1
|
Shahverdi M, Masoumi J, Ghorbaninezhad F, Shajari N, Hajizadeh F, Hassanian H, Alizadeh N, Jafarlou M, Baradaran B. The modulatory role of dendritic cell-T cell cross-talk in breast cancer: Challenges and prospects. Adv Med Sci 2022; 67:353-363. [PMID: 36116207 DOI: 10.1016/j.advms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Antigen recognition and presentation are highlighted as the first steps in developing specialized antigen responses. Dendritic cells (DCs) are outstanding professional antigen-presenting cells (APCs) responsible for priming cellular immunity in pathological states, including cancer. However, the diminished or repressed function of DCs is thought to be a substantial mechanism through which tumors escape from the immune system. In this regard, DCs obtained from breast cancer (BC) patients represent a notably weakened potency to encourage specific T-cell responses. Additionally, impaired DC-T-cell cross-talk in BC facilitates the immune evade of cancer cells and is connected with tumor advancement, immune tolerance, and adverse prognosis for patients. In this review we aim to highlight the available knowledge on DC-T-cell interactions in BC aggressiveness and show its therapeutic potential in BC treatment.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Tizaoui K, Jalouli M, Ouzari HI, Harrath AH, Rizzo R, Boujelbene N, Zidi I. 3'UTR-HLA-G polymorphisms and circulating sHLA-G are associated with breast cancer: Evidence from a meta-analysis. Immunol Lett 2022; 248:78-89. [PMID: 35752280 DOI: 10.1016/j.imlet.2022.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Human leukocyte antigen-G (HLA-G) gene polymorphisms and circulating sHLA-G have often been linked to the risk of breast cancer (BC). However, the results remain controversial. To resolve this issue, we performed a meta-analysis of HLA-G gene polymorphisms and sHLA-G levels in BC. METHODS We performed a meta-analysis on the association of HLA-G 14-bp Insertion/Deletion (Ins/Del) and HLA-G +3142 C/G polymorphisms with BC as well as the relationship between sHLA-G and the disease outcome. RESULTS Pooled analysis showed a statistically significant association between the HLA-G 14-bp Ins/Del polymorphism and BC susceptibility for the overall population and for Caucasians. The Del allele and genotypes with at least one copy of the Del allele presented significant risks for BC. For HLA-G +3142 C/G polymorphism, the G allele significantly decreased the risk of BC for the overall population and for Caucasians, indicating that the G allele was a protective factor against BC and that the C allele was a significant risk factor for BC. The meta-analysis revealed a significantly increased level of sHLA-G patients with BC compared to the control group for the overall population, Caucasians and Asians. CONCLUSION The present meta-analysis showed a major association of both HLA-G 14-bp Ins/Del and +3142 C/G polymorphisms with BC susceptibility, suggesting Del and C variants as highly significant risk factors for BC. The present study also showed significantly higher sHLA-G levels in patients with BC compared to healthy controls. Our pooled results suggested a critical role of HLA-G in BC, thereby providing evidence to use HLA-G as a biomarker and a therapeutic tool.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Maroua Jalouli
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Abdel Halim Harrath
- King Saud University, College of Science, Department of Zoology, Riyadh, Saudi Arabia
| | - Roberta Rizzo
- Department of Experimental and Diagnostic Medicine, Section Microbiology, University of Ferrara, Ferrara, Italy
| | - Nadia Boujelbene
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia; Department of Pathology, Salah Azaïz Institute, Tunis, Tunisia
| | - Inès Zidi
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
3
|
Zheng G, Jia L, Yang AG. Roles of HLA-G/KIR2DL4 in Breast Cancer Immune Microenvironment. Front Immunol 2022; 13:791975. [PMID: 35185887 PMCID: PMC8850630 DOI: 10.3389/fimmu.2022.791975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Human leukocyte antigen (HLA)-G is a nonclassical MHC Class I molecule, which was initially reported as a mediator of immune tolerance when expressed in extravillous trophoblast cells at the maternal-fetal interface. HLA-G is the only known ligand of killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4), an atypical family molecule that is widely expressed on the surface of NK cells. Unlike other KIR receptors, KIR2DL4 contains both an arginine–tyrosine activation motif in its transmembrane region and an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail, suggesting that KIR2DL4 may function as an activating or inhibitory receptor. The immunosuppressive microenvironment exemplified by a rewired cytokine network and upregulated immune checkpoint proteins is a hallmark of advanced and therapy-refractory tumors. Accumulating evidence has shown that HLA-G is an immune checkpoint molecule with specific relevance in cancer immune escape, although the role of HLA-G/KIR2DL4 in antitumor immunity is still uncharacterized. Our previous study had shown that HLA-G was a pivotal mediator of breast cancer resistance to trastuzumab, and blockade of the HLA-G/KIR2DL4 interaction can resensitize breast cancer to trastuzumab treatment. In this review, we aim to summarize and discuss the role of HLA-G/KIR2DL4 in the immune microenvironment of breast cancer. A better understanding of HLA-G is beneficial to identifying novel biomarker(s) for breast cancer, which is important for precision diagnosis and prognostic assessment. In addition, it is also necessary to unravel the mechanisms underlying HLA-G/KIR2DL4 regulation of the immune microenvironment in breast cancer, hopefully providing a rationale for combined HLA-G and immune checkpoints targeting for the effective treatment of breast cancer.
Collapse
Affiliation(s)
- Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Motofei IG. Nobel Prize for immune checkpoint inhibitors, understanding the immunological switching between immunosuppression and autoimmunity. Expert Opin Drug Saf 2021; 21:599-612. [PMID: 34937484 DOI: 10.1080/14740338.2022.2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are a revolutionary form of immunotherapy in cancer. However, the percentage of patients responding to therapy is relatively low, while adverse effects occur in a large number of patients. In addition, the therapeutic mechanisms of ICIs are not yet completely described. AREAS COVERED The initial view (articles published in PubMed, Scopus, Web of Science, etc.) was that ICIs increase tumor-specific immunity. Recent data (collected from the same databases) suggest that the ICIs pharmacotherapy actually extends beyond the topic of immune reactivity, including additional immune pathways, such as disrupting immunosuppression and increasing tumor-specific autoimmunity. Unfortunately, there is no clear delimitation between these specific autoimmune reactions that are therapeutically beneficial, and nonspecific autoimmune reactions/toxicity that can be extremely severe side effects. EXPERT OPINION Immune checkpoint mechanisms perform a non-selective immune regulation, maintaining a dynamic balance between immunosuppression and autoimmunity. By blocking these mechanisms, ICIs actually perform an immunological reset, decreasing immunosuppression and increasing tumor-specific immunity and predisposition to autoimmunity. The predisposition to autoimmunity induces both side effects and beneficial autoimmunity. Consequently, further studies are necessary to maximize the beneficial tumor-specific autoimmunity, while reducing the counterproductive effect of associated autoimmune toxicity.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Surgery/ Oncology, Carol Davila University, Bucharest, Romania.,Department of Surgery/ Oncology, St. Pantelimon Hospital, Bucharest, Romania
| |
Collapse
|
5
|
Xu Y, Lu L, Luo J, Wang L, Zhang Q, Cao J, Jiao Y. Disulfiram Alone Functions as a Radiosensitizer for Pancreatic Cancer Both In Vitro and In Vivo. Front Oncol 2021; 11:683695. [PMID: 34631519 PMCID: PMC8494980 DOI: 10.3389/fonc.2021.683695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022] Open
Abstract
The prognosis of pancreatic cancer remains very poor worldwide, partly due to the lack of specificity of early symptoms and innate resistance to chemo-/radiotherapy. Disulfiram (DSF), an anti-alcoholism drug widely used in the clinic, has been known for decades for its antitumor effects when simultaneously applied with copper ions, including pancreatic cancer. However, controversy still exists in the context of the antitumor effects of DSF alone in pancreatic cancer and related mechanisms, especially in its potential roles as a sensitizer for cancer radiotherapy. In the present study, we focused on whether and how DSF could facilitate ionizing radiation (IR) to eliminate pancreatic cancer. DSF alone significantly suppressed the survival of pancreatic cancer cells after exposure to IR, both in vitro and in vivo. Additionally, DSF treatment alone caused DNA double-strand breaks (DSBs) and further enhanced IR-induced DSBs in pancreatic cancer cells. In addition, DSF alone boosted IR-induced cell cycle G2/M phase arrest and apoptosis in pancreatic cancer exposed to IR. RNA sequencing and bioinformatics analysis results suggested that DSF could trigger cell adhesion molecule (CAM) signaling, which might be involved in its function in regulating the radiosensitivity of pancreatic cancer cells. In conclusion, we suggest that DSF alone may function as a radiosensitizer for pancreatic cancer, probably by regulating IR-induced DNA damage, cell cycle arrest and apoptosis, at least partially through the CAM signaling pathway.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Lunjie Lu
- Department of Radiation Physics, Qingdao Central Hospital, Qingdao, China
| | - Judong Luo
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lili Wang
- Department of Radiotherapy, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
6
|
Zouré AA, Amegnona LJ, Zongo N, Kiendrebeogo IT, Sorgho PA, Zongo FI, Yonli AT, Sombié HK, Bambara AH, Sawadogo AY, Ouedraogo MNL, Traoré L, Zongo SV, Lallogo DT, Bazié BVJTE, Zohoncon TM, Dijgma FW, Simpore J. Carriage of HLA-DRB1*11 and 1*12 alleles and risk factors in patients with breast cancer in Burkina Faso. Open Life Sci 2021; 16:1101-1110. [PMID: 34712820 PMCID: PMC8511965 DOI: 10.1515/biol-2021-0113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023] Open
Abstract
Several factors contribute to the development of breast cancer, including the immune system. This study is aimed to characterize the carriage of human leukocyte antigen (HLA)-DRB1*11 and 1*12 alleles in patients with breast cancer. This case-control study consisted of 96 histologically diagnosed breast cancer cases and 102 controls (cases without breast abnormalities). A multiplex polymerase chain reaction (PCR) was used to characterize the carriage of HLA-DRB1*11 and 1*12 alleles. The HLA-DRB1*11 allele was present in 26.59% of cases and 22.55% of controls. The HLA-DRB1*12 allele was present in 56.63% of cases and 55.88% of controls. This study found no direct association between the carriage of the HLA-DRB1*11 and HLA-DRB1*12 alleles and the occurrence of breast cancer. In addition, the deletion of the HLA-DRB1*11 allele is associated (beneficial effect) with obesity/overweight (OR = 0.13; 95% CI [0.01-1.14]; and p = 0.03) which is a risk for breast cancer. No direct association was found between the carriage of HLA-DRB1*11 and 1*12 alleles and breast cancer risk. However, further investigation of other HLA alleles involved in the occurrence of breast cancer may provide more information.
Collapse
Affiliation(s)
- Abdou Azaque Zouré
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
- Department of Biomedical and Public Health/Institute of Health Sciences Research, (IRSS/CNRST), Institute of Health Sciences Research, 03 BP 7192, Ouagadougou 03, Burkina Faso
| | - Lanyo Jospin Amegnona
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
| | - Nayi Zongo
- Department of Surgery and Surgical Specialties, Service of General and Digestive Surgery, University Hospital Centre-Yalgado OUEDRAOGO, UFR/SDS, University Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Isabelle Touwendpoulimdé Kiendrebeogo
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Pegdwendé Abel Sorgho
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Fabienne Ingrid Zongo
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Albert Théophane Yonli
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Herman Karim Sombié
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Aboubacar Hierrhum Bambara
- Department of Medicine and Medical Specialties, Service of Oncology, University Hospital Centre-BOGODOGO, University Joseph KI-ZERBO, UFR/SDS, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Alexis Yobi Sawadogo
- Department of Gynecology-Obstetrics, Service of Gynecology, University Hospital Centre-BOGODOGO, University Joseph KI ZERBO, UFR/SDS, 03 BP 7021, Ouagadougou 03, Burkina Faso
| | - Marie N. L. Ouedraogo
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
- Faculty of Medicine, University Saint Thomas d’Aquin, 06 BP 10212, Ouagadougou 01, Burkina Faso
| | - Lassina Traoré
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Sidnooma Véronique Zongo
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Doriane Tatiana Lallogo
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Bapio Valery Jean Télesphore Elvira Bazié
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Théodora M. Zohoncon
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
- Faculty of Medicine, University Saint Thomas d’Aquin, 06 BP 10212, Ouagadougou 01, Burkina Faso
| | - Florencia W. Dijgma
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Jacques Simpore
- Departement of Biochemistry and Microbiology, Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph KI-ZERBO, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
- Departement of Molecular Biology, Pietro Annigoni Biomolecular Research Center (CERBA), 01 P.O. Box 364, Ouagadougou 01, Burkina Faso
| |
Collapse
|
7
|
Kadiam S, Ramasamy T, Ramakrishnan R, Mariakuttikan J. Association of HLA-G 3'UTR 14-bp Ins/Del polymorphism with breast cancer among South Indian women. J Clin Pathol 2019; 73:456-462. [PMID: 31796638 DOI: 10.1136/jclinpath-2019-205772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 10/22/2019] [Accepted: 11/16/2019] [Indexed: 01/21/2023]
Abstract
AIM Human leucocyte antigen-G (HLA-G) and tumour necrosis factor-alpha (TNF-α) are potent immune mediators implicated in the pathogenesis of breast cancer. The polymorphisms in the 3' untranslated region (3'UTR) of HLA-G and promoter region of TNF-α are well known to influence their expression levels and may consequently contribute to varied disease predisposition. Therefore, in the present study, we explored the effect of HLA-G 3'UTR (14-bp Ins/Del and +3142 C/G) and TNF-α promoter (-238 G/A and -308 G/A) polymorphisms on breast cancer risk among South Indian women. METHODS A total of 342 women (100 patients with breast cancer, 142 patients with benign breast disorder and 100 healthy women volunteers) were enrolled for this study. Genotyping of HLA-G and TNF-α polymorphisms were performed by direct PCR DNA amplification and amplification refractory mutation system PCR methods, respectively. RESULTS Significantly higher frequencies of HLA-G 14-bp Ins allele and Ins/+3142G haplotype were observed in patients with breast cancer than healthy controls (OR=1.56, Pc=0.036) and patients with benign breast disorder (OR=1.47, Pc=0.046). Similarly, subgroup analysis based on age at diagnosis (age≤50 years and >50 years) of breast cancer revealed higher frequencies of 14-bp Ins allele and Ins/+3142G haplotype in the patients of age >50 years than healthy controls (OR=1.77, Pc=0.03). Additionally, the extended haplotypes and multifactor dimensionality reduction analysis of the studied polymorphisms revealed significant contribution of HLA-G 14-bp Ins/Del polymorphism towards breast cancer risk. CONCLUSION The findings of the present study suggest that the HLA-G 14-bp Ins/Del polymorphism could influence breast cancer pathogenesis among South Indian women.
Collapse
Affiliation(s)
- Sony Kadiam
- Department of Immunology, Madurai Kamaraj University, Madurai, India
| | | | | | | |
Collapse
|
8
|
Özgül Özdemir RB, Özdemir AT, Kırmaz C, Tuğlu Mİ, Şenol Ö, Özverel CS, Berdeli A. The effects of mesenchymal stem cells on the IDO, HLA-G and PD-L1 expression of breast tumor cells MDA-MB-231 and MCF-7. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2019. [DOI: 10.25000/acem.601633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Moghbeli M. Genetic and molecular biology of breast cancer among Iranian patients. J Transl Med 2019; 17:218. [PMID: 31286981 PMCID: PMC6615213 DOI: 10.1186/s12967-019-1968-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract Background, Breast cancer (BC) is one of the leading causes of cancer related deaths in Iran. This high ratio of mortality had a rising trend during the recent years which is probably associated with late diagnosis. Main body Therefore it is critical to define a unique panel of genetic markers for the early detection among our population. In present review we summarized all of the reported significant genetic markers among Iranian BC patients for the first time, which are categorized based on their cellular functions. Conclusions This review paves the way of introducing a unique ethnic specific panel of diagnostic markers among Iranian BC patients. Indeed, this review can also clarify the genetic and molecular bases of BC progression among Iranians.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Zhang D, An X, Li Z, Zhang S. Role of gene promoter methylation regulated by TETs and DNMTs in the overexpression of HLA-G in MCF-7 cells. Exp Ther Med 2019; 17:4709-4714. [PMID: 31086605 DOI: 10.3892/etm.2019.7481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/15/2019] [Indexed: 01/01/2023] Open
Abstract
Human leukocyte antigen-G (HLA-G) is highly expressed in numerous solid tumor cell types and has important roles in protecting tumor cells from host immune recognition and destruction. DNA methylation modification, which may regulate gene expression, is aberrant in numerous tumor cell types. However, whether the high expression of HLA-G in tumor cells is induced by aberrant DNA methylation has remained elusive. In the present study, HLA-G, DNA methyltransferase (DNMT) and ten-eleven translocation (TET) expression, as well as the DNA methylation level of HLA-G, were assessed in the HBL-100 breast cell line and the MCF-7 breast cancer cell line. The influence of TET on the expression and DNA methylation levels of HLA-G in MCF-7 was assessed through treatment with the TET inhibitor dimethyloxallyl glycine (DMOG). The results indicated that HLA-G expression was significantly greater in MCF-7 than that in HBL-100 cells; however, the DNA methylation level of HLA-G was lower in MCF-7 than that in HBL-100 cells. Furthermore, in MCF-7 cells, DNMT1 and DNMT3a were expressed at lower levels and TET2 was expressed at higher levels than in HBL-100 cells. Treatment with DMOG significantly decreased HLA-G expression, while increasing the DNA methylation level of HLA-G in MCF-7. In conclusion, the results indicated that overexpression of HLA-G in MCF-7 cells was induced by DNA methylation modification. The lower DNMT1 and DNMT3a and higher TET2 expression levels may be responsible for the abnormal DNA methylation of HLA-G in MCF-7. Treatment with TET inhibitor prevented aberrant HLA-G expression and DNA methylation in MCF-7. The present study may provide potential targets for novel anti-cancer drugs.
Collapse
Affiliation(s)
- Daoyu Zhang
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Xinglan An
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Ziyi Li
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Sheng Zhang
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
11
|
Doello K. The role of trophoblastic epigenetic reprogrammation in benign tumor cells on malignant progression: A molecular hypothesis. Med Hypotheses 2018. [PMID: 29523298 DOI: 10.1016/j.mehy.2018.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cancer tissues and placental ones share many properties such as invasiveness, metastasis and local immunosuppressive effects. The goal of the present article is to hypothesize a theory about cancer origin that links placental and cancerous tissues at molecular level. This hypothesis explain that cancer origin could be due to low hypoxic conditions in the peripheral zones of benign tumors which might up-regulate the expression of IGF2, and, consequently, trophoblastic genes. In fact, many phenotypic characteristics and molecular markers are shared between these two cell types (cancerous and trophoblastics ones), providing evidences to support this hypothesis. As a consequence, it could be interesting to demonstrate whether cancer start with a cellular reprogrammation towards a trophoblastic fate in order to design new antitumoral strategies focused on this fact.
Collapse
Affiliation(s)
- Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital (Granada), Av. Fuerzas Armadas, sn, 18014 Granada, Spain.
| |
Collapse
|
12
|
Zhang Y, Yu S, Han Y, Wang Y, Sun Y. Human leukocyte antigen-G expression and polymorphisms promote cancer development and guide cancer diagnosis/treatment. Oncol Lett 2017; 15:699-709. [PMID: 29399142 PMCID: PMC5772757 DOI: 10.3892/ol.2017.7407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical HLA molecule, predominantly expressed in cytotrophoblast cells to protect the fetus during pregnancy. Notably, a high frequency of HLA-G expression has been observed in a wide variety of cancer types in previous studies. Furthermore, HLA-G expression in cancer has been considered to be detrimental, since it can protect cancer cells from natural killer cell cytotoxic T lymphocyte-mediated destruction, promote tumor spreading and shorten the survival time of patients by facilitating tumor immune evasion. In addition, HLA-G polymorphisms have been investigated in numerous types of cancer and are considered as risk factors and predictive markers of cancer. This review focuses on HLA-G expression and its polymorphisms in cancer, analyzing the mechanisms of HLA-G in promoting cancer development, and evaluating the potential and value of its clinical application as a diagnostic and prognostic biomarker, or even as a prospective therapeutic target in certain types of tumors.
Collapse
Affiliation(s)
- Yanwen Zhang
- Department of Oncology, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yali Han
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yunshan Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
13
|
Haghi M, Hosseinpour Feizi MA, Sadeghizadeh M, Lotfi AS. 14-bp Insertion/Deletion Polymorphism of the HLA-G gene in Breast Cancer among Women from North Western Iran. Asian Pac J Cancer Prev 2016; 16:6155-8. [PMID: 26320511 DOI: 10.7314/apjcp.2015.16.14.6155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human leukocyte antigen-G (HLA-G) gene is highly expressed in cancer pathologies and is one strategy used by tumor cells to escape immune surveillance. A 14-bp insertion/deletion (InDel) polymorphism of the HLA-G gene has been suggested to be associated with HLA-G mRNA stability and the expression of HLA-G. The aim of present study was to assess any genetic association between this polymorphism and breast cancer among Iranian-Azeri women. MATERIALS AND METHODS In this study 227 women affected with breast cancer, in addition to 255 age-sex and ethnically matched healthy individuals as the control group, participated. Genotyping was performed using polymerase chain reaction and electrophoresis assays. The data were compiled according to the genotype and allele frequencies, compared using the Chi-square test. Statistical significance was set at P<0.05. RESULTS In this case-control study, no significant difference was found between the case and control groups at allelic and genotype levels, although there is a slightly higher allele frequency of HLA-G 14bp deletion in breast cancer affected group. However,when the stage I subgroup was compared with stage II plus stage III subgroup of affected breast cancer, a significant difference was seen with the 14 bp deletion allele frequency. The stage II-III subgroup patients had higher frequency of deletion allele (57.4% vs 45.8%) than stage I cases (χ2=4.16, p-value=0.041). CONCLUSIONS Our data support a possible action of HLA-G 14bp InDel polymorphism as a potential genetic risk factor for progression of breast cancer. This finding highlights the necessity of future studies of this gene to establish the exact role of HLA-G in progression steps of breast cancer.
Collapse
Affiliation(s)
- Mehdi Haghi
- Department of Genetics, Faculty of Natural Sciences, University of Tabriz, Tabriz, IranE-mail : ,
| | | | | | | |
Collapse
|
14
|
Ma S, Wu J, Wu J, Wei Y, Zhang L, Ning Q, Hu D. Relationship between HLA-DRB1 allele polymorphisms and familial aggregations of hepatocellular carcinoma. ACTA ACUST UNITED AC 2016; 23:e1-7. [PMID: 26966407 DOI: 10.3747/co.23.2839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE We explored the relationship between HLA-DRB1 allele polymorphisms and familial aggregation of hepatocellular carcinoma (fhcc). METHODS Polymerase chain reaction sequence-specific primers were used to determine HLA-DRB1 genotypes for 130 members of families with 2 or more liver cancer patients and for 130 members of families without any diagnosed cancers. The genotype profiles were then compared to explore the relationship between HLA-DRB1 gene polymorphism and fhcc. RESULT Of 11 selected alleles, the frequencies of DRB1*11 and DRB1*12 were significantly lower in the fhcc group than in no-cancer group (p < 0.05; odds ratio: 0.286; 95% confidence interval: 0.091 to 0.901; and odds ratio: 0.493; 95% confidence interval: 0.292 to 0.893). Differences in the frequencies of the other 9 alleles were not statistically significant in the two groups (p > 0.05). CONCLUSIONS Our research suggests that if genetic factors play a role in fhcc, the deficiency in the DRB1*11 and DRB1*12 alleles might be the risk factor at work in Guangxi Zhuang Autonomous Region, P.R.C.
Collapse
Affiliation(s)
- S Ma
- Department of Infectious Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R.C
| | - J Wu
- Department of Infectious Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R.C
| | - J Wu
- Department of Infectious Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R.C
| | - Y Wei
- Department of Infectious Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R.C
| | - L Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R.C
| | - Q Ning
- Department of Infectious Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R.C
| | - D Hu
- Department of Infectious Diseases, First Affiliated Hospital of Guangxi Medical University, Nanning, P.R.C
| |
Collapse
|
15
|
Association of HLA-G +3142 C>G polymorphism and breast cancer in Tunisian population. Immunol Res 2016; 64:961-8. [DOI: 10.1007/s12026-015-8782-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Li T, Huang H, Liao D, Ling H, Su B, Cai M. WITHDRAWN: Lack of association between the HLA-G 3'UTR 14-bp ins/del polymorphism and cancer risk: A meta-analysis of case-control study. Hum Immunol 2015:S0198-8859(15)00564-9. [PMID: 26585360 DOI: 10.1016/j.humimm.2015.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/26/2014] [Accepted: 11/12/2015] [Indexed: 11/22/2022]
Abstract
This article hashas been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Tao Li
- Department of Chemotherapy, People's Hospital of Gaozhou, Gaozhou, Guangdong, China.
| | - Haohai Huang
- School of Pharmacy, Guangdong Medical College, Dongguan, Guangdong, China
| | - Dan Liao
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, Guangdong, China
| | - Huahuang Ling
- Department of Chemotherapy, People's Hospital of Gaozhou, Gaozhou, Guangdong, China
| | - Bingguang Su
- Department of Chemotherapy, People's Hospital of Gaozhou, Gaozhou, Guangdong, China
| | - Maode Cai
- Department of Chemotherapy, People's Hospital of Gaozhou, Gaozhou, Guangdong, China
| |
Collapse
|
17
|
Ueshima C, Kataoka TR, Hirata M, Furuhata A, Suzuki E, Toi M, Tsuruyama T, Okayama Y, Haga H. The Killer Cell Ig-like Receptor 2DL4 Expression in Human Mast Cells and Its Potential Role in Breast Cancer Invasion. Cancer Immunol Res 2015; 3:871-80. [PMID: 25735953 DOI: 10.1158/2326-6066.cir-14-0199] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/24/2015] [Indexed: 11/16/2022]
Abstract
The killer-cell Ig-like receptor (KIR) 2DL4 (CD158d) acts as a receptor for human leukocyte antigen (HLA)-G and is expressed on almost all human natural killer (NK) cells. The expression and function of KIR2DL4 in other hematopoietic cells is poorly understood. Here, we focused on human mast cells, which exhibit cytotoxic activity similar to that of NK cells. KIR2DL4 was detected in all examined human cultured mast cells established from peripheral blood derived from healthy volunteers (PB-mast), the human mast cell line LAD2, and human nonneoplastic mast cells, including those on pathologic specimens. An agonistic antibody against KIR2DL4 decreased KIT-mediated and IgE-triggered responses, and enhanced the granzyme B production by PB-mast and LAD2 cells, by activating Src homology 2-containing protein tyrosine phosphatase (SHP-2). Next, we performed a coculture assay between LAD2 cells and the HLA-G(+) cancer cells, MCF-7 and JEG-3, and showed that KIR2DL4 on LAD2 cells enhanced MMP-9 production and the invasive activity of both cell lines via HLA-G. Immunohistochemical analysis revealed that the direct interaction between HLA-G(+) breast cancer cells and KIR2DL4(+) tissue mast cells (observed in 12 of 36 cases; 33.3%) was statistically correlated with the presence of lymph node metastasis or lymph-vascular invasion (observed in 11 of 12 cases; 91.7%; χ(2) = 7.439; P < 0.01; degrees of freedom, 1) in the clinical samples. These findings suggest that the KIR2DL4 on human mast cells facilitates HLA-G-expressing cancer invasion and the subsequent metastasis.
Collapse
Affiliation(s)
- Chiyuki Ueshima
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan. Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan.
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ayako Furuhata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Eiji Suzuki
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yoshimichi Okayama
- Division of Molecular Cell Immunology and Allergology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
18
|
Dias FC, Castelli EC, Collares CVA, Moreau P, Donadi EA. The Role of HLA-G Molecule and HLA-G Gene Polymorphisms in Tumors, Viral Hepatitis, and Parasitic Diseases. Front Immunol 2015; 6:9. [PMID: 25699038 PMCID: PMC4313582 DOI: 10.3389/fimmu.2015.00009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/07/2015] [Indexed: 12/11/2022] Open
Abstract
Considering that the non-classical HLA-G molecule has well-recognized tolerogenic properties, HLA-G expression is expected to be deleterious when present in tumor cells and in cells chronically infected by viruses, whereas HLA-G expression is expected to be advantageous in autoimmune disorders. The expression of HLA-G on tissue or peripheral blood cells, the levels of soluble HLA-G and polymorphic sites along the gene have been studied in several disorders. In this study, we revised the role of the molecule and polymorphic sites along the HLA-G gene in tumors, viral hepatitis, and parasitic disorders. Overall, several lines of evidence clearly show that the induction of HLA-G expression in tumors has been associated with worse disease outcome and disease spread. In addition, the few studies conducted on hepatitis and parasitic disorders indicate that HLA-G may contribute to disease pathogenesis. Few isolated polymorphic sites, primarily located at the coding or 3′ untranslated HLA-G region, have been evaluated in these disorders, and a complete HLA-G typing together with the study of gene regulatory elements may further help on the understanding of the influence of the genetic background on disease susceptibility.
Collapse
Affiliation(s)
- Fabrício C Dias
- Division of Clinical Immunology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Erick C Castelli
- Department of Pathology, School of Medicine of Botucatu, Universidade Estadual Paulista , Botucatu , Brazil
| | - Cristhianna V A Collares
- Division of Clinical Immunology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Philippe Moreau
- Research Division in Hematology and Immunology, Institute of Emerging Diseases and Innovative Therapies, Saint-Louis Hospital, CEA , Paris , France
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
19
|
Genetic polymorphism in HLA-G 3′UTR 14-bp ins/del and risk of cancer: a meta-analysis of case–control study. Mol Genet Genomics 2015; 290:1235-45. [DOI: 10.1007/s00438-014-0985-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
|
20
|
Tao S, He H, Chen Q, Yue W. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer. Biochem Biophys Res Commun 2014; 451:74-8. [PMID: 25063027 DOI: 10.1016/j.bbrc.2014.07.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/15/2014] [Indexed: 12/25/2022]
Abstract
Breast cancer is the most common malignant diseases in women. miR-148a plays an important role in regulation of cancer cell proliferation and cancer invasion and down-regulation of miR-148a has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. However, the regulation mechanism of miR-148a is unclear. The role of estrogen signaling, a signaling pathway is important in development and progression of breast cancer. Therefore, we speculated that E2 may regulate miR-148a through G-protein-coupled estrogen receptor-1 (GPER). To test our hypothesis, we checked the effects of E2 on miR-148a expression in ER positive breast cancer cell MCF-7 and TN cancer cell MDA-MB-231. Then we used GPER inhibitor G15 to investigate whether GPER is involved in regulation of E2 on miR-148a. Furthermore, we analyzed whether E2 affects the expression of HLA-G, which is a miR-148a target gene through GPER. The results showed that E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells, GPER mediates the E2-induced increase in miR-148a expression in MCF-7 and MDA-MB-231 cells and E2-GPER regulates the expression of HLA-G by miR-148a. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HLA-G expression through inhibiting miR-148a that supports immune evasion in breast cancer.
Collapse
Affiliation(s)
- Sifeng Tao
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Haifei He
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiang Chen
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenjie Yue
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Gao M, Gao L, Yang G, Tao Y, Hou J, Xu H, Hu X, Han Y, Zhang Q, Zhan F, Wu X, Shi J. Myeloma cells resistance to NK cell lysis mainly involves an HLA class I-dependent mechanism. Acta Biochim Biophys Sin (Shanghai) 2014; 46:597-604. [PMID: 24850305 DOI: 10.1093/abbs/gmu041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The anti-multiple myeloma (MM) potential of natural killer (NK) cells has been of rising interest in recent years. However, the molecular mechanism of NK cell cytotoxicity to myeloma cells remains unclear. In the present study, we investigated the expressions of human leukocyte antigen (HLA) class I and HLA-G in patient myeloma cells, and determined their relevance in patient tumor-cell susceptibility to NK cell cytotoxicity. Our results showed that patient myeloma cells (n = 12) were relatively resistant to NK-92 cell lysis, compared with myeloma cell lines (n = 7, P < 0.01). Gene expression profiling and flow cytometry analysis showed that both mRNA and protein of HLA class I were highly expressed in 12 patient myeloma cells. Interestingly, no or low HLA-G surface expression was detected, although multiple HLA-G transcripts were detected in these myeloma cells. NK cell function assay showed that down-regulating HLA class I expression on patient cells by acid treatment significantly increased the susceptibility of MM cells to NK-mediated lysis. Furthermore, we found that the blocking of membrane-bound HLA class I rather than HLA-G using antibodies on myeloma samples markedly increased their susceptibility to NK-mediated killing. These results demonstrated that the resistance of patient MM cells to NK lysis mainly involves an HLA class I-dependent mechanism, suggesting that HLA class I may be involved in protecting MM cells from NK-mediated attack and contribute to their immune escape in vivo.
Collapse
Affiliation(s)
- Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jun Hou
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongwei Xu
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Xiaojing Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ying Han
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qianqiao Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
22
|
Kuppen PJK, de Kruijf EM. Considerations on the prognostic and predictive significance of HLA-G in breast cancer. BREAST CANCER MANAGEMENT 2014. [DOI: 10.2217/bmt.14.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Peter JK Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Esther M de Kruijf
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Human leukocyte antigen-G (HLA-G) polymorphism and expression in breast cancer patients. PLoS One 2014; 9:e98284. [PMID: 24870375 PMCID: PMC4037222 DOI: 10.1371/journal.pone.0098284] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) is known to be implicated in a tumor-driven immune escape mechanism in malignancies. The purpose of this study was to investigate HLA-G polymorphism and expression in breast cancer. HLA-G alleles were determined by direct DNA sequencing procedures from blood samples of 80 breast cancer patients and 80 healthy controls. Soluble HLA-G (sHLA-G) was measured by enzyme-linked immunosorbent assay (ELISA) from serum specimens. HLA-G expression in breast cancer lesions was also analyzed by immunohistochemistry staining. The presence of HLA-G 3' untranslated region (UTR) 14-bp sequence was analyzed and found to be associated with reduced risk of breast cancer susceptibility based on HLA-G expression in tissues (P = 0.0407). Levels of sHLA-G were higher in the breast cancer group (median 117.2 U/mL) compared to the control group (median 10.1 U/mL, P<0.001). The area under the receiver operating characteristic curve (AU-ROC) values of sHLA-G for differentiating breast cancer from normal controls and for detecting metastasis from other stages of breast cancer were 0.89 and 0.79, respectively. HLA-G polymorphism and expression may be involved in breast carcinogenesis and sHLA-G concentrations could be used as a diagnostic marker for detecting breast cancer.
Collapse
|
24
|
Ramos CS, Gonçalves AS, Marinho LC, Gomes Avelino MA, Saddi VA, Lopes AC, Simões RT, Wastowski IJ. Analysis of HLA-G gene polymorphism and protein expression in invasive breast ductal carcinoma. Hum Immunol 2014; 75:667-72. [PMID: 24759678 DOI: 10.1016/j.humimm.2014.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 02/19/2014] [Accepted: 04/06/2014] [Indexed: 12/22/2022]
Abstract
The human leukocyte antigen G (HLA-G) is a non-classical HLA class I molecule predominantly expressed in trophoblastic placental cells to protect the fetus during pregnancy. However, evidence has shown that this molecule may be implicated in the immune escape mechanism of tumor cells. Thus, the aim of this study was to evaluate the frequency of 14-bp insertion/deletion HLA-G polymorphism, as well as the expression of this molecule in patients with invasive breast ductal carcinoma (IDC). A significant association between the expression of HLA-G and the presence of metastasis in lymph nodes (p=0.01) was observed and the expression of HLA-G was significantly higher in patients with shorter survival time (p=0.03). The analysis suggests that the polymorphism observed in patients with IDC may be inducing a higher expression of the HLA-G molecule, which may possibly contribute to shorter survival time and a worse clinical prognosis for such patients.
Collapse
Affiliation(s)
- Caroline Steglich Ramos
- Master's Program in Genetics, Pontifical Catholic University of Goiás, Goiânia, Goiás 74000, Brazil
| | - Andréia Souza Gonçalves
- Department of Stomatology [Oral Pathology], Dental School, Federal University of Goiás, Goiânia, Goiás 74000, Brazil
| | - Larissa Cardoso Marinho
- Departament of Medicine, Pontifical Catholic University of Goiás, Goiânia, Goiás 74000, Brazil
| | | | - Vera Aparecida Saddi
- Master's Program in Genetics, Pontifical Catholic University of Goiás, Goiânia, Goiás 74000, Brazil; Departament of Medicine, Pontifical Catholic University of Goiás, Goiânia, Goiás 74000, Brazil; Laboratory of Oncogenetics and Radiobiology, Association of Cancer Combat in Goiás, Brazil
| | - Aryanne Cristina Lopes
- Departament of Medicine, Pontifical Catholic University of Goiás, Goiânia, Goiás 74000, Brazil
| | - Renata Toscano Simões
- Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais 31000, Brazil
| | | |
Collapse
|
25
|
de Figueiredo Feitosa NL, Crispim JCDO, Zanetti BR, Magalhães PKR, Soares CP, Soares EG, Neder L, Donadi EA, Maciel LMZ. HLA-G is differentially expressed in thyroid tissues. Thyroid 2014; 24:585-92. [PMID: 24089994 DOI: 10.1089/thy.2013.0246] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND HLA-G is a nonclassical major histocompatibility complex molecule that has well-recognized immunomodulatory properties. The expression of HLA-G in tumor cells has been considered to be detrimental, permitting tumor spreading and decreased survival. We evaluated the expression of HLA-G in histologically normal thyroid tissue, goiter, and benign and malignant thyroid tumors, and studied the relationship between HLA-G expression and patient clinical variables. PATIENTS AND METHODS The immunohistochemistry expression of HLA-G was performed on 72 specimens of papillary thyroid carcinoma (PTC), 19 follicular thyroid carcinomas (FTC), 22 follicular adenomas (FA), 22 colloid goiters (CG), and 14 histologically normal thyroid glands (NT). The percentage of HLA-G staining was graded from absent (-) to intense (+++). RESULTS HLA-G was faintly expressed in areas of hyperplasia in NT and CG. In PTC, FTC, and FA, the percentage of cell staining was significantly higher than in NT and CG (p<0.001 for each comparison). The tumor area with HLA-G expression was greater in FTC (p=0.0059) and PTC (p=0.0330) compared to FA. According to the magnitude of HLA-G staining, PTC tumors >1 cm exhibited increased HLA-G staining when compared to smaller tumors (p=0.03). Aggressive histologic subtypes of PTC have a higher median stained tumor area. No association was found between HLA-G expression and tumoral staging or patient disease-free survival. CONCLUSIONS The gradual increase of HLA-G expression from hyperplasia to carcinomas, and the association of strong HLA staining with some variables implicated in poor prognosis corroborate the unfavorable role of HLA-G in tumor thyroid cells, inhibiting cytotoxic immune system cells and facilitating tumor evasion and progression.
Collapse
|
26
|
Diao B, Du J, Liu Y, Luo F, Hou W. The association of HLA-DRB1 alleles and drug use with HIV infection in a Chinese Han Cohort. Braz J Infect Dis 2014; 18:82-7. [PMID: 24029438 PMCID: PMC9425253 DOI: 10.1016/j.bjid.2013.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/14/2013] [Accepted: 04/11/2013] [Indexed: 11/26/2022] Open
Abstract
Objective To investigate the relationship between the polymorphism of human leukocyte antigen (HLA)-DRB1 and the susceptibility and repellency of drug use combined with HIV infection in Chinese. Methods A total of 213 unrelated healthy people, 41 HIV-infected drug users, 24 HIV-uninfected drug users, and 64 HIV-infected non-drug users were recruited. Their HLA-DRB1 allele frequencies were analyzed by PCR-SSP and allele distribution was analyzed. Results Compared with healthy controls, in drug users, the frequencies of HLA-DRB1 *0401-041, *1001 were significantly higher; in HIV-infected patients, the frequencies of HLA-DRB1 *0101-0103, *0401-0411, *1001 were significantly higher, while the frequencies of DRB1 *1501-1502, *1101-1105, *1301-1302, DRB4, DRB5 were significantly lower; in HIV-infected drug users, the frequencies of HLA-DRB1 *0101-0103, *0401-0411, *0801-0806, *1001, *1401/1404/1405 were significantly higher, while the frequencies of DRB1 *1301/1302, 1501-1502, DRB5 were significantly lower. Conclusion There is close relationship between the polymorphism of HLA-DRB1 alleles and drug use with HIV infection, which plays an important role in elucidating the pathogenesis and providing the basis for therapeutics and prophylaxis of patients with drug use and HIV infection.
Collapse
|
27
|
Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer. Int J Breast Cancer 2013; 2013:250435. [PMID: 24363939 PMCID: PMC3864140 DOI: 10.1155/2013/250435] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/05/2013] [Accepted: 09/18/2013] [Indexed: 12/31/2022] Open
Abstract
Considering that downregulation of HLA expression could represent a potential mechanism for breast carcinogenesis and metastasis, the aim of the present study was to use immunohistochemical methods to analyze the expression of HLA-Ia, HLA-DR, HLA-DQ, HLA-E, and HLA-G in invasive ductal carcinoma (IDC) of the breast and to relate this HLA profile to anatomopathological parameters. Fifty-two IDC from breast biopsies were stratified according to histological differentiation (well, moderately, and poorly differentiated) and to the presence of metastases in axillary lymph nodes. The expression of HLA molecules was assessed by immunohistochemistry, using a computer-assisted system. Overall, 31 (59.6%) out of the 52 IDC breast biopsies exhibited high expression of HLA-G, but only 14 (26.9%) showed high expression of HLA-E. A large number (41, 78.8%) of the biopsies showed low expression of HLA-Ia, while 45 (86.5%) showed high expression of HLA-DQ and 36 (69.2%) underexpressed HLA-DR. Moreover, 24 (41.2%) of 52 biopsies had both low HLA-Ia expression and high HLA-G expression, while 11 (21.2%) had low HLA-Ia expression and high HLA-E expression. These results suggest that, by different mechanisms, the downregulation of HLA-Ia, HLA-E, and HLA-DR and the upregulation of HLA-G and HLA-DQ are associated with immune response evasion and breast cancer aggressiveness.
Collapse
|
28
|
Własiuk P, Tomczak W, Zając M, Dmoszyńska A, Giannopoulos K. Total expression of HLA-G and TLR-9 in chronic lymphocytic leukemia patients. Hum Immunol 2013; 74:1592-7. [PMID: 23994589 DOI: 10.1016/j.humimm.2013.08.277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 08/14/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022]
Abstract
Suppressed immune status facilitates immune escape mechanisms that allow chronic lymphocytic leukemia cells to proliferate and expand. The expression of HLA-G could effectively inhibit the immune response. In immune response inhibitory signals follow activation of immune system which might be occur during bacterial or viral infection in CLL patients. In the current study we characterized two components of immune system, inhibitory molecule HLA-G with its receptor - CD85j and Toll-like receptor 9. The material was obtained from 41 CLL patients and 41 HV with similar median age. In CLL patients expression of intracellular and surface HLA-G and soluble HLA-G levels were significantly higher than in HV. We found higher expression of CD85j compared to HV and the positive correlation between expression of HLA-G and CD85j. All the CLL cells expressed TLR-9, and the level of expression positively correlated with expression of HLA-G and CD85j. Patients with higher expression of intracellular expression of TLR-9 have significantly longer treatment-free survival than patients with low expression of TLR-9 (57 months vs. 8 months, respectively). Summarizing in CLL we characterized activatory and inhibitory components of immune system that might be connected functionally. Analysis of TLR-9 expression might have additional prognostic value for CLL patients.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antigens, CD/metabolism
- Cell Membrane/metabolism
- Female
- HLA-G Antigens/blood
- HLA-G Antigens/metabolism
- Humans
- Immunophenotyping
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukocyte Immunoglobulin-like Receptor B1
- Male
- Middle Aged
- Prognosis
- Receptors, Immunologic/metabolism
- Toll-Like Receptor 9/metabolism
- Young Adult
Collapse
Affiliation(s)
- Paulina Własiuk
- Department of Experimental Hematooncology, Medical University of Lublin, 20950 Lublin, Poland
| | | | | | | | | |
Collapse
|
29
|
Wlasiuk P, Stec A, Piechnik A, Kaminska W, Dmoszynska A, Ksiazek A, Giannopoulos K. Expression of soluble HLA-G in multiple myeloma patients and patients with renal failure. Leuk Res 2012; 36:881-3. [PMID: 22421410 DOI: 10.1016/j.leukres.2012.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 11/17/2022]
Abstract
Human lymphocyte antigen-G (HLA-G) is an immunosuppressive molecule that induces functional silencing of immune component cells and can be responsible for immunosuppression in patients with multiple myeloma (MM). Immune dysfunction is an important feature of MM and leads to infections as well as may promote disease progression. Ninety-five patients were included in this study. In MM, the sHLA-G levels were increased when compared to healthy volunteers and the levels of sHLA-G correlated with concentration of creatinine. Interestingly, we detected high levels of sHLA-G in patients with renal insufficiency without any malignant disease but levels were lower than in MM.
Collapse
Affiliation(s)
- Paulina Wlasiuk
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | | | | | | | | | | | | |
Collapse
|