1
|
Li H, Lei Y, Fa W, Wu T, Li T. Environmental DNA sheds new insight on molecular adaptation of foraminifera to temperature from laboratory-controlled culture experiment. Ecol Evol 2024; 14:e70243. [PMID: 39391814 PMCID: PMC11464909 DOI: 10.1002/ece3.70243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 10/12/2024] Open
Abstract
Foraminifera is the most important temperature proxy of the ocean on long time scales. However, the absence of temperature-controlled experiments at different water depths hinders the advancement of paleotemperature reconstruction with foraminifera from the continental shelf. For the first time, this study investigated the response of benthic foraminifera to temperature change using microcosm culture and metabarcoding. Foraminiferal communities from three continental stations at varying water depths (6.0, 9.2, and 26.0 m) were cultured under five temperature gradients (6, 12, 18, 24, and 30°C), with each treatment performed in triplicate. The foraminifera were fed with microalgae every 4 days, and the filtered seawater (through 0.22 μm pores), acting as a medium, was changed accordingly. The experiment lasted for 80 days, and 47 DNA samples were obtained and analyzed, including three in situ samples. The results showed that foraminifera adjusted its growth rate within the low-temperature range and adopted an r-strategy to cope with high-temperature stress. In addition, the foraminifera from deeper water stations exhibited a pronounced vulnerability to diminishing read counts. The read counts, operational taxonomic units (OTU) counts and Margalef index of foraminifera and the read counts of Rotaliida exhibited a remarkably positive correlation with temperature. The recommended relationships were described as read counts = 1314.75*T + 44754.51; OTU counts = 1.13*T + 44.26; Margalef index =1.13*T + 44.26. This study established the first quantitative relationship between temperature and foraminifera molecular parameters that holds significant implications for long-time paleotemperature calibration in climate change.
Collapse
Affiliation(s)
- Haotian Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and ConservationInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
| | - Yanli Lei
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and ConservationInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao Marine Science and Technology CenterQingdaoChina
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)ZhuhaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenlong Fa
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and ConservationInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tianzhen Wu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and ConservationInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tiegang Li
- Key Laboratory of Marine Sedimentology and Environmental GeologyFirst Institute of Oceanography, MNRQingdaoChina
| |
Collapse
|
2
|
Rabosky DL. Evolutionary time and species diversity in aquatic ecosystems worldwide. Biol Rev Camb Philos Soc 2022; 97:2090-2105. [PMID: 35899476 PMCID: PMC9796449 DOI: 10.1111/brv.12884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023]
Abstract
The latitudinal diversity gradient (LDG) is frequently described as the most dramatic biodiversity pattern on Earth, yet ecologists and biogeographers have failed to reach consensus on its primary cause. A key problem in explaining the LDG involves collinearity between multiple factors that are predicted to affect species richness in the same direction. In terrestrial systems, energy input, geographic area, and evolutionary time for species accumulation tend to covary positively with species richness at the largest spatial scales, such that their individual contributions to the LDG are confounded in global analyses. I review three diversity patterns from marine and freshwater systems that break this collinearity and which may thus provide stronger tests of the influence of time on global richness gradients. Specifically, I contrast biodiversity patterns along oceanic depth gradients, in geologically young versus ancient lakes, and in the north versus south polar marine biomes. I focus primarily on fishes due to greater data availability but synthesize patterns for invertebrates where possible. I find that regional-to-global species richness generally declines with depth in the oceans, despite the great age and stability of the deep-sea biome. Geologically ancient lakes generally do not contain more species than young lakes, and the Antarctic marine biome is not appreciably more species rich than the much younger Arctic marine biome. However, endemism is consistently higher in older systems. Patterns for invertebrate groups are less clear than for fishes and reflect a critical need for primary biodiversity data. In summary, the available data suggest that species richness is either decoupled from or only weakly related to the amount of time for diversification. These results suggest that energy, productivity, or geographic area are the primary drivers of large-scale diversity gradients. To the extent that marine and terrestrial diversity gradients result from similar processes, these examples provide evidence against a primary role for evolutionary time as the cause of the LDG.
Collapse
Affiliation(s)
- Daniel L. Rabosky
- Museum of Zoology & Department of Ecology and Evolutionary BiologyUniversity of Michigan2032 Biological Sciences BuildingAnn ArborMI48109USA
| |
Collapse
|
3
|
Caballero‐Herrera JA, Olivero J, Cosel R, Gofas S. An analytically derived delineation of the West African Coastal Province based on bivalves. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Jesús Olivero
- Departamento de Biología Animal Facultad de Ciencias Universidad de Málaga Málaga Spain
| | - Rudo Cosel
- Muséum National d'Histoire Naturelle Paris France
| | - Serge Gofas
- Departamento de Biología Animal Facultad de Ciencias Universidad de Málaga Málaga Spain
- Muséum National d'Histoire Naturelle Paris France
| |
Collapse
|
4
|
Raja NB, Kiessling W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc Biol Sci 2021; 288:20210545. [PMID: 33975476 DOI: 10.1098/rspb.2021.0545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many ecological and evolutionary hypotheses have been proposed to explain the latitudinal diversity gradient, i.e. the increase in species richness from the poles to the tropics. Among the evolutionary hypotheses, the 'out of the tropics' (OTT) hypothesis has received considerable attention. The OTT posits that the tropics are both a cradle and source of biodiversity for extratropical regions. To test the generality of the OTT hypothesis, we explored the spatial biodiversity dynamics of unicellular marine plankton over the Cenozoic era (the last 66 Myr). We find large-scale climatic changes during the Cenozoic shaped the diversification and dispersal of marine plankton. Origination was generally more likely in the extratropics and net dispersal was towards the tropics rather than in the opposite direction, especially during the warmer climates of the early Cenozoic. Although migration proportions varied among major plankton groups and climate phases, we provide evidence that the extratropics were a source of tropical microplankton biodiversity over the last 66 Myr.
Collapse
Affiliation(s)
- Nussaïbah B Raja
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| | - Wolfgang Kiessling
- GeoZentrum Nordbayern, Department of Geography and Geosciences, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Zacaï A, Monnet C, Pohl A, Beaugrand G, Mullins G, Kroeck DM, Servais T. Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton. SCIENCE ADVANCES 2021; 7:eabd6709. [PMID: 33827811 PMCID: PMC8026127 DOI: 10.1126/sciadv.abd6709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
The latitudinal diversity gradient (LDG)-the decline in species richness from the equator to the poles-is classically considered as the most pervasive macroecological pattern on Earth, but the timing of its establishment, its ubiquity in the geological past, and explanatory mechanisms remain uncertain. By combining empirical and modeling approaches, we show that the first representatives of marine phytoplankton exhibited an LDG from the beginning of the Cambrian, when most major phyla appeared. However, this LDG showed a single peak of diversity centered on the Southern Hemisphere, in contrast to the equatorial peak classically observed for most modern taxa. We find that this LDG most likely corresponds to a truncated bimodal gradient, which probably results from an uneven sediment preservation, smaller sampling effort, and/or lower initial diversity in the Northern Hemisphere. Variation of the documented LDG through time resulted primarily from fluctuations in annual sea-surface temperature and long-term climate changes.
Collapse
Affiliation(s)
- Axelle Zacaï
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France.
- PALEVOPRIM, UMR 7262, CNRS, Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - Claude Monnet
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| | - Alexandre Pohl
- Department of Earth and Planetary Sciences, University of California, Riverside, Riverside, CA, USA
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, F-21000 Dijon, France
| | - Grégory Beaugrand
- Laboratoire d'Océanologie et de Géosciences, UMR 8187, CNRS, Univ. Lille, F-59000 Lille, France
| | | | - David M Kroeck
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| | - Thomas Servais
- Evo-Eco-Paleo, UMR 8198, CNRS, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
6
|
McGaughran A, Laver R, Fraser C. Evolutionary Responses to Warming. Trends Ecol Evol 2021; 36:591-600. [PMID: 33726946 DOI: 10.1016/j.tree.2021.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/24/2022]
Abstract
Climate change is predicted to dramatically alter biological diversity and distributions, driving extirpations, extinctions, and extensive range shifts across the globe. Warming can also, however, lead to phenotypic or behavioural plasticity, as species adapt to new conditions. Recent genomic research indicates that some species are capable of rapid evolution as selection favours adaptive responses to environmental change and altered or novel niche spaces. New advances are providing mechanistic insights into how temperature might accelerate evolution in the Anthropocene. These discoveries highlight intriguing new research directions - such as using geothermal and polar systems combined with powerful genomic tools - that will help us to understand the processes underpinning adaptive evolution and better project how ecosystems will change in a warming world.
Collapse
Affiliation(s)
- Angela McGaughran
- Te Aka Mātuatua - School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Rebecca Laver
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Ceridwen Fraser
- Department of Marine Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
7
|
Benavides LR, Pinto-da-Rocha R, Giribet G. The Phylogeny and Evolution of the Flashiest of the Armored Harvestmen (Arachnida: Opiliones). Syst Biol 2021; 70:648-659. [PMID: 33057723 DOI: 10.1093/sysbio/syaa080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
Gonyleptoidea, largely restricted to the Neotropics, constitutes the most diverse superfamily of Opiliones and includes the largest and flashiest representatives of this arachnid order. However, the relationships among its main lineages (families and subfamilies) and the timing of their origin are not sufficiently understood to explain how this tropical clade has been able to colonize the temperate zone. Here, we used transcriptomics and divergence time dating to investigate the phylogeny of Gonyleptoidea. Our results support the monophyly of Gonyleptoidea and all of its families with more than one species represented. Resolution within Gonyleptidae s.s. is achieved for many clades, but some subfamilies are not monophyletic (Gonyleptinae, Mitobatinae, and Pachylinae), requiring taxonomic revision. Our data show evidence for one colonization of today's temperate zone early in the history of Gonyleptidae, during the Paleogene, at a time when the Neotropical area extended poleward into regions now considered temperate. This provides a possible mechanism for the colonization of the extratropics by a tropical group following the Paleocene-Eocene Thermal Maximum, explaining how latitudinal diversity gradients can be established. Taxonomic acts: Ampycidae Kury 2003 is newly ranked as family; Neosadocus Mello-Leitão is transferred to Progonyleptoidellinae (new subfamilial assignment). [Arachnids; biogeography; phylogenomics; transcriptomics.].
Collapse
Affiliation(s)
- Ligia R Benavides
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Ricardo Pinto-da-Rocha
- Instituto de Biociências - Universidade de São Paulo, Departamento de Zoologia, Rua do Matão, travessa 14, 321, 005508-900 São Paulo, SP, Brazil
| | - Gonzalo Giribet
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Lin H, Corkrey R, Kaschner K, Garilao C, Costello MJ. Latitudinal diversity gradients for five taxonomic levels of marine fish in depth zones. Ecol Res 2020. [DOI: 10.1111/1440-1703.12193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Han‐Yang Lin
- Institute of Marine Science The University of Auckland Auckland New Zealand
| | - Ross Corkrey
- Tasmanian Institute of Agriculture University of Tasmania Hobart Australia
| | - Kristin Kaschner
- Department of Biometry and Environmental Systems Analysis University of Freiburg Freiburg Germany
| | | | - Mark J. Costello
- School of Environment The University of Auckland Auckland New Zealand
| |
Collapse
|
9
|
Climate drives the geography of marine consumption by changing predator communities. Proc Natl Acad Sci U S A 2020; 117:28160-28166. [PMID: 33106409 DOI: 10.1073/pnas.2005255117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth's ecosystems.
Collapse
|
10
|
Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness. J Therm Biol 2020; 92:102692. [PMID: 32888577 DOI: 10.1016/j.jtherbio.2020.102692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Mangroves are ideal habitat for a variety of marine species especially brachyuran crabs as the dominant macrofauna. However, the global distribution, endemicity, and latitudinal gradients of species richness in mangrove crabs remains poorly understood. Here, we assessed whether species richness of mangrove crabs decreases towards the higher latitudes and tested the importance of environmental factors such as Sea Surface Temperature (SST) in creating the latitudinal gradients in species richness of mangrove crabs. A total of 8262 distribution records of 481 species belonging to six families of mangrove crabs including Camptandriidae, Dotillidae, Macrophthalmidae, Ocypodidae, Sesarmidae, and Oziidae were extracted from open-access databases or collected by the authors, quality controlled, cleaned, and analyzed. Species richness was plotted against 5° latitudinal bands in relation to environmental factors. The R software and ArcGIS 10.6.1 were used to analyze the species latitudinal range and richness as well as to map the distribution of mangrove forest, endemic species, species geographical distribution records, and biogeographic regions. The Indo-West Pacific showed the highest species richness of mangrove crabs where more than 65% of species were found in the Indian Ocean and along the western Pacific Ocean. Our results showed that there are 11 significantly different biogeographic regions of mangrove crabs. The highest endemicity rate was observed in the NW Pacific Ocean (29%). Latitudinal patterns of species richness in Macrophthalmidae, Ocypodidae, and Sesarmidae showed an increasing trend from the poles toward the intermediate latitudes including one dip near the equator. However, latitudinal gradients in Camptandriidae, Dotillidae, and Oziidae were unimodal increasing from the higher latitudes towards the equator. Species richness per 5° latitudinal bands significantly increased following mean SST mean (°C), calcite, euphotic depth (m), and mangrove area (km2) across all latitudes, and tide average within each hemisphere. Species richness significantly decreased with dissolved O2 (ml l-1) and nitrate (μmol l-1) over all latitudes and in the southern hemisphere. The climax of global latitudinal species richness for some mangrove was observed along latitudes 20° N and 15°-25° S, not at the equator. This can suggest that temperature is probably the key driver of latitudinal gradients of mangrove crabs' species richness. Species richness and mangrove area were also highly correlated.
Collapse
|
11
|
|
12
|
Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat Ecol Evol 2019; 3:1419-1429. [DOI: 10.1038/s41559-019-0962-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/12/2019] [Indexed: 01/03/2023]
|
13
|
Liow LH, Taylor PD. Cope's Rule in a modular organism: Directional evolution without an overarching macroevolutionary trend. Evolution 2019; 73:1863-1872. [PMID: 31301184 PMCID: PMC6771556 DOI: 10.1111/evo.13800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 11/29/2022]
Abstract
Cope's Rule describes increasing body size in evolutionary lineages through geological time. This pattern has been documented in unitary organisms but does it also apply to module size in colonial organisms? We address this question using 1169 cheilostome bryozoans ranging through the entire 150 million years of their evolutionary history. The temporal pattern evident in cheilostomes as a whole shows no overall change in zooid (module) size. However, individual subclades show size increases: within a genus, younger species often have larger zooids than older species. Analyses of (paleo)latitudinal shifts show that this pattern cannot be explained by latitudinal effects (Bergmann's Rule) coupled with younger species occupying higher latitudes than older species (an "out of the tropics" hypothesis). While it is plausible that size increase was linked to the advantages of large zooids in feeding, competition for trophic resources and living space, other proposed mechanisms for Cope's Rule in unitary organisms are either inapplicable to cheilostome zooid size or cannot be evaluated. Patterns and mechanisms in colonial organisms cannot and should not be extrapolated from the better-studied unitary organisms. And even if macroevolution simply comprises repeated rounds of microevolution, evolutionary processes occurring within lineages are not always detectable from macroevolutionary patterns.
Collapse
Affiliation(s)
- Lee Hsiang Liow
- Natural History MuseumUniversity of OsloOsloNorway
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | | |
Collapse
|
14
|
Katanaev VL, Di Falco S, Khotimchenko Y. The Anticancer Drug Discovery Potential of Marine Invertebrates from Russian Pacific. Mar Drugs 2019; 17:E474. [PMID: 31426365 PMCID: PMC6723377 DOI: 10.3390/md17080474] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Despite huge efforts by academia and pharmaceutical industry, cancer remains the second cause of disease-related death in developed countries. Novel sources and principles of anticancer drug discovery are in urgent demand. Marine-derived natural products represent a largely untapped source of future drug candidates. This review focuses on the anticancer drug discovery potential of marine invertebrates from the North-West Pacific. The issues of biodiversity, chemodiversity, and the anticancer pharmacophore diversity this region hides are consecutively discussed. These three levels of diversity are analyzed from the point of view of the already discovered compounds, as well as from the assessment of the overall, still undiscovered and enormous potential. We further go into the predictions of the economic and societal benefits the full-scale exploration of this potential offers, and suggest strategic measures to be taken on the national level in order to unleash such full-scale exploration. The transversal and multi-discipline approach we attempt to build for the case of marine invertebrate-based anticancer drug discovery from a given region can be applied to other regions and disease conditions, as well as up-scaled to global dimensions.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland.
- School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia.
| | - Salvatore Di Falco
- The Institute of Economics and Econometrics, University of Geneva, UNIMAIL, Boulevard du Pont d'Arve 40, 1211 Geneva, Switzerland
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia.
- National Scientific Center for Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 690041 Vladivostok, Russia.
| |
Collapse
|
15
|
O'Hara TD, Hugall AF, Woolley SNC, Bribiesca-Contreras G, Bax NJ. Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors. Nature 2019; 565:636-639. [PMID: 30675065 DOI: 10.1038/s41586-019-0886-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 12/14/2018] [Indexed: 11/09/2022]
Abstract
Our knowledge of the distribution and evolution of deep-sea life is limited, impeding our ability to identify priority areas for conservation1. Here we analyse large integrated phylogenomic and distributional datasets of seafloor fauna from the sea surface to the abyss and from equator to pole of the Southern Hemisphere for an entire class of invertebrates (Ophiuroidea). We find that latitudinal diversity gradients are assembled through contrasting evolutionary processes for shallow (0-200 m) and deep (>200 m) seas. The shallow-water tropical-temperate realm broadly reflects a tropical diversification-driven process that shows exchange of lineages in both directions. Diversification rates are reversed for the realm that contains the deep sea and Antarctica; the diversification rates are highest at polar and lowest at tropical latitudes, and net exchange occurs from high to low latitudes. The tropical upper bathyal (200-700 m deep), with its rich ancient phylodiversity, is characterized by relatively low diversification and moderate immigration rates. Conversely, the young, specialized Antarctic fauna is inferred to be rebounding from regional extinctions that are associated with the rapid cooling of polar waters during the mid-Cenozoic era.
Collapse
Affiliation(s)
| | | | - Skipton N C Woolley
- Museums Victoria, Melbourne, Victoria, Australia.,CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
| | - Guadalupe Bribiesca-Contreras
- Museums Victoria, Melbourne, Victoria, Australia.,Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas J Bax
- CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia.,Institute for Marine and Antarctic Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
16
|
Cleary TJ, Benson RBJ, Evans SE, Barrett PM. Lepidosaurian diversity in the Mesozoic-Palaeogene: the potential roles of sampling biases and environmental drivers. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171830. [PMID: 29657788 PMCID: PMC5882712 DOI: 10.1098/rsos.171830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/13/2018] [Indexed: 05/27/2023]
Abstract
Lepidosauria is a speciose clade with a long evolutionary history, but there have been few attempts to explore its taxon richness through time. Here we estimate patterns of terrestrial lepidosaur genus diversity for the Triassic-Palaeogene (252-23 Ma), and compare observed and sampling-corrected richness curves generated using Shareholder Quorum Subsampling and classical rarefaction. Generalized least-squares regression (GLS) is used to investigate the relationships between richness, sampling and environmental proxies. We found low levels of richness from the Triassic until the Late Cretaceous (except in the Kimmeridgian-Tithonian of Europe). High richness is recovered for the Late Cretaceous of North America, which declined across the K-Pg boundary but remained relatively high throughout the Palaeogene. Richness decreased following the Eocene-Oligocene Grande Coupure in North America and Europe, but remained high in North America and very high in Europe compared to the Late Cretaceous; elsewhere data are lacking. GLS analyses indicate that sampling biases (particularly, the number of fossil collections per interval) are the best explanation for long-term face-value genus richness trends. The lepidosaur fossil record presents many problems when attempting to reconstruct past diversity, with geographical sampling biases being of particular concern, especially in the Southern Hemisphere.
Collapse
Affiliation(s)
- Terri J. Cleary
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roger B. J. Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Susan E. Evans
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul M. Barrett
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
17
|
Jablonski D, Huang S, Roy K, Valentine JW. Shaping the Latitudinal Diversity Gradient: New Perspectives from a Synthesis of Paleobiology and Biogeography. Am Nat 2016; 189:1-12. [PMID: 28035884 DOI: 10.1086/689739] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An impediment to understanding the origin and dynamics of the latitudinal diversity gradient (LDG)-the most pervasive large-scale biotic pattern on Earth-has been the tendency to focus narrowly on a single causal factor when a more synthetic, integrative approach is needed. Using marine bivalves as a model system and drawing on other systems where possible, we review paleobiologic and biogeographic support for two supposedly opposing views, that the LDG is shaped primarily by (a) local environmental factors that determine the number of species and higher taxa at a given latitude (in situ hypotheses) or (b) the entry of lineages arising elsewhere into a focal region (spatial dynamics hypotheses). Support for in situ hypotheses includes the fit of present-day diversity trends in many clades to such environmental factors as temperature and the correlation of extinction intensities in Pliocene bivalve faunas with net regional temperature changes. Support for spatial dynamics hypotheses includes the age-frequency distribution of bivalve genera across latitudes, which is consistent with an out-of-the-tropics dynamic, as are the higher species diversities in temperate southeastern Australia and southeastern Japan than in the tropical Caribbean. Thus, both in situ and spatial dynamics processes must shape the bivalve LDG and are likely to operate in other groups as well. The relative strengths of the two processes may differ among groups showing similar LDGs, but dissecting their effects will require improved methods of integrating fossil data with molecular phylogenies. We highlight several potential research directions and argue that many of the most dramatic biotic patterns, past and present, are likely to have been generated by diverse, mutually reinforcing drivers.
Collapse
|
18
|
Nicholson DB, Holroyd PA, Valdes P, Barrett PM. Latitudinal diversity gradients in Mesozoic non-marine turtles. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160581. [PMID: 28018649 PMCID: PMC5180147 DOI: 10.1098/rsos.160581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/24/2016] [Indexed: 05/26/2023]
Abstract
The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.
Collapse
Affiliation(s)
- David B. Nicholson
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Patricia A. Holroyd
- Museum of Paleontology, University of California, 1101 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Paul Valdes
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
| | - Paul M. Barrett
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
19
|
Yasuhara M, Tittensor DP, Hillebrand H, Worm B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol Rev Camb Philos Soc 2015; 92:199-215. [PMID: 26420174 DOI: 10.1111/brv.12223] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 11/29/2022]
Abstract
There is growing interest in the integration of macroecology and palaeoecology towards a better understanding of past, present, and anticipated future biodiversity dynamics. However, the empirical basis for this integration has thus far been limited. Here we review prospects for a macroecology-palaeoecology integration in biodiversity analyses with a focus on marine microfossils [i.e. small (or small parts of) organisms with high fossilization potential, such as foraminifera, ostracodes, diatoms, radiolaria, coccolithophores, dinoflagellates, and ichthyoliths]. Marine microfossils represent a useful model system for such integrative research because of their high abundance, large spatiotemporal coverage, and good taxonomic and temporal resolution. The microfossil record allows for quantitative cross-scale research designs, which help in answering fundamental questions about marine biodiversity, including the causes behind similarities in patterns of latitudinal and longitudinal variation across taxa, the degree of constancy of observed gradients over time, and the relative importance of hypothesized drivers that may explain past or present biodiversity patterns. The inclusion of a deep-time perspective based on high-resolution microfossil records may be an important step for the further maturation of macroecology. An improved integration of macroecology and palaeoecology would aid in our understanding of the balance of ecological and evolutionary mechanisms that have shaped the biosphere we inhabit today and affect how it may change in the future.
Collapse
Affiliation(s)
- Moriaki Yasuhara
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China.,Swire Institute of Marine Science, The University of Hong Kong, Cape d'Aguilar Road, Shek O, Hong Kong SAR, China.,Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Derek P Tittensor
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada.,United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntingdon Road, Cambridge, CB3 0DL, UK
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| | - Boris Worm
- Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
20
|
Huang S, Roy K, Jablonski D. Origins, bottlenecks, and present-day diversity: patterns of morphospace occupation in marine bivalves. Evolution 2015; 69:735-46. [PMID: 25611893 DOI: 10.1111/evo.12608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/28/2014] [Indexed: 12/01/2022]
Abstract
It has long been known that species should not be distributed randomly in morphospace (a multidimensional trait space), even under simple models of evolution. However, recent studies suggest that position in morphospace can affect aspects of evolution such as the durations of clades and the species richness of their constituent taxa. Here we investigate the dynamics of morphospace occupancy in living and fossil marine bivalves using shell size and aspect ratio, two functionally important traits. Multiple lines of evidence indicate that the center of a family's morphospace today represents a location where taxonomic diversity is maximized, apparently owing to lower extinction rates. Within individual bivalve families, species with narrow geographic ranges are distributed throughout the morphospace but widespread species, which are generally expected to be extinction resistant, tend to be concentrated near the center. The morphospace centers of most species-rich families today (defined as the median value for all species in the family) tend to be close to the positions of the family founders, further suggesting an association between position in morphospace and net diversification rates. However, trajectories of individual subclades (genera) are inconsistent with the center of morphospace being an evolutionary attractor.
Collapse
Affiliation(s)
- Shan Huang
- Department of Geophysical Sciences, University of Chicago, Chicago, Illinois, 60637.
| | | | | |
Collapse
|
21
|
Sharov AA, Igamberdiev AU. Inferring directions of evolution from patterns of variation: the legacy of Sergei Meyen. Biosystems 2014; 123:67-73. [PMID: 25072709 PMCID: PMC4254149 DOI: 10.1016/j.biosystems.2014.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/16/2014] [Indexed: 11/19/2022]
Abstract
In the era of the extended evolutionary synthesis, which no longer considers natural selection as the only leading factor of evolution, it is meaningful to revisit the legacy of biologists who discussed the role of alternative factors. Here we analyze the evolutionary views of Sergei Meyen (1935-1987), a paleobotanist who argued that the theory of evolution should incorporate a "nomothetical" approach which infers the laws of morphogenesis (i.e., form generation) from the observed patterns of variation in living organisms and in the fossil records. Meyen developed a theory of "repeated polymorphic sets" (RPSs), which he applied consistently to describe inter-organism variation in populations, intra-organism variation of metameric organs, variation of abnormalities, heterotopy, changes during embryo development, and inter-species variation within evolutionary lineages. The notion of RPS assumes the active nature of organisms that possess hidden morphogenic and behavioral capacities. Meyen's theory is compatible with Darwin's natural selection; however, Meyen emphasized the importance of other forms of selection (e.g., selection of developmental trajectories, habitats, and behaviors) in choosing specific elements from the RPS. Finally, Meyen developed a new typological concept of time, where time represents variability (i.e., change) of real objects such as living organisms or geological formations.
Collapse
Affiliation(s)
- Alexei A Sharov
- National Institute on Aging, Genetics Laboratory, Baltimore, MD 21224, USA
| | - Abir U Igamberdiev
- Memorial University of Newfoundland, Department of Biology, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
22
|
Bebber DP, Holmes T, Smith D, Gurr SJ. Economic and physical determinants of the global distributions of crop pests and pathogens. THE NEW PHYTOLOGIST 2014; 202:901-910. [PMID: 24517626 PMCID: PMC4285859 DOI: 10.1111/nph.12722] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/11/2014] [Indexed: 05/07/2023]
Abstract
Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens.
Collapse
Affiliation(s)
- Daniel P Bebber
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | | | - David Smith
- CABI, Wallingford, Oxfordshire, OX10 8DE, UK
| | - Sarah J Gurr
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- Rothamsted Research, North Wyke, EX20 2SB, UK
| |
Collapse
|
23
|
Bieler R, Mikkelsen PM, Collins TM, Glover EA, González VL, Graf DL, Harper EM, Healy J, Kawauchi GY, Sharma PP, Staubach S, Strong EE, Taylor JD, Tëmkin I, Zardus JD, Clark S, Guzmán A, McIntyre E, Sharp P, Giribet G. Investigating the Bivalve Tree of Life – an exemplar-based approach combining molecular and novel morphological characters. INVERTEBR SYST 2014. [DOI: 10.1071/is13010] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To re-evaluate the relationships of the major bivalve lineages, we amassed detailed morpho-anatomical, ultrastructural and molecular sequence data for a targeted selection of exemplar bivalves spanning the phylogenetic diversity of the class. We included molecular data for 103 bivalve species (up to five markers) and also analysed a subset of taxa with four additional nuclear protein-encoding genes. Novel as well as historically employed morphological characters were explored, and we systematically disassembled widely used descriptors such as gill and stomach ‘types’. Phylogenetic analyses, conducted using parsimony direct optimisation and probabilistic methods on static alignments (maximum likelihood and Bayesian inference) of the molecular data, both alone and in combination with morphological characters, offer a robust test of bivalve relationships. A calibrated phylogeny also provided insights into the tempo of bivalve evolution. Finally, an analysis of the informativeness of morphological characters showed that sperm ultrastructure characters are among the best morphological features to diagnose bivalve clades, followed by characters of the shell, including its microstructure. Our study found support for monophyly of most broadly recognised higher bivalve taxa, although support was not uniform for Protobranchia. However, monophyly of the bivalves with protobranchiate gills was the best-supported hypothesis with incremental morphological and/or molecular sequence data. Autobranchia, Pteriomorphia, Heteroconchia, Palaeoheterodonta, Archiheterodonta, Euheterodonta, Anomalodesmata and Imparidentia new clade ( = Euheterodonta excluding Anomalodesmata) were recovered across analyses, irrespective of data treatment or analytical framework. Another clade supported by our analyses but not formally recognised in the literature includes Palaeoheterodonta and Archiheterodonta, which emerged under multiple analytical conditions. The origin and diversification of each of these major clades is Cambrian or Ordovician, except for Archiheterodonta, which diverged from Palaeoheterodonta during the Cambrian, but diversified during the Mesozoic. Although the radiation of some lineages was shifted towards the Palaeozoic (Pteriomorphia, Anomalodesmata), or presented a gap between origin and diversification (Archiheterodonta, Unionida), Imparidentia showed steady diversification through the Palaeozoic and Mesozoic. Finally, a classification system with six major monophyletic lineages is proposed to comprise modern Bivalvia: Protobranchia, Pteriomorphia, Palaeoheterodonta, Archiheterodonta, Anomalodesmata and Imparidentia.
Collapse
|
24
|
Mannion PD, Upchurch P, Benson RBJ, Goswami A. The latitudinal biodiversity gradient through deep time. Trends Ecol Evol 2013; 29:42-50. [PMID: 24139126 DOI: 10.1016/j.tree.2013.09.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
Today, biodiversity decreases from equatorial to polar regions. This is a fundamental pattern governing the distribution of extant organisms, the understanding of which is critical to predicting climatically driven biodiversity loss. However, its causes remain unresolved. The fossil record offers a unique perspective on the evolution of this latitudinal biodiversity gradient (LBG), providing a dynamic system in which to explore spatiotemporal diversity fluctuations. Deep-time studies indicate that a tropical peak and poleward decline in species diversity has not been a persistent pattern throughout the Phanerozoic, but is restricted to intervals of the Palaeozoic and the past 30 million years. A tropical peak might characterise cold icehouse climatic regimes, whereas warmer greenhouse regimes display temperate diversity peaks or flattened gradients.
Collapse
Affiliation(s)
- Philip D Mannion
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Paul Upchurch
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| | - Anjali Goswami
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK; Research Department of Genetics, Evolution and Environment, University College London, Wolfson House, 4 Stephenson Way, London, NW1 2HE, UK
| |
Collapse
|
25
|
Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc Natl Acad Sci U S A 2013; 110:10487-94. [PMID: 23759748 DOI: 10.1073/pnas.1308997110] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Latitudinal diversity gradients are underlain by complex combinations of origination, extinction, and shifts in geographic distribution and therefore are best analyzed by integrating paleontological and neontological data. The fossil record of marine bivalves shows, in three successive late Cenozoic time slices, that most clades (operationally here, genera) tend to originate in the tropics and then expand out of the tropics (OTT) to higher latitudes while retaining their tropical presence. This OTT pattern is robust both to assumptions on the preservation potential of taxa and to taxonomic revisions of extant and fossil species. Range expansion of clades may occur via "bridge species," which violate climate-niche conservatism to bridge the tropical-temperate boundary in most OTT genera. Substantial time lags (∼5 Myr) between the origins of tropical clades and their entry into the temperate zone suggest that OTT events are rare on a per-clade basis. Clades with higher diversification rates within the tropics are the most likely to expand OTT and the most likely to produce multiple bridge species, suggesting that high speciation rates promote the OTT dynamic. Although expansion of thermal tolerances is key to the OTT dynamic, most latitudinally widespread species instead achieve their broad ranges by tracking widespread, spatially-uniform temperatures within the tropics (yielding, via the nonlinear relation between temperature and latitude, a pattern opposite to Rapoport's rule). This decoupling of range size and temperature tolerance may also explain the differing roles of species and clade ranges in buffering species from background and mass extinctions.
Collapse
|
26
|
Dowle EJ, Morgan-Richards M, Trewick SA. Molecular evolution and the latitudinal biodiversity gradient. Heredity (Edinb) 2013; 110:501-10. [PMID: 23486082 PMCID: PMC3656639 DOI: 10.1038/hdy.2013.4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 12/18/2012] [Accepted: 01/08/2013] [Indexed: 12/13/2022] Open
Abstract
Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.
Collapse
Affiliation(s)
- E J Dowle
- Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
27
|
Abstract
The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late Eocene-Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene) neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary ecosystem structure and stability.
Collapse
Affiliation(s)
- J Alistair Crame
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom.
| |
Collapse
|
28
|
Abstract
The geographic distribution of life on Earth supports a general pattern of increase in biodiversity with increasing temperature. However, some previous analyses of the 540-million-year Phanerozoic fossil record found a contrary relationship, with paleodiversity declining when the planet warms. These contradictory findings are hard to reconcile theoretically. We analyze marine invertebrate biodiversity patterns for the Phanerozoic Eon while controlling for sampling effort. This control appears to reverse the temporal association between temperature and biodiversity, such that taxonomic richness increases, not decreases, with temperature. Increasing temperatures also predict extinction and origination rates, alongside other abiotic and biotic predictor variables. These results undermine previous reports of a negative biodiversity-temperature relationship through time, which we attribute to paleontological sampling biases. Our findings suggest a convergence of global scale macroevolutionary and macroecological patterns for the biodiversity-temperature relationship.
Collapse
|
29
|
Global environmental predictors of benthic marine biogeographic structure. Proc Natl Acad Sci U S A 2012; 109:14046-51. [PMID: 22904189 DOI: 10.1073/pnas.1212381109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analyses of how environmental factors influence the biogeographic structure of biotas are essential for understanding the processes underlying global diversity patterns and for predicting large-scale biotic responses to global change. Here we show that the large-scale geographic structure of shallow-marine benthic faunas, defined by existing biogeographic schemes, can be predicted with 89-100% accuracy by a few readily available oceanographic variables; temperature alone can predict 53-99% of the present-day structure along coastlines. The same set of variables is also strongly correlated with spatial changes in species compositions of bivalves, a major component of the benthic marine biota, at the 1° grid-cell resolution. These analyses demonstrate the central role of coastal oceanography in structuring benthic marine biogeography and suggest that a few environmental variables may be sufficient to model the response of marine biogeographic structure to past and future changes in climate.
Collapse
|
30
|
Affiliation(s)
- I Keller
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biochemistry, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland.
| | | |
Collapse
|
31
|
Price TD, Mohan D, Tietze DT, Hooper DM, Orme CDL, Rasmussen PC. Determinants of northerly range limits along the Himalayan bird diversity gradient. Am Nat 2011; 178 Suppl 1:S97-108. [PMID: 21956095 DOI: 10.1086/661926] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The primary explanation for the latitudinal gradient in species diversity must lie in why species fail to expand ranges across different climatic regimes. Theories of species gradients based in niche conservatism assume that whole clades are confined to particular climatic regimes because the traits they share limit adaptation to alternative regimes. We assess these theories in an analysis of the twofold decline in bird species richness along the Himalayas from the southeast to the northwest. The presence of fewer species in the northwest is entirely due to a steep decline in the number of forest species; species occupying more open habitats show a reversed gradient. Forest species numbers are exceptionally high at midelevations (1,000-2,000 m) in the southeast, which experience a warm, wet climate not present in the northwest, and a high proportion of these species fail to expand their range to the northwest. Despite this, many species do have populations or close relatives that straddle different climatic regimes along altitudinal gradients and/or the regional gradient, implying that climate-based niche conservatism per se does not strongly constrain range limits. We argue that climate- and competition-mediated resource distributions are important in setting northerly range limits and show that one measure of forest resources (foliage density) is lower in the northwest.
Collapse
Affiliation(s)
- Trevor D Price
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Clarke A, Crame JA. Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Philos Trans R Soc Lond B Biol Sci 2011; 365:3655-66. [PMID: 20980314 DOI: 10.1098/rstb.2010.0270] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecologists have long been fascinated by the flora and fauna of extreme environments. Physiological studies have revealed the extent to which lifestyle is constrained by low temperature but there is as yet no consensus on why the diversity of polar assemblages is so much lower than many tropical assemblages. The evolution of marine faunas at high latitudes has been influenced strongly by oceanic cooling during the Cenozoic and the associated onset of continental glaciations. Glaciation eradicated many shallow-water habitats, especially in the Southern Hemisphere, and the cooling has led to widespread extinction in some groups. While environmental conditions at glacial maxima would have been very different from those existing today, fossil evidence indicates that some lineages extend back well into the Cenozoic. Oscillations of the ice-sheet on Milankovitch frequencies will have periodically eradicated and exposed continental shelf habitat, and a full understanding of evolutionary dynamics at high latitude requires better knowledge of the links between the faunas of the shelf, slope and deep-sea. Molecular techniques to produce phylogenies, coupled with further palaeontological work to root these phylogenies in time, will be essential to further progress.
Collapse
Affiliation(s)
- Andrew Clarke
- British Antarctic Survey, High Cross, Cambridge CB3 0ET, UK.
| | | |
Collapse
|
33
|
Differential extinction and the contrasting structure of polar marine faunas. PLoS One 2010; 5:e15362. [PMID: 21203524 PMCID: PMC3008738 DOI: 10.1371/journal.pone.0015362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/11/2010] [Indexed: 11/19/2022] Open
Abstract
Background The low taxonomic diversity of polar marine faunas today reflects both the failure of clades to colonize or diversify in high latitudes and regional extinctions of once-present clades. However, simple models of polar evolution are made difficult by the strikingly different faunal compositions and community structures of the two poles. Methodology/Principal Findings A comparison of early Cenozoic Arctic and Antarctic bivalve faunas with modern ones, within the framework of a molecular phylogeny, shows that while Arctic losses were randomly distributed across the tree, Antarctic losses were significantly concentrated in more derived families, resulting in communities dominated by basal lineages. Potential mechanisms for the phylogenetic structure to Antarctic extinctions include continental isolation, changes in primary productivity leading to turnover of both predators and prey, and the effect of glaciation on shelf habitats. Conclusions/Significance These results show that phylogenetic consequences of past extinctions can vary substantially among regions and thus shape regional faunal structures, even when due to similar drivers, here global cooling, and provide the first phylogenetic support for the “retrograde” hypothesis of Antarctic faunal evolution.
Collapse
|
34
|
Affiliation(s)
- Charles R. Marshall
- Department of Integrative Biology, University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
35
|
TURNER JOHNRG, WONG HYAN. Why do species have a skin? Investigating mutational constraint with a fundamental population model. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01475.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Harnik PG, Jablonski D, Krug AZ, Valentine JW. Genus age, provincial area and the taxonomic structure of marine faunas. Proc Biol Sci 2010; 277:3427-35. [PMID: 20534619 DOI: 10.1098/rspb.2010.0628] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species are unevenly distributed among genera within clades and regions, with most genera species-poor and few species-rich. At regional scales, this structure to taxonomic diversity is generated via speciation, extinction and geographical range dynamics. Here, we use a global database of extant marine bivalves to characterize the taxonomic structure of climate zones and provinces. Our analyses reveal a general, Zipf-Mandelbrot form to the distribution of species among genera, with faunas from similar climate zones exhibiting similar taxonomic structure. Provinces that contain older taxa and/or encompass larger areas are expected to be more species-rich. Although both median genus age and provincial area correlate with measures of taxonomic structure, these relationships are interdependent, nonlinear and driven primarily by contrasts between tropical and extra-tropical faunas. Provincial area and taxonomic structure are largely decoupled within climate zones. Counter to the expectation that genus age and species richness should positively covary, diverse and highly structured provincial faunas are dominated by young genera. The marked differences between tropical and temperate faunas suggest strong spatial variation in evolutionary rates and invasion frequencies. Such variation contradicts biogeographic models that scale taxonomic diversity to geographical area.
Collapse
Affiliation(s)
- Paul G Harnik
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
37
|
Miller AI, Foote M. Epicontinental Seas Versus Open-Ocean Settings: The Kinetics of Mass Extinction and Origination. Science 2009; 326:1106-9. [DOI: 10.1126/science.1180061] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Arnold I. Miller
- Department of Geology, University of Cincinnati, Post Office Box 210013, Cincinnati, OH 45221, USA
| | - Michael Foote
- Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA
| |
Collapse
|