1
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
2
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Dávila MJ, Mayer C. Structural Phenomena in a Vesicle Membrane Obtained through an Evolution Experiment: A Study Based on MD Simulations. Life (Basel) 2023; 13:1735. [PMID: 37629592 PMCID: PMC10455627 DOI: 10.3390/life13081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The chemical evolution of biomolecules was clearly affected by the overall extreme environmental conditions found on Early Earth. Periodic temperature changes inside the Earth's crust may have played a role in the emergence and survival of functional peptides embedded in vesicular compartments. In this study, all-atom molecular dynamic (MD) simulations were used to elucidate the effect of temperature on the properties of functionalized vesicle membranes. A plausible prebiotic system was selected, constituted by a model membrane bilayer from an equimolar mixture of long-chain fatty acids and fatty amines, and an octapeptide, KSPFPFAA, previously identified as an optimized functional peptide in an evolution experiment. This peptide tends to form the largest spontaneous aggregates at higher temperatures, thereby enhancing the pore-formation process and the eventual transfer of essential molecules in a prebiotic scenario. The analyses also suggest that peptide-amphiphile interactions affect the structural properties of the membrane, with a significant increase in the degree of interdigitation at the lowest temperatures under study.
Collapse
Affiliation(s)
- María J. Dávila
- Institute of Physical Chemistry, CENIDE, University of Duisburg-Essen, 45141 Essen, Germany;
| | | |
Collapse
|
4
|
McGaughey SA, Tyerman SD, Byrt CS. An algal PIP-like aquaporin facilitates water transport and ionic conductance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183661. [PMID: 34058166 DOI: 10.1016/j.bbamem.2021.183661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
Aquaporins are water and solute channel proteins found throughout the kingdoms of life. Ion-conducting aquaporins (icAQPs) have been identified in both plants and animals indicating that this function may be conserved through evolution. In higher plants icAQP function has been demonstrated for isoforms from two of five aquaporin subfamilies indicating that this function could have existed before the divergence of higher plants from green algae. Here a PIP-like aquaporin from the charophytic alga Klebsormidium nitens was functionally characterised in Xenopus laevis oocytes and its expression was found to induce water and ion conductance.
Collapse
Affiliation(s)
- Samantha A McGaughey
- Division of Plant Sciences, Research School of Biology, College of Science, Australian National University, Acton, Australian Capital Territory 2601, Australia.
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Caitlin S Byrt
- Division of Plant Sciences, Research School of Biology, College of Science, Australian National University, Acton, Australian Capital Territory 2601, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
5
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
6
|
Romero-Romero S, Martínez-Delgado G, Balleza D. Voltage vs. Ligand II: Structural insights of the intrinsic flexibility in cyclic nucleotide-gated channels. Channels (Austin) 2019; 13:382-399. [PMID: 31552786 PMCID: PMC6768053 DOI: 10.1080/19336950.2019.1666456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
In the preceding article, we present a flexibility analysis of the voltage-gated ion channel (VGIC) superfamily. In this study, we describe in detail the flexibility profile of the voltage-sensor domain (VSD) and the pore domain (PD) concerning the evolution of 6TM ion channels. In particular, we highlight the role of flexibility in the emergence of CNG channels and describe a significant level of sequence similarity between the archetypical VSD and the TolQ proteins. A highly flexible S4-like segment exhibiting Lys instead Arg for these membrane proteins is reported. Sequence analysis indicates that, in addition to this S4-like segment, TolQ proteins also show similarity with specific motifs in S2 and S3 from typical V-sensors. Notably, S3 flexibility profiles from typical VSDs and S3-like in TolQ proteins are also similar. Interestingly, TolQ from early divergent prokaryotes are comparatively more flexible than those in modern counterparts or true V-sensors. Regarding the PD, we also found that 2TM K+-channels in early prokaryotes are considerably more flexible than the ones in modern microbes, and such flexibility is comparable to the one present in CNG channels. Voltage dependence is mainly exhibited in prokaryotic CNG channels whose VSD is rigid whereas the eukaryotic CNG channels are considerably more flexible and poorly V-dependent. The implication of the flexibility present in CNG channels, their sensitivity to cyclic nucleotides and the cation selectivity are discussed. Finally, we generated a structural model of the putative cyclic nucleotide-modulated ion channel, which we coined here as AqK, from the thermophilic bacteria Aquifex aeolicus, one of the earliest diverging prokaryotes known. Overall, our analysis suggests that V-sensors in CNG-like channels were essentially rigid in early prokaryotes but raises the possibility that this module was probably part of a very flexible stator protein of the bacterial flagellum motor complex.
Collapse
Affiliation(s)
- Sergio Romero-Romero
- Facultad de Medicina, Departamento de Bioquímica, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico. Current address: Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Gustavo Martínez-Delgado
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Daniel Balleza
- Departamento de Química ICET, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, Mexico
| |
Collapse
|
7
|
Modeling squid axon Na + channel by a nucleation and growth kinetic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:100-109. [PMID: 30463693 DOI: 10.1016/j.bbamem.2018.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 11/21/2022]
Abstract
A kinetic model accounting for all salient features of the Na+ channel of the squid giant axon is provided. The model furnishes explanations for the Cole-Moore-like effect, the rising phase of the ON gating current and the slow 'intermediate component' of its decaying phase, as well as the gating charge immobilization. Experimental ON ionic currents are semi-quantitatively simulated by the use of only three free parameters, upon assuming that the Na+ channel opening proceeds along with the stepwise aggregation of its four domains, while they are moving their gating charge outward under depolarizing conditions. The inactivation phase of the ON ionic current is interpreted by a progressive electrostatic attraction between the positively charged 'hinged lid' containing the hydrophobic IFM triad and its receptor inside the channel pore, as the stepwise outward movement of the S4 segments of the Na+ channel progressively increases the negative charge attracting the triad to its receptor. The Na+ channel closing is assumed to proceed by repolarization-induced disaggregation of its domains, accompanied by inward movement of their gating charge. The phenomenon of 'gating charge immobilization' can be explained by assuming that gradual structural changes of the receptor over the time course of depolarization strengthen the interaction between the IFM triad and its receptor, causing a slow release of the gating charge during the subsequent repolarization.
Collapse
|
8
|
Abstract
Ion channels are essential for cellular signaling. Voltage-gated ion channels (VGICs) are the largest and most extensively studied superfamily of ion channels. They possess modular structural features such as voltage-sensing domains that encircle and form mechanical connections with the pore-forming domains. Such features are intimately related to their function in sensing and responding to changes in the membrane potential. In the present work, we discuss the thermodynamic mechanisms of the VGIC superfamily, including the two-state gating mechanism, sliding-rocking mechanism of the voltage sensor, subunit cooperation, lipid-infiltration mechanism of inactivation, and the relationship with their structural features.
Collapse
|
9
|
Pohorille A, Wilson MA, Shannon G. Flexible Proteins at the Origin of Life. Life (Basel) 2017; 7:E23. [PMID: 28587235 PMCID: PMC5492145 DOI: 10.3390/life7020023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022] Open
Abstract
Almost all modern proteins possess well-defined, relatively rigid scaffolds that provide structural preorganization for desired functions. Such scaffolds require the sufficient length of a polypeptide chain and extensive evolutionary optimization. How ancestral proteins attained functionality, even though they were most likely markedly smaller than their contemporary descendants, remains a major, unresolved question in the origin of life. On the basis of evidence from experiments and computer simulations, we argue that at least some of the earliest water-soluble and membrane proteins were markedly more flexible than their modern counterparts. As an example, we consider a small, evolved in vitro ligase, based on a novel architecture that may be the archetype of primordial enzymes. The protein does not contain a hydrophobic core or conventional elements of the secondary structure characteristic of modern water-soluble proteins, but instead is built of a flexible, catalytic loop supported by a small hydrophilic core containing zinc atoms. It appears that disorder in the polypeptide chain imparts robustness to mutations in the protein core. Simple ion channels, likely the earliest membrane protein assemblies, could also be quite flexible, but still retain their functionality, again in contrast to their modern descendants. This is demonstrated in the example of antiamoebin, which can serve as a useful model of small peptides forming ancestral ion channels. Common features of the earliest, functional protein architectures discussed here include not only their flexibility, but also a low level of evolutionary optimization and heterogeneity in amino acid composition and, possibly, the type of peptide bonds in the protein backbone.
Collapse
Affiliation(s)
- Andrew Pohorille
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94132, USA.
| | - Michael A Wilson
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- SETI Institute, 189 N Bernardo Ave #200, Mountain View, CA 94043, USA.
| | - Gareth Shannon
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA.
- NASA Postdoctoral Program Fellow, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
10
|
Deamer D. Membranes and the Origin of Life: A Century of Conjecture. J Mol Evol 2016; 83:159-168. [PMID: 27913841 DOI: 10.1007/s00239-016-9770-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/19/2016] [Indexed: 11/29/2022]
Abstract
Cells are the units of all life today, and are defined by their membranous boundaries. The membranes have multiple functions; the most obvious being that, in the absence of a boundary, the systems of functional macromolecular components of the cytosol would spill into the environment and disperse. Membranes also contain the pigments essential for photosynthesis, electron transport enzymes that pump and maintain proton gradients, the ATP synthase that uses proton gradients to produce energy for the cell, and enzymes that use ATP to maintain ion gradients essential for life. But what about the function of membranes in the first forms of cellular life? Could life have begun in the absence of membranous boundaries? In order to answer that question, this review presents a history of the key research observations that began over a century ago.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
11
|
Lazzerini PE, Capecchi PL, Laghi-Pasini F. Long QT Syndrome: An Emerging Role for Inflammation and Immunity. Front Cardiovasc Med 2015; 2:26. [PMID: 26798623 PMCID: PMC4712633 DOI: 10.3389/fcvm.2015.00026] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/08/2015] [Indexed: 01/07/2023] Open
Abstract
The long QT syndrome (LQTS), classified as congenital or acquired, is a multi-factorial disorder of myocardial repolarization predisposing to life-threatening ventricular arrhythmias, particularly torsades de pointes. In the latest years, inflammation and immunity have been increasingly recognized as novel factors crucially involved in modulating ventricular repolarization. In the present paper, we critically review the available information on this topic, also analyzing putative mechanisms and potential interplays with the other etiologic factors, either acquired or inherited. Accumulating data indicate inflammatory activation as a potential cause of acquired LQTS. The putative underlying mechanisms are complex but essentially cytokine-mediated, including both direct actions on cardiomyocyte ion channels expression and function, and indirect effects resulting from an increased central nervous system sympathetic drive on the heart. Autoimmunity represents another recently arising cause of acquired LQTS. Indeed, increasing evidence demonstrates that autoantibodies may affect myocardial electric properties by directly cross-reacting with the cardiomyocyte and interfering with specific ion currents as a result of molecular mimicry mechanisms. Intriguingly, recent data suggest that inflammation and immunity may be also involved in modulating the clinical expression of congenital forms of LQTS, possibly triggering or enhancing electrical instability in patients who already are genetically predisposed to arrhythmias. In this view, targeting immuno-inflammatory pathways may in the future represent an attractive therapeutic approach in a number of LQTS patients, thus opening new exciting avenues in antiarrhythmic therapy.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena , Siena , Italy
| |
Collapse
|
12
|
Large dsDNA chloroviruses encode diverse membrane transport proteins. Virology 2015; 479-480:38-45. [PMID: 25766639 DOI: 10.1016/j.virol.2015.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/20/2015] [Accepted: 02/07/2015] [Indexed: 10/23/2022]
Abstract
Many large DNA viruses that infect certain isolates of chlorella-like green algae (chloroviruses) are unusual because they often encode a diverse set of membrane transport proteins, including functional K(+) channels and aquaglyceroporins as well as K(+) transporters and calcium transporting ATPases. Some chloroviruses also encode putative ligand-gated-like channel proteins. No one protein is present in all of the chloroviruses that have been sequenced, but the K(+) channel is the most common as only two chloroviruses have been isolated that lack this complete protein. This review describes the properties of these membrane-transporting proteins and suggests possible physiological functions and evolutionary histories for some of them.
Collapse
|
13
|
Abstract
All life on earth can be naturally classified into cellular life forms and virus-like selfish elements, the latter being fully dependent on the former for their reproduction. Cells are reproducers that not only replicate their genome but also reproduce the cellular organization that depends on semipermeable, energy-transforming membranes and cannot be recovered from the genome alone, under the famous dictum of Rudolf Virchow, Omnis cellula e cellula. In contrast, simple selfish elements are replicators that can complete their life cycles within the host cell starting from genomic RNA or DNA alone. The origin of the cellular organization is the central and perhaps the hardest problem of evolutionary biology. I argue that the origin of cells can be understood only in conjunction with the origin and evolution of selfish genetic elements. A scenario of precellular evolution is presented that involves cohesion of the genomes of the emerging cellular life forms from primordial pools of small genetic elements that eventually segregated into hosts and parasites. I further present a model of the coevolution of primordial membranes and membrane proteins, discuss protocellular and non-cellular models of early evolution, and examine the habitats on the primordial earth that could have been conducive to precellular evolution and the origin of cells.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, MD, 20894, USA,
| |
Collapse
|
14
|
Molecular dynamics simulations of homo-oligomeric bundles embedded within a lipid bilayer. Biophys J 2014; 105:1569-80. [PMID: 24094398 DOI: 10.1016/j.bpj.2013.07.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022] Open
Abstract
Using molecular dynamics simulations, we studied the structure, interhelix interactions, and dynamics of transmembrane proteins. Specifically, we investigated homooligomeric helical bundle systems consisting of synthetic α-helices with either the sequence Ac-(LSLLLSL)3-NH2 (LS2) or Ac-(LSSLLSL)3-NH2 (LS3). The LS2 and LS3 helical peptides are designed to have amphipathic characteristics that form ion channels in membrane. We simulated bundles containing one to six peptides that were embedded in palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer and placed between two lamellae of water. We aim to provide a fundamental understanding of how amphipathic helical peptides interact with each other and their dynamical behaviors in different homooligomeric states. To understand structural properties, we examined the helix lengths, tilt angles of individual helices and the entire bundle, interhelix distances, interhelix cross-angles, helix hydrophobic-to-hydrophilic vector projections, and the average number of interhelix hydrophilic (serine-serine) contacts lining the pore of the transmembrane channel. To analyze dynamical properties, we calculated the rotational autocorrelation function of each helix and the cross-correlation of the rotational velocity between adjacent helices. The observed structural and dynamical characteristics show that higher order bundles containing four to six peptides are composed of multiple lower order bundles of one to three peptides. For example, the LS2 channel was found to be stable in a tetrameric bundle composed of a "dimer of dimers." In addition, we observed that there is a minimum of two strong hydrophilic contacts between a pair of adjacent helices in the dimer to tetramer systems and only one strong hydrophilic interhelix contact in helix pairs of the pentamer and hexamer systems. We believe these results are general and can be applied to more complex ion channels, providing insight into ion channel stability and assembly.
Collapse
|
15
|
Neale C, Ghanei H, Holyoake J, Bishop RE, Privé GG, Pomès R. Detergent-mediated protein aggregation. Chem Phys Lipids 2013; 169:72-84. [PMID: 23466535 PMCID: PMC5007131 DOI: 10.1016/j.chemphyslip.2013.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Because detergents are commonly used to solvate membrane proteins for structural evaluation, much attention has been devoted to assessing the conformational bias imparted by detergent micelles in comparison to the native environment of the lipid bilayer. Here, we conduct six 500-ns simulations of a system with >600,000 atoms to investigate the spontaneous self assembly of dodecylphosphocholine detergent around multiple molecules of the integral membrane protein PagP. This detergent formed equatorial micelles in which acyl chains surround the protein's hydrophobic belt, confirming existing models of the detergent solvation of membrane proteins. In addition, unexpectedly, the extracellular and periplasmic apical surfaces of PagP interacted with the headgroups of detergents in other micelles 85 and 60% of the time, respectively, forming complexes that were stable for hundreds of nanoseconds. In some cases, an apical surface of one molecule of PagP interacted with an equatorial micelle surrounding another molecule of PagP. In other cases, the apical surfaces of two molecules of PagP simultaneously bound a neat detergent micelle. In these ways, detergents mediated the non-specific aggregation of folded PagP. These simulation results are consistent with dynamic light scattering experiments, which show that, at detergent concentrations ≥600 mM, PagP induces the formation of large scattering species that are likely to contain many copies of the PagP protein. Together, these simulation and experimental results point to a potentially generic mechanism of detergent-mediated protein aggregation.
Collapse
Affiliation(s)
- Chris Neale
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Hamed Ghanei
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - John Holyoake
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, UHN, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Russell E. Bishop
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Gilbert G. Privé
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Ontario Cancer Institute and Campbell Family Cancer Research Institute, UHN, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Régis Pomès
- Molecular Structure and Function, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
16
|
Yafremava LS, Wielgos M, Thomas S, Nasir A, Wang M, Mittenthal JE, Caetano-Anollés G. A general framework of persistence strategies for biological systems helps explain domains of life. Front Genet 2013; 4:16. [PMID: 23443991 PMCID: PMC3580334 DOI: 10.3389/fgene.2013.00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/28/2013] [Indexed: 11/13/2022] Open
Abstract
The nature and cause of the division of organisms in superkingdoms is not fully understood. Assuming that environment shapes physiology, here we construct a novel theoretical framework that helps identify general patterns of organism persistence. This framework is based on Jacob von Uexküll's organism-centric view of the environment and James G. Miller's view of organisms as matter-energy-information processing molecular machines. Three concepts describe an organism's environmental niche: scope, umwelt, and gap. Scope denotes the entirety of environmental events and conditions to which the organism is exposed during its lifetime. Umwelt encompasses an organism's perception of these events. The gap is the organism's blind spot, the scope that is not covered by umwelt. These concepts bring organisms of different complexity to a common ecological denominator. Ecological and physiological data suggest organisms persist using three strategies: flexibility, robustness, and economy. All organisms use umwelt information to flexibly adapt to environmental change. They implement robustness against environmental perturbations within the gap generally through redundancy and reliability of internal constituents. Both flexibility and robustness improve survival. However, they also incur metabolic matter-energy processing costs, which otherwise could have been used for growth and reproduction. Lineages evolve unique tradeoff solutions among strategies in the space of what we call "a persistence triangle." Protein domain architecture and other evidence support the preferential use of flexibility and robustness properties. Archaea and Bacteria gravitate toward the triangle's economy vertex, with Archaea biased toward robustness. Eukarya trade economy for survivability. Protista occupy a saddle manifold separating akaryotes from multicellular organisms. Plants and the more flexible Fungi share an economic stratum, and Metazoa are locked in a positive feedback loop toward flexibility.
Collapse
Affiliation(s)
- Liudmila S Yafremava
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois Urbana, IL, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Wei C, Pohorille A. Permeation of aldopentoses and nucleosides through fatty acid and phospholipid membranes: implications to the origins of life. ASTROBIOLOGY 2013; 13:177-188. [PMID: 23397957 DOI: 10.1089/ast.2012.0901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Permeation of aldopentoses and nucleosides through fatty acid and phospholipid membranes was investigated by way of molecular dynamics simulations. Calculated permeability coefficients of membranes to aldopentoses, which exist predominantly in the pyranose form, are in a very good agreement with experimental results. The unexpected preferential permeation of ribose, compared to its diastereomers, found by Sacerdote and Szostak, is explained in terms of inter- and intramolecular interactions involving hydroxyl groups. In aqueous solution, these groups favor the formation of intermolecular hydrogen bonds with neighboring water molecules. Inside the membrane, however, they form intramolecular hydrogen bonds, which in ribose are arranged in a chain. In its diastereomers this chain is broken, which yields higher free energy barrier to transfer through membranes. Faster permeation of ribose would lead to its preferential accumulation inside cells if sugars were converted sufficiently quickly to nonpermeable derivatives. An estimate for the rate of such reaction was derived. Preferential accumulation of ribose would increase the probability of correct monomers' incorporation during synthesis of nucleic acids inside protocells. The same mechanism does not apply to nucleosides or their activated derivatives because sugars are locked in the furanose form, which contains fewer exocyclic hydroxyl groups than does pyranose. The results of this study underscore concerted early evolution of membranes and the biochemical processes that they encapsulated.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center, Moffett Field, California 94035, USA
| | | |
Collapse
|
18
|
Pohorille A. Processes that drove the transition from chemistry to biology: concepts and evidence. ORIGINS LIFE EVOL B 2012; 42:429-32. [PMID: 23080008 DOI: 10.1007/s11084-012-9304-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/28/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Pohorille
- Exobiology Branch, MS 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
19
|
The phylogenomic roots of modern biochemistry: origins of proteins, cofactors and protein biosynthesis. J Mol Evol 2012; 74:1-34. [PMID: 22210458 DOI: 10.1007/s00239-011-9480-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/12/2011] [Indexed: 12/20/2022]
Abstract
The complexity of modern biochemistry developed gradually on early Earth as new molecules and structures populated the emerging cellular systems. Here, we generate a historical account of the gradual discovery of primordial proteins, cofactors, and molecular functions using phylogenomic information in the sequence of 420 genomes. We focus on structural and functional annotations of the 54 most ancient protein domains. We show how primordial functions are linked to folded structures and how their interaction with cofactors expanded the functional repertoire. We also reveal protocell membranes played a crucial role in early protein evolution and show translation started with RNA and thioester cofactor-mediated aminoacylation. Our findings allow elaboration of an evolutionary model of early biochemistry that is firmly grounded in phylogenomic information and biochemical, biophysical, and structural knowledge. The model describes how primordial α-helical bundles stabilized membranes, how these were decorated by layered arrangements of β-sheets and α-helices, and how these arrangements became globular. Ancient forms of aminoacyl-tRNA synthetase (aaRS) catalytic domains and ancient non-ribosomal protein synthetase (NRPS) modules gave rise to primordial protein synthesis and the ability to generate a code for specificity in their active sites. These structures diversified producing cofactor-binding molecular switches and barrel structures. Accretion of domains and molecules gave rise to modern aaRSs, NRPS, and ribosomal ensembles, first organized around novel emerging cofactors (tRNA and carrier proteins) and then more complex cofactor structures (rRNA). The model explains how the generation of protein structures acted as scaffold for nucleic acids and resulted in crystallization of modern translation.
Collapse
|
20
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
21
|
Andrade IDS, Vianez-Júnior JL, Goulart CL, Homblé F, Ruysschaert JM, Almeida von Krüger WM, Bisch PM, de Souza W, Mohana-Borges R, Motta MCM. Characterization of a porin channel in the endosymbiont of the trypanosomatid protozoan Crithidia deanei. MICROBIOLOGY-SGM 2011; 157:2818-2830. [PMID: 21757490 DOI: 10.1099/mic.0.049247-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Crithidia deanei is a trypanosomatid protozoan that harbours a symbiotic bacterium. The partners maintain a mutualistic relationship, thus constituting an excellent model for studying metabolic exchanges between the host and the symbiont, the origin of organelles and cellular evolution. According to molecular analysis, symbionts of different trypanosomatid species share high identity and descend from a common ancestor, a β-proteobacterium of the genus Bordetella. The endosymbiont is surrounded by two membranes, like Gram-negative bacteria, but its envelope presents special features, since phosphatidylcholine is a major membrane component and the peptidoglycan layer is highly reduced, as described in other obligate intracellular bacteria. Like the process that generated mitochondria and plastids, the endosymbiosis in trypanosomatids depends on pathways that facilitate the intensive metabolic exchanges between the bacterium and the host protozoan. A search of the annotated symbiont genome database identified one sequence with identity to porin-encoding genes of the genus Bordetella. Considering that the symbiont outer membrane has a great accessibility to cytoplasm host factors, it was important to characterize this single porin-like protein using biochemical, molecular, computational and ultrastructural approaches. Antiserum against the recombinant porin-like molecule revealed that it is mainly located in the symbiont envelope. Secondary structure analysis and comparative modelling predicted the protein 3D structure as an 18-domain β-barrel, which is consistent with porin channels. Electrophysiological measurements showed that the porin displays a slight preference for cations over anions. Taken together, the data presented herein suggest that the C. deanei endosymbiont porin is phylogenetically and structurally similar to those described in Gram-negative bacteria, representing a diffusion channel that might contribute to the exchange of nutrients and metabolic precursors between the symbiont and its host cell.
Collapse
Affiliation(s)
- Iamara da Silva Andrade
- Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - João Lídio Vianez-Júnior
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Carolina Lage Goulart
- Laboratoire de Structure et Fonction des Membranes Biologiques (SFMB), Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Bruxelles, Belgium.,Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Fabrice Homblé
- Laboratoire de Structure et Fonction des Membranes Biologiques (SFMB), Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Bruxelles, Belgium
| | - Jean-Marie Ruysschaert
- Laboratoire de Structure et Fonction des Membranes Biologiques (SFMB), Université Libre de Bruxelles, Campus Plaine (CP 206/2), B-1050 Bruxelles, Belgium
| | - Wanda Maria Almeida von Krüger
- Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Paulo Mascarello Bisch
- Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, Inmetro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Maria Cristina Machado Motta
- Instituto Nacional de Ciência e Tecnologia em Bioimagens e Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Balleza D. Toward understanding protocell mechanosensation. ORIGINS LIFE EVOL B 2011; 41:281-304. [PMID: 21080073 DOI: 10.1007/s11084-010-9225-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 10/20/2010] [Indexed: 01/11/2023]
Abstract
Mechanosensitive (MS) channels can prevent bacterial bursting during hypo-osmotic shocks by responding to increases in lateral tension at the membrane level through an integrated and coordinated opening mechanism. Mechanical regulation in protocells could have been one of the first mechanisms to evolve in order to preserve their integrity against changing environmental conditions. How has the rich functional diversity found in present cells been created throughout evolution, and what did the primordial MS channels look like? This review has been written with the aim of identifying which factors may have been important for the appearance of the first osmotic valve in a prebiotic context, and what this valve may have been like. It highlights the mechanical properties of lipid bilayers, the association of peptides as aggregates in membranes, and the conservation of sequence motifs as central aspects to understand the evolution of proteins that gate below the tension required for spontaneous pore formation and membrane rupture. The arguments developed here apply to both MscL and MscS homologs, but could be valid to mechano-susceptible proteins in general.
Collapse
Affiliation(s)
- Daniel Balleza
- Unidad de Biofísica, CSIC-UPV/EHU, Universidad del País Vasco, Barrio Sarriena s/n, Leioa, Spain.
| |
Collapse
|
23
|
Morris SC. Predicting what extra-terrestrials will be like: and preparing for the worst. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:555-571. [PMID: 21220280 DOI: 10.1098/rsta.2010.0276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It is difficult to imagine evolution in alien biospheres operating in any manner other than Darwinian. Yet, it is also widely assumed that alien life-forms will be just that: strange, un-nerving and probably repulsive. There are two reasons for this view. First, it is assumed that the range of habitable environments available to extra-terrestrial life is far wider than on Earth. I suggest, however, that terrestrial life is close to the physical and chemical limits of life anywhere. Second, it is a neo-Darwinian orthodoxy that evolution lacks predictability; imagining what extra-terrestrial life would look like in any detail is a futile exercise. To the contrary, I suggest that the outcomes of evolution are remarkably predictable. This, however, leads us to consider two opposites, both of which should make our blood run cold. The first, and actually extremely unlikely, is that alien biospheres will be strikingly similar to our terrestrial equivalent and that in such biospheres intelligence will inevitably emerge. The reasons for this revolve around the ubiquity of evolutionary convergence, the determinate structure of the Tree of Life and molecular inherency. But if something like a human is an inevitability, why do I also claim that the first possibility is 'extremely unlikely'? Simply because the other possibility is actually the correct answer. Paradoxically, we and our biosphere are completely alone. So which is worse? Meeting ourselves or meeting nobody?
Collapse
Affiliation(s)
- Simon Conway Morris
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EQ, UK.
| |
Collapse
|
24
|
Reguera G. When microbial conversations get physical. Trends Microbiol 2011; 19:105-13. [PMID: 21239171 DOI: 10.1016/j.tim.2010.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 02/03/2023]
Abstract
It is widely accepted that microorganisms are social beings. Whereas communication via chemical signals (e.g. quorum sensing) has been the focus of most investigations, the use of physical signals for microbial cell-cell communication has received only limited attention. In this Opinion article, I postulate that physical modes of microbial communication could be widespread in nature. This is based on experimental evidence on the microbial emission and response to three physical signals: sound waves, electromagnetic radiation and electric currents. These signals propagate rapidly, and even at very low intensities, they provide useful mechanisms when a rapid response is required. I also make some suggestions for promising future research avenues that could provide novel and unsuspected insights into the physical nature of microbial signaling networks.
Collapse
Affiliation(s)
- Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, 6190 Biomedical & Physical Science Building, East Lansing, MI 48824, USA.
| |
Collapse
|
25
|
Ger MF, Rendon G, Tilson JL, Jakobsson E. Domain-based identification and analysis of glutamate receptor ion channels and their relatives in prokaryotes. PLoS One 2010; 5:e12827. [PMID: 20949136 PMCID: PMC2950845 DOI: 10.1371/journal.pone.0012827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 08/10/2010] [Indexed: 11/18/2022] Open
Abstract
Voltage-gated and ligand-gated ion channels are used in eukaryotic organisms for the purpose of electrochemical signaling. There are prokaryotic homologues to major eukaryotic channels of these sorts, including voltage-gated sodium, potassium, and calcium channels, Ach-receptor and glutamate-receptor channels. The prokaryotic homologues have been less well characterized functionally than their eukaryotic counterparts. In this study we identify likely prokaryotic functional counterparts of eukaryotic glutamate receptor channels by comprehensive analysis of the prokaryotic sequences in the context of known functional domains present in the eukaryotic members of this family. In particular, we searched the nonredundant protein database for all proteins containing the following motif: the two sections of the extracellular glutamate binding domain flanking two transmembrane helices. We discovered 100 prokaryotic sequences containing this motif, with a wide variety of functional annotations. Two groups within this family have the same topology as eukaryotic glutamate receptor channels. Group 1 has a potassium-like selectivity filter. Group 2 is most closely related to eukaryotic glutamate receptor channels. We present analysis of the functional domain architecture for the group of 100, a putative phylogenetic tree, comparison of the protein phylogeny with the corresponding species phylogeny, consideration of the distribution of these proteins among classes of prokaryotes, and orthologous relationships between prokaryotic and human glutamate receptor channels. We introduce a construct called the Evolutionary Domain Network, which represents a putative pathway of domain rearrangements underlying the domain composition of present channels. We believe that scientists interested in ion channels in general, and ligand-gated ion channels in particular, will be interested in this work. The work should also be of interest to bioinformatics researchers who are interested in the use of functional domain-based analysis in evolutionary and functional discovery.
Collapse
Affiliation(s)
- Mao-Feng Ger
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gloria Rendon
- National Center for Supercomputing Applications, Urbana, Illinois, United States of America
| | - Jeffrey L. Tilson
- Renaissance Computing Institute, Raleigh, North Carolina, United States of America
| | - Eric Jakobsson
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- National Center for Supercomputing Applications, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
26
|
Laiterä T, Lehto K. Protein-mediated selective enclosure of early replicators inside of membranous vesicles: first step towards cell membranes. ORIGINS LIFE EVOL B 2009; 39:545-58. [PMID: 19609711 DOI: 10.1007/s11084-009-9171-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 06/16/2009] [Indexed: 11/25/2022]
Abstract
Containment in cell membranes is essential for all contemporary life, and apparently even the earliest life forms had to be somehow contained. It has been postulated that random enclosure of replicating molecules inside of spontaneously assembled vesicles would have formed the initial cellular ancestors. However, completely random re-formation or division of such primitive vesicles would have abolished the heritability of their contents, nullifying any selective advantage to them. We propose that the containment of the early replicators in membranous vesicles was adopted only after the invention of genetically encoded proteins, and that selective enclosure of target molecules was mediated by specific proteins. A similar containment process is still utilised by various RNA- and retroviruses to isolate their replication complexes from the host's intracellular environment. Such selective encapsulation would have protected the replicators against competitor and parasitic sequences, and provided a strong positive selection within the replicator communities.
Collapse
Affiliation(s)
- Tiina Laiterä
- Laboratory of Plant Physiology and Molecular Biology, University of Turku, Finland
| | | |
Collapse
|
27
|
Tikhonov DB, Magazanik LG. Origin and Molecular Evolution of Ionotropic Glutamate Receptors. ACTA ACUST UNITED AC 2009; 39:763-73. [DOI: 10.1007/s11055-009-9195-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Indexed: 10/20/2022]
|
28
|
Bywater RP. Membrane-spanning peptides and the origin of life. J Theor Biol 2009; 261:407-13. [PMID: 19679140 DOI: 10.1016/j.jtbi.2009.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 11/29/2022]
Abstract
An explanation is given as to why membrane-spanning peptides must have been the first "information-rich" molecules in the development of life. These peptides are stabilised in a lipid bilayer membrane environment and they are preferentially made from the simplest, and likewise oldest, of the amino acids that survive today. Transmembrane peptides can exercise functions that are essential for biological systems such as signal transduction and material transport across membranes. More complex peptides possessing catalytic properties could later develop on either side of the membrane as independently folding functional units formed by extension of the protruding ends of the transmembrane peptides within an aqueous environment and thereby give rise to more of the functions that are necessary for life. But the membrane was the cradle for the development of the first information-rich biomolecules.
Collapse
|
29
|
Pohorille A, Deamer D. Self-assembly and function of primitive cell membranes. Res Microbiol 2009; 160:449-56. [PMID: 19580865 DOI: 10.1016/j.resmic.2009.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 06/20/2009] [Accepted: 06/23/2009] [Indexed: 10/20/2022]
Abstract
We describe possible pathways for separating amphiphilic molecules from organic material on the early earth to form membrane-bound structures required for the start of cellular life. We review properties of the first membranes and their function as permeability barriers. Finally, we discuss the emergence of protein-mediated ion transport across membranes, which facilitated many other cellular functions.
Collapse
Affiliation(s)
- Andrew Pohorille
- Exobiology Branch, NASA Ames Research Center, MS 239-4, Moffett Field, CA 94035, USA.
| | | |
Collapse
|
30
|
Llewellyn LE. Sodium channel inhibiting marine toxins. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 46:67-97. [PMID: 19184585 DOI: 10.1007/978-3-540-87895-7_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Saxitoxin (STX), tetrodotoxin (TTX) and their many chemical relatives are part of our daily lives. From killing people who eat seafood containing these toxins, to being valuable research tools unveiling the invisible structures of their pharmacological receptor, their global impact is beyond measure. The pharmacological receptor for these toxins is the voltage-gated sodium channel which transports Na ions between the exterior to the interior of cells. The two structurally divergent families of STX and TTX analogues bind at the same location on these Na channels to stop the flow of ions. This can affect nerves, muscles and biological senses of most animals. It is through these and other toxins that we have developed much of our fundamental understanding of the Na channel and its part in generating action potentials in excitable cells.
Collapse
Affiliation(s)
- Lyndon E Llewellyn
- Australian Institute of Marine Science, Townsville MC, QLD 4810, Australia.
| |
Collapse
|
31
|
Ruiz-Mirazo K, Mavelli F. On the way towards ‘basic autonomous agents’: Stochastic simulations of minimal lipid–peptide cells. Biosystems 2008; 91:374-87. [PMID: 17714858 DOI: 10.1016/j.biosystems.2007.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 05/09/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
In this paper, we apply a recently developed stochastic simulation platform to investigate the dynamic behaviour of minimal 'self-(re-)producing' cellular systems. In particular, we study a set of preliminary conditions for appearance of the simplest forms of autonomy in the context of lipid vesicles (more specifically, lipid-peptide vesicles) that enclose an autocatalytic/proto-metabolic reaction network. The problem is approached from a 'bottom-up' perspective, in the sense that we try to show how relatively simple cell components/processes could engage in a far-from-equilibrium dynamics, staying in those conditions thanks to a rudimentary but effective control of the matter-energy flow through it. In this general scenario, basic autonomy and, together with it, minimal agent systems would appear when (hypothetically pre-biological) cellular systems establish molecular trans-membrane mechanisms that allow them to couple internal chemical reactions with transport processes, in a way that they channel/transform external material-energetic resources into their own means and actively regulate boundary conditions (e.g., osmotic gradients, inflow/outflow of different compounds, ...) that are critical for their constitution and persistence as proto-metabolic cells. The results of our simulations indicate that, before that stage is reached, there are a number of relevant issues that have to be carefully analysed and clarified: especially the immediate effects that the insertion of peptide chains (channel precursors) in the lipid bilayer may have in the structural properties of the membrane (elasticity, permeability, ...) and in the overall dynamic behaviour of the cell.
Collapse
Affiliation(s)
- Kepa Ruiz-Mirazo
- Department of Logic and Philosophy of Science/Biophysics Research Unit (CSIC-UPV/EHU), University of the Basque Country, Avenida Tolosa 70/20018 Donostia-San Sebastián, Spain.
| | | |
Collapse
|
32
|
Solé RV, Munteanu A, Rodriguez-Caso C, Macía J. Synthetic protocell biology: from reproduction to computation. Philos Trans R Soc Lond B Biol Sci 2007; 362:1727-39. [PMID: 17472932 PMCID: PMC2442389 DOI: 10.1098/rstb.2007.2065] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cells are the building blocks of biological complexity. They are complex systems sustained by the coordinated cooperative dynamics of several biochemical networks. Their replication, adaptation and computational features emerge as a consequence of appropriate molecular feedbacks that somehow define what life is. As the last decades have brought the transition from the description-driven biology to the synthesis-driven biology, one great challenge shared by both the fields of bioengineering and the origin of life is to find the appropriate conditions under which living cellular structures can effectively emerge and persist. Here, we review current knowledge (both theoretical and experimental) on possible scenarios of artificial cell design and their future challenges.
Collapse
Affiliation(s)
- Ricard V Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra (GRIB), Dr Aiguader 88, 08003 Barcelona, Spain.
| | | | | | | |
Collapse
|
33
|
Scalo J, Kaltenegger L, Segura A, Segura AG, Fridlund M, Ribas I, Kulikov YN, Grenfell JL, Rauer H, Odert P, Leitzinger M, Selsis F, Khodachenko ML, Eiroa C, Kasting J, Lammer H. M stars as targets for terrestrial exoplanet searches and biosignature detection. ASTROBIOLOGY 2007; 7:85-166. [PMID: 17407405 DOI: 10.1089/ast.2006.0125] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M() range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first approximately 1 Gyr, atmospheric retention is at peril because of intense and frequent stellar flares and sporadic energetic particle events, and impact erosion, both enhanced, the former dramatically, for M star HZ semimajor axes. Loss of atmosphere by interactions with energetic particles is likely unless the planetary magnetic moment is sufficiently large. For the smallest stellar masses a period of high planetary surface temperature, while the parent star approaches the main sequence, must be endured. The formation and retention of a thick atmosphere and a strong magnetic field as buffers for a sufficiently massive planet emerge as prerequisites for an M star planet to enter a long period of stability with its habitability intact. However, the star will then be subjected to short-term fluctuations with consequences including frequent unpredictable variation in atmospheric chemistry and surficial radiation field. After a review of evidence concerning disks and planets associated with M stars, we evaluate M stars as targets for future HZ planet search programs. Strong advantages of M stars for most approaches to HZ detection are offset by their faintness, leading to severe constraints due to accessible sample size, stellar crowding (transits), or angular size of the HZ (direct imaging). Gravitational lensing is unlikely to detect HZ M star planets because the HZ size decreases with mass faster than the Einstein ring size to which the method is sensitive. M star Earth-twin planets are predicted to exhibit surprisingly strong bands of nitrous oxide, methyl chloride, and methane, and work on signatures for other climate categories is summarized. The rest of the paper is devoted to an examination of evidence and implications of the unusual radiation and particle environments for atmospheric chemistry and surface radiation doses, and is summarized in the Synopsis. We conclude that attempts at remote sensing of biosignatures and nonbiological markers from M star planets are important, not as tests of any quantitative theories or rational arguments, but instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations. A detection or repeated nondetections could provide a unique opportunity to partially answer a fundamental and recurrent question about the relation between stability and complexity, one that is not addressed by remote detection from a planet orbiting a solar-like star, and can only be studied on Earth using restricted microbial systems in serial evolution experiments or in artificial life simulations. This proposal requires a planet that has retained its atmosphere and a water supply. The discussion given here suggests that observations of M star exoplanets can decide this latter question with only slight modifications to plans already in place for direct imaging terrestrial exoplanet missions.
Collapse
Affiliation(s)
- John Scalo
- Department of Astronomy, University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The development of low molecular weight anion transporters is an emerging topic in supramolecular chemistry. The major focus of this tutorial review is on synthetic chloride transport systems that operate in vesicle and cell membranes. The transporters alter transmembrane concentration gradients, and thus they have applications as reagents for cell biology research and as potential chemotherapeutic agents. The molecular designs include monomolecular channels, self-assembled channels and mobile carriers. Also discussed are the experimental assays that measure transport rates across model bilayer membranes.
Collapse
Affiliation(s)
- Anthony P. Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - David N. Sheppard
- Department of Physiology, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry and Walther Cancer Research Center, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| |
Collapse
|