) were obtained from 68 clinical patients. Quantitative real-time (qRT)-PCR, Western blot, and immunohistochemical (IHC) staining were used to verify the relationship between the expression level of PRDX1 and different clinical features. Gene set enrichment analysis (GSEA) was used to examine the molecular mechanism of PRDX1 in OSCC. Results PRDX1 was found to be the only gene in PRDX family that highly expressed in OSCC samples and affected the prognosis of patients with OSCC. PRDX1 expression was significantly related to tumor stage, lymphatic metastasis, and pathological grade. A nomogram consisting of tumor stage, N stage, and PRDX1 level was constructed. GSEA showed that high expression of PRDX1 involved many cancer-related molecular functions and signaling pathways. Conclusion PRDX1 may play an important role in the occurrence and development of OSCC, and may be a potential new target for OSCC treatment.
Collapse
Affiliation(s)
- Yajun Shen
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Haoyue Xu
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Lingyu Li
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Yunping Lu
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Min Zhang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Xin Huang
- Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Xiaofei Tang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing, 100050, People's Republic of China
| |
Collapse
|
43
|
Hwang I, Tang D, Paik J. Oxidative stress sensing and response in neural stem cell fate. Free Radic Biol Med 2021; 169:74-83. [PMID: 33862161 PMCID: PMC9594080 DOI: 10.1016/j.freeradbiomed.2021.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 12/22/2022]
Abstract
Neural stem/progenitor cells (NSPCs) contribute to the physiological cellular turnover of the adult brain and make up its regenerative potential. It is thus essential to understand how different factors influence their proliferation and differentiation to gain better insight into potential therapeutic targets in neurodegenerative diseases and traumatic brain injuries. Recent evidences indicate the roles of redox stress sensing and coping mechanisms in mediating the balance between NSPC self-renewal and differentiation. Such mechanisms involve direct cysteine modification, signaling and metabolic reprogramming, epigenetic alterations and transcription changes leading to adaptive responses like autophagy. Here, we discuss emerging findings on the involvement of redox sensors and effectors and their mechanisms in influencing changes in cellular redox potential and NSPC fate.
Collapse
Affiliation(s)
- Inah Hwang
- R&D Center, OneCureGEN Co., Ltd, Daejeon, 34141, Republic of Korea; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Deanna Tang
- University of Chicago, Chicago, IL, 60637, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
44
|
Jabůrek M, Průchová P, Holendová B, Galkin A, Ježek P. Antioxidant Synergy of Mitochondrial Phospholipase PNPLA8/iPLA2γ with Fatty Acid-Conducting SLC25 Gene Family Transporters. Antioxidants (Basel) 2021; 10:antiox10050678. [PMID: 33926059 PMCID: PMC8146845 DOI: 10.3390/antiox10050678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Patatin-like phospholipase domain-containing protein PNPLA8, also termed Ca2+-independent phospholipase A2γ (iPLA2γ), is addressed to the mitochondrial matrix (or peroxisomes), where it may manifest its unique activity to cleave phospholipid side-chains from both sn-1 and sn-2 positions, consequently releasing either saturated or unsaturated fatty acids (FAs), including oxidized FAs. Moreover, iPLA2γ is directly stimulated by H2O2 and, hence, is activated by redox signaling or oxidative stress. This redox activation permits the antioxidant synergy with mitochondrial uncoupling proteins (UCPs) or other SLC25 mitochondrial carrier family members by FA-mediated protonophoretic activity, termed mild uncoupling, that leads to diminishing of mitochondrial superoxide formation. This mechanism allows for the maintenance of the steady-state redox status of the cell. Besides the antioxidant role, we review the relations of iPLA2γ to lipid peroxidation since iPLA2γ is alternatively activated by cardiolipin hydroperoxides and hypothetically by structural alterations of lipid bilayer due to lipid peroxidation. Other iPLA2γ roles include the remodeling of mitochondrial (or peroxisomal) membranes and the generation of specific lipid second messengers. Thus, for example, during FA β-oxidation in pancreatic β-cells, H2O2-activated iPLA2γ supplies the GPR40 metabotropic FA receptor to amplify FA-stimulated insulin secretion. Cytoprotective roles of iPLA2γ in the heart and brain are also discussed.
Collapse
Affiliation(s)
- Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
- Correspondence: ; Tel.: +420-296442789
| | - Pavla Průchová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| | - Alexander Galkin
- Department of Pediatrics, Division of Neonatology, Columbia University William Black Building, New York, NY 10032, USA;
| | - Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| |
Collapse
|
45
|
Sharapov MG, Glushkova OV, Parfenyuk SB, Gudkov SV, Lunin SM, Novoselova EG. The role of TLR4/NF-κB signaling in the radioprotective effects of exogenous Prdx6. Arch Biochem Biophys 2021; 702:108830. [PMID: 33727039 DOI: 10.1016/j.abb.2021.108830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 01/11/2023]
Abstract
Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with multi-substrate peroxidase and phospholipase activities that is involved in cell redox homeostasis and regulates intracellular processes. Previously, recombinant Prdx6 was shown to exert a radioprotective effect during whole-body exposure to a lethal dose of X-ray radiation. Moreover, a mutant form Prdx6-C47S, which lacks peroxidase activity, also had a radioprotective effect, and this indicates that the mechanism of radioprotection is unknown. The present study was aimed to test the hypothesis that the radioprotective effect of Prdx6 and Prdx6-C47S may be mediated through the TLR4/NF-κB signaling pathway. It was demonstrated that exogenously applied Prdx6 protected 3T3 fibroblast cells against LD50 X-ray radiation in vitro. Pretreatment with Prdx6 increased cell survival, stimulated proliferation, normalized the level of reactive oxygen species in culture, and suppressed apoptosis and necrosis. Wild-type Prdx6 and, to a lesser degree, the Prdx6-C47S mutant proteins promoted a significant increase in NF-κB activation in irradiated cells, which likely contributes to the antiapoptotic effect. Pretreatment with TLR4 inhibitors, especially those directed to the extracellular part of the receptor, significantly reduced the radioprotective effect, and this supports the role of TLR4 signaling in the protective effects of Prdx6. Therefore, the radioprotective effect of Prdx6 was related not only to its antioxidant properties, but also to its ability to trigger cellular defense mechanisms through interaction with the TLR4 receptor and subsequent activation of the NF-κB pathway. Recombinant Prdx6 may be useful for the development of a new class of safe radioprotective compounds that have a combination of antioxidant and immunomodulatory properties.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia.
| | - Olga V Glushkova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Svetlana B Parfenyuk
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M Lunin
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| | - Elena G Novoselova
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia
| |
Collapse
|
46
|
He Y, Lu X, Chen T, Yang Y, Zheng J, Chen C, Zhang Y, Lei W. Resveratrol protects against myocardial ischemic injury via the inhibition of NF‑κB‑dependent inflammation and the enhancement of antioxidant defenses. Int J Mol Med 2021; 47:29. [PMID: 33537801 PMCID: PMC7895514 DOI: 10.3892/ijmm.2021.4862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Resveratrol (RES) is a natural phenol which possesses multiple pharmacological actions. The present study aimed to determine whether RES protects against myocardial ischemic injury in association with the inhibition of NF‑κB‑dependent inflammation and the enhancement of antioxidant defenses in mice following acute myocardial infarction (AMI). Male C57/BL mice were randomly assigned to 3 groups as follows: The sham‑operated (sham) group, AMI + vehicle group and AMI + RES group. Rat H9C2 cells were also used to examine the effects of RES on hypoxia‑induced oxidative injury in vitro. Redox homeostasis in the mouse myocardium and rat H9C2 cells was determined post‑treatment. The mRNA and protein levels of phosphorylated (p‑)IκB kinase (p‑IKK), p‑nuclear factor (NF)‑κB p65, interleukin (IL)‑1β, IL‑6, nerve growth factor (NGF) and insulin‑like growth factor‑1 (IGF‑1) were measured by RT‑qPCR and western blot analysis. It was found that RES slightly protected the myocardium against ischemic injury in mice, while it prevented the hypoxia‑induced apoptosis of H9C2 cells. RES decreased the production of reactive oxygen species (ROS) and enhanced the activities of superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GPx). RES also downregulated the protein and/or mRNA levels of p‑IKK, p‑NF‑κB p65, IL‑1β, IL‑6, NGF and IGF‑1 at 7 and 28 days after infarction. On the whole, these data indicate that RES protects the myocardium against ischemic injury in association with the inhibition of oxidative stress and inflammatory responses. Thus, RES has the potential to be used as an adjunctive therapeutic drug for heart diseases.
Collapse
Affiliation(s)
- Yuan He
- Laboratory of Cardiovascular Diseases
| | | | | | - Yu Yang
- Gerontology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | - Yuanqi Zhang
- Department of Vascular, Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Lei
- Laboratory of Cardiovascular Diseases
- Cardiovascular Medicine Center
| |
Collapse
|
47
|
Cornelius J, Cavarretta I, Pozzi E, Lavorgna G, Locatelli I, Tempio T, Montorsi F, Mattei A, Sitia R, Salonia A, Anelli T. Endoplasmic reticulum oxidoreductase 1 alpha modulates prostate cancer hallmarks. Transl Androl Urol 2021; 10:1110-1120. [PMID: 33850746 PMCID: PMC8039598 DOI: 10.21037/tau-20-1025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Therapies available for late stage prostate cancer (PCa) patients are limited and mostly palliative. The necessary development of unexplored therapeutic options relies on a deeper knowledge of molecular mechanisms leading to cancer progression. Redox signals are known to modulate the intensity and duration of oncogenic circuits; cues originating from the endoplasmic reticulum (ER) and downstream exocytic organelles are relevant in secretory tumors, including PCa. Ero 1α is a master regulator of redox homeostasis and oxidative folding. Methods We assessed Ero 1α mRNA expression by bioinformatic analysis of three public datasets and protein expression levels in PCa cell lines representing different degrees of tumor progression and different human prostate specimens. Transient Ero 1α knockdown was achieved by RNA interference (siRNA). Consequences of Ero 1α downregulation were monitored by PCa proliferation, migration and invasion properties. Results Ero 1α mRNA and protein levels are upregulated in PCa cell lines compared to non-tumorigenic cells (P=0.0273). Ero 1α expression increases with the grade of malignancy, reaching the highest level in the androgen resistant PC3. In patients’ samples from 3 datasets, Ero 1α mRNA expression correlates with pathological Gleason scores. Ero 1α knockdown inhibits proliferation (P=0.0081), migration (P=0.0085) and invasion (P=0.0007) of PC3 cells and alters the levels of integrin β1 (P=0.0024). Conclusions Results indicate that Ero 1α levels correlate with PCa aggressiveness; Ero 1α silencing inhibits key steps over the PCa metastatic process. Therefore, Ero 1α has the potential to be exploited as a novel biomarker and a therapeutic target in PCa.
Collapse
Affiliation(s)
- Julian Cornelius
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Urology, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Ilaria Cavarretta
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Edoardo Pozzi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Giovanni Lavorgna
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tiziana Tempio
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Agostino Mattei
- Department of Urology, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Roberto Sitia
- University Vita-Salute San Raffaele, Milan, Italy.,Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.,University Vita-Salute San Raffaele, Milan, Italy
| | - Tiziana Anelli
- University Vita-Salute San Raffaele, Milan, Italy.,Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
48
|
Maturation of Mitochondrially Targeted Prx V Involves a Second Cleavage by Mitochondrial Intermediate Peptidase That Is Sensitive to Inhibition by H 2O 2. Antioxidants (Basel) 2021; 10:antiox10030346. [PMID: 33669127 PMCID: PMC7996597 DOI: 10.3390/antiox10030346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Prx V mRNA contains two in-frame AUG codons, producing a long (L-Prx V) and short form of Prx V (S-Prx V), and mouse L-Prx V is expressed as a precursor protein containing a 49-amino acid N-terminal mitochondria targeting sequence. Here, we show that the N-terminal 41-residue sequence of L-Prx V is cleaved by mitochondrial processing peptidase (MPP) in the mitochondrial matrix to produce an intermediate Prx V (I-Prx V) with a destabilizing phenylalanine at its N-terminus, and further, that the next 8-residue sequence is cleaved by mitochondrial intermediate peptidase (MIP) to convert I-Prx V to a stabilized mature form that is identical to S-Prx V. Further, we show that when mitochondrial H2O2 levels are increased in HeLa cells using rotenone, in several mouse tissues by deleting Prx III, and in the adrenal gland by deleting Srx or by exposing mice to immobilized stress, I-Prx V accumulates transiently and mature S-Prx V levels decrease in mitochondria over time. These findings support the view that MIP is inhibited by H2O2, resulting in the accumulation and subsequent degradation of I-Prx V, identifying a role for redox mediated regulation of Prx V proteolytic maturation and expression in mitochondria.
Collapse
|
49
|
Ježek P, Holendová B, Jabůrek M, Tauber J, Dlasková A, Plecitá-Hlavatá L. The Pancreatic β-Cell: The Perfect Redox System. Antioxidants (Basel) 2021; 10:antiox10020197. [PMID: 33572903 PMCID: PMC7912581 DOI: 10.3390/antiox10020197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cell insulin secretion, which responds to various secretagogues and hormonal regulations, is reviewed here, emphasizing the fundamental redox signaling by NADPH oxidase 4- (NOX4-) mediated H2O2 production for glucose-stimulated insulin secretion (GSIS). There is a logical summation that integrates both metabolic plus redox homeostasis because the ATP-sensitive K+ channel (KATP) can only be closed when both ATP and H2O2 are elevated. Otherwise ATP would block KATP, while H2O2 would activate any of the redox-sensitive nonspecific calcium channels (NSCCs), such as TRPM2. Notably, a 100%-closed KATP ensemble is insufficient to reach the -50 mV threshold plasma membrane depolarization required for the activation of voltage-dependent Ca2+ channels. Open synergic NSCCs or Cl- channels have to act simultaneously to reach this threshold. The resulting intermittent cytosolic Ca2+-increases lead to the pulsatile exocytosis of insulin granule vesicles (IGVs). The incretin (e.g., GLP-1) amplification of GSIS stems from receptor signaling leading to activating the phosphorylation of TRPM channels and effects on other channels to intensify integral Ca2+-influx (fortified by endoplasmic reticulum Ca2+). ATP plus H2O2 are also required for branched-chain ketoacids (BCKAs); and partly for fatty acids (FAs) to secrete insulin, while BCKA or FA β-oxidation provide redox signaling from mitochondria, which proceeds by H2O2 diffusion or hypothetical SH relay via peroxiredoxin "redox kiss" to target proteins.
Collapse
|
50
|
Coryell PR, Diekman BO, Loeser RF. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 2021; 17:47-57. [PMID: 33208917 PMCID: PMC8035495 DOI: 10.1038/s41584-020-00533-7] [Citation(s) in RCA: 324] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
The development of osteoarthritis (OA) correlates with a rise in the number of senescent cells in joint tissues, and the senescence-associated secretory phenotype (SASP) has been implicated in cartilage degradation and OA. Age-related mitochondrial dysfunction and associated oxidative stress might induce senescence in joint tissue cells. However, senescence is not the only driver of OA, and the mechanisms by which senescent cells contribute to disease progression are not fully understood. Furthermore, it remains uncertain which joint cells and SASP-factors contribute to the OA phenotype. Research in the field has looked at developing therapeutics (namely senolytics and senomorphics) that eliminate or alter senescent cells to stop disease progression and pathogenesis. A better understanding of how senescence contributes to joint dysfunction may enhance the effectiveness of these approaches and provide relief for patients with OA.
Collapse
Affiliation(s)
- Philip R Coryell
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian O Diekman
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology, Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|