1
|
Zhang JX, Chen PP, Li XQ, Li L, Wu QY, Wang GH, Ruan XZ, Ma KL. Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease. Cell Death Differ 2024; 31:1636-1649. [PMID: 39169174 PMCID: PMC11618416 DOI: 10.1038/s41418-024-01365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
One of the main characteristics of diabetic kidney disease (DKD) is abnormal renal tubular fatty acid metabolism, especially defective fatty acid oxidation (FAO), accelerating tubular injury and tubulointerstitial fibrosis. Thiosulfate sulfurtransferase (TST), a mitochondrial enzyme essential for sulfur transfer, is reduced in metabolic diseases like diabetes and obesity. However, the potential role of TST in regulating fatty acid metabolic abnormalities in DKD remains unclear. Here, our data revealed decreased TST expression in the renal cortex of DKD patients. TST deficiency exacerbated tubular impairment in both diabetic and renal fibrosis mouse models, while sodium thiosulfate treatment or TST overexpression mitigated renal tubular injury with high-glucose exposure. TST downregulation mediated the decrease in S-sulfhydration of very long-chain specific acyl-CoA dehydrogenase, resulting in mitochondrial FAO dysfunction. This sequence of events exacerbates the progression of tubulointerstitial injury in DKD. Together, our findings demonstrate TST as a regulator of renal tubular injury in DKD.
Collapse
Affiliation(s)
- Jia Xiu Zhang
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Pei Pei Chen
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Qi Li
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Liang Li
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qin Yi Wu
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gui Hua Wang
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiong Zhong Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China.
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Mao X, Du Y, Sui R, Yu X, Zhu Y, Huang M. Quercetin conjugated PSC-derived exosomes to inhibit intimal hyperplasia via modulating the ERK, Akt, and NF-κB signaling pathways in the rat carotid artery post balloon injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102763. [PMID: 38897395 DOI: 10.1016/j.nano.2024.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The primary challenge in percutaneous coronary interventions for vascular restenosis is the occurrence of restenosis, which is defined by the excessive proliferation of neointimal tissue. Herein, our research team suggests that exosomes obtained from PSC, when paired with quercetin (Q@PSC-E), successfully reduce neointimal hyperplasia in a Sprague-Dawley rat model. Furthermore, the physical properties of the synthesized Q@PSC-E were examined using UV-vis, DLS, and FT-IR characterization techniques. The rats were subjected to balloon injury (BI) utilizing a 2-Fr Fogarty arterial embolectomy balloon catheter. Intimal hyperplasia and the degree of VSMC proliferation were evaluated using histological analysis in the rat groups that received a dosage of Q@PSC-E at 30 mg/kg/d. Significantly, Q@PSC-E inhibited cell proliferation through a pathway that does not include lipoxygenase, as demonstrated by [3H] thymidine incorporation, MTT, and flow cytometry studies. Additionally, the data indicate that Q@PSC-E hinders cell proliferation by targeting particular events that promote cell growth, including the activation of Akt and NF-κB, disruption of cell-cycle progression and also obstructs the ERK signaling pathway.
Collapse
Affiliation(s)
- Xin Mao
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Yaming Du
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Xiaodong Yu
- Department of Vascular surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Yue Zhu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China
| | - Meiyi Huang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| |
Collapse
|
3
|
Awarun OD, Olufunke Olojede A, Olaniran AF, Osarenkhoe Osemwegie O, Thomas R, Oluwagbenga OS. The Role of Enteric Bacteria in Elemental Sulfur Therapy. 2024 INTERNATIONAL CONFERENCE ON SCIENCE, ENGINEERING AND BUSINESS FOR DRIVING SUSTAINABLE DEVELOPMENT GOALS (SEB4SDG) 2024:1-6. [DOI: 10.1109/seb4sdg60871.2024.10629850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Olorunfemi Dapo Awarun
- Landmark University,Department of Food Science and Microbiology,Omu-Aran,Kwara State,Nigeria
| | | | | | | | - Remileku Thomas
- Landmark University,Department of Food Science and Microbiology,Omu-Aran,Kwara State,Nigeria
| | - Owa Stephen Oluwagbenga
- Landmark University,Department of Food Science and Microbiology,Omu-Aran,Kwara State,Nigeria
| |
Collapse
|
4
|
Koc A, Koc DS, Askin CI, Kara H, Ozturk Fincan GS, Ozger Ilhan S, Sarioglu Y. Effects of hydrogen sulfide on relaxation responses in the lower esophageal sphincter in rabbits: the potential role of potassium channels. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1537-1550. [PMID: 37668686 DOI: 10.1007/s00210-023-02695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
Hydrogen sulfide (H2S) is a significant physiologic inhibitory neurotransmitter. The main goal of this research was to examine the contribution of diverse potassium (K+) channels and nitric oxide (NO) in mediating the H2S effect on electrical field stimulation (EFS)-induced neurogenic contractile responses in the lower esophageal sphincter (LES). EFS-induced contractile responses of rabbit isolated LES strips were recorded using force transducers in organ baths that contain Krebs-Henseleit solutions (20 ml). Cumulative doses of NaHS, L-cysteine, PAG, and AOAA were evaluated in NO-dependent and NO-independent groups. The experiments were conducted again in the presence of K+ channel blockers. In both NO-dependent and NO-independent groups, NaHS, L-cysteine, PAG, and AOAA significantly reduced EFS-induced contractile responses. In the NO-dependent group, the effect of NaHS and L-cysteine decreased in the presence of 4-AP, and also the effect of NaHS decreased in the NO-dependent and independent group in the presence of TEA. In the NO-independent group, K+ channel blockers didn't change L-cysteine-induced relaxations. K+ channel blockers had no impact on the effects of PAG and AOAA. In addition, NaHS significantly relaxed 80-mM KCl-induced contractions, whereas L-cysteine, PAG, and AOAA did not. In the present study, H2S decreased the amplitudes of EFS-induced contraction responses. These results suggest that Kv channels and NO significantly contribute to exogenous H2S and endogenous H2S precursor L-cysteine inhibitory effect on lower esophageal sphincter smooth muscle.
Collapse
Affiliation(s)
- Aysegul Koc
- Department of Medical Pharmacology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Derya Sebile Koc
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Celil Ilker Askin
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Halil Kara
- Department of Medical Pharmacology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
| | | | - Sevil Ozger Ilhan
- Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Yusuf Sarioglu
- Department of Medical Pharmacology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| |
Collapse
|
5
|
Karunakaran U, Elumalai S, Chung SM, Maedler K, Won KC, Moon JS. Mitochondrial aldehyde dehydrogenase-2 coordinates the hydrogen sulfide - AMPK axis to attenuate high glucose-induced pancreatic β-cell dysfunction by glutathione antioxidant system. Redox Biol 2024; 69:102994. [PMID: 38128451 PMCID: PMC10776427 DOI: 10.1016/j.redox.2023.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Progression of β-cell loss in diabetes mellitus is significantly influenced by persistent hyperglycemia. At the cellular level, a number of signaling cascades affect the expression of apoptotic genes, ultimately resulting in β-cell failure; these cascades have not been elucidated. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) plays a central role in the detoxification of reactive aldehydes generated from endogenous and exogenous sources and protects against mitochondrial deterioration in cells. Here we report that under diabetogenic conditions, ALDH2 is strongly inactivated in β-cells through CDK5-dependent glutathione antioxidant imbalance by glucose-6-phosphate dehydrogenase (G6PD) degradation. Intriguingly, CDK5 inhibition strengthens mitochondrial antioxidant defense through ALDH2 activation. Mitochondrial ALDH2 activation selectively preserves β-cells against high-glucose-induced dysfunction by activating AMPK and Hydrogen Sulfide (H2S) signaling. This is associated with the stabilization and enhancement of the activity of G6PD by SIRT2, a cytoplasmic NAD+-dependent deacetylase, and is thereby linked to an elevation in the GSH/GSSG ratio, which leads to the inhibition of mitochondrial dysfunction under high-glucose conditions. Furthermore, treatment with NaHS, an H2S donor, selectively preserves β-cell function by promoting ALDH2 activity, leading to the inhibition of lipid peroxidation by high-glucose concentrations. Collectively, our results provide the first direct evidence that ALDH2 activation enhances H2S-AMPK-G6PD signaling, leading to improved β-cell function and survival under high-glucose conditions via the glutathione redox balance.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea.
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Seung Min Chung
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Kyu Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| | - Jun Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu, Republic of Korea; Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
6
|
Xie L, Wu H, He Q, Shi W, Zhang J, Xiao X, Yu T. A slow-releasing donor of hydrogen sulfide inhibits neuronal cell death via anti-PANoptosis in rats with spinal cord ischemia‒reperfusion injury. Cell Commun Signal 2024; 22:33. [PMID: 38217003 PMCID: PMC10785475 DOI: 10.1186/s12964-023-01457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/23/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Spinal cord ischemia‒reperfusion injury (SCIRI) can lead to paraplegia, which leads to permanent motor function loss. It is a disastrous complication of surgery and causes tremendous socioeconomic burden. However, effective treatments for SCIRI are still lacking. PANoptosis consists of three kinds of programmed cell death, pyroptosis, apoptosis, and necroptosis, and may contribute to ischemia‒reperfusion-induced neuron death. Previous studies have demonstrated that hydrogen sulfide (H2S) exerts a neuroprotective effect in many neurodegenerative diseases. However, whether H2S is anti-PANoptosis and neuroprotective in the progression of acute SCIRI remains unclear. Thus, in this study we aimed to explore the role of H2S in SCIRI and its underlying mechanisms. METHODS Measurements of lower limb function, neuronal activity, microglia/macrophage function histopathological examinations, and biochemical levels were performed to examine the efficacy of H2S and to further demonstrate the mechanism and treatment of SCIRI. RESULTS The results showed that GYY4137 (a slow-releasing H2S donor) treatment attenuated the loss of Nissl bodies after SCIRI and improved the BBB score. Additionally, the number of TUNEL-positive and cleaved caspase-3-positive cells was decreased, and the upregulation of expression of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 expression were reversed after GYY4137 administration. Meanwhile, both the expression and activation of p-MLKL, p-RIP1, and p-RIP3, along with the number of PI-positive and RIP3-positive neurons, were decreased in GYY4137-treated rats. Furthermore, GYY4137 administration reduced the expression of NLRP3, cleaved caspase-1 and cleaved GSDMD, decreased the colocalization NeuN/NLRP3 and Iba1/interleukin-1β-expressing cells, and inhibited proinflammatory factors and microglia/macrophage polarization. CONCLUSIONS H2S ameliorated spinal cord neuron loss, prevented motor dysfunction after SCIRI, and exerted a neuroprotective effect via the inhibition of PANoptosis and overactivated microglia-mediated neuroinflammation in SCIRI.
Collapse
Affiliation(s)
- Lei Xie
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Hang Wu
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qiuping He
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Weipeng Shi
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Zhang
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
7
|
Lee CT, Ng HY, Zhong HR, Wang Y, Liu CH, Lee YT. Ageing-Related Alterations in Renal Epithelial Glucose Transport. Int J Mol Sci 2023; 24:16455. [PMID: 38003644 PMCID: PMC10671470 DOI: 10.3390/ijms242216455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The kidney plays a crucial role in glucose homeostasis by regulating glucose transport. We aimed to investigate the impact of alterations in glucose transport on glucose metabolism during ageing. Adult male Sprague Dawley rats were divided into five groups: 3-month, 6-month, and 12-month control groups, and 6- and 12-month groups receiving the hydrogen sulfide donor molecule GYY4137. The study found that, as age increased, daily urinary uric acid and protein levels increased in the 12-month group. Blood sugar level and HOMA-IR index increased in the 12-month group, and were partially improved by GYY4137. The kidney tissue showed mild glomerulosclerosis in the 12-month group, which was diminished by GYY4137. Gene expression analysis showed decreased sirtuin and increased p21 expression in the aging groups. Increased SGLT1 and SGLT2 expression was observed in the 12-month group, which was reversed by GYY4137. Both GLUT1 and GLUT2 expression was increased in the 6- and 12-month groups, and reversed by GYY4137 in the 12-month group. The study concluded that aging was associated with increased blood sugar levels and the HOMA-IR index, and the abundance of renal glucose transporters increased as aging progressed. GYY4137 effectively reversed aging-related alterations in glucose homeostasis and renal epithelial transporters.
Collapse
Affiliation(s)
- Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hua-Rong Zhong
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
| | - Yi Wang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chih-Han Liu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yuai-Ting Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Municipal Feng-Shan Hospital (Under Management of Chang Gung Medical Foundation), Kaohsiung 83062, Taiwan
| |
Collapse
|
8
|
Peleli M, Lyngso KS, Poulsen FR, Hansen PBL, Papapetropoulos A, Stubbe J. Inhibition of cystathionine-gamma lyase dampens vasoconstriction in mouse and human intracerebral arterioles. Acta Physiol (Oxf) 2023; 239:e14021. [PMID: 37555636 DOI: 10.1111/apha.14021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023]
Abstract
AIM In extracerebral vascular beds cystathionine-gamma lyase (CSE) activity plays a vasodilatory role but the role of this hydrogen sulfide (H2 S) producing enzyme in the intracerebral arterioles remain poorly understood. We hypothesized a similar function in the intracerebral arterioles. METHODS Intracerebral arterioles were isolated from wild type C57BL/6J mouse (9-12 months old) brains and from human brain biopsies. The function (contractility and secondary dilatation) of the intracerebral arterioles was tested ex vivo by pressure myography using a perfusion set-up. Reverse transcription polymerase chain reaction was used for detecting CSE expression. RESULTS CSE is expressed in human and mouse intracerebral arterioles. CSE inhibition with L-propargylglycine (PAG) significantly dampened the K+ -induced vasoconstriction in intracerebral arterioles of both species (% of maximum contraction: in human control: 45.4 ± 2.7 versus PAG: 27 ± 5.2 and in mouse control: 50 ± 1.5 versus PAG: 33 ± 5.2) but did not affect the secondary dilatation. This effect of PAG was significantly reversed by the H2 S donor sodium hydrosulfide (NaSH) in human (PAG + NaSH: 38.8 ± 7.2) and mouse (PAG + NaSH: 41.7 ± 3.1) arterioles, respectively. The endothelial NO synthase (eNOS) inhibitor, Nω-Nitro-l-arginine methyl ester (L-NAME), and the inhibitor of soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reversed the effect of PAG on the K+ -induced vasoconstriction in the mouse arterioles and attenuated the K+ -induced secondary dilatation significantly. CONCLUSION CSE contributes to the K+ -induced vasoconstriction via a mechanism involving H2 S, eNOS, and sGC whereas the secondary dilatation is regulated by eNOS and sGC but not by CSE.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Kristina S Lyngso
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark and BRIDGE (Brain Research-Interdisciplinary Guided Excellence), Odense, Denmark
- OPEN - Odense Patient Data Explorative Network, Odense, Denmark
| | - Pernille B L Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Liu HY, Lee CH, Hsu CN, Tain YL. Maternal High-Fat Diet Controls Offspring Kidney Health and Disease. Nutrients 2023; 15:2698. [PMID: 37375602 DOI: 10.3390/nu15122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A balanced diet during gestation is critical for fetal development, and excessive intake of saturated fats during gestation and lactation is related to an increased risk of offspring kidney disease. Emerging evidence indicates that a maternal high-fat diet influences kidney health and disease of the offspring via so-called renal programming. This review summarizes preclinical research documenting the connection between a maternal high-fat diet during gestation and lactation and offspring kidney disease, as well as the molecular mechanisms behind renal programming, and early-life interventions to offset adverse programming processes. Animal models indicate that offspring kidney health can be improved via perinatal polyunsaturated fatty acid supplementation, gut microbiota changes, and modulation of nutrient-sensing signals. These findings reinforce the significance of a balanced maternal diet for the kidney health of offspring.
Collapse
Affiliation(s)
- Hsi-Yun Liu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chen-Hao Lee
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Chen CJ, Cheng MC, Hsu CN, Tain YL. Sulfur-Containing Amino Acids, Hydrogen Sulfide, and Sulfur Compounds on Kidney Health and Disease. Metabolites 2023; 13:688. [PMID: 37367846 DOI: 10.3390/metabo13060688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Hydrogen sulfide (H2S) plays a decisive role in kidney health and disease. H2S can ben synthesized via enzymatic and non-enzymatic pathways, as well as gut microbial origins. Kidney disease can originate in early life induced by various maternal insults throughout the process, namely renal programming. Sulfur-containing amino acids and sulfate are essential in normal pregnancy and fetal development. Dysregulated H2S signaling behind renal programming is linked to deficient nitric oxide, oxidative stress, the aberrant renin-angiotensin-aldosterone system, and gut microbiota dysbiosis. In animal models of renal programming, treatment with sulfur-containing amino acids, N-acetylcysteine, H2S donors, and organosulfur compounds during gestation and lactation could improve offspring's renal outcomes. In this review, we summarize current knowledge regarding sulfide/sulfate implicated in pregnancy and kidney development, current evidence supporting the interactions between H2S signaling and underlying mechanisms of renal programming, and recent advances in the beneficial actions of sulfide-related interventions on the prevention of kidney disease. Modifying H2S signaling is the novel therapeutic and preventive approach to reduce the global burden of kidney disease; however, more work is required to translate this into clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ming-Chou Cheng
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
11
|
Liu F, Yuan L, Li L, Yang J, Liu J, Chen Y, Zhang J, Lu Y, Yuan Y, Cheng J. S-sulfhydration of SIRT3 combats BMSC senescence and ameliorates osteoporosis via stabilizing heterochromatic and mitochondrial homeostasis. Pharmacol Res 2023; 192:106788. [PMID: 37146925 DOI: 10.1016/j.phrs.2023.106788] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/23/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Senescence of bone marrow mesenchymal stem cells (BMSCs) is one of the leading causes of osteoporosis. SIRT3, an essential NAD-dependent histone deacetylase, is highly correlated with BMSC senescence-mediated bone degradation and mitochondrial/heterochromatic disturbance. S-sulfhydration of cysteine residues favorably enhances SIRT3 activity by forming persulfides. Nevertheless, the underlying molecular mechanism of SIRT3 S-sulfhydration on mitochondrial/heterochromatic homeostasis involved in BMSC senescence remains unknown. Here, we demonstrated that CBS and CSE, endogenous hydrogen sulfide synthases, are downregulated with BMSC senescence. Exogenous H2S donor NaHS-mediated SIRT3 augmentation rescued the senescent phenotypes of BMSCs. Conversely, SIRT3 deletion accelerated oxidative stress-induced BMSC senescence through mitochondrial dysfunction and the detachment of the heterochromatic protein H3K9me3 from the nuclear envelope protein Lamin B1. H2S-mediated SIRT3 S-sulfhydration modification rescued the disorganized heterochromatin and fragmented mitochondria induced by the S-sulfhydration inhibitor dithiothreitol, thus leading to elevated osteogenic capacity and preventing BMSC senescence. The antisenescence effect of S-sulfhydration modification on BMSCs was abolished when the CXXC sites of the SIRT3 zinc finger motif were mutated. In vivo, aged mice-derived BMSCs pretreated with NaHS were orthotopically transplanted to the ovariectomy-induced osteoporotic mice, and we proved that SIRT3 ameliorates bone loss by inhibiting BMSC senescence. Overall, our study for the first time indicates a novel role of SIRT3 S-sulfhydration in stabilizing heterochromatin and mitochondrial homeostasis in counteracting BMSC senescence, providing a potential target for the treatment of degenerative bone diseases.
Collapse
Affiliation(s)
- Fei Liu
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Endocrinology & Metabolism and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Longhui Yuan
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lan Li
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingchao Yang
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingping Liu
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Younan Chen
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Endocrinology & Metabolism and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu P.R. China
| | - Yanrong Lu
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujia Yuan
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jingqiu Cheng
- Department of Endocrinology & Metabolism and Key Lab of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Endocrinology & Metabolism and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Vass V, Szabó E, Bereczki I, Debreczeni N, Borbás A, Herczegh P, Tósaki Á. Reperfusion-induced injury and the effects of the dithioacetate type hydrogen sulfide donor ibuprofen derivative, BM-88, in isolated rat hearts. Eur J Pharm Sci 2023; 185:106449. [PMID: 37076051 DOI: 10.1016/j.ejps.2023.106449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Hydrogen sulfide (H2S) plays an important role in cardiac protection by regulating various redox signalings associated with myocardial ischemia/reperfusion (I/R) induced injury. The goal of the present investigations is the synthesis of a newly designed H2S-releasing ibuprofen derivative, BM-88, and its pharmacological characterization regarding the cardioprotective effects in isolated rat hearts. Cytotoxicity of BM-88 was also estimated in H9c2 cells. H2S-release was measured by an H2S sensor from the coronary perfusate. Increasing concentrations of BM-88 (1.0 to 20.0 µM) were tested in in vitro studies. Preadministration of 10 µM BM-88 significantly reduced the incidence of reperfusion-induced ventricular fibrillation (VF) from its drug-free control value of 92% to 12%. However, no clear dose dependent reduction in the incidence of reperfusion-induced VF was observed while different concentrations of BM-88 were used. It was also found that 10 µM BM-88 provided a substantial protection and significantly reduced the infarct size in the ischemic/reperfused myocardium. However, this cardiac protection was not reflected in any significant changes in coronary flow and heart rates. The results support the fact that H2S release plays an important role mitigating reperfusion-induced cardiac damage.
Collapse
Affiliation(s)
- Virág Vass
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary; ELKH-DE Pharmamodul Research Team, University of Debrecen, Debrecen, Hungary.
| | - Erzsébet Szabó
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; ELKH-DE Pharmamodul Research Team, University of Debrecen, Debrecen, Hungary.
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; ELKH-DE Pharmamodul Research Team, University of Debrecen, Debrecen, Hungary.
| | - Nóra Debreczeni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; Doctoral School of Chemistry, University of Debrecen, Debrecen, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary.
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; ELKH-DE Pharmamodul Research Team, University of Debrecen, Debrecen, Hungary.
| | - Árpád Tósaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary; ELKH-DE Pharmamodul Research Team, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
13
|
Chen X, Xiao L, Yu S, Ren Z, Wang W, Jia Y, Liu M, Wang P, Ji D, Yu Y, Wang X. GYY4137, a H 2S donor, ameliorates kidney injuries in diabetic mice by modifying renal ROS-associated enzymes. Biomed Pharmacother 2023; 162:114694. [PMID: 37054540 DOI: 10.1016/j.biopha.2023.114694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication of both type 1 and type 2 diabetes mellitus and often advances to end-stage renal disease. Oxidative stress plays an important role in the pathogenesis and progress of DN. Hydrogen sulfide (H2S) is considered as a promising candidate for the management of DN. But the antioxidant effects of H2S in DN have not been fully studied. In mouse model induced by high-fat diet and streptozotocin, GYY4137, a H2S donor, ameliorated albuminuria at weeks 6 & 8 and decreased serum creatinine at week 8, but not hyperglycemia. Renal nitrotyrosine and urinary 8-isoprostane were reduced along with the suppressed levels of renal laminin and kidney-injury-molecule 1. Renal NADPH oxidase (NOX) 2 was lower but heme oxygenase (HO) 2, paraoxonase (PON) 1, PON2 were higher in DN+GYY than DN group. NOX1, NOX4, HO1, superoxide dismutases 1-3 were similar between groups. Except for a rise at HO2, all the affected enzymes were unchanged in mRNA levels. The affected reactive-oxygen-species (ROS) enzymes were mainly located in the renal sodium-hydrogen-exchanger positive proximal tubules with similar distribution but changed immunofluorence in GYY4137 treated DN mice. Kidney morphological alterations in DN mice under light and electrical-microscopes were also improved by GYY4137. Thus, exogenous H2S administration may improve the renal oxidative damage in DN by reducing ROS production and enhancing ROS cleavage in kidney via the affected enzymes. This study may shed a light on therapeutic applications in diabetic nephropathy with H2S donors in the future.
Collapse
Affiliation(s)
- Xueqi Chen
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Leijuan Xiao
- Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyue Yu
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwan Wang
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yutao Jia
- Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Mingda Liu
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Wang
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Daxi Ji
- Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yanting Yu
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wang
- The Core Laboratory for Clinical Research, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Hu Q, Zhang R, Zheng J, Song M, Gu C, Li W. Hydrogen sulfide attenuates uranium-induced kidney cells pyroptosis via upregulation of PI3K/AKT/mTOR signaling. J Biochem Mol Toxicol 2023; 37:e23220. [PMID: 36094782 DOI: 10.1002/jbt.23220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
We have identified that hydrogen sulfide (H2 S), a gaseous mediator, plays a crucial role in antioxidative, anti-inflammatory, and cytoprotective effects on uranium (U)-triggered rat nephrotoxicity. Pyroptosis is a special mode of inflammation and programmed cell death involved in the activation of inflammasome and Caspase-1 and the release of inflammatory cytokines. This study aims to confirm whether H2 S can alleviate U-induced rat NRK-52E cell pyroptosis and to investigate the H2 S underlying regulatory mechanism. Our results indicate that pretreatment with NaHS (an H2 S donor) significantly inhibited U-increased reactive oxygen species level, NLRP3, apoptosis-related speck-like protein consisting of a caspase recruitment domain (ASC), and cleaved Caspase-1 proteins expression, gasdermin D messenger RNA (GSDMD mRNA) expression, interleukin (IL)-1β and IL-18 contents, lactate dehydrogenase leakage, and numbers of double-positive dying kidney cells. NaHS application evidently augmented phosphorylated PI3K, AKT, and mTOR expression as well as ratios of their respective phosphorylation to the corresponding total proteins which were downregulated by U treatment. But, LY294002 (a PI3K inhibitor) administration effectively abrogated the consequences of NaHS on the levels of p-PI3K, cleaved Caspase-1, ASC and NLRP3 proteins, GSDMD mRNA expression, and (IL)-1β and IL-18 contents. Simultaneously, LY294002 significantly reversed the effects of NaHS on U-induced pyroptosis rate and cytotoxicity. Taken together, these results indicate that H2 S ameliorated U-triggered NRK-52E cells pyroptosis via upregulation of PI3K/AKT/mTOR pathway, suggesting a novel role for H2 S in the management of nephrotoxicity caused by U exposure.
Collapse
Affiliation(s)
- Qiaoni Hu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Rui Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Jifang Zheng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Menghui Song
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| |
Collapse
|
15
|
Wetzel C, Pfeffer T, Bulkescher R, Zemva J, Modafferi S, Polimeni A, Salinaro AT, Calabrese V, Schmitt CP, Peters V. Anserine and Carnosine Induce HSP70-Dependent H 2S Formation in Endothelial Cells and Murine Kidney. Antioxidants (Basel) 2022; 12:antiox12010066. [PMID: 36670928 PMCID: PMC9855136 DOI: 10.3390/antiox12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Anserine and carnosine have nephroprotective actions; hydrogen sulfide (H2S) protects from ischemic tissue damage, and the underlying mechanisms are debated. In view of their common interaction with HSP70, we studied possible interactions of both dipeptides with H2S. H2S formation was measured in human proximal tubular epithelial cells (HK-2); three endothelial cell lines (HUVEC, HUAEC, MCEC); and in renal murine tissue of wild-type (WT), carnosinase-1 knockout (Cndp1-KO) and Hsp70-KO mice. Diabetes was induced by streptozocin. Incubation with carnosine increased H2S synthesis capacity in tubular cells, as well as with anserine in all three endothelial cell lines. H2S dose-dependently reduced anserine/carnosine degradation rate by serum and recombinant carnosinase-1 (CN1). Endothelial Hsp70-KO reduced H2S formation and abolished the stimulation by anserine and could be restored by Hsp70 transfection. In female Hsp70-KO mice, kidney H2S formation was halved. In Cndp1-KO mice, kidney anserine concentrations were several-fold and sex-specifically increased. Kidney H2S formation capacity was increased 2-3-fold in female mice and correlated with anserine and carnosine concentrations. In diabetic Cndp1-KO mice, renal anserine and carnosine concentrations as well as H2S formation capacity were markedly reduced compared to non-diabetic Cndp1-KO littermates. Anserine and carnosine induce H2S formation in a cell-type and Hsp70-specific manner within a positive feedback loop with CN1.
Collapse
Affiliation(s)
- Charlotte Wetzel
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Tilman Pfeffer
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ruben Bulkescher
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Johanna Zemva
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Alessandra Polimeni
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
16
|
Effect of Exogenous Hydrogen Sulfide and Polysulfide Donors on Insulin Sensitivity of the Adipose Tissue. Biomolecules 2022; 12:biom12050646. [PMID: 35625574 PMCID: PMC9138799 DOI: 10.3390/biom12050646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) and inorganic polysulfides are important signaling molecules; however, little is known about their role in adipose tissue. We examined the effect of H2S and polysulfides on insulin sensitivity of the adipose tissue in rats. Plasma glucose, insulin, non-esterified fatty acids, and glycerol were measured after administration of H2S and the polysulfide donors, Na2S and Na2S4, respectively. In addition, the effect of Na2S and Na2S4 on insulin-induced glucose uptake and inhibition of lipolysis was studied in adipose tissue explants ex vivo. Na2S and Na2S4 administered in vivo at a single dose of 100 μmol/kg had no effect on plasma glucose and insulin concentrations. In addition, Na2S and Na2S4 did not modify the effect of insulin on plasma glucose, fatty acids, and glycerol concentrations. Na2S and Na2S4had no effect on the antilipolytic effect of insulin in adipose tissue explants ex vivo. The effect of insulin on 2-deoxyglucose uptake by adipose tissue was impaired in obese rats which was accompanied by lower insulin-induced tyrosine phosphorylation of IRS-1 and Akt. Na2S4, but not Na2S, improved insulin signaling and increased insulin-stimulated 2-deoxyglucose uptake by adipose tissue of obese rats. The results suggest that polysulfides may normalize insulin sensitivity, at least in the adipose tissue, in obesity/metabolic syndrome.
Collapse
|