1
|
Szydlowski LM, Bulbul AA, Simpson AC, Kaya DE, Singh NK, Sezerman UO, Łabaj PP, Kosciolek T, Venkateswaran K. Adaptation to space conditions of novel bacterial species isolated from the International Space Station revealed by functional gene annotations and comparative genome analysis. MICROBIOME 2024; 12:190. [PMID: 39363369 PMCID: PMC11451251 DOI: 10.1186/s40168-024-01916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/21/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The extreme environment of the International Space Station (ISS) puts selective pressure on microorganisms unintentionally introduced during its 20+ years of service as a low-orbit science platform and human habitat. Such pressure leads to the development of new features not found in the Earth-bound relatives, which enable them to adapt to unfavorable conditions. RESULTS In this study, we generated the functional annotation of the genomes of five newly identified species of Gram-positive bacteria, four of which are non-spore-forming and one spore-forming, all isolated from the ISS. Using a deep-learning based tool-deepFRI-we were able to functionally annotate close to 100% of protein-coding genes in all studied species, overcoming other annotation tools. Our comparative genomic analysis highlights common characteristics across all five species and specific genetic traits that appear unique to these ISS microorganisms. Proteome analysis mirrored these genomic patterns, revealing similar traits. The collective annotations suggest adaptations to life in space, including the management of hypoosmotic stress related to microgravity via mechanosensitive channel proteins, increased DNA repair activity to counteract heightened radiation exposure, and the presence of mobile genetic elements enhancing metabolism. In addition, our findings suggest the evolution of certain genetic traits indicative of potential pathogenic capabilities, such as small molecule and peptide synthesis and ATP-dependent transporters. These traits, exclusive to the ISS microorganisms, further substantiate previous reports explaining why microbes exposed to space conditions demonstrate enhanced antibiotic resistance and pathogenicity. CONCLUSION Our findings indicate that the microorganisms isolated from ISS we studied have adapted to life in space. Evidence such as mechanosensitive channel proteins, increased DNA repair activity, as well as metallopeptidases and novel S-layer oxidoreductases suggest a convergent adaptation among these diverse microorganisms, potentially complementing one another within the context of the microbiome. The common genes that facilitate adaptation to the ISS environment may enable bioproduction of essential biomolecules need during future space missions, or serve as potential drug targets, if these microorganisms pose health risks. Video Abstract.
Collapse
Affiliation(s)
- Lukasz M Szydlowski
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland
| | - Alper A Bulbul
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Anna C Simpson
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Deniz E Kaya
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Nitin K Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA
| | - Ugur O Sezerman
- Biostatistics and Medical Informatics Department, M. A. A. Acibadem University, İçerenköy, Kayıcdağı Cd.32, Istanbul, 34752, Turkey
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland.
- Department of Data Science and Engineering, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Slaskie, Poland.
- Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland.
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, CA, USA.
| |
Collapse
|
2
|
Gomez-Gutierrrez SV, Sic-Hernandez WR, Haridas S, LaButti K, Eichenberger J, Kaur N, Lipzen A, Barry K, Goodwin SB, Gribskov M, Grigoriev IV. Comparative genomics of the extremophile Cryomyces antarcticus and other psychrophilic Dothideomycetes. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1418145. [PMID: 39309730 PMCID: PMC11412873 DOI: 10.3389/ffunb.2024.1418145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Over a billion years of fungal evolution has enabled representatives of this kingdom to populate almost all parts of planet Earth and to adapt to some of its most uninhabitable environments including extremes of temperature, salinity, pH, water, light, or other sources of radiation. Cryomyces antarcticus is an endolithic fungus that inhabits rock outcrops in Antarctica. It survives extremes of cold, humidity and solar radiation in one of the least habitable environments on Earth. This fungus is unusual because it produces heavily melanized, meristematic growth and is thought to be haploid and asexual. Due to its growth in the most extreme environment, it has been suggested as an organism that could survive on Mars. However, the mechanisms it uses to achieve its extremophilic nature are not known. Comparative genomics can provide clues to the processes underlying biological diversity, evolution, and adaptation. This effort has been greatly facilitated by the 1000 Fungal Genomes project and the JGI MycoCosm portal where sequenced genomes have been assembled into phylogenetic and ecological groups representing different projects, lifestyles, ecologies, and evolutionary histories. Comparative genomics within and between these groups provides insights into fungal adaptations, for example to extreme environmental conditions. Here, we analyze two Cryomyces genomes in the context of additional psychrophilic fungi, as well as non-psychrophilic fungi with diverse lifestyles selected from the MycoCosm database. This analysis identifies families of genes that are expanded and contracted in Cryomyces and other psychrophiles and may explain their extremophilic lifestyle. Higher GC contents of genes and of bases in the third positions of codons may help to stabilize DNA under extreme conditions. Numerous smaller contigs in C. antarcticus suggest the presence of an alternative haplotype that could indicate the sequenced isolate is diploid or dikaryotic. These analyses provide a first step to unraveling the secrets of the extreme lifestyle of C. antarcticus.
Collapse
Affiliation(s)
| | - Wily R. Sic-Hernandez
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Joanne Eichenberger
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Navneet Kaur
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephen B. Goodwin
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture (USDA) - Agricultural Research Service, West Lafayette, IN, United States
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
3
|
Alessia C, Federica DA, Claudia P, Barbara C, Laura Z, Silvano O. A preliminary survey of the cellular responses of the black fungus Cryomyces antarcticus to long and short-term dehydration. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13309. [PMID: 39075848 PMCID: PMC11286975 DOI: 10.1111/1758-2229.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/08/2024] [Indexed: 07/31/2024]
Abstract
The McMurdo Dry Valleys in Southern Victoria Land, Antarctica, are known for their extreme aridity, cold, and nutrient-poor conditions. These valleys provide a valuable comparison to environments on Mars. The survival of microorganisms in these areas hinges on their ability to withstand dehydration due to the limited availability of liquid water. Some microorganisms have adapted to survive extended periods of metabolic inactivity and dehydration, a physiological response to the harsh conditions in which they exist. This adaptation is significant for astrobiology studies as it allows for testing the resilience of microorganisms under extraterrestrial conditions, exploring the boundaries and potential for life beyond Earth. In this study, we examined the survivability, metabolic activity, cellular membrane integrity, and ultrastructural damage of Cryomyces antarcticus, a eukaryotic organism used for astrobiological studies, following two dehydration processes. We conducted a fast dehydration process, simulating what happens on the surface of Antarctic rocks under typical environmental conditions, and a slow dehydration process, which is commonly used in astrobiological experiments. Our findings revealed a higher percentage of damaged cells following slow dehydration treatments, confirming that rapid dehydration reflects the adaptability of microorganisms to respond to sudden and drastic changes in the Antarctic environment.
Collapse
Affiliation(s)
- Cassaro Alessia
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - D' Alò Federica
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Institute of Research on Terrestrial EcosystemsNational Research CouncilPorano (TR)Italy
| | - Pacelli Claudia
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Human Spaceflight and Scientific Research UnitItalian Space AgencyRomeItaly
| | - Cavalazzi Barbara
- Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- LE STUDIUM Institute for Advanced StudiesOrléansFrance
| | - Zucconi Laura
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
- Institute of Polar SciencesNational Research Council of Italy (CNR‐ISP)MessinaItaly
| | - Onofri Silvano
- Department of Ecological and Biological SciencesUniversity of TusciaViterboItaly
| |
Collapse
|
4
|
Li X, Bai W, Yang Q, Yin B, Zhang Z, Zhao B, Kuang T, Zhang Y, Zhang D. The extremotolerant desert moss Syntrichia caninervis is a promising pioneer plant for colonizing extraterrestrial environments. Innovation (N Y) 2024; 5:100657. [PMID: 39071942 PMCID: PMC11282406 DOI: 10.1016/j.xinn.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/30/2024] Open
Abstract
Many plans to establish human settlements on other planets focus on adapting crops to growth in controlled environments. However, these settlements will also require pioneer plants that can grow in the soils and harsh conditions found in extraterrestrial environments, such as those on Mars. Here, we report the extraordinary environmental resilience of Syntrichia caninervis, a desert moss that thrives in various extreme environments. S. caninervis has remarkable desiccation tolerance; even after losing >98% of its cellular water content, it can recover photosynthetic and physiological activities within seconds after rehydration. Intact plants can tolerate ultra-low temperatures and regenerate even after being stored in a freezer at -80°C for 5 years or in liquid nitrogen for 1 month. S. caninervis also has super-resistance to gamma irradiation and can survive and maintain vitality in simulated Mars conditions; i.e., when simultaneously exposed to an anoxic atmosphere, extreme desiccation, low temperatures, and intense UV radiation. Our study shows that S. caninervis is among the most stress tolerant organisms. This work provides fundamental insights into the multi-stress tolerance of the desert moss S. caninervis, a promising candidate pioneer plant for colonizing extraterrestrial environments, laying the foundation for building biologically sustainable human habitats beyond Earth.
Collapse
Affiliation(s)
- Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wenwan Bai
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benfeng Yin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhenlong Zhang
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Banchi Zhao
- National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyun Kuang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
5
|
Sephton MA, Freeman K, Hays L, Thiessen F, Benison K, Carrier B, Dworkin JP, Glamoclija M, Gough R, Onofri S, Peterson R, Quinn R, Russell S, Stüeken EE, Velbel M, Zolotov M. Thresholds of Temperature and Time for Mars Sample Return: Final Report of the Mars Sample Return Temperature-Time Tiger Team. ASTROBIOLOGY 2024; 24:443-488. [PMID: 38768433 DOI: 10.1089/ast.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Mark A Sephton
- Imperial College London, Earth Science and Engineering, South Kensington Campus, London, UK
| | - Kate Freeman
- The Pennsylvania State University, Geosciences, University Park, Pennsylvania, USA
| | - Lindsay Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Fiona Thiessen
- European Space Research and Technology Centre, Noordwijk, South Holland, Netherlands
| | - Kathleen Benison
- West Virginia University, Department of Geology and Geography, Morgantown, West Virginia, USA
| | - Brandi Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Jason P Dworkin
- NASA Goddard Space Flight Center, Astrochemistry, Greenbelt, Maryland, USA
| | - Mihaela Glamoclija
- Rutgers University Newark College of Arts and Sciences, Earth and Environmental Sciences, Newark, New Jersey, USA
| | - Raina Gough
- University of Colorado, Department of Chemistry and Biochemistry, Boulder, Colorado, USA
| | - Silvano Onofri
- University of Tuscia, Department of Ecological and Biological Sciences, Largo dell'Università snc Viterbo, Italy
| | | | - Richard Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - Sara Russell
- Natural History Museum, Department of Earth Sciences, London, UK
| | - Eva E Stüeken
- University of St Andrews, School of Earth and Environmental Sciences, St Andrews, Fife, UK
| | - Michael Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | - Mikhail Zolotov
- Arizona State University, School of Earth and Space Exploration, Tempe, Arizona, USA
| |
Collapse
|
6
|
Zhang YG, Malo ME, Tschirhart T, Xia Y, Wang Z, Dadachova E, Sun J. Effects of Melanized Bacteria and Soluble Melanin on the Intestinal Homeostasis and Microbiome In Vivo. TOXICS 2022; 11:13. [PMID: 36668739 PMCID: PMC9860700 DOI: 10.3390/toxics11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 05/14/2023]
Abstract
Radiation damage is associated with inflammation and immunity in the intestinal mucosa, including gut microbiota. Melanin has a unique capacity to coordinate a biological reaction in response to environmental stimuli, such as radiation exposure. Thus, melanin and melanized microbes have potential to be used for mitigation of injury induced by radiation. The purpose of the current study is to examine the safety of these agents for future targeting gut microbiome to prevent radiation-induced injury. We administered mice with soluble allomelanin and observed its effect on the intestinal physiology and body weight. We then established a melanized bacterial strain in probiotic E. coli Nissle. We measured the body weight of the mice treated with melanized E. coli Nissle. We showed the enhanced bacterial abundance and colonization of the melanized bacteria E. coli Nissle in the intestine. Melanized E. coli Nissle colonized the colon in less than 3 h and showed consistent colonization over 24 h post one oral gavage. We did not find significant changes of bodyweight in the mice treated with melanized bacteria. We did not observe any inflammation in the intestine. These results demonstrate the safety of soluble melanin and melanin-producing bacteria and will support the future studies to treat radiation-induced injuries and restore dysbiosis.
Collapse
Affiliation(s)
- Yong-guo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Mackenzie E. Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zheng Wang
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Chicago (UIC) Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Cassaro A, Pacelli C, Onofri S. Survival, metabolic activity, and ultrastructural damages of Antarctic black fungus in perchlorates media. Front Microbiol 2022; 13:992077. [PMID: 36523839 PMCID: PMC9744811 DOI: 10.3389/fmicb.2022.992077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 09/12/2023] Open
Abstract
Evidence from recent Mars landers identified the presence of perchlorates salts at 1 wt % in regolith and their widespread distribution on the Martian surface that has been hypothesized as a critical chemical hazard for putative life forms. However, the hypersaline environment may also potentially preserve life and its biomolecules over geological timescales. The high concentration of natural perchlorates is scarcely reported on Earth. The presence of perchlorates in soil and ice has been recorded in some extreme environments including the McMurdo Dry Valleys in Antarctica, one of the best terrestrial analogues for Mars. In the frame of "Life in space" Italian astrobiology project, the polyextremophilic black fungus Cryomyces antarcticus, a eukaryotic test organism isolated from the Antarctic cryptoendolithic communities, has been tested for its resistance, when grown on different hypersaline substrata. In addition, C. antarcticus was grown on Martian relevant perchlorate medium (0.4 wt% of Mg(ClO4)2 and 0.6 wt% of Ca(ClO4)2) to investigate the possibility for the fungus to survive in Martian environment. Here, the results indicate a good survivability and metabolic activity recovery of the black fungus when grown on four Martian relevant perchlorates. A low percentage of damaged cellular membranes have been found, confirming the ultrastructural investigation.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, via del Politecnico, Rome, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| |
Collapse
|
8
|
Draft Genome Sequences of Fungi Isolated from Mars 2020 Spacecraft Assembly Facilities. Microbiol Resour Announc 2022; 11:e0046422. [PMID: 36200893 PMCID: PMC9671001 DOI: 10.1128/mra.00464-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During the Mars 2020 mission, several fungal strains were isolated from surfaces where spacecraft components were assembled. Draft genome sequencing and characterization will help identify the genes responsible for radiation resistance, supporting the development of countermeasures to prevent fungal contamination of extraterrestrial environments.
Collapse
|
9
|
Baqué M, Backhaus T, Meeßen J, Hanke F, Böttger U, Ramkissoon N, Olsson-Francis K, Baumgärtner M, Billi D, Cassaro A, de la Torre Noetzel R, Demets R, Edwards H, Ehrenfreund P, Elsaesser A, Foing B, Foucher F, Huwe B, Joshi J, Kozyrovska N, Lasch P, Lee N, Leuko S, Onofri S, Ott S, Pacelli C, Rabbow E, Rothschild L, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wagner D, Westall F, Zucconi L, de Vera JPP. Biosignature stability in space enables their use for life detection on Mars. SCIENCE ADVANCES 2022; 8:eabn7412. [PMID: 36070383 PMCID: PMC9451166 DOI: 10.1126/sciadv.abn7412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/20/2022] [Indexed: 06/14/2023]
Abstract
Two rover missions to Mars aim to detect biomolecules as a sign of extinct or extant life with, among other instruments, Raman spectrometers. However, there are many unknowns about the stability of Raman-detectable biomolecules in the martian environment, clouding the interpretation of the results. To quantify Raman-detectable biomolecule stability, we exposed seven biomolecules for 469 days to a simulated martian environment outside the International Space Station. Ultraviolet radiation (UVR) strongly changed the Raman spectra signals, but only minor change was observed when samples were shielded from UVR. These findings provide support for Mars mission operations searching for biosignatures in the subsurface. This experiment demonstrates the detectability of biomolecules by Raman spectroscopy in Mars regolith analogs after space exposure and lays the groundwork for a consolidated space-proven database of spectroscopy biosignatures in targeted environments.
Collapse
Affiliation(s)
- Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Theresa Backhaus
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Joachim Meeßen
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Franziska Hanke
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstr. 2, 12489 Berlin, Germany
| | - Nisha Ramkissoon
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK
| | - Michael Baumgärtner
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Rosa de la Torre Noetzel
- Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Torrejón de Ardoz-28850, Madrid, Spain
| | - René Demets
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),, Noordwijk, Netherlands
| | - Howell Edwards
- University of Bradford, University Analytical Centre, Division of Chemical and Forensic Sciences, Raman Spectroscopy Group, West Yorkshire, UK
| | - Pascale Ehrenfreund
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- George Washington University, Space Policy Institute, Washington, DC 20052, USA
| | - Andreas Elsaesser
- Freie Universitaet Berlin, Experimental Biophysics and Space Sciences, Institute of Experimental Physics; Arnimallee 14, 14195 Berlin, Germany
| | - Bernard Foing
- Leiden Observatory, Laboratory Astrophysics, Leiden University, Leiden, Netherlands
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081-1087, 1081 HV, Amsterdam, Netherlands
| | - Frédéric Foucher
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Björn Huwe
- Biodiversity Research/Systematic Botany, University of Potsdam, Maulbeerallee 1, D-14469 Potsdam, Germany
- Department Technology Assessment and Substance Cycles, Leibniz- Institute for Agriculture Engineering and Bioeconomy, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Jasmin Joshi
- Institute for Landscape and Open Space, Eastern Switzerland University of Applied Sciences, Seestrasse 10, 8640 Rapperswil, Switzerland
| | - Natalia Kozyrovska
- Institute of Molecular Biology and Genetics of NASU, Acad. Zabolotnoho str.150, 03680, Kyiv Ukraine
| | - Peter Lasch
- Centre for Biological Threats and Special Pathogens (ZBS 6), Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Natuschka Lee
- Microbial Geoecology and Astrobiology, Department of Ecology and Environmental Sciences, Umeå university, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Stefan Leuko
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Sieglinde Ott
- Heinrich-Heine-Universität (HHU), Institut für Botanik, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Research and Science Department, Italian Space Agency (ASI), Via del Politecnico snc, 00133, Rome, Italy
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Linder Höhe, 51147 Köln, Germany
| | - Lynn Rothschild
- NASA Ames Research Center, Mail Stop 239-20, P.O. Box 1, Moffett Field, CA 94035-0001, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Dirk Schulze-Makuch
- Technical University Berlin, ZAA, Hardenbergstr. 36, D-10623 Berlin, Germany
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Stechlin, Germany
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), 16121 Genoa, Italy
| | - Paloma Serrano
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Telegrafenberg, 14473 Potsdam, Germany
| | - Ulrich Szewzyk
- Institute of Environmental Technology, Environmental Microbiology, Technical University Berlin, Ernst-Reuter-Platz 1, Berlin, 10587 Berlin, Germany
| | - Cyprien Verseux
- Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359, Bremen, Germany
| | - Dirk Wagner
- Section Geomicrobiology, German Research Centre for Geosciences (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24, 14476, Potsdam, Germany
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire, UPR-4301, Rue Charles Sadron, CS80054, 45071 Orléans Cedex 2, France
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Jean-Pierre P. de Vera
- German Aerospace Center (DLR), Microgravity User Support Center (MUSC), Linder Höhe, 51147 Köln, Germany
| |
Collapse
|
10
|
Blachowicz A, Romsdahl J, Chiang AJ, Masonjones S, Kalkum M, Stajich JE, Torok T, Wang CCC, Venkateswaran K. The International Space Station Environment Triggers Molecular Responses in Aspergillus niger. Front Microbiol 2022; 13:893071. [PMID: 35847112 PMCID: PMC9280654 DOI: 10.3389/fmicb.2022.893071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Due to immense phenotypic plasticity and adaptability, Aspergillus niger is a cosmopolitan fungus that thrives in versatile environments, including the International Space Station (ISS). This is the first report of genomic, proteomic, and metabolomic alterations observed in A. niger strain JSC-093350089 grown in a controlled experiment aboard the ISS. Whole-genome sequencing (WGS) revealed that ISS conditions, including microgravity and enhanced irradiation, triggered non-synonymous point mutations in specific regions, chromosomes VIII and XII of the JSC-093350089 genome when compared to the ground-grown control. Proteome analysis showed altered abundance of proteins involved in carbohydrate metabolism, stress response, and cellular amino acid and protein catabolic processes following growth aboard the ISS. Metabolome analysis further confirmed that space conditions altered molecular suite of ISS-grown A. niger JSC-093350089. After regrowing both strains on Earth, production of antioxidant—Pyranonigrin A was significantly induced in the ISS-flown, but not the ground control strain. In summary, the microgravity and enhanced irradiation triggered unique molecular responses in the A. niger JSC-093350089 suggesting adaptive responses.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Abby J. Chiang
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Sawyer Masonjones
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Markus Kalkum
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
- *Correspondence: Kasthuri Venkateswaran,
| |
Collapse
|
11
|
Gevi F, Leo P, Cassaro A, Pacelli C, de Vera JPP, Rabbow E, Timperio AM, Onofri S. Metabolomic Profile of the Fungus Cryomyces antarcticus Under Simulated Martian and Space Conditions as Support for Life-Detection Missions on Mars. Front Microbiol 2022; 13:749396. [PMID: 35633719 PMCID: PMC9133366 DOI: 10.3389/fmicb.2022.749396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
The identification of traces of life beyond Earth (e.g., Mars, icy moons) is a challenging task because terrestrial chemical-based molecules may be destroyed by the harsh conditions experienced on extraterrestrial planetary surfaces. For this reason, studying the effects on biomolecules of extremophilic microorganisms through astrobiological ground-based space simulation experiments is significant to support the interpretation of the data that will be gained and collected during the ongoing and future space exploration missions. Here, the stability of the biomolecules of the cryptoendolithic black fungus Cryomyces antarcticus, grown on two Martian regolith analogues and on Antarctic sandstone, were analysed through a metabolomic approach, after its exposure to Science Verification Tests (SVTs) performed in the frame of the European Space Agency (ESA) Biology and Mars Experiment (BIOMEX) project. These tests are building a set of ground-based experiments performed before the space exposure aboard the International Space Station (ISS). The analysis aimed to investigate the effects of different mineral mixtures on fungal colonies and the stability of the biomolecules synthetised by the fungus under simulated Martian and space conditions. The identification of a specific group of molecules showing good stability after the treatments allow the creation of a molecular database that should support the analysis of future data sets that will be collected in the ongoing and next space exploration missions.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Patrick Leo
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Venice, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | | | | | - Elke Rabbow
- German Aerospace Centre, Institute of Aerospace Medicine (DLR), Cologne, Germany
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| |
Collapse
|
12
|
Cassaro A, Pacelli C, Baqué M, Cavalazzi B, Gasparotto G, Saladino R, Botta L, Böttger U, Rabbow E, de Vera JP, Onofri S. Investigation of fungal biomolecules after Low Earth Orbit exposure: a testbed for the next Moon missions. Environ Microbiol 2022; 24:2938-2950. [PMID: 35437941 PMCID: PMC9540993 DOI: 10.1111/1462-2920.15995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022]
Abstract
The Moon is characterized by extremely harsh conditions due to ultraviolet irradiation, wide temperature extremes, vacuum resulting from the absence of an atmosphere and high ionizing radiation. Therefore, its surface may provide a unique platform to investigate the effects of such conditions. For lunar exploration with the Lunar Gateway platform, exposure experiments in Low Earth Orbit are useful testbeds to prepare for lunar space experiments and to understand how and if potential biomarkers are influenced by extra‐terrestrial conditions. During the BIOMEX (BIOlogy and Mars EXperiment) project, dried colonies of the fungus Cryomyces antarcticus grown on Lunar Regolith Analogue (LRA) were exposed to space conditions for 16 months aboard the EXPOSE‐R2 payload outside the International Space Station. In this study, we investigated the stability/degradation of fungal biomarkers in LRA after exposure to (i) simulated space and (ii) real space conditions, using Raman spectroscopy, gas chromatography–mass spectrometry and DNA amplification. The results demonstrated that fungal biomarkers were detectable after 16 months of real space exposure. This work will contribute to the interpretation of data from future biological experiments in the Cislunar orbit with the Lunar Gateway platform and/or on the lunar surface, in preparation for the next step of human exploration.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy.,Human Spaceflight and Scientific Research Unit, Italian Space Agency, via del Politecnico, Rome, 00133, Italy
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Rutherfordstraße 2, Berlin, Germany
| | - Barbara Cavalazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, Bologna, 40126, Italy.,Department of Geology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.,Le Studium Loire Valley Institute for Advanced Studies, Rue Dupanloup 1, Orléans, France
| | - Giorgio Gasparotto
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, Bologna, 40126, Italy
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, Rutherfordstraße 2, Berlin, Germany
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, Cologne, 51147, Germany
| | - Jean-Pierre de Vera
- Space Operations and Astronaut Training, MUSC, German Aerospace Center (DLR), Linder Höhe, Cologne, 51147, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università snc, Viterbo, 01100, Italy
| |
Collapse
|
13
|
Liu B, Fu R, Wu B, Liu X, Xiang M. Rock-inhabiting fungi: terminology, diversity, evolution and adaptation mechanisms. Mycology 2022; 13:1-31. [PMID: 35186410 PMCID: PMC8856086 DOI: 10.1080/21501203.2021.2002452] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rock-inhabiting fungi (RIF) constitute an ecological group associated with terrestrial rocks. This association is generally restricted to the persistent colonisation of rocks and peculiar morphological features based on melanisation and slow growth, which endow RIF with significance in eukaryotic biology, special status in ecology, and exotic potential in biotechnology. There is a need to achieve a better understanding of the hidden biodiversity, antistress biology, origin and convergent evolution of RIF, which will facilitate cultural relic preservation, exploitation of the biogeochemical cycle of rock elements and biotechnology applications. This review focuses on summarising the current knowledge of rock-inhabiting fungi, with particular reference to terminology, biodiversity and geographic distribution, origin and evolution, and stress adaptation mechanisms. We especially teased out the definition through summing up the terms related to rock-inhabting fungi, and also provided a checklist of rock-inhabiting fungal taxa recorded following updated classification schemes.
Collapse
Affiliation(s)
- Bingjie Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Fu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Malo ME, Frank C, Khokhoev E, Gorbunov A, Dontsov A, Garg R, Dadachova E. Mitigating effects of sublethal and lethal whole-body gamma irradiation in a mouse model with soluble melanin. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:011508. [PMID: 35037901 DOI: 10.1088/1361-6498/ac3dcf] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
The field of radiation countermeasures is growing, however, currently there are no effective and non-toxic compounds which could be administered orally to the individuals post exposure to high doses of ionising radiation. The pigment melanin is ubiquitous through all kingdoms of life and provides selective advantage under radiation stress through its role as a chemical and physical shield, and its capacity to respond and react to exposures. Soluble allomelanin was administered to mice following whole-body exposure to lethal or sublethal doses of gamma radiation to determine its capacity to mitigate the effects of acute radiation syndrome, and its utility as a radiation countermeasure. Allomelanin has shown a trend to improve survival post an 8 Gy sublethal radiation exposure when administered up to 48 h post-irradiation. Furthermore, it improved median and overall survival to a 10 Gy lethal radiation exposure, specifically when administered at 24 h post-irradiation. Histological analysis on the jejunum region of the small intestine of this treatment group indicated that alterations of the mucosal and submucosal architecture, and disruption of the lymphatic system associated with lethal radiation exposure were mitigated when allomelanin was administered at 24 h post-irradiation. Based on this work soluble allomelanin derived from a fungal source could serve as an easily sourced, cost-effective, and viable countermeasure to accidental radiation exposure and merits further investigation.
Collapse
Affiliation(s)
- Mackenzie E Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Connor Frank
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | - Ravendra Garg
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
Brun S, Kuo HC, Jeffree CE, Thomson DD, Read N. Courtship Ritual of Male and Female Nuclei during Fertilization in Neurospora crassa. Microbiol Spectr 2021; 9:e0033521. [PMID: 34612669 PMCID: PMC8509652 DOI: 10.1128/spectrum.00335-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
Abstract
Sexual reproduction is a key process influencing the evolution and adaptation of animals, plants, and many eukaryotic microorganisms, such as fungi. However, the sequential cell biology of fertilization and the associated nuclear dynamics after plasmogamy are poorly understood in filamentous fungi. Using histone-fluorescent parental isolates, we tracked male and female nuclei during fertilization in the model ascomycete Neurospora crassa using live-cell imaging. This study unravels the behavior of trichogyne resident female nuclei and the extraordinary manner in which male nuclei migrate up the trichogyne to the protoperithecium. Our observations raise new fundamental questions about the modus operandi of nucleus movements during sexual reproduction, male and female nuclear identity, guidance of nuclei within the trichogyne and, unexpectedly, the avoidance of "polyspermy" in fungi. The spatiotemporal dynamics of male nuclei within the trichogyne following plasmogamy are also described, where the speed and the deformation of male nuclei are of the most dramatic observed to date in a living organism. IMPORTANCE Using live-cell fluorescence imaging, for the first time we have observed live male and female nuclei during sexual reproduction in the model fungus Neurospora crassa. This study reveals the specific behavior of resident female nuclei within the trichogyne (the female organ) after fertilization and the extraordinary manner in which male nuclei migrate across the trichogyne toward their final destination, the protoperithecium, where karyogamy takes place. Importantly, the speed and deformation of male nuclei were found to be among the most dramatic ever observed in a living organism. Furthermore, we observed that entry of male nuclei into protoperithecia may block the entry of other male nuclei, suggesting that a process analogous to polyspermy avoidance could exist in fungi. Our live-cell imaging approach opens new opportunities for novel research on cell-signaling during sexual reproduction in fungi and, on a broader scale, nuclear dynamics in eukaryotes.
Collapse
Affiliation(s)
- Sylvain Brun
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université de Paris, Paris, France
| | - Hsiao-Che Kuo
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Chris E. Jeffree
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Darren D. Thomson
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Nick Read
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Cassaro A, Pacelli C, Baqué M, de Vera JPP, Böttger U, Botta L, Saladino R, Rabbow E, Onofri S. Fungal Biomarkers Stability in Mars Regolith Analogues after Simulated Space and Mars-like Conditions. J Fungi (Basel) 2021; 7:jof7100859. [PMID: 34682280 PMCID: PMC8540304 DOI: 10.3390/jof7100859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/18/2022] Open
Abstract
The discovery of life on other planets and moons in our solar system is one of the most important challenges of this era. The second ExoMars mission will look for traces of extant or extinct life on Mars. The instruments on board the rover will be able to reach samples with eventual biomarkers until 2 m of depth under the planet’s surface. This exploration capacity offers the best chance to detect biomarkers which would be mainly preserved compared to samples on the surface which are directly exposed to harmful environmental conditions. Starting with the studies of the endolithic meristematic black fungus Cryomyces antarcticus, which has proved its high resistance under extreme conditions, we analyzed the stability and the resistance of fungal biomarkers after exposure to simulated space and Mars-like conditions, with Raman and Gas Chromatography–Mass Spectrometry, two of the scientific payload instruments on board the rover.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
- Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-068567466
| | - Mickael Baqué
- German Aerospace Center (DLR), Planetary Laboratories Department, Institute of Planetary Research, Ruthefordstraße 2, 12489 Berlin, Germany;
| | - Jean-Pierre Paul de Vera
- MUSC, German Aerospace Center (DLR), Space Operations and Astronaut Training, 51147 Köln, Germany;
| | - Ute Böttger
- German Aerospace Center (DLR), Institute of Optical Sensor Systems, 12489 Berlin, Germany;
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Raffaele Saladino
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| | - Elke Rabbow
- Radiation Biology Division, Institute of Aerospace Medicine, DLR, Linder Höhe, 51147 Köln, Germany;
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo Dell’Università snc, 01100 Viterbo, Italy; (A.C.); (L.B.); (R.S.); (S.O.)
| |
Collapse
|
17
|
Antarctica as a reservoir of planetary analogue environments. Extremophiles 2021; 25:437-458. [PMID: 34586500 DOI: 10.1007/s00792-021-01245-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
One of the main objectives of astrobiological research is the investigation of the habitability of other planetary bodies. Since space exploration missions are expensive and require long-term organization, the preliminary study of terrestrial environments is an essential step to prepare and support exploration missions. The Earth hosts a multitude of extreme environments whose characteristics resemble celestial bodies in our Solar System. In these environments, the physico-chemical properties partly match extraterrestrial environments and could clarify limits and adaptation mechanisms of life, the mineralogical or geochemical context, and support and interpret data sent back from planetary bodies. One of the best terrestrial analogues is Antarctica, whose conditions lie on the edge of habitability. It is characterized by a cold and dry climate (Onofri et al., Nova Hedwigia 68:175-182, 1999), low water availability, strong katabatic winds, salt concentration, desiccation, and high radiation. Thanks to the harsh conditions like those in other celestial bodies, Antarctica offers good terrestrial analogues for celestial body (Mars or icy moons; Léveillé, CR Palevol 8:637-648, https://doi.org/10.1016/j.crpv.2009.03.005 , 2009). The continent could be distinguished into several habitats, each with characteristics similar to those existing on other bodies. Here, we reported a description of each simulated parameter within the habitats, in relation to each of the simulated extraterrestrial environments.
Collapse
|
18
|
Understanding the way eumelanin works: A unique example of properties and skills driven by molecular heterogeneity. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Pacelli C, Alessia C, Siong LM, Lorenzo A, Moeller R, Fujimori A, Igor S, Silvano O. Insights into the Survival Capabilities of Cryomyces antarcticus Hydrated Colonies after Exposure to Fe Particle Radiation. J Fungi (Basel) 2021; 7:495. [PMID: 34206448 PMCID: PMC8304246 DOI: 10.3390/jof7070495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
The modern concept of the evolution of Mars assumes that life could potentially have originated on the planet Mars, possibly during the end of the late heavy bombardment, and could then be transferred to other planets. Since then, physical and chemical conditions on Mars changed and now strongly limit the presence of terrestrial-like life forms. These adverse conditions include scarcity of liquid water (although brine solutions may exist), low temperature and atmospheric pressure, and cosmic radiation. Ionizing radiation is very important among these life-constraining factors because it damages DNA and other cellular components, particularly in liquid conditions where radiation-induced reactive oxidants diffuse freely. Here, we investigated the impact of high doses (up to 2 kGy) of densely-ionizing (197.6 keV/µm), space-relevant iron ions (corresponding on the irradiation that reach the uppermost layer of the Mars subsurface) on the survival of an extremophilic terrestrial organism-Cryomyces antarcticus-in liquid medium and under atmospheric conditions, through different techniques. Results showed that it survived in a metabolically active state when subjected to high doses of Fe ions and was able to repair eventual DNA damages. It implies that some terrestrial life forms can withstand prolonged exposure to space-relevant ion radiation.
Collapse
Affiliation(s)
- Claudia Pacelli
- Italian Space Agency, 00133 Rome, Italy;
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (A.L.); (O.S.)
| | - Cassaro Alessia
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (A.L.); (O.S.)
| | - Loke M. Siong
- Ludwig Maximilian University of Munich, 80336 Munich, Germany;
| | - Aureli Lorenzo
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (A.L.); (O.S.)
| | - Ralf Moeller
- Radiation Biology Department, Aerospace Microbiology, German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, 51147 Cologne (Köln), Germany;
- Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), 53359 Rheinbach, Germany
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, NIRS/QST, Chiba 263-8555, Japan;
| | - Shuryak Igor
- Department of Radiation Oncology, Center for Radiological Research, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Onofri Silvano
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (A.L.); (O.S.)
| |
Collapse
|
20
|
Culture-Dependent and Amplicon Sequencing Approaches Reveal Diversity and Distribution of Black Fungi in Antarctic Cryptoendolithic Communities. J Fungi (Basel) 2021; 7:jof7030213. [PMID: 33809619 PMCID: PMC8001563 DOI: 10.3390/jof7030213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
In the harshest environmental conditions of the Antarctic desert, normally incompatible with active life, microbes are adapted to exploit the cryptoendolithic habitat (i.e., pore spaces of rocks) and represent the predominant life-forms. In the rocky niche, microbes take advantage of the thermal buffering, physical stability, protection against UV radiation, excessive solar radiation, and water retention-of paramount importance in one of the driest environments on Earth. In this work, high-throughput sequencing and culture-dependent approaches have been combined, for the first time, to untangle the diversity and distribution of black fungi in the Antarctic cryptoendolithic microbial communities, hosting some of the most extreme-tolerant microorganisms. Rock samples were collected in a vast area, along an altitudinal gradient and opposite sun exposure-known to influence microbial diversity-with the aim to compare and integrate results gained with the two approaches. Among black fungi, Friedmanniomyces endolithicus was confirmed as the most abundant taxon. Despite the much stronger power of the high-throughput sequencing, several species were not retrieved with DNA sequencing and were detectable by cultivation only. We conclude that both culture-dependent and -independent analyses are needed for a complete overview of black fungi diversity. The reason why some species remain undetectable with molecular methods are speculated upon. The effect of environmental parameters such as sun exposure on relative abundance was clearer if based on the wider biodiversity detected with the molecular approach.
Collapse
|
21
|
Coleine C, Biagioli F, de Vera JP, Onofri S, Selbmann L. Endolithic microbial composition in Helliwell Hills, a newly investigated Mars-like area in Antarctica. Environ Microbiol 2021; 23:4002-4016. [PMID: 33538384 DOI: 10.1111/1462-2920.15419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
Abstract
The diversity and composition of Antarctic cryptoendolithic microbial communities in the Mars-analogue site of Helliwell Hills (Northern Victoria Land, Continental Antarctica) are investigated, for the first time, applying both culture-dependent and high-throughput sequencing approaches. The study includes all the domains of the tree of life: Eukaryotes, Bacteria and Archaea to give a complete overview of biodiversity and community structure. Furthermore, to explore the geographic distribution of endoliths throughout the Victoria Land (Continental Antarctica), we compared the fungal and bacterial community composition and structure of endolithically colonized rocks, collected in >30 sites in 10 years of Italian Antarctic Expeditions. Compared with the fungi and other eukaryotes, the prokaryotic communities were richer in species, more diverse and highly heterogeneous. Despite the diverse community compositions, shared populations were found and were dominant in all sites. Local diversification was observed and included prokaryotes as members of Alphaproteobacteria and Crenarchaeota (Archaea), the last detected for the first time in these cryptoendolithic communities. Few eukaryotes, namely lichen-forming fungal species as Lecidella grenii, were detected in Helliwell Hills only. These findings suggest that geographic distance and isolation in these remote areas may promote the establishment of peculiar locally diversified microorganisms.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Federico Biagioli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Jean Pierre de Vera
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.,Italian Antarctic National Museum (MNA), Mycological Section, Genoa, Italy
| |
Collapse
|
22
|
Selbmann L, Benkő Z, Coleine C, de Hoog S, Donati C, Druzhinina I, Emri T, Ettinger CL, Gladfelter AS, Gorbushina AA, Grigoriev IV, Grube M, Gunde-Cimerman N, Karányi ZÁ, Kocsis B, Kubressoian T, Miklós I, Miskei M, Muggia L, Northen T, Novak-Babič M, Pennacchio C, Pfliegler WP, Pòcsi I, Prigione V, Riquelme M, Segata N, Schumacher J, Shelest E, Sterflinger K, Tesei D, U’Ren JM, Varese GC, Vázquez-Campos X, Vicente VA, Souza EM, Zalar P, Walker AK, Stajich JE. Shed Light in the DaRk LineagES of the Fungal Tree of Life-STRES. Life (Basel) 2020; 10:life10120362. [PMID: 33352712 PMCID: PMC7767062 DOI: 10.3390/life10120362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023] Open
Abstract
The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the “Shed light in The daRk lineagES of the fungal tree of life” (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.
Collapse
Affiliation(s)
- Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy;
- Section of Mycology, Italian National Antarctic Museum (MNA), 16121 Genoa, Italy
- Correspondence: (L.S.); (J.E.S.); Tel.: +39-0761-357012 (L.S.); +1-951-827-2363 (J.E.S.)
| | - Zsigmond Benkő
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, 6532 Nijmegen, The Netherlands;
| | - Claudio Donati
- Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
| | - Irina Druzhinina
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China;
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Cassie L. Ettinger
- Genome Center, University of California, Davis, CA 95616, USA;
- Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, USA;
| | - Amy S. Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA;
| | - Anna A. Gorbushina
- Department of Materials and Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), 10115 Berlin, Germany; (A.A.G.); (J.S.)
- Department of Earth Sciences & Department of Biology, Chemistry, Pharmacy, Freie Universität, Berlin 10115 Berlin, Germany
| | - Igor V. Grigoriev
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; (I.V.G.); (T.N.); (C.P.)
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Martin Grube
- Institute of Biology, University of Graz, Graz A-8010, Austria;
| | - Nina Gunde-Cimerman
- Department Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.G.-C.); (M.N.-B.); (P.Z.)
| | - Zsolt Ákos Karányi
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Beatrix Kocsis
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Tania Kubressoian
- Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, USA;
| | - Ida Miklós
- Department of Genetics and Applied Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Márton Miskei
- Department of Biochemistry and Molecular Biology, Faculty of Medicine University of Debrecen, 4032 Debrecen, Hungary;
| | - Lucia Muggia
- Department of Life Sciences, University of Trieste, 34121 Trieste, Italy;
| | - Trent Northen
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; (I.V.G.); (T.N.); (C.P.)
| | - Monika Novak-Babič
- Department Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.G.-C.); (M.N.-B.); (P.Z.)
| | - Christa Pennacchio
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA; (I.V.G.); (T.N.); (C.P.)
| | - Walter P. Pfliegler
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Istvàn Pòcsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary; (Z.B.); (T.E.); (B.K.); (W.P.P.); (I.P.)
| | - Valeria Prigione
- Mycotheca Universitatis Taurinensis, University of Torino, 10125 Torino, Italy; (V.P.); (G.C.V.)
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California 22980, Mexico;
| | - Nicola Segata
- Department CIBIO, University of Trento, 38123 Trento, Italy;
| | - Julia Schumacher
- Department of Materials and Environment, Bundesanstalt für Materialforschung und -prüfung (BAM), 10115 Berlin, Germany; (A.A.G.); (J.S.)
| | - Ekaterina Shelest
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Katja Sterflinger
- Institute of Natural Sciences and Technology in the Arts, Academy of Fine Arts Vienna, Vienna 22180, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna 22180, Austria;
| | - Jana M. U’Ren
- Department of Biosystems Engineering and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA;
| | - Giovanna C. Varese
- Mycotheca Universitatis Taurinensis, University of Torino, 10125 Torino, Italy; (V.P.); (G.C.V.)
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2006, Australia;
| | - Vania A. Vicente
- Department of Biochemistry, Federal University of Paraná, Paraná E3100, Brazil; (V.A.V.); (E.M.S.)
| | - Emanuel M. Souza
- Department of Biochemistry, Federal University of Paraná, Paraná E3100, Brazil; (V.A.V.); (E.M.S.)
| | - Polona Zalar
- Department Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.G.-C.); (M.N.-B.); (P.Z.)
| | - Allison K. Walker
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jason E. Stajich
- Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, USA;
- Correspondence: (L.S.); (J.E.S.); Tel.: +39-0761-357012 (L.S.); +1-951-827-2363 (J.E.S.)
| |
Collapse
|
23
|
Malo ME, Schultzhaus Z, Frank C, Romsdahl J, Wang Z, Dadachova E. Transcriptomic and genomic changes associated with radioadaptation in Exophiala dermatitidis. Comput Struct Biotechnol J 2020; 19:196-205. [PMID: 33425251 PMCID: PMC7772362 DOI: 10.1016/j.csbj.2020.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/31/2022] Open
Abstract
Melanized fungi have been isolated from some of the harshest radioactive environments, and their ability to thrive in these locations is in part due to the pigment melanin. Melanin imparts a selective advantage to fungi by providing a physical shield, a chemical shield, and possibly a signaling mechanism. In previous work we demonstrated that protracted exposure of the melanized yeast Exophiala dermatitidis to mixed alpha-, beta-, and gamma-emitting radiation resulted in an adapted strain able to mount a unique response to ionizing radiation in the environment in a melanin-dependent fashion. By exploring the genome and transcriptome of this adapted melanized strain relative to a non-irradiated control we determined the altered response was transcriptomic in nature, as whole genome sequencing revealed limited variation. Transcriptomic analysis indicated that of the adapted isolates analyzed, two lineages existed: one like the naïve, non-adapted strain, and one with a unique transcriptomic signature that exhibited downregulation of metabolic processes, and upregulation of translation-associated genes. Analysis of differential gene expression in the adapted strain showed an overlap in response between the control conditions and reactive oxygen species conditions, whereas exposure to an alpha particle source resulted in a robust downregulation of metabolic processes and upregulation of DNA replication and repair genes, and RNA metabolic processes. This suggest previous exposure to radiation primes the fungus to respond to subsequent exposures in a unique way. By exploring this unique response, we have expanded our knowledge of how melanized fungi interact with and respond to ionizing radiation in their environment.
Collapse
Affiliation(s)
- Mackenzie E. Malo
- University of Saskatchewan, College of Pharmacy and Nutrition, Saskatoon, Canada
| | - Zachary Schultzhaus
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Connor Frank
- University of Saskatchewan, College of Pharmacy and Nutrition, Saskatoon, Canada
| | - Jillian Romsdahl
- National Research Council Postdoctoral Research Associate, Naval Research Laboratory, Washington, DC, USA
| | - Zheng Wang
- Center for Biomolecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Ekaterina Dadachova
- University of Saskatchewan, College of Pharmacy and Nutrition, Saskatoon, Canada
| |
Collapse
|
24
|
Aureli L, Pacelli C, Cassaro A, Fujimori A, Moeller R, Onofri S. Iron Ion Particle Radiation Resistance of Dried Colonies of Cryomyces antarcticus Embedded in Martian Regolith Analogues. Life (Basel) 2020; 10:E306. [PMID: 33255166 PMCID: PMC7761078 DOI: 10.3390/life10120306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Abstract
Among the celestial bodies in the Solar System, Mars currently represents the main target for the search for life beyond Earth. However, its surface is constantly exposed to high doses of cosmic rays (CRs) that may pose a threat to any biological system. For this reason, investigations into the limits of resistance of life to space relevant radiation is fundamental to speculate on the chance of finding extraterrestrial organisms on Mars. In the present work, as part of the STARLIFE project, the responses of dried colonies of the black fungus Cryomyces antarcticus Culture Collection of Fungi from Extreme Environments (CCFEE) 515 to the exposure to accelerated iron (LET: 200 keV/μm) ions, which mimic part of CRs spectrum, were investigated. Samples were exposed to the iron ions up to 1000 Gy in the presence of Martian regolith analogues. Our results showed an extraordinary resistance of the fungus in terms of survival, recovery of metabolic activity and DNA integrity. These experiments give new insights into the survival probability of possible terrestrial-like life forms on the present or past Martian surface and shallow subsurface environments.
Collapse
Affiliation(s)
- Lorenzo Aureli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (A.C.); (S.O.)
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (A.C.); (S.O.)
- Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (A.C.); (S.O.)
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan;
| | - Ralf Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, DLR, Linder Höhe, D-51147 Köln, Germany;
- Natural Sciences Department, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), von-Liebig-Straße 20, D-53359 Rheinbach, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (A.C.); (S.O.)
| |
Collapse
|
25
|
Coleine C, Stajich JE, de Los Ríos A, Selbmann L. Beyond the extremes: Rocks as ultimate refuge for fungi in drylands. Mycologia 2020; 113:108-133. [PMID: 33232202 DOI: 10.1080/00275514.2020.1816761] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In an era of rapid climate change and expansion of desertification, the extremely harsh conditions of drylands are a true challenge for microbial life. Under drought conditions, where most life forms cannot survive, rocks represent the main refuge for life. Indeed, the endolithic habitat provides thermal buffering, physical stability, and protection against incident ultraviolet (UV) radiation and solar radiation and, to some extent, ensures water retention to microorganisms. The study of these highly specialized extreme-tolerant and extremophiles may provide tools for understanding microbial interactions and processes that allow them to keep their metabolic machinery active under conditions of dryness and oligotrophy that are typically incompatible with active life, up to the dry limits for life. Despite lithobiontic communities being studied all over the world, a comprehensive understanding of their ecology, evolution, and adaptation is still nascent. Herein, we survey the fungal component of these microbial ecosystems. We first provide an overview of the main defined groups (i.e., lichen-forming fungi, black fungi, and yeasts) of the most known and studied Antarctic endolithic communities that are almost the only life forms ensuring ecosystem functionality in the ice-free areas of the continent. For each group, we discuss their main traits and their diversity. Then, we focus on the fungal taxonomy and ecology of other worldwide endolithic communities. Finally, we highlight the utmost importance of a global rock survey in order to have a comprehensive view of the diversity, distribution, and functionality of these fungi in drylands, to obtain tools in desert area management, and as early alarm systems to climate change.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università snc, 01100, Viterbo, Italy
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, 900 University Ave , Riverside, California 92521
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales, Spanish National Resource Council, Madrid, Spain
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia , Largo dell'Università snc, 01100, Viterbo, Italy.,Italian National Antarctic Museum, Mycological Section, Genoa, Italy
| |
Collapse
|
26
|
Pacelli C, Cassaro A, Aureli L, Moeller R, Fujimori A, Onofri S. The Responses of the Black Fungus Cryomyces Antarcticus to High Doses of Accelerated Helium Ions Radiation within Martian Regolith Simulants and Their Relevance for Mars. Life (Basel) 2020; 10:E130. [PMID: 32752063 PMCID: PMC7459982 DOI: 10.3390/life10080130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
One of the primary current astrobiological goals is to understand the limits of microbial resistance to extraterrestrial conditions. Much attention is paid to ionizing radiation, since it can prevent the preservation and spread of life outside the Earth. The aim of this research was to study the impact of accelerated He ions (150 MeV/n, up to 1 kGy) as a component of the galactic cosmic rays on the black fungus C. antarcticus when mixed with Antarctic sandstones-the substratum of its natural habitat-and two Martian regolith simulants, which mimics two different evolutionary stages of Mars. The high dose of 1 kGy was used to assess the effect of dose accumulation in dormant cells within minerals, under long-term irradiation estimated on a geological time scale. The data obtained suggests that viable Earth-like microorganisms can be preserved in the dormant state in the near-surface scenario for approximately 322,000 and 110,000 Earth years within Martian regolith that mimic early and present Mars environmental conditions, respectively. In addition, the results of the study indicate the possibility of maintaining traces within regolith, as demonstrated by the identification of melanin pigments through UltraViolet-visible (UV-vis) spectrophotometric approach.
Collapse
Affiliation(s)
- Claudia Pacelli
- Italian Space Agency, Via del Politecnico snc, 00133 Rome, Italy;
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (S.O.)
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (S.O.)
| | - Lorenzo Aureli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (S.O.)
| | - Ralf Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, DLR, Linder Höhe, D-51147 Köln, Germany; or
- Department of Natural Science, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), von-Liebig-Straße 20, D-53359 Rheinbach, Germany
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Basic Medical Sciences for Radiation Damages, NIRS/QST, Chiba 263-8555, Japan;
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy; (L.A.); (S.O.)
| |
Collapse
|
27
|
Coleine C, Gevi F, Fanelli G, Onofri S, Timperio AM, Selbmann L. Specific adaptations are selected in opposite sun exposed Antarctic cryptoendolithic communities as revealed by untargeted metabolomics. PLoS One 2020; 15:e0233805. [PMID: 32460306 PMCID: PMC7253227 DOI: 10.1371/journal.pone.0233805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Antarctic cryptoendolithic communities are self-supporting borderline ecosystems spreading across the extreme conditions of the Antarctic desert and represent the predominant life-form in the ice-free areas of McMurdo Dry Valleys, accounted as the closest terrestrial Martian analogue. Components of these communities are highly adapted extremophiles and extreme-tolerant microorganisms, among the most resistant known to date. Recently, studies investigated biodiversity and community composition in these ecosystems but the metabolic activity of the metacommunity has never been investigated. Using an untargeted metabolomics, we explored stress-response of communities spreading in two sites of the same location, subjected to increasing environmental pressure due to opposite sun exposure, accounted as main factor influencing the diversity and composition of these ecosystems. Overall, 331 altered metabolites (206 and 125 unique for north and south, respectively), distinguished the two differently exposed communities. We also selected 10 metabolites and performed two-stage Receiver Operating Characteristic (ROC) analysis to test them as potential biomarkers. We further focused on melanin and allantoin as protective substances; their concentration was highly different in the community in the shadow or in the sun. These results clearly indicate that opposite insolation selected organisms in the communities with different adaptation strategies in terms of key metabolites produced.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy, University of Tuscia, Viterbo, Italy
- * E-mail: (AMT); (LS)
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
- * E-mail: (AMT); (LS)
| |
Collapse
|
28
|
Pacelli C, Cassaro A, Maturilli A, Timperio AM, Gevi F, Cavalazzi B, Stefan M, Ghica D, Onofri S. Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Appl Microbiol Biotechnol 2020; 104:6385-6395. [DOI: 10.1007/s00253-020-10666-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
29
|
Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H, Stukenbrock EH, Stajich JE, Kahmann R, Boone C, Denning DW, Gow NAR, Klein BS, Kronstad JW, Sheppard DC, Taylor JW, Wright GD, Heitman J, Casadevall A, Cowen LE. Threats Posed by the Fungal Kingdom to Humans, Wildlife, and Agriculture. mBio 2020; 11:e00449-20. [PMID: 32371596 PMCID: PMC7403777 DOI: 10.1128/mbio.00449-20] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fungal kingdom includes at least 6 million eukaryotic species and is remarkable with respect to its profound impact on global health, biodiversity, ecology, agriculture, manufacturing, and biomedical research. Approximately 625 fungal species have been reported to infect vertebrates, 200 of which can be human associated, either as commensals and members of our microbiome or as pathogens that cause infectious diseases. These organisms pose a growing threat to human health with the global increase in the incidence of invasive fungal infections, prevalence of fungal allergy, and the evolution of fungal pathogens resistant to some or all current classes of antifungals. More broadly, there has been an unprecedented and worldwide emergence of fungal pathogens affecting animal and plant biodiversity. Approximately 8,000 species of fungi and Oomycetes are associated with plant disease. Indeed, across agriculture, such fungal diseases of plants include new devastating epidemics of trees and jeopardize food security worldwide by causing epidemics in staple and commodity crops that feed billions. Further, ingestion of mycotoxins contributes to ill health and causes cancer. Coordinated international research efforts, enhanced technology translation, and greater policy outreach by scientists are needed to more fully understand the biology and drivers that underlie the emergence of fungal diseases and to mitigate against their impacts. Here, we focus on poignant examples of emerging fungal threats in each of three areas: human health, wildlife biodiversity, and food security.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London, United Kingdom
| | - Sarah J Gurr
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David S Blehert
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Eva H Stukenbrock
- Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University, Kiel, Germany
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - David W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Neil A R Gow
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Bruce S Klein
- Department of Pediatrics, Department of Internal Medicine, and Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald C Sheppard
- McGill Interdisciplinary Initiative in Infection and Immunology, Departments of Medicine, Microbiology & Immunology, McGill University, Montreal, Canada
| | - John W Taylor
- University of California-Berkeley, Department of Plant and Microbial Biology, Berkeley, California, USA
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
|
31
|
The role of melanins in melanotic fungi for pathogenesis and environmental survival. Appl Microbiol Biotechnol 2020; 104:4247-4257. [PMID: 32206837 DOI: 10.1007/s00253-020-10532-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Melanins provide fungi protection from environmental stressors, support their ecological roles, and can confer virulence in pathogens. While the function, structure, and synthesis of melanins in fungi are not fully understood, they have been shown to have varied roles. Recent research has revealed a wide range of functions, from radiation resistance to increasing virulence, shedding light on fungal diversity. Understanding fungal melanins can provide useful information, from harnessing the properties of these various melanins to targeting fungal infections.Key Points• Melanotic fungi are widespread in nature. • Melanin functions to protect fungi in the environment from a range of stresses. • Melanin contributes to pathogenesis and drug resistance of pathogenic fungi.
Collapse
|
32
|
Coleine C, Pombubpa N, Zucconi L, Onofri S, Stajich JE, Selbmann L. Endolithic Fungal Species Markers for Harshest Conditions in the McMurdo Dry Valleys, Antarctica. Life (Basel) 2020; 10:E13. [PMID: 32041249 PMCID: PMC7175349 DOI: 10.3390/life10020013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 02/03/2023] Open
Abstract
The microbial communities that inhabit lithic niches inside sandstone in the Antarctic McMurdo Dry Valleys of life's limits on Earth. The cryptoendolithic communities survive in these ice-free areas that have the lowest temperatures on Earth coupled with strong thermal fluctuations, extreme aridity, oligotrophy and high levels of solar and UV radiation. In this study, based on DNA metabarcoding, targeting the fungal Internal Transcribed Spacer region 1 (ITS1) and multivariate statistical analyses, we supply the first comprehensive overview onto the fungal diversity and composition of these communities sampled over a broad geographic area of the Antarctic hyper-arid cold desert. Six locations with surfaces that experience variable sun exposure were sampled to compare communities from a common area across a gradient of environmental pressure. The Operational Taxonomic Units (OTUs) identified were primarily members of the Ascomycota phylum, comprised mostly of the Lecanoromycetes and Dothideomycetes classes. The fungal species Friedmanniomyces endolithicus, endemic to Antarctica, was found to be a marker species to the harshest conditions occurring in the shady, south exposed rock surfaces. Analysis of community composition showed that sun exposure was an environmental property that explained community diversity and structured endolithic colonization.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (C.C.); (L.Z.); (S.O.)
| | - Nuttapon Pombubpa
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA;
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (C.C.); (L.Z.); (S.O.)
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (C.C.); (L.Z.); (S.O.)
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA;
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy; (C.C.); (L.Z.); (S.O.)
- Italian National Antarctic Museum (MNA), Mycological Section, 16166 Genoa, Italy
| |
Collapse
|
33
|
Cortesão M, Schütze T, Marx R, Moeller R, Meyer V. Fungal Biotechnology in Space: Why and How? GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
El-Bialy HA, El-Gamal MS, Elsayed MA, Saudi H, Khalifa M. Microbial melanin physiology under stress conditions and gamma radiation protection studies. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
35
|
Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet? GEOSCIENCES 2019. [DOI: 10.3390/geosciences9090361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mars is a planet of great interest in the search for signatures of past or present life beyond Earth. The years of research, and more advanced instrumentation, have yielded a lot of evidence which may be considered by the scientific community as proof of past or present habitability of Mars. Recent discoveries including seasonal methane releases and a subglacial lake are exciting, yet challenging findings. Concurrently, laboratory and environmental studies on the limits of microbial life in extreme environments on Earth broaden our knowledge of the possibility of Mars habitability. In this review, we aim to: (1) Discuss the characteristics of the Martian surface and subsurface that may be conducive to habitability either in the past or at present; (2) discuss laboratory-based studies on Earth that provide us with discoveries on the limits of life; and (3) summarize the current state of knowledge in terms of direction for future research.
Collapse
|
36
|
De Middeleer G, Leys N, Sas B, De Saeger S. Fungi and Mycotoxins in Space-A Review. ASTROBIOLOGY 2019; 19:915-926. [PMID: 30973270 DOI: 10.1089/ast.2018.1854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fungi are not only present on Earth but colonize spacecraft and space stations as well. This review provides an extensive overview of the large and diverse group of fungal species that have been found in space, as well as those corresponding detection methods used and the existing and potential future prevention and control strategies. Many of the identified fungal species in space, such as Aspergillus flavus and Alternaria sp., are mycotoxigenic; thus, they are potential mycotoxin producers. This indicates that, although the fungal load in space stations tends to be non-alarming, the effects should not be underestimated, since the effect of the space environment on mycotoxin production should be sufficiently studied as well. However, research focused on mycotoxin production under conditions found on space stations is essentially nonexistent, since these kinds of spaceflight experiments are rare. Consequently, it is recommended that detection and monitoring systems for fungi and mycotoxins in space are at some point prioritized such that investigations into the impact of the space environment on mycotoxin production is addressed.
Collapse
Affiliation(s)
- Gilke De Middeleer
- 1Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Natalie Leys
- 2Microbiology Unit, Interdisciplinary BioSciences Expert Group, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - Benedikt Sas
- 3Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- 1Laboratory of Food Analysis, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Blachowicz A, Chiang AJ, Elsaesser A, Kalkum M, Ehrenfreund P, Stajich JE, Torok T, Wang CCC, Venkateswaran K. Proteomic and Metabolomic Characteristics of Extremophilic Fungi Under Simulated Mars Conditions. Front Microbiol 2019; 10:1013. [PMID: 31156574 PMCID: PMC6529585 DOI: 10.3389/fmicb.2019.01013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Filamentous fungi have been associated with extreme habitats, including nuclear power plant accident sites and the International Space Station (ISS). Due to their immense adaptation and phenotypic plasticity capacities, fungi may thrive in what seems like uninhabitable niches. This study is the first report of fungal survival after exposure of monolayers of conidia to simulated Mars conditions (SMC). Conidia of several Chernobyl nuclear accident-associated and ISS-isolated strains were tested for UV-C and SMC sensitivity, which resulted in strain-dependent survival. Strains surviving exposure to SMC for 30 min, ISSFT-021-30 and IMV 00236-30, were further characterized for proteomic, and metabolomic changes. Differential expression of proteins involved in ribosome biogenesis, translation, and carbohydrate metabolic processes was observed. No significant metabolome alterations were revealed. Lastly, ISSFT-021-30 conidia re-exposed to UV-C exhibited enhanced UV-C resistance when compared to the conidia of unexposed ISSFT-021.
Collapse
Affiliation(s)
- Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Abby J Chiang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | | | - Jason E Stajich
- Department of Microbiology and Plant Pathology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Tamas Torok
- Department of Ecology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.,Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
38
|
Coleine C, Selbmann L, Masonjones S, Onofri S, Zucconi L, Stajich JE. Draft Genome Sequence of an Antarctic Isolate of the Black Yeast Fungus Exophiala mesophila. Microbiol Resour Announc 2019; 8:e00142-19. [PMID: 31072892 PMCID: PMC6509517 DOI: 10.1128/mra.00142-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/15/2019] [Indexed: 11/22/2022] Open
Abstract
A 30.43-Mb draft genome sequence with 10,355 predicted protein-coding genes was produced for the ascomycete fungus Exophiala mesophila strain CCFEE 6314, a black yeast isolated from Antarctic cryptoendolithic communities. The sequence will be of importance for identifying differences among extremophiles and mesophiles and cataloguing the global population diversity of this organism.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Mycological Section, Italian National Antarctic Museum (MNA), Genoa, Italy
| | - Sawyer Masonjones
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California, USA
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
39
|
Onofri S, Selbmann L, Pacelli C, Zucconi L, Rabbow E, de Vera JP. Survival, DNA, and Ultrastructural Integrity of a Cryptoendolithic Antarctic Fungus in Mars and Lunar Rock Analogs Exposed Outside the International Space Station. ASTROBIOLOGY 2019; 19:170-182. [PMID: 30376361 DOI: 10.1089/ast.2017.1728] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The search for life beyond Earth involves investigation into the responses of model organisms to the deleterious effects of space. In the frame of the BIOlogy and Mars Experiment, as part of the European Space Agency (ESA) space mission EXPOSE-R2 in low Earth orbit (LEO), dried colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 were grown on martian and lunar analog regolith pellets, and exposed for 16 months to LEO space and simulated Mars-like conditions on the International Space Station. The results demonstrate that C. antarcticus was able to tolerate the combined stress of different extraterrestrial substrates, space, and simulated Mars-like conditions in terms of survival, DNA, and ultrastructural stability. Results offer insights into the habitability of Mars for future exploration missions on Mars. Implications for the detection of biosignatures in extraterrestrial conditions and planetary protection are discussed.
Collapse
Affiliation(s)
- Silvano Onofri
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- 2 Section of Mycology, Italian National Antarctic Museum, Viterbo, Italy
| | - Claudia Pacelli
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Zucconi
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Elke Rabbow
- 3 Institute of Aerospace Medicine, German Aerospace Centre, Köln, Germany
| | - Jean-Pierre de Vera
- 4 Astrobiological Laboratories, Institute of Planetary Research, Management and Infrastructure, German Aerospace Center (DLR) Berlin, Berlin, Germany
| |
Collapse
|
40
|
Pacelli C, Selbmann L, Zucconi L, Coleine C, de Vera JP, Rabbow E, Böttger U, Dadachova E, Onofri S. Responses of the Black Fungus Cryomyces antarcticus to Simulated Mars and Space Conditions on Rock Analogs. ASTROBIOLOGY 2019; 19:209-220. [PMID: 30067087 DOI: 10.1089/ast.2016.1631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The BIOMEX (BIOlogy and Mars Experiment) is part of the European Space Agency (ESA) space mission EXPOSE-R2 in Low-Earth Orbit, devoted to exposing microorganisms for 1.5 years to space and simulated Mars conditions on the International Space Station. In preparing this mission, dried colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515, grown on martian and lunar analog regolith pellets, were subjected to several ground-based preflight tests, Experiment Verification Tests, and Science Verification Tests (SVTs) that were performed to verify (i) the resistance of our model organism to space stressors when grown on extraterrestrial rock analogs and (ii) the possibility of detecting biomolecules as potential biosignatures. Here, the results of the SVTs, the last set of experiments, which were performed in ultraviolet radiation combined with simulated space vacuum or simulated martian conditions, are reported. The results demonstrate that C. antarcticus was able to tolerate the conditions of the SVT experiment, regardless of the substratum in which it was grown. DNA maintained high integrity after treatments and was confirmed as a possible biosignature; melanin, which was chosen to be a target for biosignature detection, was unambiguously detected by Raman spectroscopy.
Collapse
Affiliation(s)
- Claudia Pacelli
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
- 2 Section of Mycology, Italian Antarctic National Museum (MNA), Genoa, Italy
| | - Laura Zucconi
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Claudia Coleine
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Jean-Pierre de Vera
- 3 Institute of Planetary Research, German Aerospace Center (DLR) Berlin, Berlin, Germany
| | - Elke Rabbow
- 4 German Aerospace Centre, Institute of Aerospace Medicine (DLR), Köln, Germany
| | - Ute Böttger
- 5 Institute of Optical Sensor Systems, German Aerospace Center (DLR) Berlin, Berlin, Germany
| | - Ekaterina Dadachova
- 6 College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Silvano Onofri
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| |
Collapse
|
41
|
de Vera JP, Alawi M, Backhaus T, Baqué M, Billi D, Böttger U, Berger T, Bohmeier M, Cockell C, Demets R, de la Torre Noetzel R, Edwards H, Elsaesser A, Fagliarone C, Fiedler A, Foing B, Foucher F, Fritz J, Hanke F, Herzog T, Horneck G, Hübers HW, Huwe B, Joshi J, Kozyrovska N, Kruchten M, Lasch P, Lee N, Leuko S, Leya T, Lorek A, Martínez-Frías J, Meessen J, Moritz S, Moeller R, Olsson-Francis K, Onofri S, Ott S, Pacelli C, Podolich O, Rabbow E, Reitz G, Rettberg P, Reva O, Rothschild L, Sancho LG, Schulze-Makuch D, Selbmann L, Serrano P, Szewzyk U, Verseux C, Wadsworth J, Wagner D, Westall F, Wolter D, Zucconi L. Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. ASTROBIOLOGY 2019; 19:145-157. [PMID: 30742496 PMCID: PMC6383581 DOI: 10.1089/ast.2018.1897] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 01/07/2019] [Indexed: 06/01/2023]
Abstract
BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.
Collapse
Affiliation(s)
- Jean-Pierre de Vera
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Mashal Alawi
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, Potsdam, Germany
| | - Theresa Backhaus
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Daniela Billi
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Ute Böttger
- German Aerospace Center (DLR), Institute for Optical Sensor Systems, Berlin, Germany
| | - Thomas Berger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Maria Bohmeier
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - René Demets
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, the Netherlands
| | - Rosa de la Torre Noetzel
- Departamento de Observación de la Tierra, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Howell Edwards
- Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, West Yorkshire, UK
| | - Andreas Elsaesser
- Institut für experimentelle Physik, Experimentelle Molekulare Biophysik, Frei Universität Berlin, Berlin, Germany
| | | | - Annelie Fiedler
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
| | - Bernard Foing
- European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Noordwijk, the Netherlands
| | - Frédéric Foucher
- CNRS, Centre de Biophysique Moléculaire, UPR 4301, Orléans, France
| | - Jörg Fritz
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Franziska Hanke
- German Aerospace Center (DLR), Institute for Optical Sensor Systems, Berlin, Germany
| | - Thomas Herzog
- TH Wildau (Technical University of Applied Sciences), Wildau, Germany
| | - Gerda Horneck
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Heinz-Wilhelm Hübers
- German Aerospace Center (DLR), Institute for Optical Sensor Systems, Berlin, Germany
| | - Björn Huwe
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
| | - Jasmin Joshi
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
- Hochschule für Technik HSR Rapperswil, Institute for Landscape and Open Space, Rapperswil, Switzerland
| | | | - Martha Kruchten
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Peter Lasch
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| | - Natuschka Lee
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Stefan Leuko
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Thomas Leya
- Extremophile Research & Biobank CCCryo, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Andreas Lorek
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | | | - Joachim Meessen
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Sophie Moritz
- University of Potsdam, Biodiversity Research/Systematic Botany, Potsdam, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Sieglinde Ott
- Institut für Botanik, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Olga Podolich
- Institute of Molecular Biology & Genetics of NASU, Kyiv, Ukraine
| | - Elke Rabbow
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Günther Reitz
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Oleg Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | | | | | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | - Paloma Serrano
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, Potsdam, Germany
- AWI, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Ulrich Szewzyk
- TU Berlin, Institute of Environmental Technology, Environmental Microbiology, Berlin, Germany
| | - Cyprien Verseux
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | | | - Dirk Wagner
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, Telegrafenberg, Potsdam, Germany
- University of Potsdam, Institute of Earth and Environmental Sciences, Potsdam, Germany
| | - Frances Westall
- CNRS, Centre de Biophysique Moléculaire, UPR 4301, Orléans, France
| | - David Wolter
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Research Group Astrobiological Laboratories, Berlin, Germany
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
42
|
Bacior M, Harańczyk H, Nowak P, Kijak P, Marzec M, Fitas J, Olech MA. Low-temperature immobilization of water in Antarctic Turgidosculum complicatulum and in Prasiola crispa. Part I. Turgidosculum complicatulum. Colloids Surf B Biointerfaces 2019; 173:869-875. [PMID: 30551303 DOI: 10.1016/j.colsurfb.2018.10.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 11/28/2022]
Abstract
The studies of low-temperature immobilization of bound water in Antarctic lichenized fungus Turgidosculum complicatulum were performed using 1H NMR and DSC over a wide range of thallus hydration. 1H NMR free induction decays were decomposed into a solid component well described by the Gaussian function and two exponentially decaying components coming from a tightly bound water and from a loosely bound water fraction. 1H NMR spectra revealed one averaged mobile proton signal component. 1H NMR measurements recorded in time and in frequency domain suggest the non-cooperative bound water immobilization in T. complicatulum thallus. The threshold of the hydration level estimated by 1H NMR analysis at which the cooperative bound water freezing was detected was Δm/m0 ≈ 0.39, whereas for DSC analysis was equal to Δm/m0 = 0.375. Main ice melting estimated from DSC measurements for zero hydration level of the sample starts at tm = -(19.29 ± 1.19)°C. However, DSC melting peak shows a composed form being a superposition of the main narrow peak (presumably melting of mycobiont areas) and a broad low-temperature shoulder (presumably melting of isolated photobiont cells). DSC traces recorded after two-hour incubation of T. complicatulum thallus at -20 °C suggest much lower threshold level of hydration at which the ice formation occurs (Δm/m0 = 0.0842). Presumably it is a result of diffusion induced migration of separated water molecules to ice microcrystallites already present in thallus, but still beyond the calorimeter resolution.
Collapse
Affiliation(s)
- M Bacior
- Department of Physics, University of Agriculture in Kraków, Al. Mickiewicza 21, 31-120 Kraków, Poland.
| | - H Harańczyk
- Institute of Physics, Jagiellonian University, ul. Prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland
| | - P Nowak
- Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - P Kijak
- Institute of Physics, Jagiellonian University, ul. Prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland
| | - M Marzec
- Institute of Physics, Jagiellonian University, ul. Prof. Stanisława Łojasiewicza 11, 30-348 Kraków, Poland
| | - J Fitas
- Department of Mechanical Engineering and Agrophysics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - M A Olech
- Institute of Botany, Jagiellonian University, ul. Kopernika 27, 31-501 Kraków, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
43
|
A Systematic Way to Life Detection: Combining Field, Lab and Space Research in Low Earth Orbit. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-96175-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
44
|
Coleine C, Stajich JE, Zucconi L, Onofri S, Pombubpa N, Egidi E, Franks A, Buzzini P, Selbmann L. Antarctic Cryptoendolithic Fungal Communities Are Highly Adapted and Dominated by Lecanoromycetes and Dothideomycetes. Front Microbiol 2018; 9:1392. [PMID: 30008702 PMCID: PMC6033990 DOI: 10.3389/fmicb.2018.01392] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022] Open
Abstract
Endolithic growth is one of the most spectacular microbial adaptations to extreme environmental constraints and the predominant life-form in the ice-free areas of Continental Antarctica. Although Antarctic endolithic microbial communities are known to host among the most resistant and extreme-adapted organisms, our knowledge on microbial diversity and composition in this peculiar niche is still limited. In this study, we investigated the diversity and structure of the fungal assemblage in the cryptoendolithic communities inhabiting sandstone using a meta-barcoding approach targeting the fungal Internal Transcribed Sequence region 1 (ITS1). Samples were collected from 14 sites in the Victoria Land, along an altitudinal gradient ranging from 1,000 to 3,300 m a.s.l. and from 29 to 96 km distance to coast. Our study revealed a clear dominance of a 'core' group of fungal taxa consistently present across all the samples, mainly composed of lichen-forming and Dothideomycetous fungi. Pareto-Lorenz curves indicated a very high degree of specialization (F0 approximately 95%), suggesting these communities are highly adapted but have limited ability to recover after perturbations. Overall, both fungal community biodiversity and composition did not show any correlation with the considered abiotic parameters, potentially due to strong fluctuations of environmental conditions at local scales.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Nuttapon Pombubpa
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| | - Eleonora Egidi
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Ashley Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
- Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, Industrial Yeasts Collection DBVPG, University of Perugia, Perugia, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Section of Mycology, Italian National Antarctic Museum (MNA), Genoa, Italy
| |
Collapse
|
45
|
Onofri S, Selbmann L, Pacelli C, de Vera JP, Horneck G, Hallsworth JE, Zucconi L. Integrity of the DNA and Cellular Ultrastructure of Cryptoendolithic Fungi in Space or Mars Conditions: A 1.5-Year Study at the International Space Station. Life (Basel) 2018; 8:E23. [PMID: 29921763 PMCID: PMC6027225 DOI: 10.3390/life8020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
The black fungi Cryomyces antarcticus and Cryomyces minteri are highly melanized and are resilient to cold, ultra-violet, ionizing radiation and other extreme conditions. These microorganisms were isolated from cryptoendolithic microbial communities in the McMurdo Dry Valleys (Antarctica) and studied in Low Earth Orbit (LEO), using the EXPOSE-E facility on the International Space Station (ISS). Previously, it was demonstrated that C. antarcticus and C. minteri survive the hostile conditions of space (vacuum, temperature fluctuations, and the full spectrum of extraterrestrial solar electromagnetic radiation), as well as Mars conditions that were simulated in space for a 1.5-year period. Here, we qualitatively and quantitatively characterize damage to DNA and cellular ultrastructure in desiccated cells of these two species, within the frame of the same experiment. The DNA and cells of C. antarcticus exhibited a higher resistance than those of C. minteri. This is presumably attributable to the thicker (melanized) cell wall of the former. Generally, DNA was readily detected (by PCR) regardless of exposure conditions or fungal species, but the C. minteri DNA had been more-extensively mutated. We discuss the implications for using DNA, when properly shielded, as a biosignature of recently extinct or extant life.
Collapse
Affiliation(s)
- Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
- Italian National Antarctic Museum (MNA), Mycological Section, 16166 Genoa, Italy.
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Jean Pierre de Vera
- German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Rutherfordstreet 2, 12489 Berlin, Germany.
| | - Gerda Horneck
- German Aerospace Centre, Institute of Aerospace Medicine, Linder Hoehe, D 51170 Köln, Germany.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
46
|
Coleine C, Zucconi L, Onofri S, Pombubpa N, Stajich JE, Selbmann L. Sun Exposure Shapes Functional Grouping of Fungi in Cryptoendolithic Antarctic Communities. Life (Basel) 2018; 8:E19. [PMID: 29865244 PMCID: PMC6027399 DOI: 10.3390/life8020019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022] Open
Abstract
Antarctic cryptoendolithic microbial communities dominate ice-free areas of continental Antarctica, among the harshest environments on Earth. The endolithic lifestyle is a remarkable adaptation to the exceptional environmental extremes of this area, which is considered the closest terrestrial example to conditions on Mars. Recent efforts have attempted to elucidate composition of these extremely adapted communities, but the functionality of these microbes have remained unexplored. We have tested for interactions between measured environmental characteristics, fungal community membership, and inferred functional classification of the fungi present and found altitude and sun exposure were primary factors. Sandstone rocks were collected in Victoria Land, Antarctica along an altitudinal gradient from 834 to 3100 m a.s.l.; differently sun-exposed rocks were selected to test the influence of this parameter on endolithic settlement. Metabarcoding targeting the fungal internal transcribed spacer region 1 (ITS1) was used to catalogue the species found in these communities. Functional profile of guilds found in the samples was associated to species using FUNGuild and variation in functional groups compared across sunlight exposure and altitude. Results revealed clear dominance of lichenized and stress-tolerant fungi in endolithic communities. The main variations in composition and abundance of functional groups among sites correlated to sun exposure, but not to altitude.
Collapse
Affiliation(s)
- Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy.
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy.
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy.
| | - Nuttapon Pombubpa
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA.
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA.
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy.
- Italian National Antarctic Museum (MNA), Mycological Section, Genoa 16166, Italy.
| |
Collapse
|
47
|
Pacelli C, Bryan RA, Onofri S, Selbmann L, Zucconi L, Shuryak I, Dadachova E. The effect of protracted X-ray exposure on cell survival and metabolic activity of fast and slow growing fungi capable of melanogenesis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:255-263. [PMID: 29473314 DOI: 10.1111/1758-2229.12632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to analyse how protracted exposure to X-rays delivered at low dose rates of 0.0032-0.052 kGy h-1 affects the survival and metabolic activity of two microfungi capable of melanogenesis: fast-growing Cryptococcus neoformans (CN) and slow-growing Cryomyces antarcticus (CA). Melanized CN and CA cells survived the protracted exposure better than non-melanized ones, which was consistent with previous reports on the radioprotective role of melanin in these fungi after high dose rate exposures. The survival data were described by the linear quadratic dose response model. The XTT metabolic profiles were practically identical for melanized CN and CA with activity dose-dependent increasing: no changes in the activity of the non-melanized CN and CA were recorded by this assay. In contrast, the MTT assay, which measures the intracellular energy-related processes, recorded an increase in activity of non-melanized CN and CA cells, but not in their melanized counterparts. This could reflect intensive repair processes initiated by the non-melanized cells post exposure. This study suggests that differences in radiation responses between melanized and non-melanized fungal cells occur over a wide range of radiation dose rates.
Collapse
Affiliation(s)
- Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Ruth A Bryan
- Department of Radiology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Igor Shuryak
- Center for Radiological Research, Columbia University, New York, NY, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
48
|
Olsson-Francis K, Ramkissoon NK, Price AB, Slade DJ, Macey MC, Pearson VK. The Study of Microbial Survival in Extraterrestrial Environments Using Low Earth Orbit and Ground-Based Experiments. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Alder-Rangel A, Bailão AM, da Cunha AF, Soares CMA, Wang C, Bonatto D, Dadachova E, Hakalehto E, Eleutherio ECA, Fernandes ÉKK, Gadd GM, Braus GH, Braga GUL, Goldman GH, Malavazi I, Hallsworth JE, Takemoto JY, Fuller KK, Selbmann L, Corrochano LM, von Zeska Kress MR, Bertolini MC, Schmoll M, Pedrini N, Loera O, Finlay RD, Peralta RM, Rangel DEN. The second International Symposium on Fungal Stress: ISFUS. Fungal Biol 2017; 122:386-399. [PMID: 29801782 DOI: 10.1016/j.funbio.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022]
Abstract
The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.
Collapse
Affiliation(s)
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Anderson F da Cunha
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, 90040-060, SP, Brazil
| | - Célia M A Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Diego Bonatto
- Center for Biotechnology, Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, 13565-905, RS, Brazil
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Elias Hakalehto
- Department of Agricultural Sciences, P.O.B. 27, FI-00014, University of Helsinki, Finland
| | - Elis C A Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, RJ, Brazil
| | - Éverton K K Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD15EH, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, D-37077, Germany
| | - Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Iran Malavazi
- Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, 13565-905, SP, Brazil
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Marcia R von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad-Lorenz Straße 24, 3430 Tulln, Austria
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Octavio Loera
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Roger D Finlay
- Uppsala Biocenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala, Sweden
| | - Rosane M Peralta
- Department of Biochemistry, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
| | - Drauzio E N Rangel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil.
| |
Collapse
|
50
|
Selbmann L, Pacelli C, Zucconi L, Dadachova E, Moeller R, de Vera JP, Onofri S. Resistance of an Antarctic cryptoendolithic black fungus to radiation gives new insights of astrobiological relevance. Fungal Biol 2017; 122:546-554. [PMID: 29801799 DOI: 10.1016/j.funbio.2017.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/18/2022]
Abstract
The Antarctic black meristematic fungus Cryomyces antarcticus CCFEE 515 occurs endolithically in the McMurdo Dry Valleys of Antarctica, one of the best analogue for Mars environment on Earth. To date, this fungus is considered one of the best eukaryotic models for astrobiological studies and has been repeatedly selected for space experiments in the last decade. The obtained results are reviewed here, with special focus on responses to space relevant irradiation, UV radiation, and both sparsely and densely ionizing radiation, which represent the major injuries for a putative space-traveller. The remarkable resistance of this model organism to space stress, its radioresistance in particular, and mechanisms involved, significantly contributed to expanding our concept of limits for life and provided new insights on the origin and evolution of life in planetary systems, habitability, and biosignatures for life detection as well as on human protection during space missions.
Collapse
Affiliation(s)
- Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Space Microbiology Research Group, Cologne (Köln), Germany.
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories, Rutherfordstr. 2, 12489 Berlin, Germany.
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|