1
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
2
|
Jung SM, Zhu HJ. Regulation of Human Hydrolases and Its Implications in Pharmacokinetics and Pharmacodynamics. Drug Metab Dispos 2024; 52:1139-1151. [PMID: 38777597 PMCID: PMC11495669 DOI: 10.1124/dmd.123.001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrolases represent an essential class of enzymes indispensable for the metabolism of various clinically essential medications. Individuals exhibit marked differences in the expression and activation of hydrolases, resulting in significant variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by these enzymes. The regulation of hydrolase expression and activity involves both genetic polymorphisms and nongenetic factors. This review examines the current understanding of genetic and nongenetic regulators of six clinically significant hydrolases, including carboxylesterase (CES)-1 CES2, arylacetamide deacetylase (AADAC), paraoxonase (PON)-1 PON3, and cathepsin A (CTSA). We explore genetic variants linked to the expression and activity of the hydrolases and their effects on the PK and PD of their substrate drugs. Regarding nongenetic regulators, we focus on the inhibitors and inducers of these enzymes. Additionally, we examine the developmental expression patterns and gender differences in the hydrolases when pertinent information was available. Many genetic and nongenetic regulators were found to be associated with the expression and activity of the hydrolases and PK and PD. However, hydrolases remain generally understudied compared with other drug-metabolizing enzymes, such as cytochrome P450s. The clinical significance of genetic and nongenetic regulators has not yet been firmly established for the majority of hydrolases. Comprehending the mechanisms that underpin the regulation of these enzymes holds the potential to refine therapeutic regimens, thereby enhancing the efficacy and safety of drugs metabolized by the hydrolases. SIGNIFICANCE STATEMENT: Hydrolases play a crucial role in the metabolism of numerous clinically important medications. Genetic polymorphisms and nongenetic regulators can affect hydrolases' expression and activity, consequently influencing the exposure and clinical outcomes of hydrolase substrate drugs. A comprehensive understanding of hydrolase regulation can refine therapeutic regimens, ultimately enhancing the efficacy and safety of drugs metabolized by the enzymes.
Collapse
Affiliation(s)
- Sun Min Jung
- Departments of Pharmaceutical Sciences (S.M.J.) and Clinical Pharmacy (H.-J.Z.), University of Michigan, Ann Arbor, Michigan
| | - Hao-Jie Zhu
- Departments of Pharmaceutical Sciences (S.M.J.) and Clinical Pharmacy (H.-J.Z.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Nagaoka M, Murata T, Nagamine T, Fujise N. Methylphenidate-Associated Creatine Kinase Level Elevation. Am J Ther 2024; 31:e498-e502. [PMID: 38976538 DOI: 10.1097/mjt.0000000000001701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Affiliation(s)
- Maiko Nagaoka
- Kumamoto Seimei Hospital, Kumamoto, Japan
- Health Care Center, Kumamoto University, Kumamoto, Japan
| | | | | | - Noboru Fujise
- Health Care Center, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Li S, May C, Pang TY, Churilov L, Hannan AJ, Johnson KA, Burrows EL. Mice with an autism-associated R451C mutation in neuroligin-3 show intact attention orienting but atypical responses to methylphenidate and atomoxetine in the mouse-Posner task. Psychopharmacology (Berl) 2024; 241:555-567. [PMID: 38170320 DOI: 10.1007/s00213-023-06520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
RATIONALE Atypical attention orienting has been associated with some autistic symptoms, but the neural mechanisms remain unclear. The human Posner task, a classic attention orienting paradigm, was recently adapted for use with mice, supporting the investigation of the neurobiological underpinnings of atypical attention orienting in preclinical mouse models. OBJECTIVE The current study tested mice expressing the autism-associated R451C gene mutation in neuroligin-3 (NL3) on the mouse-Posner (mPosner) task. METHODS NL3R451C and wild-type (WT) mice were trained to respond to a validly or invalidly cued target on a touchscreen. The cue was a peripheral non-predictive flash in the exogenous task and a central spatially predictive image in the endogenous task. The effects of dopaminergic- and noradrenergic-modulating drugs, methylphenidate and atomoxetine, on task performance were assessed. RESULTS In both tasks, mice were quicker and more accurate in the validly versus invalidly cued trials, consistent with results in the human Posner task. NL3R451C and WT mice showed similar response times and accuracy but responded differently when treated with methylphenidate and atomoxetine. Methylphenidate impaired exogenous attention disengagement in NL3R451C mice but did not significantly affect WT mice. Atomoxetine impaired endogenous orienting in WT mice but did not significantly affect NL3R451C mice. CONCLUSIONS NL3R451C mice demonstrated intact attention orienting but altered responses to the pharmacological manipulation of the dopaminergic and noradrenergic networks. These findings expand our understanding of the NL3R451C mutation by suggesting that this mutation may lead to selective alterations in attentional processes.
Collapse
Affiliation(s)
- Shuting Li
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Carlos May
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Leonid Churilov
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Katherine A Johnson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
5
|
Hickman AR, Selee B, Pauly R, Husain B, Hang Y, Feltus FA. Discovery of eQTL Alleles Associated with Autism Spectrum Disorder: A Case-Control Study. J Autism Dev Disord 2023; 53:3595-3612. [PMID: 35739433 PMCID: PMC10465380 DOI: 10.1007/s10803-022-05631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by challenges in social communication as well as repetitive or restrictive behaviors. Many genetic associations with ASD have been identified, but most associations occur in a fraction of the ASD population. Here, we searched for eQTL-associated DNA variants with significantly different allele distributions between ASD-affected and control. Thirty significant DNA variants associated with 174 tissue-specific eQTLs from ASD individuals in the SPARK project were identified. Several significant variants fell within brain-specific regulatory regions or had been associated with a significant change in gene expression in the brain. These eQTLs are a new class of biomarkers that could control the myriad of brain and non-brain phenotypic traits seen in ASD-affected individuals.
Collapse
Affiliation(s)
- Allison R. Hickman
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
| | - Bradley Selee
- Electrical and Computer Engineering Department, Clemson University, Clemson, SC 29634 USA
| | - Rini Pauly
- Biomedical Data Science & Informatics Program, Clemson University, Clemson, SC 29634 USA
| | - Benafsh Husain
- Biomedical Data Science & Informatics Program, Clemson University, Clemson, SC 29634 USA
| | - Yuqing Hang
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
| | - Frank Alex Feltus
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
- Electrical and Computer Engineering Department, Clemson University, Clemson, SC 29634 USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646 USA
- Biosystems Research Complex, 302C, 105 Collings St, Clemson, SC 29634 USA
| |
Collapse
|
6
|
Her L, Shi J, Wang X, He B, Smith LS, Jiang H, Zhu HJ. Identification of regulatory variants of carboxylesterase 1 (CES1): A proof-of-concept study for the application of the Allele-Specific Protein Expression (ASPE) assay in identifying cis-acting regulatory genetic polymorphisms. Proteomics 2023; 23:e2200176. [PMID: 36413357 PMCID: PMC10077986 DOI: 10.1002/pmic.202200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
It is challenging to study regulatory genetic variants as gene expression is affected by both genetic polymorphisms and non-genetic regulators. The mRNA allele-specific expression (ASE) assay has been increasingly used for the study of cis-acting regulatory variants because cis-acting variants affect gene expression in an allele-specific manner. However, poor correlations between mRNA and protein expressions were observed for many genes, highlighting the importance of studying gene expression regulation at the protein level. In the present study, we conducted a proof-of-concept study to utilize a recently developed allele-specific protein expression (ASPE) assay to identify the cis-acting regulatory variants of CES1 using a large set of human liver samples. The CES1 gene encodes for carboxylesterase 1 (CES1), the most abundant hepatic hydrolase in humans. Two cis-acting regulatory variants were found to be significantly associated with CES1 ASPE, CES1 protein expression, and its catalytic activity on enalapril hydrolysis in human livers. Compared to conventional gene expression-based approaches, ASPE demonstrated an improved statistical power to detect regulatory variants with small effect sizes since allelic protein expression ratios are less prone to the influence of non-genetic regulators (e.g., diseases and inducers). This study suggests that the ASPE approach is a powerful tool for identifying cis-regulatory variants.
Collapse
Affiliation(s)
- Lucy Her
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jian Shi
- Alliance Pharma, Inc, Malvern, Pennsylvania, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Bing He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Logan S Smith
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Hernandez MH, Bote V, Serra-LLovich A, Cendros M, Salazar J, Mestres C, Guijarro S, Alvarez A, Lamborena C, Mendez I, Sanchez B, Hervas A, Arranz MJ. CES1 and SLC6A2 Genetic Variants As Predictors of Response To Methylphenidate in Autism Spectrum Disorders. Pharmgenomics Pers Med 2022; 15:951-957. [DOI: 10.2147/pgpm.s377210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
|
8
|
Balogh L, Pulay AJ, Réthelyi JM. Genetics in the ADHD Clinic: How Can Genetic Testing Support the Current Clinical Practice? Front Psychol 2022; 13:751041. [PMID: 35350735 PMCID: PMC8957927 DOI: 10.3389/fpsyg.2022.751041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with a childhood prevalence of 5%. In about two-thirds of the cases, ADHD symptoms persist into adulthood and often cause significant functional impairment. Based on the results of family and twin studies, the estimated heritability of ADHD approximates 80%, suggests a significant genetic component in the etiological background of the disorder; however, the potential genetic effects on disease risk, symptom severity, and persistence are unclear. This article provides a brief review of the genome-wide and candidate gene association studies with a focus on the clinical aspects, summarizing findings of ADHD disease risk, ADHD core symptoms as dimensional traits, and other traits frequently associated with ADHD, which may contribute to the susceptibility to other comorbid psychiatric disorders. Furthermore, neuropsychological impairment and measures from neuroimaging and electrophysiological paradigms, emerging as potential biomarkers, also provide a prominent target for molecular genetic studies, since they lie in the pathway from genes to behavior; therefore, they can contribute to the understanding of the underlying neurobiological mechanisms and the interindividual heterogeneity of clinical symptoms. Beyond the aforementioned aspects, throughout the review, we also give a brief summary of the genetic results, including polygenic risk scores that can potentially predict individual response to different treatment options and may offer a possibility for personalized treatment for the therapy of ADHD in the future.
Collapse
Affiliation(s)
- Lívia Balogh
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Attila J Pulay
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
Collins JM, Lu R, Wang X, Zhu HJ, Wang D. Transcriptional Regulation of Carboxylesterase 1 in Human Liver: Role of the Nuclear Receptor Subfamily 1 Group H Member 3 and Its Splice Isoforms. Drug Metab Dispos 2022; 50:43-48. [PMID: 34697082 PMCID: PMC8969197 DOI: 10.1124/dmd.121.000649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Carboxylesterase 1 (CES1) is the predominant carboxylesterase in the human liver, involved in metabolism of both xenobiotics and endogenous substrates. Genetic or epigenetic factors that alter CES1 activity or expression are associated with changes in drug response, lipid, and glucose homeostasis. However, the transcriptional regulation of CES1 in the human liver remains uncertain. By applying both the random forest and Sobol's Sensitivity Indices (SSI) to analyze existing liver RNA expression microarray data (GSE9588), we identified nuclear receptor subfamily 1 group H member 3 (NR1H3) liver X receptor (LXR)α as a key factor regulating constitutive CES1 expression. This model prediction was validated using small interfering RNA (siRNA) knockdown and CRISPR-mediated transcriptional activation of NR1H3 in Huh7 and HepG2 cells. We found that NR1H3's activation of CES1 is splice isoform-specific, namely that increased expression of the NR1H3-211 isoform increased CES1 expression whereas NR1H3-201 did not. Also, in human liver samples, expression of NR1H3-211 and CES1 are correlated, whereas NR1H3-201 and CES1 are not. This trend also occurs during differentiation of induced pluripotent stem cells (iPSCs) to hepatocytes, where only expression of the NR1H3-211 isoform parallels expression of CES1 Moreover, we found that treatment with the NR1H3 agonist T0901317 in HepG2 cells had no effect on CES1 expression. Overall, our results demonstrate a key role of NR1H3 in maintaining the constitutive expression of CES1 in the human liver. Furthermore, our results support that the effect of NR1H3 is splice isoform-specific and appears to be ligand independent. SIGNIFICANCE STATEMENT: Despite the central role of carboxylesterase 1 (CES1) in metabolism of numerous medications, little is known about its transcriptional regulation. This study identifies nuclear receptor subfamily 1 group H member 3 as a key regulator of constitutive CES1 expression and therefore is a potential target for future studies to understand interperson variabilities in CES1 activity and drug metabolism.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Rong Lu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Xinwen Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Hao-Jie Zhu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of Pharmacy, University of Florida, Gainesville, Florida (J.M.C., D.W.); The Quantitative Sciences Unit, Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California (R.L.); Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, (X.W.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (H.-J.Z.)
| |
Collapse
|
10
|
Brown JT, Beery N, Taran A, Stevens T, Henzler C, Badalamenti J, Regal R, McCarty CA. Associations between CES1 variants and dosing and adverse effects in children taking methylphenidate. Front Pediatr 2022; 10:958622. [PMID: 36741090 PMCID: PMC9890192 DOI: 10.3389/fped.2022.958622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/21/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Methylphenidate is the most prescribed stimulant to treat attention deficit-hyperactivity disorder (ADHD). Despite its widespread usage, a fair proportion of children are classified as non-responders to the medication. Variability in response and occurrence of adverse events with methylphenidate use may be due to several factors, including drug-drug interactions as well as pharmacogenetic differences resulting in pharmacokinetic and/or pharmacodynamic variances within the general population. The objective of this study was to analyze the effect of carboxylesterase 1 (CES1) variants on the frequency of adverse effects and dosing requirements of methylphenidate in children with ADHD. METHODS This was a retrospective cohort study of children and adolescents who met the inclusion criteria and had a routine visit during the enrollment period were invited to participate. Inclusion criteria included: ADHD diagnosis by a healthcare provider, between 6 and 16 years of age at the time of permission/assent, had not previously been prescribed methylphenidate, and treatment with any methylphenidate formulation for at least three consecutive months. Three months of records were reviewed in order to assess changes in dose and frequency of discontinuing methylphenidate. Participants' ADHD symptoms, medication response, adverse effects, select vitals, and dose were extracted from the electronic health record. Saliva samples were collected by trained study coordinators. Haplotypes were assigned based on copy number in different portions of the CES1 gene. Due to limited numbers, diplotypes (combinations of two haplotypes) were grouped for analysis as CES1A1/CES1A1, CES1A1/CES1A1c and CES1A1c/CES1A1c. RESULTS A total of 99 participants (n = 30 female; n = 69 male) had both clinical data and CES1 sequencing data, with an average age of 7.7 years old (range 3-15 years). The final weight-based dose in all individuals was 0.79 mg/kg/day. The most common adverse effects reported were decreased appetite (n = 47), weight loss (n = 24), and sleep problems (n = 19). The mean final weight-based dose by haplotype was 0.92 mg/kg for CES1A2/CES1A2, 0.81 mg/kg for CES1A2/CES1P1, and 0.78 mg/kg for CES1P1/CES1P1. After correction for multiple hypothesis testing, only one SNV, rs114119971, was significantly associated with weight-based dosing in two individuals. The individuals with the rs114119971 SNV had a significantly lower weight-based dose (0.42 mg/kg) as compared to those without (0.88 mg/kg; p < 0.001). DISCUSSION Variation in CES1 activity may impact dose requirements in children who are prescribed methylphenidate, as well as other CES1 substrates. Although intriguing, this study is limited by the retrospective nature and relatively small sample size.
Collapse
Affiliation(s)
- Jacob T Brown
- University of Minnesota College of Pharmacy, Department of Pharmacy Practice and Pharmaceutical Sciences, Duluth, MN, United States
| | - Nancy Beery
- Essentia Health Department of Pediatrics, Duluth, MN, United States
| | - Allise Taran
- Essentia Institute of Rural Health, Duluth, MN, United States
| | - Tyler Stevens
- Essentia Health Department of Pharmacy, Duluth, MN, United States
| | - Christine Henzler
- University of Minnesota Supercomputing Institute, Minneapolis, MN, United States
| | | | - Ron Regal
- Essentia Institute of Rural Health, Duluth, MN, United States
| | - Catherine A McCarty
- Department of Family Medicine and BioBehavioral Health, University of Minnesota Medical School, Duluth Campus, Duluth, MN, United States
| |
Collapse
|
11
|
Kaalund-Brok K, Houmann TB, Hebsgaard MB, Lauritsen MBG, Lundstrøm LH, Grønning H, Darling L, Reinert-Petersen S, Petersen MA, Jepsen JRM, Pagsberg AK, Plessen KJ, Rasmussen HB, Jeppesen P. Outcomes of a 12-week ecologically valid observational study of first treatment with methylphenidate in a representative clinical sample of drug naïve children with ADHD. PLoS One 2021; 16:e0253727. [PMID: 34673771 PMCID: PMC8530346 DOI: 10.1371/journal.pone.0253727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Randomized placebo-controlled trials have reported efficacy of methylphenidate (MPH) for Attention-deficit/hyperactivity disorder (ADHD); however, selection biases due to strict entry criteria may limit the generalizability of the findings. Few ecologically valid studies have investigated effectiveness of MPH in representative clinical populations of children. This independently funded study aims to describe treatment responses and their predictors during the first 12 weeks of MPH treatment using repeated measurements of symptoms and adverse reactions (ARs) to treatment in 207 children recently diagnosed with ADHD. The children were consecutively included from the Child and Adolescent Mental Health Centre, Mental Health Services, The Capital Region of Denmark. The children (mean age, 9.6 years [range 7–12], 75.4% males) were titrated with MPH, based on weekly assessments of symptoms (18-item ADHD-rating scale scores, ADHD-RS-C) and ARs. At study-end 187 (90.8%) children reached a mean end-dose of 1.0 mg/kg/day. A normalisation/borderline normalisation on ADHD-RS-C was achieved for 168 (81.2%) children on the Inattention and/or the Hyperactivity-Impulsivity subscale in week 12, and 31 (15.0%) children were nonresponders, which was defined as absence of normalisation/borderline normalisation (n = 19) or discontinuation due to ARs (n = 12), and eight (3.8%) children dropped out from follow-up. Nonresponders were characterised by more severe symptoms of Hyperactivity-Impulsivity and global impairment before the treatment. ARs were few; the most prominent were appetite reduction and weight loss. A decrease in AR-like symptoms during the treatment period questions the validity of currently available standard instruments designed to measure ARs of MPH. This ecologically valid observational study supports prior randomized placebo-controlled trials; 81.2% of the children responded favourably in multiple domains with few harmful effects to carefully titrated MPH. Clinical trial registration: ClinicalTrials.gov with registration number NCT04366609.
Collapse
Affiliation(s)
- Kristine Kaalund-Brok
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
- * E-mail:
| | - Tine Bodil Houmann
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
| | - Marie Bang Hebsgaard
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
| | - Maj-Britt Glenn Lauritsen
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
| | - Louise Hyldborg Lundstrøm
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
| | - Helene Grønning
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
| | - Lise Darling
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
| | - Susanna Reinert-Petersen
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
| | - Morten Aagaard Petersen
- The Research Unit, Department of Palliative Medicine, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, The Capital Region of Denmark, Copenhagen, Denmark
| | - Jens Richardt Møllegaard Jepsen
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) and Center for Neuropsychiatric Schizophrenia Research (CNSR), Mental Health Services Glostrup, The Capital Region of Denmark, Glostrup, Denmark
| | - Anne Katrine Pagsberg
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
| | - Kerstin Jessica Plessen
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
| | - Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, The Capital Region of Denmark, Roskilde, Denmark
- Department of Science & Environment, Roskilde University, Roskilde, Denmark
| | - Pia Jeppesen
- Child and Adolescent Mental Health Centre, Research Unit, Mental Health Services, The Capital Region of Denmark, Hellerup, Denmark
| | | |
Collapse
|
12
|
Dugauquier A, Bidgoli S. Methylphenidate-associated Alice in Wonderland syndrome. Eur J Ophthalmol 2020; 32:1120672120978882. [PMID: 33295214 DOI: 10.1177/1120672120978882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION We describe the case of a child affected by typical symptoms of Alice in Wonderland syndrome (AIWS), related to the methylphenidate treatment he was taking for an attention deficit hyperactivity disorder (ADHD). To our knowledge, this is the first case of methylphenidate-associated AIWS. METHODS Retrospective single center observational case report. CASE DESCRIPTION A 12-year-old boy was complaining of micropsias and macropsias. Except a disruptive ADHD treated by methylphenidate for 2 years, his medical history was banal. His symptoms coincided with a change in his treatment regimen and ceased with methylphenidate discontinuation. Unfortunately, they recurred when the medication was reimplemented by his psychiatrist. The ophthalmological examination was unremarkable. We concluded to an AIWS and prescribed ancillary testing (including blood work, electroencephalogram, and brain MRI) to rule out conditions known to be associated with this syndrome. In the meanwhile, the methylphenidate dosage was readapted, and the symptoms disappeared again. Seen this clear dechallenge and rechallenge effect and the fact that all additional tests returned normal results, we deduced that our patient's symptoms were associated to methylphenidate. CONCLUSION AIWS could be a potential side effect of methylphenidate. Given the frequency of methylphenidate prescription for ADHD and its widespread misuse, it is important to consider this peculiar adverse effect. Every physician should be aware of the condition to offer reassurance and to prescribe the appropriate additional examinations, as life-threatening disorders can cause this syndrome.
Collapse
Affiliation(s)
| | - Sina Bidgoli
- Service d'Ophtalmologie, Hôpital Erasme, Brussels, Belgium
| |
Collapse
|
13
|
Elsayed NA, Yamamoto KM, Froehlich TE. Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs 2020; 34:389-414. [PMID: 32133580 PMCID: PMC8083895 DOI: 10.1007/s40263-020-00702-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple stimulant and non-stimulant medications are approved for the treatment of attention-deficit/hyperactivity disorder (ADHD), one of the most prevalent childhood neurodevelopmental disorders. Choosing among the available agents and determining the most effective ADHD medication for a given child can be a time-consuming process due to the high inter-individual variability in treatment efficacy. As a result, there is growing interest in identifying predictors of ADHD medication response in children through the burgeoning field of pharmacogenomics. This article reviews childhood ADHD pharmacogenomics efficacy studies published during the last decade (2009-2019), which have largely focused on pharmacodynamic candidate gene investigations of methylphenidate and atomoxetine response, with a smaller number investigating pharmacokinetic candidate genes and genome-wide approaches. Findings from studies which have advanced the field of ADHD pharmacogenomics through investigation of meta-analytic approaches and gene-gene interactions are also overviewed. Despite recent progress, no one genetic variant or currently available pharmacogenomics test has demonstrated clinical utility in pinpointing the optimal ADHD medication for a given individual patient, highlighting the need for further investigation.
Collapse
Affiliation(s)
- Nada A Elsayed
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
- Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaila M Yamamoto
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA
| | - Tanya E Froehlich
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Her L, Zhu HJ. Carboxylesterase 1 and Precision Pharmacotherapy: Pharmacogenetics and Nongenetic Regulators. Drug Metab Dispos 2019; 48:230-244. [PMID: 31871135 DOI: 10.1124/dmd.119.089680] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Carboxylesterase (CES) 1 is the most abundant drug-metabolizing enzyme in human livers, comprising approximately 1% of the entire liver proteome. CES1 is responsible for 80%-95% of total hydrolytic activity in the liver and plays a crucial role in the metabolism of a wide range of drugs (especially ester-prodrugs), pesticides, environmental pollutants, and endogenous compounds. Expression and activity of CES1 vary markedly among individuals, which is a major contributing factor to interindividual variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by CES1. Both genetic and nongenetic factors contribute to CES1 variability. Here, we discuss genetic polymorphisms, including single-nucleotide polymorphisms (SNPs), and copy number variants and nongenetic contributors, such as developmental status, genders, and drug-drug interactions, that could influence CES1 functionality and the PK and PD of CES1 substrates. Currently, the loss-of-function SNP G143E (rs71647871) is the only clinically significant CES1 variant identified to date, and alcohol is the only potent CES1 inhibitor that could alter the therapeutic outcomes of CES1 substrate medications. However, G143E and alcohol can only explain a small portion of the interindividual variability in the CES1 function. A better understanding of the regulation of CES1 expression and activity and identification of biomarkers for CES1 function in vivo could lead to the development of a precision pharmacotherapy strategy to improve the efficacy and safety of many CES1 substrate drugs. SIGNIFICANCE STATEMENT: The clinical relevance of CES1 has been well demonstrated in various clinical trials. Genetic and nongenetic regulators can affect CES1 expression and activity, resulting in the alteration of the metabolism and clinical outcome of CES1 substrate drugs, such as methylphenidate and clopidogrel. Predicting the hepatic CES1 function can provide clinical guidance to optimize pharmacotherapy of numerous medications metabolized by CES1.
Collapse
Affiliation(s)
- Lucy Her
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
Batalhão IG, Lima D, Russi APM, Boscolo CNP, Silva DGH, Pereira TSB, Bainy ACD, de Almeida EA. Effects of methylphenidate on the aggressive behavior, serotonin and dopamine levels, and dopamine-related gene transcription in brain of male Nile tilapia (Oreochromis niloticus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1377-1391. [PMID: 31054043 DOI: 10.1007/s10695-019-00645-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
The occurrence of pharmaceuticals in the aquatic environment has increased considerably in the last decades, causing negative biochemical, physiological, and behavioral effects in aquatic organisms. In this study, we evaluated the effects of methylphenidate (MPH) on the aggressive behavior, dopamine-related gene transcript levels, monoamine levels, and carboxylesterase transcript levels and activity in the brain of male Nile tilapia (Oreochromis niloticus). Carboxylesterase activity was also measured in the liver and gills. Fish were exposed for 5 days to MPH at 20 and 100 ng L-1. Fish exposed to 100 ng L-1 of MPH showed increased aggressiveness and decreased dopamine (DA) and serotonin (5-HT) levels. No changes were observed in plasma testosterone levels and in the transcript levels of D1 and D2 dopamine receptors, dopamine transporter (DAT), and carboxylesterase 2 (CES2). Exposure to 100 ng L-1 of MPH caused a decrease in the transcript levels of carboxylesterase 3 (CES3) and an increase in tyrosine hydroxylase (TH), while exposure to 20 ng L-1 of MPH increased the transcript levels of D5 dopamine receptor. Carboxylesterase activity was unchanged in the brain and liver and increased in the gills of fish exposed to 20 ng L-1. These results indicate that MPH at 100 ng L-1 increases aggressiveness in Nile tilapia, possibly due to a decrease in 5-HT levels in the brain and alterations in dopamine levels and dopamine-related genes.
Collapse
Affiliation(s)
- Isabela Gertrudes Batalhão
- Department of Chemistry and Environmental Sciences, UNESP - Sao Paulo State University, São Paulo, Brazil
| | - Daína Lima
- Department of Biochemistry, UFSC - Federal University of Santa Catarina, Florianópolis, SP, Brazil
| | - Ana Paula Montedor Russi
- Department of Physiology, UNESP - Sao Paulo State University, Jaboticabal, São Paulo, SP, Brazil
| | | | | | - Thiago Scremin Boscolo Pereira
- UNIRP - University Center of Rio Preto, São José do Rio Preto, SP, Brazil
- FACERES - Morphofunctional Laboratory, FACERES Medical School, São José do Rio Preto, SP, Brazil
| | - Afonso Celso Dias Bainy
- Department of Biochemistry, UFSC - Federal University of Santa Catarina, Florianópolis, SP, Brazil
| | - Eduardo Alves de Almeida
- Department of Natural Sciences, FURB Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil.
| |
Collapse
|
16
|
Treatment strategies for ADHD: an evidence-based guide to select optimal treatment. Mol Psychiatry 2019; 24:390-408. [PMID: 29955166 DOI: 10.1038/s41380-018-0116-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/20/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and impairing disorder affecting children, adolescents, and adults. Several treatment strategies are available that can successfully ameliorate symptoms, ranging from pharmacological to dietary interventions. Due to the increasing range of available options, an informed selection or prioritization of treatments is becoming harder for clinicians. This review aims to provide an evidence-based appraisal of the literature on ADHD treatment, supplemented by expert opinion on plausibility. We outline proposed mechanisms of action of established pharmacologic and non-pharmacologic treatments, and we review targets of novel treatments. The most relevant evidence supporting efficacy and safety of each treatment strategy is discussed. We review the individualized features of the patient that should guide the selection of treatments in a shared decision-making continuum. We provide guidance for optimizing initiation of treatment and follow-up of patients in clinical settings.
Collapse
|
17
|
Carboxylesterase1, alpha 2a adrenergic receptor and noradrenalin transporter gene polymorphisms and their clinical effects in attention deficit hyperactivity disorder in Turkish children. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Storebø OJ, Pedersen N, Ramstad E, Kielsholm ML, Nielsen SS, Krogh HB, Moreira‐Maia CR, Magnusson FL, Holmskov M, Gerner T, Skoog M, Rosendal S, Groth C, Gillies D, Buch Rasmussen K, Gauci D, Zwi M, Kirubakaran R, Håkonsen SJ, Aagaard L, Simonsen E, Gluud C. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents - assessment of adverse events in non-randomised studies. Cochrane Database Syst Rev 2018; 5:CD012069. [PMID: 29744873 PMCID: PMC6494554 DOI: 10.1002/14651858.cd012069.pub2] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in childhood. The psychostimulant methylphenidate is the most frequently used medication to treat it. Several studies have investigated the benefits of methylphenidate, showing possible favourable effects on ADHD symptoms, but the true magnitude of the effect is unknown. Concerning adverse events associated with the treatment, our systematic review of randomised clinical trials (RCTs) demonstrated no increase in serious adverse events, but a high proportion of participants suffered a range of non-serious adverse events. OBJECTIVES To assess the adverse events associated with methylphenidate treatment for children and adolescents with ADHD in non-randomised studies. SEARCH METHODS In January 2016, we searched CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, 12 other databases and two trials registers. We also checked reference lists and contacted authors and pharmaceutical companies to identify additional studies. SELECTION CRITERIA We included non-randomised study designs. These comprised comparative and non-comparative cohort studies, patient-control studies, patient reports/series and cross-sectional studies of methylphenidate administered at any dosage or formulation. We also included methylphenidate groups from RCTs assessing methylphenidate versus other interventions for ADHD as well as data from follow-up periods in RCTs. Participants had to have an ADHD diagnosis (from the 3rd to the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders or the 9th or 10th edition of theInternational Classification of Diseases, with or without comorbid diagnoses. We required that at least 75% of participants had a normal intellectual capacity (intelligence quotient of more than 70 points) and were aged below 20 years. We excluded studies that used another ADHD drug as a co-intervention. DATA COLLECTION AND ANALYSIS Fourteen review authors selected studies independently. Two review authors assessed risk of bias independently using the ROBINS-I tool for assessing risk of bias in non-randomised studies of interventions. All review authors extracted data. We defined serious adverse events according to the International Committee of Harmonization as any lethal, life-threatening or life-changing event. We considered all other adverse events to be non-serious adverse events and conducted meta-analyses of data from comparative studies. We calculated meta-analytic estimates of prevalence from non-comparative cohorts studies and synthesised data from patient reports/series qualitatively. We investigated heterogeneity by conducting subgroup analyses, and we also conducted sensitivity analyses. MAIN RESULTS We included a total of 260 studies: 7 comparative cohort studies, 6 of which compared 968 patients who were exposed to methylphenidate to 166 controls, and 1 which assessed 1224 patients that were exposed or not exposed to methylphenidate during different time periods; 4 patient-control studies (53,192 exposed to methylphenidate and 19,906 controls); 177 non-comparative cohort studies (2,207,751 participants); 2 cross-sectional studies (96 participants) and 70 patient reports/series (206 participants). Participants' ages ranged from 3 years to 20 years. Risk of bias in the included comparative studies ranged from moderate to critical, with most studies showing critical risk of bias. We evaluated all non-comparative studies at critical risk of bias. The GRADE quality rating of the evidence was very low.Primary outcomesIn the comparative studies, methylphenidate increased the risk ratio (RR) of serious adverse events (RR 1.36, 95% confidence interval (CI) 1.17 to 1.57; 2 studies, 72,005 participants); any psychotic disorder (RR 1.36, 95% CI 1.17 to 1.57; 1 study, 71,771 participants); and arrhythmia (RR 1.61, 95% CI 1.48 to 1.74; 1 study, 1224 participants) compared to no intervention.In the non-comparative cohort studies, the proportion of participants on methylphenidate experiencing any serious adverse event was 1.20% (95% CI 0.70% to 2.00%; 50 studies, 162,422 participants). Withdrawal from methylphenidate due to any serious adverse events occurred in 1.20% (95% CI 0.60% to 2.30%; 7 studies, 1173 participants) and adverse events of unknown severity led to withdrawal in 7.30% of participants (95% CI 5.30% to 10.0%; 22 studies, 3708 participants).Secondary outcomesIn the comparative studies, methylphenidate, compared to no intervention, increased the RR of insomnia and sleep problems (RR 2.58, 95% CI 1.24 to 5.34; 3 studies, 425 participants) and decreased appetite (RR 15.06, 95% CI 2.12 to 106.83; 1 study, 335 participants).With non-comparative cohort studies, the proportion of participants on methylphenidate with any non-serious adverse events was 51.2% (95% CI 41.2% to 61.1%; 49 studies, 13,978 participants). These included difficulty falling asleep, 17.9% (95% CI 14.7% to 21.6%; 82 studies, 11,507 participants); headache, 14.4% (95% CI 11.3% to 18.3%; 90 studies, 13,469 participants); abdominal pain, 10.7% (95% CI 8.60% to 13.3%; 79 studies, 11,750 participants); and decreased appetite, 31.1% (95% CI 26.5% to 36.2%; 84 studies, 11,594 participants). Withdrawal of methylphenidate due to non-serious adverse events occurred in 6.20% (95% CI 4.80% to 7.90%; 37 studies, 7142 participants), and 16.2% were withdrawn for unknown reasons (95% CI 13.0% to 19.9%; 57 studies, 8340 participants). AUTHORS' CONCLUSIONS Our findings suggest that methylphenidate may be associated with a number of serious adverse events as well as a large number of non-serious adverse events in children and adolescents, which often lead to withdrawal of methylphenidate. Our certainty in the evidence is very low, and accordingly, it is not possible to accurately estimate the actual risk of adverse events. It might be higher than reported here.Given the possible association between methylphenidate and the adverse events identified, it may be important to identify people who are most susceptible to adverse events. To do this we must undertake large-scale, high-quality RCTs, along with studies aimed at identifying responders and non-responders.
Collapse
Affiliation(s)
- Ole Jakob Storebø
- Region ZealandChild and Adolescent Psychiatric DepartmentBirkevaenget 3RoskildeDenmark4300
- Region Zealand PsychiatryPsychiatric Research UnitSlagelseDenmark
- University of Southern DenmarkDepartment of Psychology, Faculty of Health ScienceCampusvej 55OdenseDenmark5230
| | - Nadia Pedersen
- Region Zealand PsychiatryPsychiatric Research UnitSlagelseDenmark
| | - Erica Ramstad
- Region ZealandChild and Adolescent Psychiatric DepartmentBirkevaenget 3RoskildeDenmark4300
- Region Zealand PsychiatryPsychiatric Research UnitSlagelseDenmark
| | | | | | - Helle B Krogh
- Region ZealandChild and Adolescent Psychiatric DepartmentBirkevaenget 3RoskildeDenmark4300
- Region Zealand PsychiatryPsychiatric Research UnitSlagelseDenmark
| | - Carlos R Moreira‐Maia
- Federal University of Rio Grande do SulDepartment of PsychiatryRua Ramiro Barcelos, 2350‐2201APorto AlegreRSBrazil90035‐003
| | | | | | - Trine Gerner
- Region Zealand PsychiatryPsychiatric Research UnitSlagelseDenmark
| | - Maria Skoog
- Clinical Studies Sweden ‐ Forum SouthClinical Study SupportLundSweden
| | - Susanne Rosendal
- Psychiatric Centre North ZealandThe Capital Region of DenmarkDenmark
| | - Camilla Groth
- Herlev University HospitalPediatric DepartmentCapital RegionHerlevDenmark
| | | | | | - Dorothy Gauci
- Department of HealthDirectorate for Health Information and Research95 G'Mangia HillG'MangiaMaltaPTA 1313
| | - Morris Zwi
- Whittington HealthIslington Child and Adolescent Mental Health Service580 Holloway RoadLondonLondonUKN7 6LB
| | - Richard Kirubakaran
- Christian Medical CollegeCochrane South Asia, Prof. BV Moses Centre for Evidence‐Informed Healthcare and Health PolicyCarman Block II FloorCMC Campus, BagayamVelloreIndia632002
| | - Sasja J Håkonsen
- Aalborg UniversityDepartment of Health Science and TechnologyNiels Jernes Vej 14AalborgDenmark9220
| | | | - Erik Simonsen
- Region Zealand PsychiatryPsychiatric Research UnitSlagelseDenmark
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalCochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
- Copenhagen University HospitalCopenhagen Trial Unit, Centre for Clinical Intervention ResearchCopenhagenDenmark
| | | |
Collapse
|
19
|
Rasmussen HB, Madsen MB. Carboxylesterase 1 genes: systematic review and evaluation of existing genotyping procedures. Drug Metab Pers Ther 2018; 33:3-14. [PMID: 29427553 DOI: 10.1515/dmpt-2017-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022]
Abstract
The carboxylesterase 1 gene (CES1) encodes a hydrolase that metabolizes commonly used drugs. The CES1-related pseudogene, carboxylesterase 1 pseudogene 1 (CES1P1), has been implicated in gene exchange with CES1 and in the formation of hybrid genes including the carboxylesterase 1A2 gene (CES1A2). Hence, the CES1 region is complex. Using in silico PCR and alignment, we assessed the specificity of PCR-assisted procedures for genotyping CES1, CES1A2 and CES1P1 in studies identified in PubMed. We identified 33 such studies and excluded those that were not the first to use a procedure or lacked sequence information. After this 17 studies remained. Ten of these used haplotype-specific amplification, restriction enzyme treatment or amplicon sequencing, and included five that were predicted to lack specificity. All procedures for genotyping of single nucleotide polymorphisms in eight studies lacked specificity. One of these studies also used amplicon sequencing, thus being present in the group above. Some primers and their intended targets were mismatched. We provide experimental evidence that one of the procedures lacked specificity. Additionally, a complex pattern of segmental duplications in the CES1 region was revealed. In conclusion, many procedures for CES1, CES1A2 and CES1P1 genotyping appear to lack specificity. Knowledge about the segmental duplications may improve the typing of these genes.
Collapse
Affiliation(s)
- Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Boserupvej 2, 4000 Roskilde, Denmark, Phone: + 45 3864 2284, Fax: +45 3864 2300
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Majbritt Busk Madsen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| |
Collapse
|
20
|
Bjerre D, Berg Rasmussen H, INDICES Consortium T. Novel approach for CES1 genotyping: integrating single nucleotide variants and structural variation. Pharmacogenomics 2018; 19:349-359. [DOI: 10.2217/pgs-2016-0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Aim: Development of a specific procedure for genotyping of CES1A1 (CES1) and CES1A2, a hybrid of CES1A1 and the pseudogene CES1P1. Materials & methods: The number of CES1A1 and CES1A2 copies and that of CES1P1 were determined using real-time PCR. Long range PCRs followed by secondary PCRs allowed sequencing of single nucleotide variants in CES1A1 and CES1A2. Results & conclusion: A procedure consisting of two main steps was developed. Its first main step, the copy number determination, informed about presence of CES1A2 . This information enabled choice of PCR in the second main step, which selectively amplified CES1A1 and, if present, also CES1A2, for subsequent sequencing. Examination of 501 DNA samples suggested that our procedure is specific with potential for personalization of drug treatments.
Collapse
Affiliation(s)
- Ditte Bjerre
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
| | - Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, DK-4000 Roskilde, Denmark
- Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark
| | - The INDICES Consortium
- A list of the members of the consortium has been included in the accompanying this publication
| |
Collapse
|
21
|
Stage C, Jürgens G, Guski LS, Thomsen R, Bjerre D, Ferrero-Miliani L, Lyauk YK, Rasmussen HB, Dalhoff K. The impact of CES1 genotypes on the pharmacokinetics of methylphenidate in healthy Danish subjects. Br J Clin Pharmacol 2017; 83:1506-1514. [PMID: 28087982 DOI: 10.1111/bcp.13237] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/01/2023] Open
Abstract
AIMS This study investigated the influence of CES1 variations, including the single nucleotide polymorphism (SNP) rs71647871 (G143E) and variation in copy number, on the pharmacokinetics of a single oral dose of 10 mg methylphenidate. METHODS CES1 genotype was obtained from 200 healthy Danish Caucasian volunteers. Based on the genotype, 44 (19 males and 25 females) were invited to participate in an open, prospective trial involving six predefined genotypes: three groups with two, three and four CES1 copies, respectively; a group of carriers of the CES1 143E allele; a group of individuals homozygous for CES1A1c (CES1VAR); and a group having three CES1 copies, in which the duplication, CES1A2, had increased transcriptional activity. Plasma concentrations of methylphenidate and its primary metabolites were determined at scheduled time points. RESULTS Median AUC of d-methylphenidate was significantly larger in the group carrying the 143E allele (53.3 ng ml-1 h-1 , range 38.6-93.9) than in the control group (21.4 ng ml-1 h-1 , range 15.7-34.9) (P < 0.0001). Median AUC of d-methylphenidate was significantly larger in the group with four CES1 copies (34.5 ng ml-1 h-1 , range 21.3-62.8) than in the control group (P = 0.01) and the group with three CES1 copies (23.8 ng ml-1 h-1 , range 15.3-32.0, P = 0.03). There was no difference between the groups with two and three copies of CES1. CONCLUSIONS The 143E allele resulted in an increased AUC, suggesting a significantly decreased CES1 enzyme activity. Surprisingly, this was also the case in subjects with homozygous duplication of CES1, perhaps reflecting an undiscovered mutation affecting the activity of the enzyme.
Collapse
Affiliation(s)
- Claus Stage
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Gesche Jürgens
- Clinical Pharmacological Unit, Zealand University Hospital, Roskilde, Denmark
| | - Louise Schow Guski
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | - Ragnar Thomsen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ditte Bjerre
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laura Ferrero-Miliani
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Copenhagen, Denmark
| | - Yassine Kamal Lyauk
- Clinical Pharmacological Unit, Zealand University Hospital, Roskilde, Denmark
| | - Henrik Berg Rasmussen
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kim Dalhoff
- Department of Clinical Pharmacology, Bispebjerg and Frederiksberg University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
22
|
Joensen B, Meyer M, Aagaard L. Specific Genes Associated with Adverse Events of Methylphenidate Use in the Pediatric Population: A Systematic Literature Review. J Res Pharm Pract 2017; 6:65-72. [PMID: 28616427 PMCID: PMC5463551 DOI: 10.4103/jrpp.jrpp_16_161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The aim of this study was to review empirical studies examining associations between candidate genes and adverse events (AEs) from methylphenidate (MPH) use in children and adolescents. The PubMed, EMBASE, CINAHL, and Web of Science databases were searched from their inception until March 2017. We included empirically based articles on pharmacogenetic studies in 0-17-year-old patients that investigated associations between specific candidate genes, their polymorphisms, and reported AEs. We extracted information about study design, setting, type of AE reporter, studied genes and their polymorphisms, age and gender, administered doses, method of genotyping, outcome measures, and main findings. A total of nine articles reporting information about four double-blind, placebo-controlled, cross-over studies and five open-label cohort studies were eligible for inclusion. Studies were published from 2006 onward and included a total of 998 patients (3-17-year-olds) diagnosed with attention-deficit hyperactivity disorder (ADHD). Studies predominantly involved males and lasted from 1 to 12 weeks. Studies used polymerase chain reaction and single nucleotide polymorphism genotyping methodology. Reported AEs were significantly associated with the following genes: appetite reduction (CES1*G); buccal-lingual movements (T1065G); diastolic blood pressure (ADRA2A Mspl C/C-GC); emotionality (DAT1*9/9); irritability (SNAP25 T1065G); picking (DRD4*7/DRD4*4); social withdrawal (DRD4*7/DRD4*4); somatic complaints (DAT1*10/10); tics (5-HTTLRP*S/L*L/L; SNAP25 T1065G); sadness (CES1*rsl12443580); and vegetative symptoms (5-HTTLPR). In conclusion, only few MPH pediatric pharmacogenetic studies were located, and large between-study heterogeneity was found. Studies were of naturalistic design and of short duration. They included small patient samples, poorly standardized treatment regimens, and limited outcome assessments. In the future, more pharmacogenomic studies in ADHD are needed, preferably using randomized, controlled study designs and of longer duration (more than 6 months).
Collapse
Affiliation(s)
- Beinta Joensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Lise Aagaard
- Life Science Team, IP and Technology, Bech-Bruun Law Firm, Copenhagen, Denmark
| |
Collapse
|
23
|
Regulatory effects of genomic translocations at the human carboxylesterase-1 (CES1) gene locus. Pharmacogenet Genomics 2016; 26:197-207. [PMID: 26871237 DOI: 10.1097/fpc.0000000000000206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE CES1 encodes carboxylesterase-1, an important drug-metabolizing enzyme with high expression in the liver. Previous studies have reported a genomic translocation of the 5' region from the poorly expressed pseudogene CES1P1, to CES1, yielding the structural variant CES1VAR. The aim of this study was to characterize this translocation and its effect on CES1 expression in the human liver. MATERIALS AND METHODS Experiments were conducted in human liver tissues and cell culture (HepG2). The promoter and exon 1 of CES1 were sequenced by Sanger and Ion Torrent sequencing to identify gene translocations. The effects of CES1 5'UTRs on mRNA and protein expression were assessed by quantitative real-time PCR, allelic ratio mRNA analysis by primer extension (SNaPshot), quantitative targeted proteomics, and luciferase reporter gene assays. RESULTS Sequencing of CES1 identified two translocations: first, CES1VAR (17% minor allele frequency) comprising the 5'UTR, exon 1, and part of intron 1. A second shorter translocation, CES1SVAR, was observed excluding exon 1 and intron 1 regions (<0.01% minor allele frequency). CES1VAR is associated with 2.6-fold decreased CES1 mRNA and ∼1.35-fold lower allelic mRNA. Luciferase reporter constructs showed that CES1VAR decreases luciferase activity 1.5-fold, whereas CES1SVAR slightly increases activity. CES1VAR was not associated with CES1 protein expression or metabolism of the CES1 substrates enalapril, clopidogrel, or methylphenidate in the liver. CONCLUSION The frequent translocation variant CES1VAR reduces mRNA expression of CES1 in the liver by ∼30%, but protein expression and metabolizing activity in the liver were not detectably altered - possibly because of variable CES1 expression masking small allelic effects. Whether drug therapies are affected by CES1VAR will require further in-vivo studies.
Collapse
|
24
|
Abstract
As the first drug to see widespread use for the treatment of attention deficit hyperactivity disorder (ADHD), methylphenidate was the forerunner and catalyst to the modern era of rapidly increasing diagnosis, treatment, and medication development for this condition. During its often controversial history, it has variously elucidated the importance of dopamine signaling in memory and attention, provoked concerns about pharmaceutical cognitive enhancement, driven innovation in controlled-release technologies and enantiospecific therapeutics, and stimulated debate about the impact of pharmaceutical sales techniques on the practice of medicine. In this Review, we will illustrate the history and importance of methylphenidate to ADHD treatment and neuroscience in general, as well as provide key information about its synthesis, structure-activity relationship, pharmacological activity, metabolism, manufacturing, FDA-approved indications, and adverse effects.
Collapse
Affiliation(s)
- Cody J. Wenthur
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
25
|
Childress AC. Methylphenidate HCL for the treatment of ADHD in children and adolescents. Expert Opin Pharmacother 2016; 17:1171-8. [DOI: 10.1080/14656566.2016.1182986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ann C. Childress
- Center for Psychiatry and Behavioral Medicine, Inc., Las Vegas, NV, USA
| |
Collapse
|
26
|
Huss M, Sikirica V, Hervas A, Newcorn JH, Harpin V, Robertson B. Guanfacine extended release for children and adolescents with attention-deficit/hyperactivity disorder: efficacy following prior methylphenidate treatment. Neuropsychiatr Dis Treat 2016; 112:1085-101. [PMID: 27226715 PMCID: PMC4863687 DOI: 10.2147/ndt.s94158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Guanfacine extended release (GXR) and atomoxetine (ATX) are nonstimulant treatments for attention-deficit/hyperactivity disorder (ADHD). As nonstimulant treatments are often used after stimulants in ADHD, GXR was assessed relative to prior stimulant treatment in a randomized controlled trial (RCT), in which ATX was included as a reference arm, and in the open-label phase of a randomized-withdrawal study (RWS). Participants were 6-17 years old with ADHD Rating Scale version IV (ADHD-RS-IV) scores ≥32 and Clinical Global Impressions - Severity scores ≥4. RCT participants received dose-optimized GXR (1-7 mg/day), ATX (10-100 mg/day), or placebo for 10-13 weeks. RWS participants received dose-optimized GXR (1-7 mg/day) for 13 weeks. Participants' last stimulant medication prior to enrolment, and reasons for stopping this medication, were collected at baseline. Change from baseline ADHD-RS-IV score and the proportion of responders were assessed by prior stimulant exposure. Of 163 RCT and 296 RWS participants who had previously received stimulant treatment, 142 and 224, respectively, had received methylphenidate (MPH); due to the low number of participants and the heterogeneity of non-MPH treatments, we only report data for prior MPH treatment. The most frequent reasons for stopping MPH were lack of effectiveness or side effects. Placebo-adjusted ADHD-RS-IV changes from baseline were significant in participants receiving GXR (prior MPH, -9.8, P<0.001, effect size [ES] 0.85; stimulant-naïve, -7.6, P<0.001, ES 0.65). In ATX-treated participants, significant placebo-adjusted differences were seen in stimulant-naïve (-5.0, P=0.022, ES 0.43) but not prior MPH-treated (-1.8, P>0.05, ES 0.15) participants. More participants met responder criteria with GXR versus placebo, regardless of prior treatment. GXR response was unaffected by prior stimulant treatment; ATX produced improvement only in stimulant-naïve participants relative to placebo. These findings may be relevant to clinical decision-making regarding sequencing of ADHD treatments.
Collapse
Affiliation(s)
- Michael Huss
- Child and Adolescent Psychiatry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vanja Sikirica
- Global Health Economics, Outcomes Research and Epidemiology, Shire, Wayne, PA, USA
| | - Amaia Hervas
- Child and Adolescent Mental Health Unit, University Hospital Mútua de Terressa, Barcelona, Spain; Developmental Disorders Unit (UETD), Hospital San Juan de Dios, Barcelona, Spain
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valerie Harpin
- Ryegate Children's Centre, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | | |
Collapse
|
27
|
Sánchez-Mora C, Richarte V, Garcia-Martínez I, Pagerols M, Corrales M, Bosch R, Vidal R, Viladevall L, Casas M, Cormand B, Ramos-Quiroga JA, Ribasés M. Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2015; 168:480-491. [PMID: 26174753 DOI: 10.1002/ajmg.b.32340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/22/2015] [Indexed: 12/15/2022]
Abstract
We performed a case-control association study in persistent ADHD considering eight candidate genes (DRD4, DAT1/SLC6A3, COMT, ADRA2A, CES1, CYP2D6, LPHN3, and OPRM1) and found additional evidence for the involvement of the Dup 120bp and VNTR 48bp functional variants within the dopamine receptor DRD4 gene in the etiology of adult ADHD. We subsequently investigated the interaction of stressful life events with these two DRD4 polymorphisms, and the impact of such events on the severity of ADHD symptomatology. The gene-by-environment analysis revealed an independent effect of stressful experiences on the severity of persistent ADHD, and a gene-by-environment interaction on the inattentive dimension of the disorder, where non carriers of the Dup 120bp (L) - VNTR 48bp (7R) haplotype were more sensitive to environmental adversity than carriers. These results are in agreement with previous works reporting a relationship between DRD4 and the effect of adverse experiences, which may explain the discordant findings in previous genetic studies and strengthen the importance of gene-by-environment interactions on the severity of ADHD. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cristina Sánchez-Mora
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - Vanesa Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Iris Garcia-Martínez
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Mireia Pagerols
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Montse Corrales
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosa Bosch
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Raquel Vidal
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Miguel Casas
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bru Cormand
- Departament de Genètica, Universitat de Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain
| | - Josep Antoni Ramos-Quiroga
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Ribasés
- Psychiatric Genetics Unit, Institute Vall d'Hebron Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| |
Collapse
|
28
|
Rovaris DL, Mota NR, da Silva BS, Girardi P, Victor MM, Grevet EH, Bau CH, Contini V. Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics 2015; 15:1365-81. [PMID: 25155937 DOI: 10.2217/pgs.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A considerable proportion of adults with attention-deficit/hyperactivity disorder (ADHD) do not respond to the treatment with methylphenidate. This scenario could be due to inherited interindividual differences that may alter pharmacologic treatment response. In this sense, in 2012 we conducted a systematic search on PUBMED-indexed literature for articles containing information about pharmacogenomics of ADHD in adults. Five studies were found on methylphenidate pharmacogenomics and the only significant association was reported by one particular study. However, this single association with the SLC6A3 gene was not replicated in two subsequent reports. In the present review, although we could not find additional pharmacogenomics studies, we discuss these up-to-date findings and suggest new approaches for this field. Additionally, using systeomic-oriented databases, we provide a broad picture of new possible candidate genes as well as potential gene-gene interactions to be investigated in pharmacogenomics of persistent ADHD.
Collapse
Affiliation(s)
- Diego L Rovaris
- Departament of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | | | | | | | | | | | | |
Collapse
|