1
|
Slayden A, Mysiewicz S, North K, Dopico A, Bukiya A. Cerebrovascular Effects of Alcohol Combined with Tetrahydrocannabinol. Cannabis Cannabinoid Res 2024; 9:252-266. [PMID: 36108317 PMCID: PMC10874832 DOI: 10.1089/can.2021.0234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Alcohol (ethanol) and cannabis are among the most widely used recreational drugs in the world. With increased efforts toward legalization of cannabis, there is an alarming trend toward the concomitant (including simultaneous) use of cannabis products with alcohol for recreational purpose. While each drug possesses a distinct effect on cerebral circulation, the consequences of their simultaneous use on cerebral artery diameter have never been studied. Thus, we set to address the effect of simultaneous application of alcohol and (-)-trans-Δ-9-tetrahydrocannabinol (THC) on cerebral artery diameter. Materials and Methods: We used Sprague-Dawley rats because rat cerebral circulation closely mimics morphology, ultrastructure, and function of cerebral circulation of humans. We focused on the middle cerebral artery (MCA) because it supplies blood to the largest brain territory when compared to any other cerebral artery stemming from the circle of Willis. Experiments were performed on pressurized MCA ex vivo, and in cranial windows in vivo. Ethanol and THC were probed at physiologically relevant concentrations. Researchers were "blind" to experimental group identity during data analysis to avoid bias. Results: In males, ethanol mixed with THC resulted in greater constriction of ex vivo pressurized MCA when compared to the effects exerted by separate application of each drug. In females, THC, ethanol, or their mixture failed to elicit measurable effect. Vasoconstriction by ethanol/THC mixture was ablated by either endothelium removal or pharmacological block of calcium- and voltage-gated potassium channels of large conductance (BK type) and cannabinoid receptors. Block of prostaglandin production and of endothelin receptors also blunted constriction by ethanol/THC. In males, the in vivo constriction of MCA by ethanol/THC did not differ from ethanol alone. In females, the in vivo constriction of this artery by ethanol was significantly smaller than in males. However, artery constriction by ethanol/THC did not differ from the constriction in males. Conclusions: Our data point at the complex nature of the cerebrovascular effects elicited by simultaneous use of ethanol and THC. These effects include both local and systemic components.
Collapse
Affiliation(s)
- Alexandria Slayden
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Steven Mysiewicz
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kelsey North
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Alex Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Anna Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Miyahara K, Hino M, Shishido R, Izumi R, Nagaoka A, Hayashi H, Kakita A, Yabe H, Tomita H, Kunii Y. Ethnicity-dependent effect of rs1799971 polymorphism on OPRM1 expression in the postmortem brain and responsiveness to antipsychotics. J Psychiatr Res 2023; 166:10-16. [PMID: 37659266 DOI: 10.1016/j.jpsychires.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Schizophrenia is associated with aberration of inhibitory neurons. Although the mu-opioid receptor (MOR) is an essential modulator of inhibitory neurons, the effect of rs1799971 polymorphism in the MOR gene on risk of schizophrenia is controversial. Moreover, the disturbance of opioids systems in patients with schizophrenia has not been fully examined. We firstly conducted preliminary meta-analyses integrating Asian and European populations separately over 12,000 subjects to assess the effect of rs1799971 on risk of schizophrenia. Based on the above result, we also investigated the effect on the expression levels of MOR mRNA in the prefrontal cortex (PFC) and caudate nucleus of 41 postmortem brains. In addition, we determined whether these levels were related to antemortem schizophrenia symptoms and pharmacotherapeutic effects. The rs1799971 G-allele reduced the risk of schizophrenia in Asian populations (OR: 0.56, 95%CI: 0.32-0.98, p = 0.042) but increased it in European populations (OR: 1.66, 95%CI: 1.08-2.56, p = 0.022). It decreased MOR mRNA levels in PFC in the Japanese population (p = 0.031). Increased MOR mRNA level in PFC correlated with higher total score of antemortem schizophrenia symptoms (p = 0.017). Furthermore, the pharmacotherapeutic effect of first-generation antipsychotics was higher for genotype AA than AG/GG of rs1799971 (p = 0.036). The rs1799971 affects risk of schizophrenia and MOR mRNA expression and the effect varies according to ethnicity. Overexpression of MOR might induce severe schizophrenia symptoms. Therefore, MOR modulation may be the key clue for treating antipsychotics-resistant schizophrenia, and genotyping rs1799971 may provide a better pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- Kazusa Miyahara
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Mizuki Hino
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Risa Shishido
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Ryuta Izumi
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Atsuko Nagaoka
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hideki Hayashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Miyagi, Japan; Department of Psychiatry, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| |
Collapse
|
3
|
Kotoula V, Webster T, Stone J, Mehta MA. Resting-state connectivity studies as a marker of the acute and delayed effects of subanaesthetic ketamine administration in healthy and depressed individuals: A systematic review. Brain Neurosci Adv 2021; 5:23982128211055426. [PMID: 34805548 PMCID: PMC8597064 DOI: 10.1177/23982128211055426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/24/2021] [Indexed: 11/15/2022] Open
Abstract
Acute ketamine administration has been widely used in neuroimaging research to mimic psychosis-like symptoms. Within the last two decades, ketamine has also emerged as a potent, fast-acting antidepressant. The delayed effects of the drug, observed 2–48 h after a single infusion, are associated with marked improvements in depressive symptoms. At the systems’ level, several studies have investigated the acute ketamine effects on brain activity and connectivity; however, several questions remain unanswered around the brain changes that accompany the drug’s antidepressant effects and how these changes relate to the brain areas that appear with altered function and connectivity in depression. This review aims to address some of these questions by focusing on resting-state brain connectivity. We summarise the studies that have examined connectivity changes in treatment-naïve, depressed individuals and those studies that have looked at the acute and delayed effects of ketamine in healthy and depressed volunteers. We conclude that brain areas that are important for emotional regulation and reward processing appear with altered connectivity in depression whereas the default mode network presents with increased connectivity in depressed individuals compared to healthy controls. This finding, however, is not as prominent as the literature often assumes. Acute ketamine administration causes an increase in brain connectivity in healthy volunteers. The delayed effects of ketamine on brain connectivity vary in direction and appear to be consistent with the drug normalising the changes observed in depression. The limited number of studies however, as well as the different approaches for resting-state connectivity analysis make it very difficult to draw firm conclusions and highlight the importance of data sharing and larger future studies.
Collapse
Affiliation(s)
- Vasileia Kotoula
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | | | - Mitul A Mehta
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Tejeda HA, Wang H, Flores RJ, Yarur HE. Dynorphin/Kappa-Opioid Receptor System Modulation of Cortical Circuitry. Handb Exp Pharmacol 2021; 271:223-253. [PMID: 33580392 DOI: 10.1007/164_2021_440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cortical circuits control a plethora of behaviors, from sensation to cognition. The cortex is enriched with neuropeptides and receptors that play a role in information processing, including opioid peptides and their cognate receptors. The dynorphin (DYN)/kappa-opioid receptor (KOR) system has been implicated in the processing of sensory and motivationally-charged emotional information and is highly expressed in cortical circuits. This is important as dysregulation of DYN/KOR signaling in limbic and cortical circuits has been implicated in promoting negative affect and cognitive deficits in various neuropsychiatric disorders. However, research investigating the role of this system in controlling cortical circuits and computations therein is limited. Here, we review the (1) basic anatomy of cortical circuits, (2) anatomical architecture of the cortical DYN/KOR system, (3) functional regulation of cortical synaptic transmission and microcircuit function by the DYN/KOR system, (4) regulation of behavior by the cortical DYN/KOR system, (5) implications for the DYN/KOR system for human health and disease, and (6) future directions and unanswered questions for the field. Further work elucidating the role of the DYN/KOR system in controlling cortical information processing and associated behaviors will be of importance to increasing our understanding of principles underlying neuropeptide modulation of cortical circuits, mechanisms underlying sensation and perception, motivated and emotional behavior, and cognition. Increased emphasis in this area of study will also aid in the identification of novel ways to target the DYN/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Rodolfo J Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Hector E Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Blackwood CA, Cadet JL. The molecular neurobiology and neuropathology of opioid use disorder. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35548327 PMCID: PMC9090195 DOI: 10.1016/j.crneur.2021.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The number of people diagnosed with opioid use disorder has skyrocketed as a consequence of the opioid epidemic and the increased prescribing of opioid drugs for chronic pain relief. Opioid use disorder is characterized by loss of control of drug taking, continued drug use in the presence of adverse consequences, and repeated relapses to drug taking even after long periods of abstinence. Patients who suffer from opioid use disorder often present with cognitive deficits that are potentially secondary to structural brain abnormalities that vary according to the chemical composition of the abused opioid. This review details the neurobiological effects of oxycodone, morphine, heroin, methadone, and fentanyl on brain neurocircuitries by presenting the acute and chronic effects of these drugs on the human brain. In addition, we review results of neuroimaging in opioid use disorder patients and/or histological studies from brains of patients who had expired after acute intoxication following long-term use of these drugs. Moreover, we include relevant discussions of the neurobiological mechanisms involved in promoting abnormalities in the brains of opioid-exposed patients. Finally, we discuss how novel strategies could be used to provide pharmacological treatment against opioid use disorder. Brain abnormalities caused by opioid intoxication. Intoxication of opioids leads to defects in brain neurocircuitries. Insight into the molecular mechanisms associated with craving in heroin addicts.
Collapse
Affiliation(s)
| | - Jean Lud Cadet
- Corresponding author.Molecular Neuropsychiatry Research Branch NIH/NIDA Intramural Research Program 251 Bayview Boulevard Baltimore, MD, USA
| |
Collapse
|
6
|
Klaassens BL, van Gerven JMA, Klaassen ES, van der Grond J, Rombouts SARB. Cholinergic and serotonergic modulation of resting state functional brain connectivity in Alzheimer's disease. Neuroimage 2019; 199:143-152. [PMID: 31112788 DOI: 10.1016/j.neuroimage.2019.05.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/19/2022] Open
Abstract
Disruption of cholinergic and serotonergic neurotransmitter systems is associated with cognitive, emotional and behavioural symptoms of Alzheimer's disease (AD). To investigate the responsiveness of these systems in AD we measured the effects of a single-dose of the selective serotonin reuptake inhibitor citalopram and acetylcholinesterase inhibitor galantamine in 12 patients with AD and 12 age-matched controls on functional brain connectivity with resting state functional magnetic resonance imaging. In this randomized, double blind, placebo-controlled crossover study, functional magnetic resonance images were repeatedly obtained before and after dosing, resulting in a dataset of 432 scans. Connectivity maps of ten functional networks were extracted using a dual regression method and drug vs. placebo effects were compared between groups with a multivariate analysis with signals coming from cerebrospinal fluid and white matter as covariates at the subject level, and baseline and heart rate measurements as confound regressors in the higher-level analysis (at p < 0.05, corrected). A galantamine induced difference between groups was observed for the cerebellar network. Connectivity within the cerebellar network and between this network and the thalamus decreased after galantamine vs. placebo in AD patients, but not in controls. For citalopram, voxelwise network connectivity did not show significant group × treatment interaction effects. However, we found default mode network connectivity with the precuneus and posterior cingulate cortex to be increased in AD patients, which could not be detected within the control group. Further, in contrast to the AD patients, control subjects showed a consistent reduction in mean connectivity with all networks after administration of citalopram. Since AD has previously been characterized by reduced connectivity between the default mode network and the precuneus and posterior cingulate cortex, the effects of citalopram on the default mode network suggest a restoring potential of selective serotonin reuptake inhibitors in AD. The results of this study also confirm a change in cerebellar connections in AD, which is possibly related to cholinergic decline.
Collapse
Affiliation(s)
- Bernadet L Klaassens
- Leiden University, Institute of Psychology, Leiden, the Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Centre for Human Drug Research, Leiden, the Netherlands.
| | | | | | - Jeroen van der Grond
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
| | - Serge A R B Rombouts
- Leiden University, Institute of Psychology, Leiden, the Netherlands; Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands; Leiden University, Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
7
|
Presence and User Experience in a Virtual Environment under the Influence of Ethanol: An Explorative Study. Sci Rep 2018; 8:6407. [PMID: 29686255 PMCID: PMC5913276 DOI: 10.1038/s41598-018-24453-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 03/14/2018] [Indexed: 11/08/2022] Open
Abstract
Virtual Reality (VR) is used for a variety of applications ranging from entertainment to psychological medicine. VR has been demonstrated to influence higher order cognitive functions and cortical plasticity, with implications on phobia and stroke treatment. An integral part for successful VR is a high sense of presence - a feeling of 'being there' in the virtual scenario. The underlying cognitive and perceptive functions causing presence in VR scenarios are however not completely known. It is evident that the brain function is influenced by drugs, such as ethanol, potentially confounding cortical plasticity, also in VR. As ethanol is ubiquitous and forms part of daily life, understanding the effects of ethanol on presence and user experience, the attitudes and emotions about using VR applications, is important. This exploratory study aims at contributing towards an understanding of how low-dose ethanol intake influences presence, user experience and their relationship in a validated VR context. It was found that low-level ethanol consumption did influence presence and user experience, but on a minimal level. In contrast, correlations between presence and user experience were strongly influenced by low-dose ethanol. Ethanol consumption may consequently alter cognitive and perceptive functions related to the connections between presence and user experience.
Collapse
|
8
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
9
|
Li CSR, Zhang S, Hung CC, Chen CM, Duann JR, Lin CP, Lee TSH. Depression in chronic ketamine users: Sex differences and neural bases. Psychiatry Res 2017; 269:1-8. [PMID: 28892733 PMCID: PMC5634929 DOI: 10.1016/j.pscychresns.2017.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/16/2017] [Accepted: 09/01/2017] [Indexed: 01/10/2023]
Abstract
Chronic ketamine use leads to cognitive and affective deficits including depression. Here, we examined sex differences and neural bases of depression in chronic ketamine users. Compared to non-drug using healthy controls (HC), ketamine-using females but not males showed increased depression score as assessed by the Center of Epidemiological Studies Depression Scale (CES-D). We evaluated resting state functional connectivity (rsFC) of the subgenual anterior cingulate cortex (sgACC), a prefrontal structure consistently implicated in the pathogenesis of depression. Compared to HC, ketamine users (KU) did not demonstrate significant changes in sgACC connectivities at a corrected threshold. However, in KU, a linear regression against CES-D score showed less sgACC connectivity to the orbitofrontal cortex (OFC) with increasing depression severity. Examined separately, male and female KU showed higher sgACC connectivity to bilateral superior temporal gyrus and dorsomedial prefrontal cortex (dmPFC), respectively, in correlation with depression. The linear correlation of sgACC-OFC and sgACC-dmPFC connectivity with depression was significantly different in slope between KU and HC. These findings highlighted changes in rsFC of the sgACC as associated with depression and sex differences in these changes in chronic ketamine users.
Collapse
Affiliation(s)
- Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA; Beijing Huilongguan Hospital, Beijing, China.
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Chia-Chun Hung
- Bali Psychiatric Center, Ministry of Health and Welfare, Taiwan
| | - Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Jeng-Ren Duann
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan; Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan
| | - Tony Szu-Hsien Lee
- Department of Health Promotion and Health Education, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
10
|
Murray RM, Englund A, Abi-Dargham A, Lewis DA, Di Forti M, Davies C, Sherif M, McGuire P, D'Souza DC. Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology 2017. [PMID: 28634109 DOI: 10.1016/j.neuropharm.2017.06.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prospective epidemiological studies have consistently demonstrated that cannabis use is associated with an increased subsequent risk of both psychotic symptoms and schizophrenia-like psychoses. Early onset of use, daily use of high-potency cannabis, and synthetic cannabinoids carry the greatest risk. The risk-increasing effects are not explained by shared genetic predisposition between schizophrenia and cannabis use. Experimental studies in healthy humans show that cannabis and its active ingredient, delta-9-tetrahydrocannabinol (THC), can produce transient, dose-dependent, psychotic symptoms, as well as an array of psychosis-relevant behavioral, cognitive and psychophysiological effects; the psychotogenic effects can be ameliorated by cannabidiol (CBD). Findings from structural imaging studies in cannabis users have been inconsistent but functional MRI studies have linked the psychotomimetic and cognitive effects of THC to activation in brain regions implicated in psychosis. Human PET studies have shown that acute administration of THC weakly releases dopamine in the striatum but that chronic users are characterised by low striatal dopamine. We are beginning to understand how cannabis use impacts on the endocannabinoid system but there is much still to learn about the biological mechanisms underlying how cannabis increases risk of psychosis. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- R M Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK.
| | - A Englund
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - A Abi-Dargham
- Department of Psychiatry, School of Medicine, Stony Brook University, New York, USA
| | - D A Lewis
- Department of Psychiatry, University of Pittsburg, PA, USA
| | - M Di Forti
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - C Davies
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - M Sherif
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| | - P McGuire
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - D C D'Souza
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| |
Collapse
|
11
|
Khalili-Mahani N, Rombouts SARB, van Osch MJP, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP, van Gerven JM. Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry. Hum Brain Mapp 2017; 38:2276-2325. [PMID: 28145075 DOI: 10.1002/hbm.23516] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,PERFORM Centre, Concordia University, Montreal, Canada
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Eugene P Duff
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.,Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | | | - Lisa D Nickerson
- McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School & Boston Children's Hospital, Boston, Massachusetts
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Richard Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Alex P Zijdenbos
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,Biospective Inc, Montreal, Quebec, Canada
| | - Joop M van Gerven
- Centre for Human Drug Research, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
12
|
A single dose of l-DOPA changes perceptual experiences and decreases latent inhibition in Parkinson’s disease. J Neural Transm (Vienna) 2016; 124:113-119. [DOI: 10.1007/s00702-016-1630-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/02/2016] [Indexed: 12/17/2022]
|
13
|
Sherif M, Radhakrishnan R, D'Souza DC, Ranganathan M. Human Laboratory Studies on Cannabinoids and Psychosis. Biol Psychiatry 2016; 79:526-38. [PMID: 26970363 DOI: 10.1016/j.biopsych.2016.01.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Some of the most compelling evidence supporting an association between cannabinoid agonists and psychosis comes from controlled laboratory studies in humans. Randomized, double-blind, placebo-controlled, crossover laboratory studies demonstrate that cannabinoid agonists, including phytocannabinoids and synthetic cannabinoids, produce a wide range of positive, negative, and cognitive symptoms and psychophysiologic deficits in healthy human subjects that resemble the phenomenology of schizophrenia. These effects are time locked to drug administration, are dose related, and are transient and rarely necessitate intervention. The magnitude of effects is similar to the effects of ketamine but qualitatively distinct from other psychotomimetic drugs, including ketamine, amphetamine, and salvinorin A. Cannabinoid agonists have also been shown to transiently exacerbate symptoms in individuals with schizophrenia in laboratory studies. Patients with schizophrenia are more vulnerable than healthy control subjects to the acute behavioral and cognitive effects of cannabinoid agonists and experience transient exacerbation of symptoms despite treatment with antipsychotic medications. Furthermore, laboratory studies have failed to demonstrate any "beneficial" effects of cannabinoid agonists in individuals with schizophrenia-challenging the cannabis self-medication hypothesis. Emerging evidence suggests that polymorphisms of several genes related to dopamine metabolism (e.g., COMT, DAT1, and AKT1) may moderate the effects of cannabinoid agonists in laboratory studies. Cannabinoid agonists induce dopamine release, although the magnitude of release does not appear to be commensurate to the magnitude and spectrum of their acute psychotomimetic effects. Interactions between the endocannabinoid, gamma-aminobutyric acid, and glutamate systems and their individual and interactive effects on neural oscillations provide a plausible mechanism underlying the psychotomimetic effects of cannabinoids.
Collapse
Affiliation(s)
- Mohamed Sherif
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Rajiv Radhakrishnan
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Deepak Cyril D'Souza
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Mohini Ranganathan
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|