1
|
Li S, He Y, Turner D, Wei N, Ma L, Taylor DH, Taylor DT, Ji X, Wu J. Electrophysiological Phenotypes of Hippocampal Synaptic and Network Functions in Cannabinoid Receptor 2 Knockout Mice. Cannabis Cannabinoid Res 2024; 9:1267-1276. [PMID: 38502778 DOI: 10.1089/can.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Background: The cannabinoid receptor 2 (CB2R), a cannabinoid receptor primarily expressed in immune cells, has been found in the brain, particularly in the hippocampus, where it plays crucial roles in modulating various neural functions, including synaptic plasticity, neuroprotection, neurogenesis, anxiety and stress responses, and neuroinflammation. Despite this growing understanding, the intricate electrophysiological characteristics of hippocampal neurons in CB2R knockout (CB2R KO) mice remain elusive. Aim and Methods: This study aimed to comprehensively assess the electrophysiological traits of hippocampal synaptic and network functions in CB2R KO mice. The focus was on aspects such as synaptic transmission, short- and long-term synaptic plasticity, and neural network synchrony (theta oscillations). Results: Our findings unveiled multiple functional traits in these CB2R KO mice, notably elevated synaptic transmission in hippocampal CA1 neurons, decreased both synaptic short-term plasticity (paired-pulse facilitation) and long-term potentiation (LTP), and impaired neural network synchronization. Conclusion: In essence, this study yields insightful revelations about the influence of CB2Rs on hippocampal neural functions. By illuminating the electrophysiological modifications in CB2R KO mice, our research enriches the comprehension of CB2R involvement in hippocampal function. Such insights could hold implications for advancing our understanding of the neural mechanisms under the influence of CB2Rs within the brain.
Collapse
Affiliation(s)
- Shuangtao Li
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Yongchang He
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Dharshaun Turner
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Naili Wei
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Luyao Ma
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Devin H Taylor
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Biology, Utah Valley University, Orem, Utah, USA
| | | | - Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
2
|
Mohamadpour H, Farkhondeh Tale Navi F, Heysieattalab S, Irak M, Vahabie AH, Nikzad B. How is social dominance related to our short-term memory? An EEG/ERP investigation of encoding and retrieval during a working memory task. Heliyon 2024; 10:e37389. [PMID: 39296172 PMCID: PMC11408820 DOI: 10.1016/j.heliyon.2024.e37389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Social hierarchies exist in all societies and impact cognitive functions, brain mechanisms, social interactions, and behaviors. High status individuals often exhibit enhanced working memory (WM) performance compared to lower status individuals. This study examined whether individual differences in social dominance, as a predictor of future status, relate to WM abilities. Five hundred and twenty-five students completed the Personality Research Form dominance subscale questionnaire. From this sample, students with the highest and lowest scores were invited to participate in the study. Sixty-four participants volunteered to take part and were subsequently categorized into high- and low-dominance groups based on their dominance subscale questionnaire (PRF_d) scores. They performed a Sternberg WM task with set sizes of 1, 4, or 7 letters while their EEG was recorded. Event-related potential (ERP) and power spectral analysis revealed significantly reduced P3b amplitude and higher event-related synchronization (ERS) of theta and beta during encoding and retrieval phases in the high-than low-dominance group. Despite these neural processing differences, behavioral performance was equivalent between groups, potentially reflecting comparable cognitive load demands of the task across dominance levels. Further, there were similar P3b patterns for each set-size within groups. These findings provide initial evidence that individual differences in social dominance trait correlate with WM functioning, as indexed by neural processing efficiency during WM performance.
Collapse
Affiliation(s)
- Hadi Mohamadpour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Metehan Irak
- Department of Psychology, Bahçeşehir University, Istanbul, Turkey
| | - Abdol-Hossein Vahabie
- Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Behzad Nikzad
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
- Neurobioscience Division, Research Center of Bioscience and Biotechnology, University of Tabriz, Tabriz, Iran
| |
Collapse
|
3
|
Farkhondeh Tale Navi F, Heysieattalab S, Raoufy MR, Sabaghypour S, Nazari M, Nazari MA. Adaptive closed-loop modulation of cortical theta oscillations: Insights into the neural dynamics of navigational decision-making. Brain Stimul 2024; 17:1101-1118. [PMID: 39277130 DOI: 10.1016/j.brs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/04/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.
Collapse
Affiliation(s)
- Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saied Sabaghypour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Mohammad Ali Nazari
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Li Y, Fang W, Qiu H, Yu H, Dong W, Sun Z. Diurnal biological effects of correlated colour temperature and its exposure timing on alertness, cognition, and mood in an enclosed environment. APPLIED ERGONOMICS 2024; 119:104304. [PMID: 38718532 DOI: 10.1016/j.apergo.2024.104304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 06/11/2024]
Abstract
Artificial lighting, which profits from the non-visual effects of light, is a potentially promising solution to support residents' psychophysiological health and performance at specific times of the day in enclosed environments. However, few studies have investigated the non-visual effects of daytime correlated colour temperature (CCT) and its exposure timing on human alertness, cognition, and mood. However, the neural mechanisms underlying these effects are largely unknown. The current study evaluated the effects of daytime CCT and its exposure timing on markers of subjective experience, cognitive performance, and cerebral activity in a simulated enclosed environment. Forty-two participants participated a single-blind laboratory study with a 4 within (CCT: 4000 K vs. 6500 K vs. 8500 K vs. 12,000 K) × 2 between (exposure timing: morning vs. afternoon) mixed design. The results showed time of the day dependent benefits of the daytime CCT on subjective experience, vigilant attention, response inhibition, working memory, emotional perception, and risk decisions. The results of the electroencephalogram (EEG) revealed that lower-frequency EEG bands, including theta, alpha, and alpha-theta, were quite sensitive to daytime CCT intervention, which provides a valuable reference for trying to establish the underlying mechanisms that support the performance-enhancement effects of exposure to CCT in the daytime. However, the results revealed no consistent intervention pattern across these measurements. Therefore, future studies should consider personalised optimisation of daytime CCT for different cognitive demands.
Collapse
Affiliation(s)
- YanJie Li
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Haidian District, 100044 Beijing, China.
| | - WeiNing Fang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Haidian District, 100044 Beijing, China; State Key Laboratory of Advanced Rail Autonomous Operation, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Haidian District, 100044 Beijing, China.
| | - HanZhao Qiu
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Haidian District, 100044 Beijing, China.
| | - Hongqiang Yu
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Haidian District, 100094 Beijing, China.
| | - WenLi Dong
- School of Automation and Intelligence, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Haidian District, 100044 Beijing, China.
| | - Zhe Sun
- School of Automation and Intelligence, Beijing Jiaotong University, No. 3 Shang Yuan Cun, Haidian District, 100044 Beijing, China.
| |
Collapse
|
5
|
Du L, Fan X, Yang Y, Wu S, Liu Y. Quercetin Ameliorates Cognitive Impairment in Depression by Targeting HSP90 to Inhibit NLRP3 Inflammasome Activation. Mol Neurobiol 2024; 61:6628-6641. [PMID: 38329680 DOI: 10.1007/s12035-024-03926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Cognitive dysfunction was a common symptom of major depressive disorder (MDD). In previous studies, psychological stress leads to activation and proliferation of microglial cells in different brain regions. Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory effects in various diseases. To demonstrate the role of quercetin in the hippocampal inflammatory response in depress mice. The chronic unpredictable stress (CUS) depressive mice model built is used to explore the protective effects of quercetin on depression. Neurobehavioral test, protein expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and heat shock protein 90 (HSP90), and cytokines (IL-6, IL-1β, MCP-1, and TNF-α) were assessed. Quercetin ameliorated depressive-like behavior and cognitive impairment, and quercetin attenuates neuroinflammation and by targeting HSP90 to inhibit NLRP3 inflammasome activation. Quercetin inhibited the increase of HSP90 levels in the hippocampus and reverses inflammation-induced cognitive impairment. Besides, quercetin inhibited the increased level of cytokines (IL-6, IL-1β, MCP-1, and TNF-α) in the hippocampus of the depressive model mouse and the increased level of cytokines (IL-6, IL-1β, and MCP-1) in microglia. The current study indicated that quercetin mitigated depressive-like behavior and by targeting HSP90 to inhibit NLRP3 inflammasome activation in microglia and depressive mice model, meanwhile ameliorated cognitive impairment in depression. Quercetin has huge potential for the novel pharmacological efficacy of antidepressant therapy.
Collapse
Affiliation(s)
- Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Xuyuan Fan
- Department of Medicine, Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yi Yang
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
- Department of the Central Laboratory, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Shusheng Wu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Yuan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| |
Collapse
|
6
|
Fernández-Arroyo B, Jurado S, Lerma J. Understanding OLM interneurons: Characterization, circuitry, and significance in memory and navigation. Neuroscience 2024:S0306-4522(24)00366-X. [PMID: 39097181 DOI: 10.1016/j.neuroscience.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Understanding the intricate mechanisms underlying memory formation and retention relies on unraveling how the hippocampus, a structure fundamental for memory acquisition, is organized. Within the complex hippocampal network, interneurons play a crucial role in orchestrating memory processes. Among these interneurons, Oriens-Lacunosum Moleculare (OLM) cells emerge as key regulators, governing the flow of information to CA1 pyramidal cells. In this review, we explore OLM interneurons in detail, describing their mechanisms and effects on memory processing, particularly in spatial and contextual memory tasks. Our aim is to provide a detailed understanding of how OLM interneurons contribute to the dynamic landscape of memory formation and retrieval.
Collapse
Affiliation(s)
| | - Sandra Jurado
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
7
|
Azarfarin M, Ghadiri T, Dadkhah M, Sahab-Negah S. The interaction between cannabinoids and long-term synaptic plasticity: A survey on memory formation and underlying mechanisms. Cell Biochem Funct 2024; 42:e4100. [PMID: 39090824 DOI: 10.1002/cbf.4100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), is an essential phenomenon in memory formation as well as maintenance along with many other cognitive functions, such as those needed for coping with external stimuli. Synaptic plasticity consists of gradual changes in the biochemistry and morphology of pre- and postsynaptic neurons, particularly in the hippocampus. Consuming marijuana as a primary source of exocannabinoids immediately impairs attention and working memory-related tasks. Evidence regarding the effects of cannabinoids on LTP and memory is contradictory. While cannabinoids can affect a variety of specific cannabinoid receptors (CBRs) and nonspecific receptors throughout the body and brain, they exert miscellaneous systemic and local cerebral effects. Given the increasing use of cannabis, mainly among the young population, plus its potential adverse long-term effects on learning and memory processes, it could be a future global health challenge. Indeed, the impact of cannabinoids on memory is multifactorial and depends on the dosage, timing, formula, and route of consumption, plus the background complex interaction of the endocannabinoids system with other cerebral networks. Herein, we review how exogenously administrated organic cannabinoids, CBRs agonists or antagonists, and endocannabinoids can affect LTP and synaptic plasticity through various receptors in interaction with other cerebral pathways and primary neurotransmitters.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Department of Neuroscience,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Dadkhah
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Sahab-Negah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Park W, Alsuradi H, Eid M. EEG correlates to perceived urgency elicited by vibration stimulation of the upper body. Sci Rep 2024; 14:14267. [PMID: 38902337 PMCID: PMC11189896 DOI: 10.1038/s41598-024-65289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Conveying information effectively while minimizing user distraction is critical to human-computer interaction. As the proliferation of audio-visual communication pushes human information processing capabilities to the limit, researchers are turning their attention to haptic interfaces. Haptic feedback has the potential to create a desirable sense of urgency that allows users to selectively focus on events/tasks or process presented information with minimal distraction or annoyance. There is a growing interest in understanding the neural mechanisms associated with haptic stimulation. In this study, we aim to investigate the EEG correlates associated with the perceived urgency elicited by vibration stimuli on the upper body using a haptic vest. A total of 31 participants enrolled in this experiment and were exposed to three conditions: no vibration pattern (NVP), urgent vibration pattern (UVP), and very urgent vibration pattern (VUVP). Through self-reporting, participants confirmed that the vibration patterns elicited significantly different levels of perceived urgency (Friedman test, Holm-Bonferroni correction, p < 0.01). Furthermore, neural analysis revealed that the power spectral density of the delta, theta, and alpha frequency bands in the middle central area (C1, Cz, and C2) significantly increased for the UVP and VUVP conditions as compared to the NVP condition (One-way ANOVA test, Holm-Bonferroni correction, p < 0.01). While the perceptual experience of haptic-induced urgency is well studied with self-reporting and behavioral evidence, this is the first effort to evaluate the neural correlates to haptic-induced urgency using EEG. Further research is warranted to identify unique correlates to the cognitive processes associated with urgency from sensory feedback correlates.
Collapse
Affiliation(s)
- Wanjoo Park
- Engineering Division, New York University Abu Dhabi, Saadiyat Island, 129188, Abu Dhabi, United Arab Emirates
| | - Haneen Alsuradi
- Engineering Division, New York University Abu Dhabi, Saadiyat Island, 129188, Abu Dhabi, United Arab Emirates
- Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Saadiyat Island, 129188, Abu Dhabi, United Arab Emirates
| | - Mohamad Eid
- Center for Artificial Intelligence and Robotics, New York University Abu Dhabi, Saadiyat Island, 129188, Abu Dhabi, United Arab Emirates.
- Department of Electrical Engineering, New York University Abu Dhabi, Saadiyat Island, 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
9
|
Zhao H, Zhang T, Zhang H, Wang Y, Cheng L. Exercise-with-melatonin therapy improves sleep disorder and motor dysfunction in a rat model of ischemic stroke. Neural Regen Res 2024; 19:1336-1343. [PMID: 37905883 PMCID: PMC11467917 DOI: 10.4103/1673-5374.385844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/15/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
Exercise-with-melatonin therapy has complementary and synergistic effects on spinal cord injury and Alzheimer’s disease, but its effect on stroke is still poorly understood. In this study, we established a rat model of ischemic stroke by occluding the middle cerebral artery for 60 minutes. We treated the rats with exercise and melatonin therapy for 7 consecutive days. Results showed that exercise-with-melatonin therapy significantly prolonged sleep duration in the model rats, increased delta power values, and regularized delta power rhythm. Additionally, exercise-with-melatonin therapy improved coordination, endurance, and grip strength, as well as learning and memory abilities. At the same time, it led to higher hippocampal CA1 neuron activity and postsynaptic density thickness and lower expression of glutamate receptor 2 than did exercise or melatonin therapy alone. These findings suggest that exercise-with-melatonin therapy can alleviate sleep disorder and motor dysfunction by increasing glutamate receptor 2 protein expression and regulating hippocampal CA1 synaptic plasticity.
Collapse
Affiliation(s)
- Haitao Zhao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, University of Health and Rehabilitation Sciences, Qingdao, Shandong Province, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Haojie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Yunlei Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| | - Lingna Cheng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- Laboratory of Brain Injury Repair and Rehabilitation, China Rehabilitation Science Institute, Beijing, China
| |
Collapse
|
10
|
Glynos NG, Huels ER, Nelson A, Kim Y, Kennedy RT, Mashour GA, Pal D. Neurochemical and Neurophysiological Effects of Intravenous Administration of N,N-dimethyltryptamine in Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.589047. [PMID: 38712161 PMCID: PMC11071436 DOI: 10.1101/2024.04.19.589047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
N,N-dimethyltryptamine (DMT) is a serotonergic psychedelic that is being investigated clinically for the treatment of psychiatric disorders. Although the neurophysiological effects of DMT in humans are well-characterized, similar studies in animal models as well as data on the neurochemical effects of DMT are generally lacking, which are critical for mechanistic understanding. In the current study, we combined behavioral analysis, high-density (32-channel) electroencephalography, and ultra-high-performance liquid chromatography-tandem mass spectrometry to simultaneously quantify changes in behavior, cortical neural dynamics, and levels of 17 neurochemicals in medial prefrontal and somatosensory cortices before, during, and after intravenous administration of three different doses of DMT (0.75 mg/kg, 3.75 mg/kg, 7.5 mg/kg) in male and female adult rats. All three doses of DMT produced head twitch response with most twitches observed after the low dose. DMT caused dose-dependent increases in serotonin and dopamine levels in both cortical sites along with a reduction in EEG spectral power in theta (4-10 Hz) and low gamma (25-55 Hz), and increase in power in delta (1-4 Hz), medium gamma (65-115), and high gamma (125-155 Hz) bands. Functional connectivity decreased in the delta band and increased across the gamma bands. In addition, we provide the first measurements of endogenous DMT in these cortical sites at levels comparable to serotonin and dopamine, which together with a previous study in occipital cortex, suggests a physiological role for endogenous DMT. This study represents one of the most comprehensive characterizations of psychedelic drug action in rats and the first to be conducted with DMT.
Collapse
Affiliation(s)
- Nicolas G. Glynos
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan, Ann Abor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emma R. Huels
- Department of Anesthesiology, University of Michigan, Ann Abor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda Nelson
- Department of Anesthesiology, University of Michigan, Ann Abor, MI 48109, USA
| | - Youngsoo Kim
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - George A. Mashour
- Department of Anesthesiology, University of Michigan, Ann Abor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dinesh Pal
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Anesthesiology, University of Michigan, Ann Abor, MI 48109, USA
- Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Ren Z, Mu L, Wang L, Xia L, Song P, Wang Y, Li J, Duan F, Li H, Tang H, Wang W, Zhu L, Zhang L, Song X, Wang Y, Zhao W, Zhu Y, Wang Z, Shao W, Zhang X, Jiao D. Predictive role of impulsivity, anxiety, and depression in the efficacy of intermittent theta burst transcranial magnetic stimulation modalities for treating methamphetamine use disorder: A randomized clinical trial. JOURNAL OF SUBSTANCE USE AND ADDICTION TREATMENT 2024; 156:209189. [PMID: 37866441 DOI: 10.1016/j.josat.2023.209189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Methamphetamine use disorder (MUD) can cause impulsive behavior, anxiety, and depression. Stimulation of the left dorsolateral prefrontal cortex in MUD patients by intermittent theta burst repetitive transcranial magnetic stimulation (iTBS-rTMS) is effective in reducing cravings, impulsive behavior, anxiety, and depression. The purpose of this study was to explore whether these psychological factors helped to predict MUD patients' responses to iTBS-rTMS treatment. METHODS Fifty MUD patients and sixty healthy subjects matched for general conditions were used as study subjects. The study randomly divided MUD patients into iTBS-rTMS and sham stimulation groups and received 20 sessions of real or sham iTBS-rTMS treatment, and the study collected cue-related evoked craving data before and after treatment. All subjects completed the Barratt Impulsiveness Scale (BIS-11), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS). RESULTS The MUD patients showed significantly higher levels of impulsivity, anxiety, and depression than the healthy subjects. The MUD patients who received the real treatment had significantly lower impulsivity, anxiety, and depression scores, and better treatment effects on cravings than the sham stimulation group. The Spearman rank correlation and stepwise multiple regression analyses showed that the baseline BIS-11 and the reduction rate (RR) of BIS-11 and RR of SDS were positively correlated with the decrease in cravings in the iTBS-rTMS group. ROC curve analysis showed that RR of SDS (AUC = 91.6 %; 95 % CI = 0.804-1.000) had predictive power to iTBS- rTMS therapeutic efficacy, the cutoff value is 15.102 %. CONCLUSIONS iTBS-rTMS had a good therapeutic effect in MUD patients and the baseline impulsivity, the improved depression and impulsivity were associated with therapeutic effect of iTBS-rTMS. The improved depression had the potential to predict the efficacy of the iTBS-rTMS modality for MUD treatment.
Collapse
Affiliation(s)
- Zixuan Ren
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Linlin Mu
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Lijin Wang
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Lingling Xia
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Peipei Song
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Yan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Junda Li
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fan Duan
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Haonan Li
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Huajun Tang
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, Anhui 233030, China
| | - Wenjuan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Lin Zhu
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Lei Zhang
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Xun Song
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Yujing Wang
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Wei Zhao
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Yuqiong Zhu
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Ze Wang
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Wenyi Shao
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Xiaochu Zhang
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China; CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Dongliang Jiao
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
12
|
Zhang S, Yang Q, Wei C, Shi X, Zhang Y. Study on the influence mechanism of perceived benefits on unsafe behavioral decision-making based on ERPs and EROs. Front Neurosci 2023; 17:1231592. [PMID: 38156269 PMCID: PMC10752936 DOI: 10.3389/fnins.2023.1231592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Perceived benefits are considered one of the significant factors affecting an individual's decision-making process. Our study aimed to explore the influence mechanism of perceived benefits in the decision-making process of unsafe behaviors. Methods Our study used the "One Stimulus-Two Key Choice (S-K1/K2)" paradigm to conduct an EEG experiment. Participants (N = 18) made decisions in risky scenarios under high perceived benefits (HPB), low perceived benefits (LPB), and control conditions (CC). Time domain analysis and time-frequency analysis were applied to the recorded EEG data to extract ERPs (event-related potentials) and EROs (event-related oscillations), which include the P3 component, theta oscillations, alpha oscillations, and beta oscillations. Results Under the HPB condition, the theta power in the central (p = 0.016*) and occipital regions (p = 0.006**) was significantly decreased compared to the CC. Similarly, the alpha power in the frontal (p = 0.022*), central (p = 0.037*), and occipital regions (p = 0.014*) was significantly reduced compared to the CC. Under the LPB condition, theta power in the frontal (p = 0.026*), central (p = 0.028*), and occipital regions (p = 0.010*) was significantly reduced compared to the CC. Conversely, alpha power in the frontal (p = 0.009**), central (p = 0.012*), and occipital regions (p = 0.040*) was significantly increased compared to the HPB condition. Discussion The high perceived benefits may reduce individuals' internal attention and evoke individuals' positive emotions and motivation, leading individuals to underestimate risks. Consequently, they exhibited a greater inclination toward unsafe behaviors. However, the low perceived benefits may reduce individuals' memory review, resulting in a simple decision-making process, and they are more inclined to make fast decisions to avoid loss. The research results can help to provide targeted intervention measures, which are beneficial to reducing workers' unsafe behaviors.
Collapse
Affiliation(s)
- Shu Zhang
- School of Resources and Safety Engineering, Central South University, Changsha, China
| | - Qiyu Yang
- School of Resources and Safety Engineering, Central South University, Changsha, China
| | - Cong Wei
- School of Resources and Safety Engineering, Central South University, Changsha, China
| | - Xiuzhi Shi
- School of Resources and Safety Engineering, Central South University, Changsha, China
| | - Yan Zhang
- School of Educational Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Mette C. Time Perception in Adult ADHD: Findings from a Decade-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3098. [PMID: 36833791 PMCID: PMC9962130 DOI: 10.3390/ijerph20043098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Time perception is impaired in adult ADHD. Since the term time perception subsumes different constructs, including time estimation, time reproduction, time production, and duration discrimination, it remains open whether certain domains are more affected than other domains in adult ADHD. The aim of this explorative review is to present the current state of research on time perception in adult ADHD by analysing studies from the past 10 years. A review of the literature addressing adult ADHD time perception, time estimation, and time reproduction was performed. The search strategy was conducted by using the databases "PubMed", "Medline", and "PSYNDEX". The results of the present review indicate that the number of studies on time perception in adult ADHD is very scarce. Moreover, the main investigated domains of time perception in the past decade were time estimation, time reproduction and time management. Whereas some of the found studies were able to demonstrate a distinct deficit in time estimation, time reproduction and time management other studies were unable to demonstrate a clear association between ADHD and time estimation and time reproduction deficits. However, the diagnostic protocols, study design, and methodology varied between studies. Further studies on time estimation and time reproduction need to be carried out.
Collapse
Affiliation(s)
- Christian Mette
- Department of Psychology, Immanuel-Kant-Str. 18-20, Protestant University of Applied Sciences, 44809 Bochum, Germany
| |
Collapse
|
14
|
Moghadam M, Towhidkhah F, Gharibzadeh S. A fuzzy-oscillatory model of medial prefrontal cortex control function in spatial memory retrieval in human navigation function. Front Syst Neurosci 2022; 16:972985. [PMID: 36341478 PMCID: PMC9634066 DOI: 10.3389/fnsys.2022.972985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Navigation can be broadly defined as the process of moving from an origin to a destination through path-planning. Previous research has shown that navigation is mainly related to the function of the medial temporal lobe (MTL), including the hippocampus (HPC), and medial prefrontal cortex (mPFC), which controls retrieval of the spatial memories from this region. In this study, we suggested a cognitive and computational model of human navigation with a focus on mutual interactions between the hippocampus (HPC) and the mPFC using the concept of synchrony. The Van-der-pol oscillator was used to model the synchronous process of receiving and processing “what stream” information. A fuzzy lookup table system was applied for modeling the controlling function of the mPFC in retrieving spatial information from the HPC. The effect of attention level was also included and simulated. The performance of the model was evaluated using information reported in previous experimental research. Due to the inherent stability of the proposed fuzzy-oscillatory model, it is less sensitive to the exact values of the initial conditions, and therefore, it is shown that it is consistent with the actual human performance in real environments. Analyzing the proposed cognitive and fuzzy-oscillatory computational model demonstrates that the model is able to reproduce certain cognitive and functional disturbances in navigation in related diseases such as Alzheimer’s disease (AD). We have shown that an increase in the bifurcation parameter of the Van-der-pol equation represents an increase in the low-frequency spectral power density and a decrease in the high-frequency spectral power as occurs in AD due to an increase in the amyloid plaques in the brain. These changes in the frequency characteristics of neuronal activity, in turn, lead to impaired recall and retrieval of landmarks information and learned routes upon encountering them. As a result, and because of the wrong frequency code being transmitted, the relevant set of rules in the mPFC is not activated, or another unrelated set will be activated, which leads to forgetfulness and erroneous decisions in routing and eventually losing the route in Alzheimer’s patients.
Collapse
Affiliation(s)
- Maryam Moghadam
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
- *Correspondence: Farzad Towhidkhah
| | - Shahriar Gharibzadeh
- Cognitive Rehabilitation Clinic, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
15
|
Bel-Bahar TS, Khan AA, Shaik RB, Parvaz MA. A scoping review of electroencephalographic (EEG) markers for tracking neurophysiological changes and predicting outcomes in substance use disorder treatment. Front Hum Neurosci 2022; 16:995534. [PMID: 36325430 PMCID: PMC9619053 DOI: 10.3389/fnhum.2022.995534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Substance use disorders (SUDs) constitute a growing global health crisis, yet many limitations and challenges exist in SUD treatment research, including the lack of objective brain-based markers for tracking treatment outcomes. Electroencephalography (EEG) is a neurophysiological technique for measuring brain activity, and although much is known about EEG activity in acute and chronic substance use, knowledge regarding EEG in relation to abstinence and treatment outcomes is sparse. We performed a scoping review of longitudinal and pre-post treatment EEG studies that explored putative changes in brain function associated with abstinence and/or treatment in individuals with SUD. Following PRISMA guidelines, we identified studies published between January 2000 and March 2022 from online databases. Search keywords included EEG, addictive substances (e.g., alcohol, cocaine, methamphetamine), and treatment related terms (e.g., abstinence, relapse). Selected studies used EEG at least at one time point as a predictor of abstinence or other treatment-related outcomes; or examined pre- vs. post-SUD intervention (brain stimulation, pharmacological, behavioral) EEG effects. Studies were also rated on the risk of bias and quality using validated instruments. Forty-four studies met the inclusion criteria. More consistent findings included lower oddball P3 and higher resting beta at baseline predicting negative outcomes, and abstinence-mediated longitudinal decrease in cue-elicited P3 amplitude and resting beta power. Other findings included abstinence or treatment-related changes in late positive potential (LPP) and N2 amplitudes, as well as in delta and theta power. Existing studies were heterogeneous and limited in terms of specific substances of interest, brief times for follow-ups, and inconsistent or sparse results. Encouragingly, in this limited but maturing literature, many studies demonstrated partial associations of EEG markers with abstinence, treatment outcomes, or pre-post treatment-effects. Studies were generally of good quality in terms of risk of bias. More EEG studies are warranted to better understand abstinence- or treatment-mediated neural changes or to predict SUD treatment outcomes. Future research can benefit from prospective large-sample cohorts and the use of standardized methods such as task batteries. EEG markers elucidating the temporal dynamics of changes in brain function related to abstinence and/or treatment may enable evidence-based planning for more effective and targeted treatments, potentially pre-empting relapse or minimizing negative lifespan effects of SUD.
Collapse
Affiliation(s)
- Tarik S. Bel-Bahar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anam A. Khan
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Riaz B. Shaik
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Muhammad A. Parvaz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
16
|
Farrokhi A, Tafakori S, Daliri MR. Dynamic theta-modulated high frequency oscillations in rat medial prefrontal cortex during spatial working memory task. Physiol Behav 2022; 254:113912. [PMID: 35835179 DOI: 10.1016/j.physbeh.2022.113912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
Interaction of oscillatory rhythms at different frequencies is considered to provide a neuronal mechanism for information processing and transmission. These interactions have been suggested to have a vital role in cognitive functions such as working memory and decision-making. Here, we investigated the medial prefrontal cortex (mPFC), which is known to have a critical role in successful execution of spatial working memory tasks. We recorded local field potential oscillations from mPFC while rats performed a delayed-non-match-to-place (DNMTP) task. In the DNMTP task, the rat needed to decide actively about the pathway based on the information remembered in the first phase of each trial. Our analysis revealed a dynamic phase-amplitude coupling (PAC) between theta and high frequency oscillations (HFOs). This dynamic coupling emerged near the turning point and diminished afterward. Further, theta activity during the delay period, which is thought of as the maintenance phase, in the absence of the coupling, can predict task completion time. We previously reported diminished rat performance in the DNMTP task in response to electromagnetic radiation. Here, we report an increase in the theta rhythm during delay activity besides diminishing the coupling after electromagnetic radiation. These findings suggest that the different roles of the mPFC in working memory could be supported by separate mechanisms: Theta activity during the delay period for information maintenance and theta-HFOs phase-amplitude coupling relating to the decision-making procedure.
Collapse
Affiliation(s)
- Ashkan Farrokhi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114 Iran
| | - Shiva Tafakori
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114 Iran
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, 16846-13114 Iran.
| |
Collapse
|
17
|
Cross ZR, Chatburn A, Melberzs L, Temby P, Pomeroy D, Schlesewsky M, Bornkessel-Schlesewsky I. Task-related, intrinsic oscillatory and aperiodic neural activity predict performance in naturalistic team-based training scenarios. Sci Rep 2022; 12:16172. [PMID: 36171478 PMCID: PMC9519541 DOI: 10.1038/s41598-022-20704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Effective teams are essential for optimally functioning societies. However, little is known regarding the neural basis of two or more individuals engaging cooperatively in real-world tasks, such as in operational training environments. In this exploratory study, we recruited forty individuals paired as twenty dyads and recorded dual-EEG at rest and during realistic training scenarios of increasing complexity using virtual simulation systems. We estimated markers of intrinsic brain activity (i.e., individual alpha frequency and aperiodic activity), as well as task-related theta and alpha oscillations. Using nonlinear modelling and a logistic regression machine learning model, we found that resting-state EEG predicts performance and can also reliably differentiate between members within a dyad. Task-related theta and alpha activity during easy training tasks predicted later performance on complex training to a greater extent than prior behaviour. These findings complement laboratory-based research on both oscillatory and aperiodic activity in higher-order cognition and provide evidence that theta and alpha activity play a critical role in complex task performance in team environments.
Collapse
Affiliation(s)
- Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia.
| | - Alex Chatburn
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| | - Lee Melberzs
- Department of Defence, Australian Army, Canberra, Australia
| | - Philip Temby
- Land Division, Defence Science and Technology Group, Edinburgh, SA, Australia
| | - Diane Pomeroy
- Land Division, Defence Science and Technology Group, Edinburgh, SA, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| |
Collapse
|
18
|
Cui K, Yu Z, Xu L, Jiang W, Wang L, Wang X, Zou D, Gu J, Gao F, Zhang X, Wang Z. Behavioral features and disorganization of oscillatory activity in C57BL/6J mice after acute low dose MK-801 administration. Front Neurosci 2022; 16:1001869. [PMID: 36188453 PMCID: PMC9515662 DOI: 10.3389/fnins.2022.1001869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Low dose acute administration of N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 is widely used to model cognition impairments associated with schizophrenia (CIAS) in rodents. However, due to no unified standards for animal strain, dose, route of drug delivery, and the duration of administration, how different doses of MK-801 influence behavior and fundamental frequency bands of the local field potential (LFP) in cortical and subcortical brain regions without consistent conclusions. The optimal dose of MK-801 as a valid cognition impairers to model CIAS in C57BL/6J mice remains unclear. The current study characterizes the behavior and neural oscillation alterations induced by different low doses of MK-801 in medial prefrontal cortex (mPFC) and hippocampus CA1 of C57BL/6J mice. The results reveal that mice treated with 0.1 and 0.3 mg/kg MK-801 demonstrate increased locomotion and diminished prepulse inhibition (PPI), while not when treated with 0.05 mg/kg MK-801. We also find that MK-801 dose as low as 0.05 mg/kg can significantly diminishes spontaneous alteration during the Y-maze test. Additionally, the oscillation power in delta, theta, alpha, gamma and HFO bands of the LFP in mPFC and CA1 was potentiated by different dose levels of MK-801 administration. The current findings revealed that the observed sensitivity against spontaneous alteration impairment and neural oscillation at 0.05 mg/kg MK-801 suggest that 0.05 mg/kg will produce changes in CIAS-relevant behavior without overt changes in locomotion and sensorimotor processing in C57BL/6J mice.
Collapse
Affiliation(s)
- Keke Cui
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo, China
| | - Zhipeng Yu
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Le Xu
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Wangcong Jiang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Luwan Wang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Xiangqun Wang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Dandan Zou
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Jiajie Gu
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Feng Gao
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Xiaoqing Zhang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo, China
| | - Zhengchun Wang
- Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
- The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo, China
- *Correspondence: Zhengchun Wang,
| |
Collapse
|
19
|
Zhuo C, Tian H, Chen J, Li Q, Yang L, Zhang Q, Chen G, Cheng L, Zhou C, Song X. Associations of cognitive impairment in patients with schizophrenia with genetic features and with schizophrenia-related structural and functional brain changes. Front Genet 2022; 13:880027. [PMID: 36061201 PMCID: PMC9437456 DOI: 10.3389/fgene.2022.880027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment is highly prevalent in patients with major psychiatric disorders (MPDs), including schizophrenia (SCZ), bipolar disorder, major depressive disorder, in whom it can be highly disruptive to community functioning and worsen prognosis. Previously, genetic factors and cognitive impairments in MPD patients have been examined mostly in isolated circuits rather than in the whole brain. In the present study, genetic, neuroimaging, and psychometric approaches were combined to investigate the relationship among genetic factors, alterations throughout the brain, and cognitive impairments in a large cohort of patients diagnosed with SCZ, with a reference healthy control (HC) group. Single nucleotide polymorphisms (SNPs) in SCZ-risk genes were found to be strongly related to cognitive impairments as well as to gray matter volume (GMV) and functional connectivity (FC) alterations in the SCZ group. Annotating 136 high-ranking SNPs revealed 65 affected genes (including PPP1R16B, GBBR2, PDE4B, CANCNA1C, SLC12AB, SATB2, MAG12, and SATB2). Only one, a PDE4B SNP (rs1006737), correlated with GMV (r = 0:19 p = 0.015) and FC (r = 0.21, p = 0.0074) in SCZ patients. GMV and FC alterations correlated with one another broadly across brain regions. Moreover, the present data demonstrate three-way SNP-FC-GMV associations in patients with SCZ, thus providing clues regarding potential genetic bases of cognition impairments in SCZ. SNP-FC-GMV relationships correlated with visual learning and reasoning dimensions of cognition. These data provide evidence that SCZ-related cognitive impairments may reflect genetically underlain whole-brain structural and functional alterations.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brian Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
- Digital Analysis Center of Psychiatry, Tianjin Fourth Center Hospital, Tianjin, China
- Department of Psychiatry and Neurology Imaging-Genetics and Comorbidity Laboratory (PNGC_Lab) of Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Deep Learning Center of MRI and Genetics, Wenzhou Seventh People’s Hospital, Wenzhou, China
- *Correspondence: Chuanjun Zhuo, ; Xueqin Song,
| | - Hongjun Tian
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Jiayue Chen
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qianchen Li
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qiuyu Zhang
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Chuanjun Zhuo, ; Xueqin Song,
| |
Collapse
|
20
|
Lam YS, Liu XX, Ke Y, Yung WH. Edge-based network analysis reveals frequency-specific network dynamics in aberrant anxiogenic processing in rats. Netw Neurosci 2022; 6:816-833. [PMID: 36605411 PMCID: PMC9810363 DOI: 10.1162/netn_a_00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 04/10/2022] [Indexed: 01/07/2023] Open
Abstract
Uncovering interactions between edges of brain networks can reveal the organizational principle of the networks and also their dysregulations underlying aberrant behaviours such as in neuropsychiatric diseases. In this study, we looked into the applicability of edge-based network analysis in uncovering possible network mechanisms of aberrant anxiogenic processing. Utilizing a rat model of prodromal Parkinson's disease we examined how a dorsomedial striatum-tied associative network (DSAN) may mediate context-based anxiogenic behaviour. Following dopamine depletion in the dorsomedial striatum, an exaggerated bottom-up signalling (posterior parietal-hippocampal-retrosplenial to anterior prefrontal-cingulate-amygdala regions) and gradient specific to the theta frequency in this network was observed. This change was accompanied by increased anxiety behaviour of the animals. By employing an edge-based approach in correlating informational flow (phase transfer entropy) with functional connectivity of all edges of this network, we further explore how the abnormal bottom-up signalling might be explained by alterations to the informational flow-connectivity motifs in the network. Our results demonstrate usage of edge-based network analysis in revealing concurrent informational processing and functional organization dynamics across multiple pathways in a brain network. This approach in unveiling network abnormalities and its impact on behavioural outcomes would be useful in probing the network basis of neuropsychiatric conditions.
Collapse
Affiliation(s)
- Yin-Shing Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| | - Xiu-Xiu Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
21
|
Mourão FAG, Guarnieri LDO, Amaral Júnior PA, Carvalho VR, Mendes EMAM, Moraes MFD. A Fully Adapted Headstage With Custom Electrode Arrays Designed for Electrophysiological Experiments. Front Neurosci 2022; 15:691788. [PMID: 35309085 PMCID: PMC8928121 DOI: 10.3389/fnins.2021.691788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022] Open
Abstract
Electrophysiological recordings lead amongst the techniques that aim to investigate the dynamics of neural activity sampled from large neural ensembles. However, the financial costs associated with the state-of-the-art technology used to manufacture probes and multi-channel recording systems make these experiments virtually inaccessible to small laboratories, especially if located in developing countries. Here, we describe a new method for implanting several tungsten electrode arrays, widely distributed over the brain. Moreover, we designed a headstage system, using the Intan® RHD2000 chipset, associated with a connector (replacing the expensive commercial Omnetics connector), that allows the usage of disposable and inexpensive cranial implants. Our results showed high-quality multichannel recording in freely moving animals (detecting local field, evoked responses and unit activities) and robust mechanical connections ensuring long-term continuous recordings. Our project represents an open source and inexpensive alternative to develop customized extracellular records from multiple brain regions.
Collapse
Affiliation(s)
- Flávio Afonso Gonçalves Mourão
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo de Oliveira Guarnieri
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Paulo Aparecido Amaral Júnior
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius Rezende Carvalho
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Eduardo Mazoni Andrade Marçal Mendes
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Márcio Flávio Dutra Moraes
- Programa de Pós Graduação em Neurociências, Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Engenharia Elétrica, Departamento de Engenharia Eletrônica (DELT), Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
22
|
Fazekas CL, Szabó A, Török B, Bánrévi K, Correia P, Chaves T, Daumas S, Zelena D. A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour. Int J Mol Sci 2022; 23:790. [PMID: 35054976 PMCID: PMC8775679 DOI: 10.3390/ijms23020790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Krisztina Bánrévi
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
| | - Pedro Correia
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Tiago Chaves
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Stéphanie Daumas
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
23
|
Hippocampus-Prefrontal Coupling Regulates Recognition Memory for Novelty Discrimination. J Neurosci 2021; 41:9617-9632. [PMID: 34642213 DOI: 10.1523/jneurosci.1202-21.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/05/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Recognition memory provides the ability to distinguish familiar from novel objects and places, and is important for recording and updating events to guide appropriate behavior. The hippocampus (HPC) and medial prefrontal cortex (mPFC) have both been implicated in recognition memory, but the nature of HPC-mPFC interactions, and its impact on local circuits in mediating this process is not known. Here we show that novelty discrimination is accompanied with higher theta activity (4-10 Hz) and increased c-Fos expression in both these regions. Moreover, theta oscillations were highly coupled between the HPC and mPFC during recognition memory retrieval for novelty discrimination, with the HPC leading the mPFC, but not during initial learning. Principal neurons and interneurons in the mPFC responded more strongly during recognition memory retrieval compared with learning. Optogenetic silencing of HPC input to the mPFC disrupted coupled theta activity between these two structures, as well as the animals' (male Sprague Dawley rats) ability to differentiate novel from familiar objects. These results reveal a key role of monosynaptic connections between the HPC and mPFC in novelty discrimination via theta coupling and identify neural populations that underlie this recognition memory-guided behavior.SIGNIFICANCE STATEMENT Many memory processes are highly dependent on the interregional communication between the HPC and mPFC via neural oscillations. However, how these two brain regions coordinate their oscillatory activity to engage local neural populations to mediate recognition memory for novelty discrimination is poorly understood. This study revealed that the HPC and mPFC theta oscillations and their temporal coupling is correlated with recognition memory-guided behavior. During novel object recognition, the HPC drives mPFC interneurons to effectively reduce the activity of principal neurons. This study provides the first evidence for the requirement of the HPC-mPFC pathway to mediate recognition memory for novelty discrimination and describes a mechanism for how this memory is regulated.
Collapse
|
24
|
Wang LJ, Mu LL, Ren ZX, Tang HJ, Wei YD, Wang WJ, Song PP, Zhu L, Ling Q, Gao H, Zhang L, Song X, Wei HF, Chang LX, Wei T, Wang YJ, Zhao W, Wang Y, Liu LY, Zhou YD, Zhou RD, Xu HS, Jiao DL. Predictive Role of Executive Function in the Efficacy of Intermittent Theta Burst Transcranial Magnetic Stimulation Modalities for Treating Methamphetamine Use Disorder-A Randomized Clinical Trial. Front Psychiatry 2021; 12:774192. [PMID: 34925101 PMCID: PMC8674464 DOI: 10.3389/fpsyt.2021.774192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) has therapeutic effects on craving in methamphetamine (METH) use disorder (MUD). The chronic abuse of METH causes impairments in executive function, and improving executive function reduces relapse and improves treatment outcomes for drug use disorder. The purpose of this study was to determine whether executive function helped predict patients' responses to rTMS treatment. Methods: This study employed intermittent theta burst stimulation (iTBS) rTMS modalities and observed their therapeutic effects on executive function and craving in MUD patients. MUD patients from an isolated Drug Rehabilitation Institute in China were chosen and randomly allocated to the iTBS group and sham-stimulation group. All participants underwent the Behavior Rating Inventory of Executive Function - Adult Version Scale (BRIEF-A) and Visual Analog Scales (VAS) measurements. Sixty-five healthy adults matched to the general condition of MUD patients were also recruited as healthy controls. Findings: Patients with MUD had significantly worse executive function. iTBS groups had better treatment effects on the MUD group than the sham-stimulation group. Further Spearman rank correlation and stepwise multivariate regression analysis revealed that reduction rates of the total score of the BRIEF-A and subscale scores of the inhibition factor and working memory factor in the iTBS group positively correlated with improvements in craving. ROC curve analysis showed that working memory (AUC = 87.4%; 95% CI = 0.220, 0.631) and GEC (AUC = 0.761%; 95% CI = 0.209, 0.659) had predictive power to iTBS therapeutic efficacy. The cutoff values are 13.393 and 59.804, respectively. Conclusions: The iTBS rTMS had a better therapeutic effect on the executive function of patients with MUD, and the improved executive function had the potential to become a predictor for the efficacy of iTBS modality for MUD treatment. Clinical Trial Registration: ClinicalTrials.gov, identifier: ChiCTR2100046954.
Collapse
Affiliation(s)
- Li-Jin Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Lin-Lin Mu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Zi-Xuan Ren
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Hua-Jun Tang
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - Ya-Dong Wei
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - Wen-Juan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Pei-Pei Song
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Lin Zhu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Qiang Ling
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - He Gao
- Compulsory Isolated Drug Rehabilitation Center, Bengbu, China
| | - Lei Zhang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Xun Song
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Hua-Feng Wei
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Lei-Xin Chang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Tao Wei
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yu-Jing Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Wei Zhao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yan Wang
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Lu-Ying Liu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Yi-Ding Zhou
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Rui-Dong Zhou
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Hua-Shan Xu
- School of Mental Health, Bengbu Medical College, Bengbu, China
| | - Dong-Liang Jiao
- School of Mental Health, Bengbu Medical College, Bengbu, China
| |
Collapse
|
25
|
Soltani Zangbar H, Ghadiri T, Vafaee MS, Ebrahimi Kalan A, Karimipour M, Fallahi S, Ghorbani M, Shahabi P. A potential entanglement between the spinal cord and hippocampus: Theta rhythm correlates with neurogenesis deficiency following spinal cord injury in male rats. J Neurosci Res 2020; 98:2451-2467. [DOI: 10.1002/jnr.24719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 08/08/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
- Aging Research Institute Tabriz University of Medical Sciences Tabriz Iran
- Neurosciences Research Center (NSRC) Tabriz University of Medical Sciences Tabriz Iran
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognition Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | | | - Abbas Ebrahimi Kalan
- Department of Neuroscience and Cognition Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Karimipour
- Department of Applied Cell Sciences Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Solmaz Fallahi
- Department of Physiology Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Meysam Ghorbani
- Department of Physiology Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Parviz Shahabi
- Aging Research Institute Tabriz University of Medical Sciences Tabriz Iran
- Neurosciences Research Center (NSRC) Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|