1
|
Huang J, Qi X, Cheng X, Wang M, Ju H, Ding W, Zhang D. MMF-NNs: Multi-modal Multi-granularity Fusion Neural Networks for brain networks and its application to epilepsy identification. Artif Intell Med 2024; 157:102990. [PMID: 39369635 DOI: 10.1016/j.artmed.2024.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Structural and functional brain networks are generated from two scan sequences of magnetic resonance imaging data, which can provide different perspectives for describing pathological changes caused by brain diseases. Recent studies found that fusing these two types of brain networks improves performance in brain disease identification. However, traditional fusion models combine these brain networks at a single granularity, ignoring the natural multi-granularity structure of brain networks that can be divided into the edge, node, and graph levels. To this end, this paper proposes a Multi-modal Multi-granularity Fusion Neural Networks (MMF-NNs) framework for brain networks, which integrates the features of the multi-modal brain network from global (i.e., graph-level) and local (i.e., edge-level and node-level) granularities to take full advantage of the topological information. Specifically, we design an interactive feature learning module at the local granularity to learn feature maps of structural and functional brain networks at the edge-level and the node-level, respectively. In that way, these two types of brain networks are fused during the feature learning process. At the global granularity, a multi-modal decomposition bilinear pooling module is designed to learn the graph-level joint representation of these brain networks. Experiments on real epilepsy datasets demonstrate that MMF-NNs are superior to several state-of-the-art methods in epilepsy identification.
Collapse
Affiliation(s)
- Jiashuang Huang
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Xiaoyu Qi
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Xueyun Cheng
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hengrong Ju
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Weiping Ding
- School of Artificial Intelligence and Computer Science, Nantong University, Nantong, 226019, China
| | - Daoqiang Zhang
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
2
|
Liu X, Zhang Y, Weng Y, Zhong M, Wang L, Gao Z, Hu H, Zhang Y, Huang B, Huang R. Levodopa therapy affects brain functional network dynamics in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111169. [PMID: 39401562 DOI: 10.1016/j.pnpbp.2024.111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Levodopa (L-dopa) therapy is the most effective pharmacological treatment for motor symptoms of Parkinson's disease (PD). However, its effect on brain functional network dynamics is still unclear. Here, we recruited 26 PD patients and 24 healthy controls, and acquired their resting-state functional MRI data before (PD-OFF) and after (PD-ON) receiving 400 mg L-dopa. Using the independent component analysis and the sliding-window approach, we estimated the dynamic functional connectivity (dFC) and examined the effect of L-dopa on the temporal properties of dFC states, the variability of dFC and functional network topological organization. We found that PD-ON showed decreased mean dwell time in sparsely connected State 2 than PD-OFF, the transformation of the dFC state is more frequent and the variability of dFC was decreased within the auditory network and sensorimotor network in PD-ON. Our findings provide new insights to understand the dynamic neural activity induced by L-dopa therapy in PD patients.
Collapse
Affiliation(s)
- Xiaojin Liu
- Center for Educational Science and Technology, Beijing Normal University, Zhuhai 519087, China; School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Yuze Zhang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Yihe Weng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Miao Zhong
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Zhenni Gao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Huiqing Hu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan 430079, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430079, China; School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Biao Huang
- Department of Radiology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou 510080, China.
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou 510631, China.
| |
Collapse
|
3
|
Dini H, Bruni LE, Ramsøy TZ, Calhoun VD, Sendi MSE. The overlap across psychotic disorders: A functional network connectivity analysis. Int J Psychophysiol 2024; 201:112354. [PMID: 38670348 PMCID: PMC11163820 DOI: 10.1016/j.ijpsycho.2024.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/20/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Functional network connectivity (FNC) has previously been shown to distinguish patient groups from healthy controls (HC). However, the overlap across psychiatric disorders such as schizophrenia (SZ), bipolar (BP), and schizoaffective disorder (SAD) is not evident yet. This study focuses on studying the overlap across these three psychotic disorders in both dynamic and static FNC (dFNC/sFNC). We used resting-state fMRI, demographics, and clinical information from the Bipolar-Schizophrenia Network on Intermediate Phenotypes cohort (BSNIP). The data includes three groups of patients with schizophrenia (SZ, N = 181), bipolar (BP, N = 163), and schizoaffective (SAD, N = 130) and HC (N = 238) groups. After estimating each individual's dFNC, we group them into three distinct states. We evaluated two dFNC features, including occupancy rate (OCR) and distance travelled over time. Finally, the extracted features, including both sFNC and dFNC, are tested statistically across patients and HC groups. In addition, we explored the link between the clinical scores and the extracted features. We evaluated the connectivity patterns and their overlap among SZ, BP, and SAD disorders (false discovery rate or FDR corrected p < 0.05). Results showed dFNC captured unique information about overlap across disorders where all disorder groups showed similar pattern of activity in state 2. Moreover, the results showed similar patterns between SZ and SAD in state 1 which was different than BP. Finally, the distance travelled feature of SZ (average R = 0.245, p < 0.01) and combined distance travelled from all disorders was predictive of the PANSS symptoms scores (average R = 0.147, p < 0.01).
Collapse
Affiliation(s)
- Hossein Dini
- Augmented Cognition Lab, Department of Architecture, Design and Media Technology, Aalborg University, Copenhagen, Denmark
| | - Luis E Bruni
- Augmented Cognition Lab, Department of Architecture, Design and Media Technology, Aalborg University, Copenhagen, Denmark
| | - Thomas Z Ramsøy
- Department of Applied Neuroscience, Neurons Inc., Taastrup, Denmark; Faculty of Neuroscience, Singularity University, Santa Clara, CA, United States
| | - Vince D Calhoun
- Wallace H. Coulter Department of Biomedical Engineering at, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Department of Electrical and Computer Engineering at, Georgia Institute of Technology, Atlanta, GA, United States; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
| | - Mohammad S E Sendi
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States; McLean Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Khalilullah KMI, Agcaoglu O, Sui J, Duda M, Adali T, Calhoun VD. Parallel Multilink Group Joint ICA: Fusion of 3D Structural and 4D Functional Data Across Multiple Resting fMRI Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586091. [PMID: 38585901 PMCID: PMC10996497 DOI: 10.1101/2024.03.21.586091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Multimodal neuroimaging research plays a pivotal role in understanding the complexities of the human brain and its disorders. Independent component analysis (ICA) has emerged as a widely used and powerful tool for disentangling mixed independent sources, particularly in the analysis of functional magnetic resonance imaging (fMRI) data. This paper extends the use of ICA as a unifying framework for multimodal fusion, introducing a novel approach termed parallel multilink group joint ICA (pmg-jICA). The method allows for the fusion of gray matter maps from structural MRI (sMRI) data to multiple fMRI intrinsic networks, addressing the limitations of previous models. The effectiveness of pmg-jICA is demonstrated through its application to an Alzheimer's dataset, yielding linked structure-function outputs for 53 brain networks. Our approach leverages the complementary information from various imaging modalities, providing a unique perspective on brain alterations in Alzheimer's disease. The pmg-jICA identifies several components with significant differences between HC and AD groups including thalamus, caudate, putamen with in the subcortical (SC) domain, insula, parahippocampal gyrus within the cognitive control (CC) domain, and the lingual gyrus within the visual (VS) domain, providing localized insights into the links between AD and specific brain regions. In addition, because we link across multiple brain networks, we can also compute functional network connectivity (FNC) from spatial maps and subject loadings, providing a detailed exploration of the relationships between different brain regions and allowing us to visualize spatial patterns and loading parameters in sMRI along with intrinsic networks and FNC from the fMRI data. In essence, developed approach combines concepts from joint ICA and group ICA to provide a rich set of output characterizing data-driven links between covarying gray matter networks, and a (potentially large number of) resting fMRI networks allowing further study in the context of structure/function links. We demonstrate the utility of the approach by highlighting key structure/function disruptions in Alzheimer's individuals.
Collapse
Affiliation(s)
- K M Ibrahim Khalilullah
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Oktay Agcaoglu
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Jing Sui
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Marlena Duda
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| | - Tülay Adali
- Department of Electrical and Computer Engineering, University of Maryland, Baltimore, Maryland, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Zuo Q, Li R, Shi B, Hong J, Zhu Y, Chen X, Wu Y, Guo J. U-shaped convolutional transformer GAN with multi-resolution consistency loss for restoring brain functional time-series and dementia diagnosis. Front Comput Neurosci 2024; 18:1387004. [PMID: 38694950 PMCID: PMC11061376 DOI: 10.3389/fncom.2024.1387004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction The blood oxygen level-dependent (BOLD) signal derived from functional neuroimaging is commonly used in brain network analysis and dementia diagnosis. Missing the BOLD signal may lead to bad performance and misinterpretation of findings when analyzing neurological disease. Few studies have focused on the restoration of brain functional time-series data. Methods In this paper, a novel U-shaped convolutional transformer GAN (UCT-GAN) model is proposed to restore the missing brain functional time-series data. The proposed model leverages the power of generative adversarial networks (GANs) while incorporating a U-shaped architecture to effectively capture hierarchical features in the restoration process. Besides, the multi-level temporal-correlated attention and the convolutional sampling in the transformer-based generator are devised to capture the global and local temporal features for the missing time series and associate their long-range relationship with the other brain regions. Furthermore, by introducing multi-resolution consistency loss, the proposed model can promote the learning of diverse temporal patterns and maintain consistency across different temporal resolutions, thus effectively restoring complex brain functional dynamics. Results We theoretically tested our model on the public Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and our experiments demonstrate that the proposed model outperforms existing methods in terms of both quantitative metrics and qualitative assessments. The model's ability to preserve the underlying topological structure of the brain functional networks during restoration is a particularly notable achievement. Conclusion Overall, the proposed model offers a promising solution for restoring brain functional time-series and contributes to the advancement of neuroscience research by providing enhanced tools for disease analysis and interpretation.
Collapse
Affiliation(s)
- Qiankun Zuo
- Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan, Hubei, China
- School of Information Engineering, Hubei University of Economics, Wuhan, Hubei, China
- Hubei Internet Finance Information Engineering Technology Research Center, Hubei University of Economics, Wuhan, Hubei, China
| | - Ruiheng Li
- Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan, Hubei, China
- School of Information Engineering, Hubei University of Economics, Wuhan, Hubei, China
| | - Binghua Shi
- Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan, Hubei, China
- School of Information Engineering, Hubei University of Economics, Wuhan, Hubei, China
| | - Jin Hong
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yanfei Zhu
- School of Foreign Languages, Sun Yat-sen University, Guangzhou, China
| | - Xuhang Chen
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Yixian Wu
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Jia Guo
- Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan, Hubei, China
- School of Information Engineering, Hubei University of Economics, Wuhan, Hubei, China
- Hubei Internet Finance Information Engineering Technology Research Center, Hubei University of Economics, Wuhan, Hubei, China
| |
Collapse
|
6
|
Ellis CA, Miller RL, Calhoun VD. Explainable fuzzy clustering framework reveals divergent default mode network connectivity dynamics in schizophrenia. Front Psychiatry 2024; 15:1165424. [PMID: 38495909 PMCID: PMC10941842 DOI: 10.3389/fpsyt.2024.1165424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Dynamic functional network connectivity (dFNC) analysis of resting state functional magnetic resonance imaging data has yielded insights into many neurological and neuropsychiatric disorders. A common dFNC analysis approach uses hard clustering methods like k-means clustering to assign samples to states that summarize network dynamics. However, hard clustering methods obscure network dynamics by assuming (1) that all samples within a cluster are equally like their assigned centroids and (2) that samples closer to one another in the data space than to their centroids are well-represented by their centroids. In addition, it can be hard to compare subjects, as in some cases an individual may not manifest a state strongly enough to enter a hard cluster. Approaches that allow a dimensional approach to connectivity patterns (e.g., fuzzy clustering) can mitigate these issues. In this study, we present an explainable fuzzy clustering framework by combining fuzzy c-means clustering with several explainability metrics and novel summary features. Methods We apply our framework for schizophrenia (SZ) default mode network analysis. Namely, we extract dFNC from individuals with SZ and controls, identify 5 dFNC states, and characterize the dFNC features most crucial to those states with a new perturbation-based clustering explainability approach. We then extract several features typically used in hard clustering and further present a variety of unique features specially designed for use with fuzzy clustering to quantify state dynamics. We examine differences in those features between individuals with SZ and controls and further search for relationships between those features and SZ symptom severity. Results Importantly, we find that individuals with SZ spend more time in states of moderate anticorrelation between the anterior and posterior cingulate cortices and strong anticorrelation between the precuneus and anterior cingulate cortex. We further find that individuals with SZ tend to transition more rapidly than controls between low-magnitude and high-magnitude dFNC states. Conclusion We present a novel dFNC analysis framework and use it to identify effects of SZ upon network dynamics. Given the ease of implementing our framework and its enhanced insight into network dynamics, it has great potential for use in future dFNC studies.
Collapse
Affiliation(s)
- Charles A. Ellis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Robyn L. Miller
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Vince D. Calhoun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States
- Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
7
|
Canal-Garcia A, Veréb D, Mijalkov M, Westman E, Volpe G, Pereira JB. Dynamic multilayer functional connectivity detects preclinical and clinical Alzheimer's disease. Cereb Cortex 2024; 34:bhad542. [PMID: 38212285 PMCID: PMC10839846 DOI: 10.1093/cercor/bhad542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
Increasing evidence suggests that patients with Alzheimer's disease present alterations in functional connectivity but previous results have not always been consistent. One of the reasons that may account for this inconsistency is the lack of consideration of temporal dynamics. To address this limitation, here we studied the dynamic modular organization on resting-state functional magnetic resonance imaging across different stages of Alzheimer's disease using a novel multilayer brain network approach. Participants from preclinical and clinical Alzheimer's disease stages were included. Temporal multilayer networks were used to assess time-varying modular organization. Logistic regression models were employed for disease stage discrimination, and partial least squares analyses examined associations between dynamic measures with cognition and pathology. Temporal multilayer functional measures distinguished all groups, particularly preclinical stages, overcoming the discriminatory power of risk factors such as age, sex, and APOE ϵ4 carriership. Dynamic multilayer functional measures exhibited strong associations with cognition as well as amyloid and tau pathology. Dynamic multilayer functional connectivity shows promise as a functional imaging biomarker for both early- and late-stage Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
- Anna Canal-Garcia
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17165, Sweden
| | - Dániel Veréb
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17165, Sweden
| | - Mite Mijalkov
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17165, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm 17165, Sweden
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg 40530, Sweden
| | - Joana B Pereira
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 17165, Sweden
| | | |
Collapse
|
8
|
Wang T, Yan S, Shan Y, Xing Y, Bi S, Chen Z, Xi H, Xue H, Qi Z, Tang Y, Lu J. Altered Neuronal Activity Patterns of the Prefrontal Cortex in Alzheimer's Disease After Transcranial Alternating Current Stimulation: A Resting-State fMRI Study. J Alzheimers Dis 2024; 101:901-912. [PMID: 39269839 DOI: 10.3233/jad-240400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Background Transcranial alternating current stimulation (tACS) could improve cognition in patients with Alzheimer's disease (AD). However, the effects of tACS on brain activity remain unclear. Objective The purpose is to investigate the change in regional neuronal activity after tACS in AD patients employing resting-state functional magnetic resonance imaging (rs-fMRI). Methods A total of 46 patients with mild AD were enrolled. Each patient received 30 one-hour sessions of real or sham tACS for three weeks (clinical trial: NCT03920826). The fractional amplitude of low-frequency fluctuations (fALFF) and the regional homogeneity (ReHo) measured by rs-fMRI were calculated to evaluate the regional brain activity. Results Compared to baseline, AD patients in the real group exhibited increased fALFF in the left middle frontal gyrus-orbital part and right inferior frontal gyrus-orbital part, as well as increased ReHo in the left precentral gyrus and right middle frontal gyrus at the end of intervention. At the 3-month follow-up, fALFF increased in the left superior parietal lobule and right inferior temporal gyrus, as well as ReHo, in the left middle frontal gyrus and right superior medial frontal gyrus. A higher fALFF in the right lingual gyrus and ReHo in the right parahippocampal gyrus were observed in the response group than in the nonresponse group. Conclusions The findings demonstrated the beneficial effects of tACS on the neuronal activity of the prefrontal cortex and even more extensive regions and provided a neuroimaging biomarker of treatment response in AD patients.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yi Xing
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sheng Bi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhigeng Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Hanyu Xi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Hanxiao Xue
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhigang Qi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yi Tang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
9
|
Chen Z, Chen K, Li Y, Geng D, Li X, Liang X, Lu H, Ding S, Xiao Z, Ma X, Zheng L, Ding D, Zhao Q, Yang L. Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer's disease: Inter-cohort validation of Shanghai Memory Study and ADNI. Hum Brain Mapp 2024; 45:e26529. [PMID: 37991144 PMCID: PMC10789213 DOI: 10.1002/hbm.26529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Mild cognitive impairment (MCI) is a critical prodromal stage of Alzheimer's disease (AD), and the mechanism underlying the conversion is not fully explored. Construction and inter-cohort validation of imaging biomarkers for predicting MCI conversion is of great challenge at present, due to lack of longitudinal cohorts and poor reproducibility of various study-specific imaging indices. We proposed a novel framework for inter-cohort MCI conversion prediction, involving comparison of structural, static, and dynamic functional brain features from structural magnetic resonance imaging (sMRI) and resting-state functional MRI (fMRI) between MCI converters (MCI_C) and non-converters (MCI_NC), and support vector machine for construction of prediction models. A total of 218 MCI patients with 3-year follow-up outcome were selected from two independent cohorts: Shanghai Memory Study cohort for internal cross-validation, and Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort for external validation. In comparison with MCI_NC, MCI_C were mainly characterized by atrophy, regional hyperactivity and inter-network hypo-connectivity, and dynamic alterations characterized by regional and connectional instability, involving medial temporal lobe (MTL), posterior parietal cortex (PPC), and occipital cortex. All imaging-based prediction models achieved an area under the curve (AUC) > 0.7 in both cohorts, with the multi-modality MRI models as the best with excellent performances of AUC > 0.85. Notably, the combination of static and dynamic fMRI resulted in overall better performance as relative to static or dynamic fMRI solely, supporting the contribution of dynamic features. This inter-cohort validation study provides a new insight into the mechanisms of MCI conversion involving brain dynamics, and paves a way for clinical use of structural and functional MRI biomarkers in future.
Collapse
Affiliation(s)
- Zhihan Chen
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Academy for Engineering & TechnologyFudan UniversityShanghaiChina
| | - Keliang Chen
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Yuxin Li
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Functional and Molecular Medical ImagingFudan UniversityShanghaiChina
| | - Daoying Geng
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Academy for Engineering & TechnologyFudan UniversityShanghaiChina
- Institute of Functional and Molecular Medical ImagingFudan UniversityShanghaiChina
| | - Xiantao Li
- Department of Critical Care MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Xiaoniu Liang
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Huimeng Lu
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Saineng Ding
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Zhenxu Xiao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaoxi Ma
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Li Zheng
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Ding Ding
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Qianhua Zhao
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan Hospital, Fudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Liqin Yang
- Department of Radiology, Huashan HospitalFudan UniversityShanghaiChina
- Institute of Functional and Molecular Medical ImagingFudan UniversityShanghaiChina
| | | |
Collapse
|
10
|
Ellis CA, Miller RL, Calhoun VD. Neuropsychiatric Disorder Subtyping Via Clustered Deep Learning Classifier Explanations . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083012 DOI: 10.1109/embc40787.2023.10340837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Identifying subtypes of neuropsychiatric disorders based on characteristics of their brain activity has tremendous potential to contribute to a better understanding of those disorders and to the development of new diagnostic and personalized treatment approaches. Many studies focused on neuropsychiatric disorders examine the interaction of brain networks over time using dynamic functional network connectivity (dFNC) extracted from resting-state functional magnetic resonance imaging data. Some of these studies involve the use of either deep learning classifiers or traditional clustering approaches, but usually not both. In this study, we present a novel approach for subtyping individuals with neuropsychiatric disorders within the context of schizophrenia (SZ). We trained an explainable deep learning classifier to differentiate between dFNC data from individuals with SZ and controls, obtaining a test accuracy of 79%. We next used cross-validation to obtain robust average explanations for SZ training participants across folds, identifying 5 SZ subtypes that each differed from controls in a distinct manner and that had different degrees of symptom severity. These subtypes specifically differed from one another in their interactions between the visual network and the subcortical, sensorimotor, and auditory networks and between the cerebellar network and the cognitive control and subcortical networks. Additionally, we uncovered statistically significant differences in negative symptom scores between the subtypes. It is our hope that the proposed novel subtyping approach will contribute to the improved understanding and characterization of SZ and other neuropsychiatric disorders.
Collapse
|
11
|
Jing R, Chen P, Wei Y, Si J, Zhou Y, Wang D, Song C, Yang H, Zhang Z, Yao H, Kang X, Fan L, Han T, Qin W, Zhou B, Jiang T, Lu J, Han Y, Zhang X, Liu B, Yu C, Wang P, Liu Y. Altered large-scale dynamic connectivity patterns in Alzheimer's disease and mild cognitive impairment patients: A machine learning study. Hum Brain Mapp 2023; 44:3467-3480. [PMID: 36988434 PMCID: PMC10203807 DOI: 10.1002/hbm.26291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegeneration disease associated with substantial disruptions in the brain network. However, most studies investigated static resting-state functional connections, while the alteration of dynamic functional connectivity in AD remains largely unknown. This study used group independent component analysis and the sliding-window method to estimate the subject-specific dynamic connectivity states in 1704 individuals from three data sets. Informative inherent states were identified by the multivariate pattern classification method, and classifiers were built to distinguish ADs from normal controls (NCs) and to classify mild cognitive impairment (MCI) patients with informative inherent states similar to ADs or not. In addition, MCI subgroups with heterogeneous functional states were examined in the context of different cognition decline trajectories. Five informative states were identified by feature selection, mainly involving functional connectivity belonging to the default mode network and working memory network. The classifiers discriminating AD and NC achieved the mean area under the receiver operating characteristic curve of 0.87 with leave-one-site-out cross-validation. Alterations in connectivity strength, fluctuation, and inter-synchronization were found in AD and MCIs. Moreover, individuals with MCI were clustered into two subgroups, which had different degrees of atrophy and different trajectories of cognition decline progression. The present study uncovered the alteration of dynamic functional connectivity in AD and highlighted that the dynamic states could be powerful features to discriminate patients from NCs. Furthermore, it demonstrated that these states help to identify MCIs with faster cognition decline and might contribute to the early prevention of AD.
Collapse
Affiliation(s)
- Rixing Jing
- School of Instrument Science and Opto‐Electronics EngineeringBeijing Information Science and Technology UniversityBeijingChina
| | - Pindong Chen
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Yongbin Wei
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Juanning Si
- School of Instrument Science and Opto‐Electronics EngineeringBeijing Information Science and Technology UniversityBeijingChina
| | - Yuying Zhou
- Department of NeurologyTianjin Huanhu Hospital, Tianjin UniversityTianjinChina
| | - Dawei Wang
- Department of RadiologyQilu Hospital of Shandong UniversityJi'nanChina
| | - Chengyuan Song
- Department of NeurologyQilu Hospital of Shandong UniversityJi'nanChina
| | - Hongwei Yang
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | | | - Hongxiang Yao
- Department of Radiology, the Second Medical CentreNational Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Xiaopeng Kang
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Lingzhong Fan
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
| | - Tong Han
- Department of RadiologyTianjin Huanhu HospitalTianjinChina
| | - Wen Qin
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Bo Zhou
- Department of Neurologythe Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Tianzi Jiang
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
| | - Jie Lu
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Institute of GeriatricsBeijingChina
- National Clinical Research Center for Geriatric DisordersBeijingChina
| | - Xi Zhang
- Department of Neurologythe Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Bing Liu
- State Key Laboratory of Cognition Neuroscience & LearningBeijing Normal UniversityBeijingChina
| | - Chunshui Yu
- Department of RadiologyTianjin Medical University General HospitalTianjinChina
| | - Pan Wang
- Department of NeurologyTianjin Huanhu Hospital, Tianjin UniversityTianjinChina
| | - Yong Liu
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijingChina
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | | |
Collapse
|
12
|
Zhu H, Zhu H, Liu X, Wei F, Li H, Guo Z. The Characteristics of Entorhinal Cortex Functional Connectivity in Alzheimer's Disease Patients with Depression. Curr Alzheimer Res 2023; 19:CAR-EPUB-129980. [PMID: 36872356 DOI: 10.2174/1567205020666230303093112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Depression is one of the most common neuropsychiatric symptoms of Alzheimer's disease (AD) which decreases the life quality of both patients and caregivers. There are currently no effective drugs. It is therefore important to explore the pathogenesis of depression in AD patients. OBJECTIVE The present study aimed to investigate the characteristics of the entorhinal cortex (EC) functional connectivity (FC) in the whole brain neural network of AD patients with depression (D-AD). METHODS Twenty-four D-AD patients, 14 AD patients without depression (nD-AD), and 20 healthy controls underwent resting-state functional magnetic resonance imaging. We set the EC as the seed and used FC analysis. One-way analysis of variance was used to examine FC differences among the three groups. RESULTS Using the left EC as the seed point, there were FC differences among the three groups in the left EC-inferior occipital gyrus. Using the right EC as the seed point, there were FC differences among the three groups in the right EC-middle frontal gyrus, -superior parietal gyrus, -superior medial frontal gyrus, and -precentral gyrus. Compared with the nD-AD group, the D-AD group had increased FC between the right EC and right postcentral gyrus. CONCLUSION Asymmetry of FC in the EC and increased FC between the EC and right postcentral gyrus may be important in the pathogenesis of depression in AD.
Collapse
Affiliation(s)
- Haokai Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang 310000, China
| | - Hong Zhu
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital, China-USA Neuroimaging Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fuquan Wei
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Huichao Li
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| | - Zhongwei Guo
- Tongde Hospital of Zhejiang Province, Zhejiang Mental Health Center, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
13
|
Ellis CA, Miller RL, Calhoun VD. Explainable Fuzzy Clustering Framework Reveals Divergent Default Mode Network Connectivity Dynamics in Schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528329. [PMID: 36824777 PMCID: PMC9949005 DOI: 10.1101/2023.02.13.528329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Dynamic functional network connectivity (dFNC) analysis of resting state functional magnetic resonance imaging data has yielded insights into many neurological and neuropsychiatric disorders. A common dFNC analysis approach uses hard clustering methods like k-means clustering to assign samples to states that summarize network dynamics. However, hard clustering methods obscure network dynamics by assuming (1) that all samples within a cluster are equally like their assigned centroids and (2) that samples closer to one another in the data space than to their centroids are well-represented by their centroids. In addition, it can be hard to compare subjects, as in some cases an individual may not manifest a state strongly enough to enter a hard cluster. Approaches that allow a dimensional approach to connectivity patterns (e.g., fuzzy clustering) can mitigate these issues. In this study, we present an explainable fuzzy clustering framework by combining fuzzy c-means clustering with several explainability metrics. We apply our framework for schizophrenia (SZ) default mode network analysis, identifying 5 states and characterizing those states with a new explainability approach. While also showing that features typically used in hard clustering can be extracted in our framework, we present a variety of unique features to quantify state dynamics and identify effects of SZ upon network dynamics. We further uncover relationships between symptom severity and interactions of the precuneus with the anterior and posterior cingulate cortex. Given the ease of implementing our framework and its enhanced insight into network dynamics, it has great potential for use in future dFNC studies.
Collapse
Affiliation(s)
- Charles A. Ellis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
| | - Robyn L. Miller
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
- Department of Computer Science, Georgia State University, Atlanta, Georgia, United States
| | - Vince D. Calhoun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, United States
- Department of Computer Science, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
14
|
Kazemi-Harikandei SZ, Shobeiri P, Salmani Jelodar MR, Tavangar SM. Effective connectivity in individuals with Alzheimer's disease and mild cognitive impairment: A systematic review. NEUROSCIENCE INFORMATICS 2022; 2:100104. [DOI: 10.1016/j.neuri.2022.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
|
15
|
van den Berg M, Adhikari MH, Verschuuren M, Pintelon I, Vasilkovska T, Van Audekerke J, Missault S, Heymans L, Ponsaerts P, De Vos WH, Van der Linden A, Keliris GA, Verhoye M. Altered basal forebrain function during whole-brain network activity at pre- and early-plaque stages of Alzheimer's disease in TgF344-AD rats. Alzheimers Res Ther 2022; 14:148. [PMID: 36217211 PMCID: PMC9549630 DOI: 10.1186/s13195-022-01089-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Imbalanced synaptic transmission appears to be an early driver in Alzheimer's disease (AD) leading to brain network alterations. Early detection of altered synaptic transmission and insight into mechanisms causing early synaptic alterations would be valuable treatment strategies. This study aimed to investigate how whole-brain networks are influenced at pre- and early-plague stages of AD and if these manifestations are associated with concomitant cellular and synaptic deficits. METHODS: To this end, we used an established AD rat model (TgF344-AD) and employed resting state functional MRI and quasi-periodic pattern (QPP) analysis, a method to detect recurrent spatiotemporal motifs of brain activity, in parallel with state-of-the-art immunohistochemistry in selected brain regions. RESULTS At the pre-plaque stage, QPPs in TgF344-AD rats showed decreased activity of the basal forebrain (BFB) and the default mode-like network. Histological analyses revealed increased astrocyte abundance restricted to the BFB, in the absence of amyloid plaques, tauopathy, and alterations in a number of cholinergic, gaba-ergic, and glutamatergic synapses. During the early-plaque stage, when mild amyloid-beta (Aβ) accumulation was observed in the cortex and hippocampus, QPPs in the TgF344-AD rats normalized suggesting the activation of compensatory mechanisms during this early disease progression period. Interestingly, astrogliosis observed in the BFB at the pre-plaque stage was absent at the early-plaque stage. Moreover, altered excitatory/inhibitory balance was observed in cortical regions belonging to the default mode-like network. In wild-type rats, at both time points, peak activity in the BFB preceded peak activity in other brain regions-indicating its modulatory role during QPPs. However, this pattern was eliminated in TgF344-AD suggesting that alterations in BFB-directed neuromodulation have a pronounced impact in network function in AD. CONCLUSIONS This study demonstrates the value of rsfMRI and advanced network analysis methods to detect early alterations in BFB function in AD, which could aid early diagnosis and intervention in AD. Restoring the global synaptic transmission, possibly by modulating astrogliosis in the BFB, might be a promising therapeutic strategy to restore brain network function and delay the onset of symptoms in AD.
Collapse
Affiliation(s)
- Monica van den Berg
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohit H. Adhikari
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Isabel Pintelon
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Tamara Vasilkovska
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Stephan Missault
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Loran Heymans
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- grid.5284.b0000 0001 0790 3681Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Winnok H. De Vos
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Annemie Van der Linden
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.511960.aInstitute of Computer Science, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| | - Marleen Verhoye
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Palmer WC, Park SM, Levendovszky SR. Brain state transition analysis using ultra-fast fMRI differentiates MCI from cognitively normal controls. Front Neurosci 2022; 16:975305. [PMID: 36248645 PMCID: PMC9555083 DOI: 10.3389/fnins.2022.975305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Conventional resting-state fMRI studies indicate that many cortical and subcortical regions have altered function in Alzheimer's disease (AD) but the nature of this alteration has remained unclear. Ultrafast fMRIs with sub-second acquisition times have the potential to improve signal contrast and enable advanced analyses to understand temporal interactions between brain regions as opposed to spatial interactions. In this work, we leverage such fast fMRI acquisitions from Alzheimer's disease Neuroimaging Initiative to understand temporal differences in the interactions between resting-state networks in 55 older adults with mild cognitive impairment (MCI) and 50 cognitively normal healthy controls. Methods We used a sliding window approach followed by k-means clustering. At each window, we computed connectivity i.e., correlations within and across the regions of the default mode, salience, dorsal attention, and frontoparietal network. Visual and somatosensory networks were excluded due to their lack of association with AD. Using the Davies-Bouldin index, we identified clusters of windows with distinct connectivity patterns, also referred to as brain states. The fMRI time courses were converted into time courses depicting brain state transition. From these state time course, we calculated the dwell time for each state i.e., how long a participant spent in each state. We determined how likely a participant transitioned between brain states. Both metrics were compared between MCI participants and controls using a false discovery rate correction of multiple comparisons at a threshold of. 0.05. Results We identified 8 distinct brain states representing connectivity within and between the resting state networks. We identified three transitions that were different between controls and MCI, all involving transitions in connectivity between frontoparietal, dorsal attention, and default mode networks (p<0.04). Conclusion We show that ultra-fast fMRI paired with dynamic functional connectivity analysis allows us to capture temporal transitions between brain states. Most changes were associated with transitions between the frontoparietal and dorsal attention networks connectivity and their interaction with the default mode network. Although future work needs to validate these findings, the brain networks identified in our work are known to interact with each other and play an important role in cognitive function and memory impairment in AD.
Collapse
|
17
|
Seixas AA, Rajabli F, Pericak-Vance MA, Jean-Louis G, Harms RL, Tarnanas I. Associations of digital neuro-signatures with molecular and neuroimaging measures of brain resilience: The altoida large cohort study. Front Psychiatry 2022; 13:899080. [PMID: 36061297 PMCID: PMC9435312 DOI: 10.3389/fpsyt.2022.899080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/06/2022] [Indexed: 01/08/2023] Open
Abstract
Background Mixed results in the predictive ability of traditional biomarkers to determine cognitive functioning and changes in older adults have led to misdiagnosis and inappropriate treatment plans to address mild cognitive impairment and dementia among older adults. To address this critical gap, the primary goal of the current study is to investigate whether a digital neuro signature (DNS-br) biomarker predicted global cognitive functioning and change over time relative among cognitively impaired and cognitive healthy older adults. The secondary goal is to compare the effect size of the DNS-br biomarker on global cognitive functioning compared to traditional imaging and genomic biomarkers. The tertiary goal is to investigate which demographic and clinical factors predicted DNS-br in cognitively impaired and cognitively healthy older adults. Methods We conducted two experiments (Study A and Study B) to assess DNS for brain resilience (DNS-br) against the established FDG-PET brain imaging signature for brain resilience, based on a 10 min digital cognitive assessment tool. Study A was a semi-naturalistic observational study that included 29 participants, age 65+, with mild to moderate mild cognitive impairment and AD diagnosis. Study B was also a semi-naturalistic observational multicenter study which included 496 participants (213 mild cognitive impairment (MCI) and 283 cognitively healthy controls (HC), a total of 525 participants-cognitively healthy (n = 283) or diagnosed with MCI (n = 213) or AD (n = 29). Results DNS-br total score and majority of the 11 DNS-br neurocognitive subdomain scores were significantly associated with FDG-PET resilience signature, PIB ratio, cerebral gray matter and white matter volume after adjusting for multiple testing. DNS-br total score predicts cognitive impairment for the 80+ individuals in the Altoida large cohort study. We identified a significant interaction between the DNS-br total score and time, indicating that participants with higher DNS-br total score or FDG-PET in the resilience signature would show less cognitive decline over time. Conclusion Our findings highlight that a digital biomarker predicted cognitive functioning and change, which established biomarkers are unable to reliably do. Our findings also offer possible etiologies of MCI and AD, where education did not protect against cognitive decline.
Collapse
Affiliation(s)
- Azizi A. Seixas
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Margaret A. Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Girardin Jean-Louis
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Ioannis Tarnanas
- Altoida Inc., Washington, DC, United States
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Ellis CA, Sendi MSE, Miller RL, Calhoun VD. An Unsupervised Feature Learning Approach for Elucidating Hidden Dynamics in rs-fMRI Functional Network Connectivity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4449-4452. [PMID: 36086408 DOI: 10.1109/embc48229.2022.9871548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic functional network connectivity (dFNC) data extracted from resting state functional magnetic resonance imaging (rs-fMRI) recordings has played a significant role in characterizing the role that brain network interactions play in a variety of brain disorders and cognitive functions. dFNC analyses frequently use clustering methods to identify states of network activity. However, it is possible that these states are dominated by a few highly influential networks or nodes, which could obscure condition-related insights that might be gained from networks or nodes less influential to the clustering. In this study, we propose a novel feature learning-based approach that could contribute to the identification of condition-related activity in formerly less influential networks or nodes. We demonstrate the viability of our approach within the context of schizophrenia (SZ), applying our approach to a dataset consisting of 151 participants with SZ and 160 controls (HCs). We find that the removal of some connectivity pairs significantly affects the underlying states and magnifies the differences between participants with SZ and HCs in each state. Given our findings, we hope that our approach will contribute to the characterization and improved diagnosis of a variety of neurological conditions and functions. Clinical Relevance- Our approach could contribute to the characterization and diagnosis of many neurological conditions.
Collapse
|
19
|
Yin W, Zhou X, Li C, You M, Wan K, Zhang W, Zhu W, Li M, Zhu X, Qian Y, Sun Z. The Clustering Analysis of Time Properties in Patients With Cerebral Small Vessel Disease: A Dynamic Connectivity Study. Front Neurol 2022; 13:913241. [PMID: 35795790 PMCID: PMC9251301 DOI: 10.3389/fneur.2022.913241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeThis study aimed to investigate the dynamic functional connectivity (DFC) pattern in cerebral small vessel disease (CSVD) and explore the relationships between DFC temporal properties and cognitive impairment in CSVD.MethodsFunctional data were collected from 67 CSVD patients, including 35 patients with subcortical vascular cognitive impairment (SVCI) and 32 cognitively unimpaired (CU) patients, as well as 35 healthy controls (HCs). The DFC properties were estimated by k-means clustering analysis. DFC strength analysis was used to explore the regional functional alterations between CSVD patients and HCs. Correlation analysis was used for DFC properties with cognition and SVD scores, respectively.ResultsThe DFC analysis showed three distinct connectivity states (state I: sparsely connected, state II: strongly connected, state III: intermediate pattern). Compared to HCs, CSVD patients exhibited an increased proportion in state I and decreased proportion in state II. Besides, CSVD patients dwelled longer in state I while dwelled shorter in state II. CSVD subgroup analyses showed that state I frequently occurred and dwelled longer in SVCI compared with CSVD-CU. Also, the internetwork (frontal-parietal lobe, frontal-occipital lobe) and intranetwork (frontal lobe, occipital lobe) functional activities were obviously decreased in CSVD. Furthermore, the fractional windows and mean dwell time (MDT) in state I were negatively correlated with cognition in CSVD but opposite to cognition in state II.ConclusionPatients with CSVD accounted for a higher proportion and dwelled longer mean time in the sparsely connected state, while presented lower proportion and shorter mean dwell time in the strongly connected state, which was more prominent in SVCI. The changes in the DFC are associated with altered cognition in CSVD. This study provides a better explanation of the potential mechanism of CSVD patients with cognitive impairment from the perspective of DFC.
Collapse
Affiliation(s)
- Wenwen Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenchen Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengzhe You
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenhao Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingxu Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Zhongwu Sun
| |
Collapse
|
20
|
Shi JY, Cai LM, Lin JH, Zou ZY, Zhang XH, Chen HJ. Dynamic Alterations in Functional Connectivity Density in Amyotrophic Lateral Sclerosis: A Resting-State Functional Magnetic Resonance Imaging Study. Front Aging Neurosci 2022; 14:827500. [PMID: 35370623 PMCID: PMC8967369 DOI: 10.3389/fnagi.2022.827500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Aims Current knowledge on the temporal dynamics of the brain functional organization in amyotrophic lateral sclerosis (ALS) is limited. This is the first study on alterations in the patterns of dynamic functional connection density (dFCD) involving ALS. Methods We obtained resting-state functional magnetic resonance imaging (fMRI) data from 50 individuals diagnosed with ALS and 55 healthy controls (HCs). We calculated the functional connectivity (FC) between a given voxel and all other voxels within the entire brain and yield the functional connection density (FCD) value per voxel. dFCD was assessed by sliding window correlation method. In addition, the standard deviation (SD) of dFCD across the windows was computed voxel-wisely to measure dFCD variability. The difference in dFCD variability between the two groups was compared using a two-sample t-test following a voxel-wise manner. The receiver operating characteristic (ROC) curve was used to assess the between-group recognition performance of the dFCD variability index. Results The dFCD variability was significantly reduced in the bilateral precentral and postcentral gyrus compared with the HC group, whereas a marked increase was observed in the left middle frontal gyrus of ALS patients. dFCD variability exhibited moderate potential (areas under ROC curve = 0.753-0.837, all P < 0.001) in distinguishing two groups. Conclusion ALS patients exhibit aberrant dynamic property in brain functional architecture. The dFCD evaluation improves our understanding of the pathological mechanisms underlying ALS and may assist in its diagnosis.
Collapse
Affiliation(s)
- Jia-Yan Shi
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li-Min Cai
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Hui Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiao-Hong Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
21
|
Zhu JD, Huang CW, Chang HI, Tsai SJ, Huang SH, Hsu SW, Lee CC, Chen HJ, Chang CC, Yang AC. Functional MRI and ApoE4 genotype for predicting cognitive decline in amyloid-positive individuals. Ther Adv Neurol Disord 2022; 15:17562864221138154. [DOI: 10.1177/17562864221138154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background: In light of advancements in machine learning techniques, many studies have implemented machine learning approaches combined with data measures to predict and classify Alzheimer’s disease. Studies that predicted cognitive status with longitudinal follow-up of amyloid-positive individuals remain scarce, however. Objective: We developed models based on voxel-wise functional connectivity (FC) density mapping and the presence of the ApoE4 genotype to predict whether amyloid-positive individuals would experience cognitive decline after 1 year. Methods: We divided 122 participants into cognitive decline and stable cognition groups based on the participants’ change rates in Mini-Mental State Examination scores. In addition, we included 68 participants from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database as an external validation data set. Subsequently, we developed two classification models: the first model included 99 voxels, and the second model included 99 voxels and the ApoE4 genotype as features to train the models by Wide Neural Network algorithm with fivefold cross-validation and to predict the classes in the hold-out test and ADNI data sets. Results: The results revealed that both models demonstrated high accuracy in classifying the two groups in the hold-out test data set. The model for FC demonstrated good performance, with a mean F1-score of 0.86. The model for FC combined with the ApoE4 genotype achieved superior performance, with a mean F1-score of 0.90. In the ADNI data set, the two models demonstrated stable performances, with mean F1-scores of 0.77 in the first and second models. Conclusion: Our findings suggest that the proposed models exhibited promising accuracy for predicting cognitive status after 1 year in amyloid-positive individuals. Notably, the combination of FC and the ApoE4 genotype increased prediction accuracy. These findings can assist clinicians in predicting changes in cognitive status in individuals with a high risk of Alzheimer’s disease and can assist future studies in developing precise treatment and prevention strategies.
Collapse
Affiliation(s)
- Jun-Ding Zhu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-I Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Wei Hsu
- Department of NeuroRadiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of NeuroRadiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hong-Jie Chen
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Cognition and Aging Center, Institute for Translational Research in Biomedicine, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123 Ta-Pei Road, Niau-Sung District, Kaohsiung 833, Taiwan
| | - Albert C. Yang
- Institute of Brain Science/Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei 112, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|