1
|
Wojtacha JJ, Morawin B, Wawrzyniak-Gramacka E, Tylutka A, de Freitas AKE, Zembron-Lacny A. Endothelial Dysfunction with Aging: Does Sex Matter? Int J Mol Sci 2024; 25:12203. [PMID: 39596269 PMCID: PMC11594464 DOI: 10.3390/ijms252212203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress and inflammation accompany endothelial dysfunction that results from the excessive or uncontrolled production of reactive oxygen and nitrogen species (RONS) in older adults. This study was designed to assess the usefulness of serum oxi-inflammatory component combinations in vascular disease prediction and prevention with regard to sex. Women (n = 145) and men (n = 50) aged 72.2 ± 7.8 years participated in this project. The females demonstrated the elevated production of hydrogen peroxide (H2O2) and nitric oxide (NO) responsible for intravascular low-density lipoprotein oxidation. NO generation was enhanced in the women, but its bioavailability was reduced, which was expressed by a high 3-nitrotyrosine (3-NitroT) concentration. The relation of NO/3-NitroT (rs = 0.811, p < 0.001) in the women and NO/3-NitroT (rs = -0.611, p < 0.001) in the men showed that sex determines endothelial dysfunction. RONS generation in the women simultaneously promoted endothelial regeneration, as demonstrated by a ~1.5-fold increase in circulating progenitor cells. Inflammation-specific variables, such as the neutrophil-to-lymphocyte ratio, the systemic immune inflammation index, and the neutrophil-to-high-density lipoprotein (HDL) ratio, were reduced in the women and showed their diagnostic utility for clinical prognosis in vascular dysfunction, especially the C-reactive-protein-to-HDL ratio (AUC = 0.980, specificity 94.7%, sensitivity 93.3%, OR = 252, 95% CI 65-967, p < 0.001). This study is the first to have revealed sex-specific changes in the oxi-inflammatory response, which can generate the risk of cardiovascular events at an older age.
Collapse
Affiliation(s)
- Jakub Jozue Wojtacha
- Department of Applied and Clinical Physiology, University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (J.J.W.); (B.M.); (E.W.-G.); (A.T.)
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (J.J.W.); (B.M.); (E.W.-G.); (A.T.)
| | - Edyta Wawrzyniak-Gramacka
- Department of Applied and Clinical Physiology, University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (J.J.W.); (B.M.); (E.W.-G.); (A.T.)
| | - Anna Tylutka
- Department of Applied and Clinical Physiology, University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (J.J.W.); (B.M.); (E.W.-G.); (A.T.)
| | - Ana Karyn Ehrenfried de Freitas
- School of Health Science, Positivo University, 5300 Professor Pedro Viriato Parigot de Souza Street, Campo Comprido, Curitiba 81280-330, PR, Brazil;
- Department of Cardiology, Hospital da Cruz Vermelha Brasileira Filial do Paraná, Av. Vicente Machado, 1280, R. Cap. Souza Franco, 50-Batel, Curitiba 80420-011, PR, Brazil
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, University of Zielona Gora, 28 Zyty Str., 65-417 Zielona Gora, Poland; (J.J.W.); (B.M.); (E.W.-G.); (A.T.)
| |
Collapse
|
2
|
Sun X, Moreno Caceres S, Yegambaram M, Lu Q, Pokharel MD, Boehme JT, Datar SA, Aggarwal S, Wang T, Fineman JR, Black SM. The mitochondrial redistribution of ENOS is regulated by AKT1 and dimer status. Nitric Oxide 2024; 152:90-100. [PMID: 39332480 DOI: 10.1016/j.niox.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Previously, we have shown that endothelial nitric-oxide synthase (eNOS) dimer levels directly correlate with the interaction of eNOS with hsp90 (heat shock protein 90). Further, the disruption of eNOS dimerization correlates with its redistribution to the mitochondria. However, the causal link between these events has yet to be investigated and was the focus of this study. Our data demonstrates that simvastatin, which decreases the mitochondrial redistribution of eNOS, increased eNOS-hsp90 interactions and enhanced eNOS dimerization in cultured pulmonary arterial endothelial cells (PAEC) from a lamb model of pulmonary hypertension (PH). Our data also show that the dimerization of a monomeric fraction of human recombinant eNOS was stimulated in the presence of hsp90 and ATP. The over-expression of a dominant negative mutant of hsp90 (DNHsp90) decreased eNOS dimer levels and enhanced its mitochondrial redistribution. We also found that the peroxynitrite donor3-morpholinosydnonimine (SIN-1) increased the mitochondrial redistribution of eNOS in PAEC and this was again associated with decreased eNOS dimer levels. Our data also show in COS-7 cells, the SIN-1 mediated mitochondrial redistribution of wildtype eNOS (WT-eNOS) is significantly higher than a dimer stable eNOS mutant protein (C94R/C99R-eNOS). Conversely, the mitochondrial redistribution of a monomeric eNOS mutant protein (C96A-eNOS) was enhanced. Finally, we linked the SIN-1-mediated mitochondrial redistribution of eNOS to the Akt1-mediated phosphorylation of eNOS at Serine(S)617 and showed that the accessibility of this residue to phosphorylation is regulated by dimerization status. Thus, our data reveal a novel mechanism of pulmonary endothelial dysfunction mediated by mitochondrial redistribution of eNOS, regulated by dimerization status and the phosphorylation of S617.
Collapse
Affiliation(s)
- Xutong Sun
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Santiago Moreno Caceres
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Manivannan Yegambaram
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Marissa D Pokharel
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA
| | - Jason T Boehme
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sanjeev A Datar
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Aggarwal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA
| | - Jeffrey R Fineman
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; The Department of Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, Port St. Lucie, FL, 34987, USA; Departments of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33174, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
3
|
Zhao Y, Zhang P, Zhang J. Microglia-mediated endothelial protection: the role of SHPL-49 in ischemic stroke. Biomed Pharmacother 2024; 180:117530. [PMID: 39388998 DOI: 10.1016/j.biopha.2024.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
It was previously shown that SHPL-49, a glycoside derivative of salidroside formed through structural modification, exhibited neuroprotective effects in a rat cerebral ischemia model of permanent middle cerebral artery occlusion (pMCAO). Additionally, SHPL-49 enhanced the mRNA expression of vascular endothelial growth factor-a (Vegf-a) in macrophages. Microglia, functioning as resident macrophages within the brain, promptly respond to cerebral ischemia and engage in interactions with the cells of the Glial-Vascular Unit to orchestrate nerve injury responses. We postulated that the neuroprotective effects of SHPL-49 were mediated through microglia-dependent amelioration of endothelial dysfunction following cerebral ischemia. The present study demonstrates that SHPL-49 effectively mitigated microglia-dependent endothelial dysfunction in the pMCAO model by upregulating the expression of VEGF and suppressing the release of MMP-9 from microglia. Further MRI analyses confirmed that SHPL-49 significantly reduced nerve and endothelial function when microglia were depleted in the brains of pMCAO rats. The above phenomenon was also confirmed in the in vitro experiment investigating microglia-mediated brain endothelial cell function. Furthermore, we discovered that SHPL-49 activates the VEGFR2/Akt/eNOS pathways in endothelial cells and suppresses the p38 MAPK/MMP-9 pathways in microglia cells, thereby facilitating brain endothelial cell protection. Altogether, we have demonstrated that SHPL-49 effectively ameliorates endothelial dysfunction induced by cerebral ischemia through a microglia-dependent mechanism, thereby providing more valuable insights and references for the clinical evaluation of SHPL-49 injection for ischemic stroke.
Collapse
Affiliation(s)
- Yu Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
5
|
Li J, Zhang Z, Zhu C, Zheng X, Wang C, Jiang J, Zhang H. Salidroside enhances NO bioavailability and modulates arginine metabolism to alleviate pulmonary arterial hypertension. Eur J Med Res 2024; 29:423. [PMID: 39152472 PMCID: PMC11330049 DOI: 10.1186/s40001-024-02016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Salidroside (SAL), derived from Rhodiola, shows protective effects in pulmonary arterial hypertension (PAH) models, but its mechanisms are not fully elucidated. OBJECTIVES Investigate the therapeutic effects and the mechanism of SAL on PAH. METHODS Monocrotaline was used to establish a PAH rat model. SAL's impact on oxidative stress and inflammatory responses in lung tissues was analyzed using immunohistochemistry, ELISA, and Western blot. Untargeted metabolomics explored SAL's metabolic regulatory mechanisms. RESULTS SAL significantly reduced mean pulmonary artery pressure, right ventricular hypertrophy, collagen deposition, and fibrosis in the PAH rats. It enhanced antioxidant enzyme levels, reduced inflammatory cytokines, and improved NO bioavailability by upregulating endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC), cyclic guanosine monophosphate (cGMP), and protein kinase G (PKG) and decreases the expression of endothelin-1 (ET-1). Metabolomics indicated SAL restored metabolic balance in PAH rats, particularly in arginine metabolism. CONCLUSIONS SAL alleviates PAH by modulating arginine metabolism, enhancing NO synthesis, and improving pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Junfei Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Zengyu Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Chenghui Zhu
- Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Xiaorong Zheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Chunlei Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China
| | - Jianwei Jiang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China.
| | - Hongyan Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine and Cancer (HIM), Chinese Academy of Sciences, 1# Banshan east Road, Gongshu District, Hangzhou, CN 310022, Zhejiang, China.
| |
Collapse
|
6
|
Młynarska E, Biskup L, Możdżan M, Grygorcewicz O, Możdżan Z, Semeradt J, Uramowski M, Rysz J, Franczyk B. The Role of Oxidative Stress in Hypertension: The Insight into Antihypertensive Properties of Vitamins A, C and E. Antioxidants (Basel) 2024; 13:848. [PMID: 39061916 PMCID: PMC11273425 DOI: 10.3390/antiox13070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Hypertension stands as a pervasive global health challenge, contributing significantly to mortality rates worldwide. Various factors, including lifestyle choices and dietary habits, contribute to the development of hypertension. In recent years, oxidative stress has garnered significant attention as a factor influencing hypertension risk, prompting a shift in research focus towards exploring it as a potential target for prevention and treatment. Antioxidants found in our diet, such as vitamins C, E and carotenoids exhibit the ability to neutralize reactive oxygen species, thereby mitigating oxidative stress. In addition, Vitamin A has an antioxidant effect despite not being an antioxidant itself. Consequently, supplementation or increased intake of these antioxidants has been hypothesized to potentially lower blood pressure levels and aid in the management of hypertension, thereby potentially prolonging life expectancy. Research findings regarding this effect have been diverse. This paper examines the existing literature demonstrating favorable outcomes associated with antioxidant supplementation.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Laura Biskup
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Maria Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Olivia Grygorcewicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Zofia Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jan Semeradt
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Michał Uramowski
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
7
|
Wagner J, Park LM, Mukhopadhyay P, Matyas C, Trojnar E, Damadzic R, Jung J, Bell AS, Mavromatis LA, Hamandi AM, Rosoff DB, Vendruscolo LF, Koob GF, Pacher P, Lohoff FW. PCSK9 inhibition attenuates alcohol-associated neuronal oxidative stress and cellular injury. Brain Behav Immun 2024; 119:494-506. [PMID: 38657842 DOI: 10.1016/j.bbi.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.
Collapse
Affiliation(s)
- Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Lauren M Park
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Ruslan Damadzic
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Andrew S Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Lucas A Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States; Department of Medicine, NYU Grossman School of Medicine, New York, New York, United States
| | - Ali M Hamandi
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States; NIH-Oxford-Cambridge Scholars Program, Radcliffe Department of Medicine, University of Oxford, UK
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, MD, United States
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
8
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
9
|
Pinaffi-Langley ACDC, Dajani RM, Prater MC, Nguyen HVM, Vrancken K, Hays FA, Hord NG. Dietary Nitrate from Plant Foods: A Conditionally Essential Nutrient for Cardiovascular Health. Adv Nutr 2024; 15:100158. [PMID: 38008359 PMCID: PMC10776916 DOI: 10.1016/j.advnut.2023.100158] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Under specific conditions, such as catabolic stress or systemic inflammation, endogenous nutrient production becomes insufficient and exogenous supplementation (for example, through dietary intake) is required. Herein, we propose consideration of a dietary nitrate from plant foods as a conditionally essential nutrient for cardiovascular health based on its role in nitric oxide homeostasis. Nitrate derived from plant foods may function as a conditionally essential nutrient, whereas nitrate obtained from other dietary sources, such as drinking water and cured/processed meats, warrants separate consideration because of the associated health risks. We have surveyed the literature and summarized epidemiological evidence regarding the effect of dietary nitrate on cardiovascular disease and risk factors. Meta-analyses and population-based observational studies have consistently demonstrated an inverse association of dietary nitrate with blood pressure and cardiovascular disease outcomes. Considering the available evidence, we suggest 2 different approaches to providing dietary guidance on nitrate from plant-based dietary sources as a nutrient: the Dietary Reference Intakes developed by the National Academies of Sciences, Engineering, and Medicine, and the dietary guidelines evaluated by the Academy of Nutrition and Dietetics. Ultimately, this proposal underscores the need for food-based dietary guidelines to capture the complex and context-dependent relationships between nutrients, particularly dietary nitrate, and health.
Collapse
Affiliation(s)
- Ana Clara da C Pinaffi-Langley
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rosa M Dajani
- Nutrition and Food Services, San Francisco Health, University of California, San Francisco, CA, United States
| | - M Catherine Prater
- Department of Foods and Nutrition, Dawson Hall, University of Georgia, Athens, GA, United States
| | - Hoang Van M Nguyen
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Franklin A Hays
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Norman G Hord
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
10
|
Pokharel MD, Marciano DP, Fu P, Franco MC, Unwalla H, Tieu K, Fineman JR, Wang T, Black SM. Metabolic reprogramming, oxidative stress, and pulmonary hypertension. Redox Biol 2023; 64:102797. [PMID: 37392518 PMCID: PMC10363484 DOI: 10.1016/j.redox.2023.102797] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Mitochondria are highly dynamic organelles essential for cell metabolism, growth, and function. It is becoming increasingly clear that endothelial cell dysfunction significantly contributes to the pathogenesis and vascular remodeling of various lung diseases, including pulmonary arterial hypertension (PAH), and that mitochondria are at the center of this dysfunction. The more we uncover the role mitochondria play in pulmonary vascular disease, the more apparent it becomes that multiple pathways are involved. To achieve effective treatments, we must understand how these pathways are dysregulated to be able to intervene therapeutically. We know that nitric oxide signaling, glucose metabolism, fatty acid oxidation, and the TCA cycle are abnormal in PAH, along with alterations in the mitochondrial membrane potential, proliferation, and apoptosis. However, these pathways are incompletely characterized in PAH, especially in endothelial cells, highlighting the urgent need for further research. This review summarizes what is currently known about how mitochondrial metabolism facilitates a metabolic shift in endothelial cells that induces vascular remodeling during PAH.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - David P Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Maria Clara Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California San Francisco, San Francisco, CA, 94143, USA; Cardiovascular Research Institute, The University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Cellular Biology & Pharmacology, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|