1
|
Immune disguise: the mechanisms of Neu5Gc inducing autoimmune and transplant rejection. Genes Immun 2022; 23:175-182. [PMID: 36151402 DOI: 10.1038/s41435-022-00182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Organ (stem cell) transplantation is the most effective treatment for advanced organ failure. Neu5Gc (N-hydroxyacetylneuraminic acid) is a pathogenic non-human sialic acid, which is very similar to the molecular structure of Neu5Ac (N-acetylneuraminic acid) in human body. Neu5Gc has the function of "immune disguise", which is the main obstacle to transplantation. Gene knockout such as cytidine monophosphate-N-acetylneuraminidase (CMAH) reduces donor antigenicity, making xenotransplantation from fiction to reality. Exploring the immune disguise event in this emerging field has become a hot topic in the research of transplantation immune tolerance mechanism.
Collapse
|
2
|
Ogun OJ, Thaller G, Becker D. An Overview of the Importance and Value of Porcine Species in Sialic Acid Research. BIOLOGY 2022; 11:biology11060903. [PMID: 35741423 PMCID: PMC9219854 DOI: 10.3390/biology11060903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary Humans frequently interact with pigs and porcine meat is the most consumed red meat in the world. In addition, due to the many physiological and anatomical similarities shared between pigs and humans, in contrast to most mammalian species, pigs are a suitable model organism and pig organs can be used for xenotransplantation. However, one major challenge of porcine meat consumption and xenotransplantation is the xenoreactivity between red meat Neu5Gc sialic acid and human anti-Neu5Gc antibodies, which are associated with certain diseases and disorders. Furthermore, pigs express both α2-3 and α2-6 Sia linkages that could serve as viable receptors for viral infections, reassortments, and cross-species transmission of viruses. Therefore, pigs play a significant role in sialic acid research and, in general, in human health. Abstract Humans frequently interact with pigs, whose meat is also one of the primary sources of animal protein. They are one of the main species at the center of sialic acid (Sia) research. Sias are sugars at terminals of glycoconjugates, are expressed at the cell surfaces of mammals, and are important in cellular interactions. N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) are notable Sias in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) encodes the CMAH enzyme that biosynthesizes Neu5Gc. Although humans cannot endogenously synthesize Neu5Gc due to the inactivation of this gene by a mutation, Neu5Gc can be metabolically incorporated into human tissues from red meat consumption. Interactions between Neu5Gc and human anti-Neu5Gc antibodies have been associated with certain diseases and disorders. In this review, we summarized the sialic acid metabolic pathway, its regulation and link to viral infections, as well as the importance of the pig as a model organism in Sia research, making it a possible source of Neu5Gc antigens affecting human health. Future research in solving the structures of crucial enzymes involved in Sia metabolism, as well as their regulation and interactions with other enzymes, especially CMAH, could help to understand their function and reduce the amount of Neu5Gc.
Collapse
Affiliation(s)
- Oluwamayowa Joshua Ogun
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
- Correspondence: (O.J.O.); (D.B.)
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany;
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Correspondence: (O.J.O.); (D.B.)
| |
Collapse
|
3
|
Ko N, Shim J, Kim HJ, Lee Y, Park JK, Kwak K, Lee JW, Jin DI, Kim H, Choi K. A desirable transgenic strategy using GGTA1 endogenous promoter-mediated knock-in for xenotransplantation model. Sci Rep 2022; 12:9611. [PMID: 35688851 PMCID: PMC9187654 DOI: 10.1038/s41598-022-13536-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Pig-to-human organ transplantation is a feasible solution to resolve the shortage of organ donors for patients that wait for transplantation. To overcome immunological rejection, which is the main hurdle in pig-to-human xenotransplantation, various engineered transgenic pigs have been developed. Ablation of xeno-reactive antigens, especially the 1,3-Gal epitope (GalT), which causes hyperacute rejection, and insertion of complement regulatory protein genes, such as hCD46, hCD55, and hCD59, and genes to regulate the coagulation pathway or immune cell-mediated rejection may be required for an ideal xenotransplantation model. However, the technique for stable and efficient expression of multi-transgenes has not yet been settled to develop a suitable xenotransplantation model. To develop a stable and efficient transgenic system, we knocked-in internal ribosome entry sites (IRES)-mediated transgenes into the α 1,3-galactosyltransferase (GGTA1) locus so that expression of these transgenes would be controlled by the GGTA1 endogenous promoter. We constructed an IRES-based polycistronic hCD55/hCD39 knock-in vector to target exon4 of the GGTA1 gene. The hCD55/hCD39 knock-in vector and CRISPR/Cas9 to target exon4 of the GGTA1 gene were co-transfected into white yucatan miniature pig fibroblasts. After transfection, hCD39 expressed cells were sorted by FACS. Targeted colonies were verified using targeting PCR and FACS analysis, and used as donors for somatic cell nuclear transfer. Expression of GalT, hCD55, and hCD39 was analyzed by FACS and western blotting. Human complement-mediated cytotoxicity and human antibody binding assays were conducted on peripheral blood mononuclear cells (PBMCs) and red blood cells (RBCs), and deposition of C3 by incubation with human complement serum and platelet aggregation were analyzed in GGTA1 knock-out (GTKO)/CD55/CD39 pig cells. We obtained six targeted colonies with high efficiency of targeting (42.8% of efficiency). Selected colony and transgenic pigs showed abundant expression of targeted genes (hCD55 and hCD39). Knocked-in transgenes were expressed in various cell types under the control of the GGTA1 endogenous promoter in GTKO/CD55/CD39 pig and IRES was sufficient to express downstream expression of the transgene. Human IgG and IgM binding decreased in GTKO/CD55/CD39 pig and GTKO compared to wild-type pig PBMCs and RBCs. The human complement-mediated cytotoxicity of RBCs and PBMCs decreased in GTKO/CD55/CD39 pig compared to cells from GTKO pig. C3 was also deposited less in GTKO/CD55/CD39 pig cells than wild-type pig cells. The platelet aggregation was delayed by hCD39 expression in GTKO/CD55/CD39 pig. In the current study, knock-in into the GGTA1 locus and GGTA1 endogenous promoter-mediated expression of transgenes are an appropriable strategy for effective and stable expression of multi-transgenes. The IRES-based polycistronic transgene vector system also caused sufficient expression of both hCD55 and hCD39. Furthermore, co-transfection of CRISPR/Cas9 and the knock-in vector not only increased the knock-in efficiency but also induced null for GalT by CRISPR/Cas9-mediated double-stranded break of the target site. As shown in human complement-mediated lysis and human antibody binding to GTKO/CD55/CD39 transgenic pig cells, expression of hCD55 and hCD39 with ablation of GalT prevents an effective immunological reaction in vitro. As a consequence, our technique to produce multi-transgenic pigs could improve the development of a suitable xenotransplantation model, and the GTKO/CD55/CD39 pig developed could prolong the survival of pig-to-primate xenotransplant recipients.
Collapse
Affiliation(s)
- Nayoung Ko
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyoung-Joo Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Yongjin Lee
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jae-Kyung Park
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kyungmin Kwak
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Dajeon, Republic of Korea
| | - Dong-Il Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunil Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.
| |
Collapse
|
4
|
Shim J, Ko N, Kim HJ, Lee Y, Lee JW, Jin DI, Kim H, Choi K. Human immune reactivity of GGTA1/CMAH/A3GALT2 triple knockout Yucatan miniature pigs. Transgenic Res 2021; 30:619-634. [PMID: 34232440 PMCID: PMC8478729 DOI: 10.1007/s11248-021-00271-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022]
Abstract
In this study, we investigated the effect of a triple knockout of the genes alpha-1,3-galactosyltransferase (GGTA1), cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and alpha 1,3-galactosyltransferase 2 (A3GALT2) in Yucatan miniature pigs on human immune reactivity. We used the CRISPR/Cas9 system to create pigs lacking GGTA1 (GTKO) and GGTA1/CMAH/A3GALT2 triple gene knockout (TKO). The expression of all three xenoantigens was absent in TKO pigs, but there was no additional reduction in the level of Galα1,3Gal (αGal) epitopes expression in the A3GALT2 gene KO. Peripheral blood mononuclear cells (PBMCs), aorta endothelial cells (AECs), and cornea endothelial cells (CECs) were isolated from these pigs, and their ability to bind human IgM/IgG and their cytotoxicity in human sera were evaluated. Compared to wild type (WT) pigs, the level of human antibody binding of the PBMCs, AECs, and CECs of the transgenic pigs (GTKO and TKO) was significantly reduced. However, there were significant differences in human antibody binding between GTKO and TKO depending on the cell type. Human antibody binding of TKO pigs was less than that of GTKO on PBMCs but was similar between GTKO and TKO pigs for AECs and CECs. Cytotoxicity of transgenic pig (GTKO and TKO) PBMCs and AECs was significantly reduced compared to that of WT pigs. However, TKO pigs showed a reduction in cytotoxicity compared to GTKO pigs on PBMCs, whereas in AECs from both TKO and GTKO pigs, there was no difference. The cytotoxicity of transgenic pig CECs was significantly decreased from that of WT at 300 min, but there was no significant reduction in TKO pigs from GTKO. Our results indicate that genetic modification of donor pigs for xenotransplantation should be tailored to the target organ and silencing of additional genes such as CMAH or A3GALT2 based on GTKO might not be essential in Yucatan miniature pigs.
Collapse
Affiliation(s)
- Joohyun Shim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Nayoung Ko
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.,Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyoung-Joo Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Yongjin Lee
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Jeong-Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Dong-Il Jin
- Department of Animal Science and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyunil Kim
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea
| | - Kimyung Choi
- Department of Transgenic Animal Research, Optipharm, Inc., Chungcheongbuk-do, Cheongju-si, 28158, Republic of Korea.
| |
Collapse
|
5
|
Schussler O, Lila N, Grau J, Ruel M, Lecarpentier Y, Carpentier A. Possible Link Between the ABO Blood Group of Bioprosthesis Recipients and Specific Types of Structural Degeneration. J Am Heart Assoc 2020; 9:e015909. [PMID: 32698708 PMCID: PMC7792238 DOI: 10.1161/jaha.119.015909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Pigs/bovines share common antigens with humans: α-Gal, present in all pigs/bovines close to the human B-antigen; and AH-histo-blood-group antigen, identical to human AH-antigen and present only in some animals. We investigate the possible impact of patients' ABO blood group on bioprosthesis structural valve degeneration (SVD) through calcification/pannus/tears/perforations for patients ≤60 years at implantation. Methods and Results This was a single-center study (Paris, France) that included all degenerative bioprostheses explanted between 1985 and 1998, mostly porcine bioprostheses (Carpentier-Edwards second/third porcine bioprostheses) and some bovine bioprostheses. For the period 1998 to 2014, only porcine bioprostheses with longevity ≥13 years were included (total follow-up ≥29 years). Except for blood groups, important predictive factors for SVD were prospectively collected (age at implantation/longevity/number/site/sex/SVD types) and analyzed using logistic regression. All variables were available for 500 explanted porcine bioprostheses. By multivariate analyses, the A group was associated with an increased risk of: tears (odds ratio[OR], 1.61; P=0.026); pannus (OR, 1.5; P=0.054), pannus with tears (OR, 1.73; P=0.037), and tendency for lower risk of: calcifications (OR, 0.63; P=0.087) or isolated calcification (OR, 0.67; P=0.17). A-antigen was associated with lower risk of perforations (OR 0.56; P=0.087). B-group patients had an increased risk of: perforations (OR, 1.73; P=0.043); having a pannus that was calcified (OR, 3.0, P=0.025). B-antigen was associated with a propensity for calcifications in general (OR, 1.34; P=0.25). Conclusions Patient's ABO blood group is associated with specific SVD types. We hypothesize that carbohydrate antigens, which may or may not be common to patient and animal bioprosthetic tissue, will determine a patient's specific immunoreactivity with respect to xenograft tissue and thus bioprosthesis outcome in terms of SVD.
Collapse
Affiliation(s)
- Olivier Schussler
- Deparments of Cardiovascular Surgery and Cardiovascular Research Laboratory Geneva University Hospitals and Faculty of Medicine Geneva Switzerland.,Service de Chirurgie Thoracique Hôpitaux Universitaire de StrasbourgParis University Paris France
| | - Nermine Lila
- Biosurgical Research Lab (Carpentier Foundation) APHPGeorges PompidouEuropean Georges Pompidou Hospital Paris France
| | - Juan Grau
- Department of Epidemiology Ottawa Heart InstituteUniversity of Ottawa Ontario Canada
| | - Marc Ruel
- Department of Epidemiology Ottawa Heart InstituteUniversity of Ottawa Ontario Canada
| | - Yves Lecarpentier
- Centre de Recherche Clinique Grand Hôpital de l'Est Francilien (GHEF) Meaux France
| | - Alain Carpentier
- Biosurgical Research Lab (Carpentier Foundation) APHPGeorges PompidouEuropean Georges Pompidou Hospital Paris France.,Division of Cardiac Surgery and Research Laboratory European HospitalEuropean Georges Pompidou Hospital Paris France
| |
Collapse
|
6
|
Tector AJ, Mosser M, Tector M, Bach JM. The Possible Role of Anti-Neu5Gc as an Obstacle in Xenotransplantation. Front Immunol 2020; 11:622. [PMID: 32351506 PMCID: PMC7174778 DOI: 10.3389/fimmu.2020.00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
Seventy to ninety percentage of preformed xenoreactive antibodies in human serum bind to the galactose-α(1,3)-galactose Gal epitope, and the creation of Gal knockout (KO) pigs has eliminated hyperacute rejection as a barrier to xenotransplantation. Now other glycan antigens are barriers to move ahead with xenotransplantation, and the N-glycolyl neuraminic acid, Neu5Gc (or Hanganutziu-Deicher antigen), is also a major pig xenoantigen. Humans have anti-Neu5Gc antibodies. Several data indicate a strong immunogenicity of Neu5Gc in humans that may contribute to an important part in antibody-dependent injury to pig xenografts. Pig islets express Neu5Gc, which reacted with diet-derived human antibodies and mice deleted for Neu5Gc reject pancreatic islets from wild-type counterpart. However, Neu5Gc positive heart were not rejected in Neu5Gc KO mice indicating that the role of Neu5Gc-specific antibodies has to be nuanced and depend of the graft situation parameters (organ/tissue, recipient, implication of other glycan antigens). Recently generated Gal/Neu5Gc KO pigs eliminate the expression of Gal and Neu5Gc, and improve the crossmatch of humans with the pig. This review summarizes the current and recent experimental and (pre)clinical data on the Neu5Gc immunogenicity and emphasize of the potential impact of anti-Neu5Gc antibodies in limiting xenotransplantation in humans.
Collapse
Affiliation(s)
- Alfred Joseph Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Mathilde Mosser
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Jean-Marie Bach
- Immuno-Endocrinology Unit (IECM), USC1383, Oniris, INRA, Nantes, France
| |
Collapse
|
7
|
Schussler O, Lila N, Perneger T, Mootoosamy P, Grau J, Francois A, Smadja DM, Lecarpentier Y, Ruel M, Carpentier A. Recipients with blood group A associated with longer survival rates in cardiac valvular bioprostheses. EBioMedicine 2019; 42:54-63. [PMID: 30878598 PMCID: PMC6491382 DOI: 10.1016/j.ebiom.2019.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 01/02/2023] Open
Abstract
Background Pigs/bovines share with humans some of the antigens present on cardiac valves. Two such antigens are: the major xenogenic Ag, “Gal” present in all pig/bovine very close to human B-antigen of ABO-blood-group system; the minor Ag, pig histo-blood-group AH-antigen identical to human AH-antigen and present by some animals. We hypothesize that these antigens may modify the immunogenicity of the bioprosthesis and also its longevity. ABO distribution may vary between patients with low (<6 years) and high (≥15 years) bioprostheses longevity. Methods Single-centre registry study (Paris, France) including all degenerative porcine bioprostheses (mostly Carpentier-Edwards 2nd/3rd generation heart valves) explanted between 1985 and 1998 and some bovine bioprostheses. For period 1998–2014, all porcine bioprostheses with longevity ≥13 years (follow-up ≥29 years). Important predictive factors for bioprosthesis longevity: number, site of implantation, age were collected. Blood group and other variables were entered into an ordinal logistic regression analysis model predicting valve longevity, categorized as low (<6 years), medium (6–14.9 years), and high (≥15 years). Findings Longevity and ABO-blood group were obtained for 483 explanted porcine bioprostheses. Mean longevity was 10.2 ± 3.9 years [0–28] and significantly higher for A-patients than others (P = 0.009). Using multivariate analysis, group A was a strong predictive factor of longevity (OR 2.09; P < 0.001). For the 64 explanted bovine bioprosthesis with low/medium longevity, the association, with A-group was even more significant. Interpretation Patients of A-group but not B have a higher longevity of their bioprostheses. Future graft-host phenotyping and matching may give rise to a new generation of long-lasting bioprosthesis for implantation in humans, especially for the younger population. Fund None.
Collapse
Affiliation(s)
- O Schussler
- Division of Cardiovascular Surgery and Cardiovascular Research Laboratory, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | - N Lila
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), University Paris Descartes, Sorbonne Paris Cité, Paris F-75475, France
| | - T Perneger
- Department of Clinical Epidemiology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - P Mootoosamy
- Division of Cardiovascular Surgery and Cardiovascular Research Laboratory, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - J Grau
- Division of Cardiac Surgery and Research Laboratory, Department of Epidemiology, Ottawa Heart Institute, University of Ottawa Heart, Ottawa, Ontario, Canada
| | - A Francois
- Etablissement Français du Sang (EFS), Ile de France, Immuno-hematology Laboratory, Georges Pompidou Hospital, Paris, France
| | - D M Smadja
- Division of Cardiovascular Surgery and Cardiovascular Research Laboratory, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland; AP-HP, Hôpital Européen Georges Pompidou, Hematology Department, Paris Descartes University, Sorbonne Paris Cite, Inserm UMR-S1140, Paris, France
| | - Y Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - M Ruel
- Division of Cardiac Surgery and Research Laboratory, Department of Epidemiology, Ottawa Heart Institute, University of Ottawa Heart, Ottawa, Ontario, Canada
| | - A Carpentier
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), University Paris Descartes, Sorbonne Paris Cité, Paris F-75475, France; AP-HP, Hôpital Européen Georges Pompidou, Department of Cardiovascular Surgery, Paris, France
| |
Collapse
|
8
|
French BM, Sendil S, Pierson RN, Azimzadeh AM. The role of sialic acids in the immune recognition of xenografts. Xenotransplantation 2017; 24. [PMID: 29057592 PMCID: PMC10167934 DOI: 10.1111/xen.12345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Presentation of sialic acid (Sia) varies among different tissues and organs within each species, and between species. This diversity has biologically important consequences regarding the recognition of cells by "xeno" antibodies (Neu5Gc vs Neu5Ac). Sia also plays a central role in inflammation by influencing binding of the asialoglycoprotein receptor 1 (ASGR-1), Siglec-1 (Sialoadhesin), and cellular interactions mediated by the selectin, integrin, and galectin receptor families. This review will focus on what is known about basic Sia structure and function in association with xenotransplantation, how changes in sialylation may occur in this context (through desialylation or changes in sialyltransferases), and how this fundamental pathway modulates adhesive and cell activation pathways that appear to be particularly crucial to homeostasis and inflammation for xenografts.
Collapse
Affiliation(s)
- Beth M French
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| | - Selin Sendil
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| | - Richard N Pierson
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| | - Agnes M Azimzadeh
- Division of Cardiac Surgery, University of Maryland Baltimore, School of Medicine, and VAMC, Baltimore, MD, USA
| |
Collapse
|
9
|
Beaton BP, Kwon DN, Choi YJ, Kim JH, Samuel MS, Benne JA, Wells KD, Lee K, Kim JH, Prather RS. Inclusion of homologous DNA in nuclease-mediated gene targeting facilitates a higher incidence of bi-allelically modified cells. Xenotransplantation 2016; 22:379-90. [PMID: 26381494 PMCID: PMC4584494 DOI: 10.1111/xen.12194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent advancements in gene editing techniques have increased in number and utility. These techniques are an attractive alternative to conventional gene targeting methods via homologous recombination due to the ease of use and the high efficiency of gene editing. We have previously produced cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) knockout (KO) pigs in a Minnesota miniature pig genetic background. These pigs were generated using zinc-finger nucleases (ZFNs) in combination with donor DNA containing a total homology length of 1600 bp (800-bp homology on each arm). Our next aim was to introduce the targeted disruption of alpha-1,3-galactosyltransferase (GGTA1) in the CMAH KO genetic background and evaluate the effect of donor DNA homology length on meganuclease-mediated gene targeting. METHODS Zinc-finger nucleases from a previous CMAH KO experiment were used as a proof of concept to identify a correlation between the length of donor DNA homology and targeting efficiency. Based on those results, experiments were designed to use transcription activator-like effector nucleases (TALENs) to generate bi-allelically modified GGTA1 cells using donor DNAs carrying various lengths of homology. Donor DNA was designed to symmetrically flank the predicted cleavage sites in CMAH and GGTA1 for both ZFN and TALEN cleavage sites, respectively. For both genes, the length of total homology ranged from 60 to 1799 bp. Sialyltransferase gene expression profiles were evaluated in CMAH and GGTA1 double KO pig cells and were compared to wild-type and CMAH KO cells. RESULTS Introduction of donor DNA with ZFNs demonstrated that small amounts of homology (60 bp) could facilitate homology-directed repair during ZFN-mediated targeting of CMAH; however, donor DNA with longer amounts of homology resulted in a higher frequency of homology-directed repair. For the GGTA1 KO experiments that used TALENs and donor DNA, donor DNA alone did not result in detectable bi-allelic conversion of GGTA1. As the length of donor DNA increased, the bi-allelic disruption of GGTA1 increased from 0.5% (TALENs alone, no donor DNA present) to a maximum of 3% (TALENs and donor DNA with total homology of 1799 bp). Inclusion of homologous donor DNA in TALEN-mediated gene targeting facilitated a higher incidence of bi-allelically modified cells. Using the generated cells, we were able to demonstrate the lack of GGTA1 expression and the decrease in gene expression sialyltransferase-related genes. CONCLUSIONS The approach of using donor DNA in conjunction with a meganuclease can be used to increase the efficiency of gene targeting. The gene editing methods can be applied to other genes as well as other mammalian systems. Additionally, gene expression analysis further confirms that the CMAH/GGTA1 double KO pigs can be a valuable source for the study of pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Benjamin P Beaton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Yun-Jung Choi
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Jae-Hwan Kim
- CHA Stem Cell Institute, Graduate School of Life Science and Biotechnology, Pochon CHA University, Seoul, Korea
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Joshua A Benne
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Kiho Lee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, Korea
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
10
|
Abstract
The availability of cells, tissues and organs from a non-human species such as the pig could, at least in theory, meet the demand of organs necessary for clinical transplantation. At this stage, the important goal of getting over the first year of survival has been reported for both cellular and solid organ xenotransplantation in relevant preclinical primate models. In addition, xenotransplantation is already in the clinic as shown by the broad use of animal-derived medical devices, such as bioprosthetic heart valves and biological materials used for surgical tissue repair. At this stage, however, prior to starting a wide-scale clinical application of xenotransplantation of viable cells and organs, the important obstacle represented by the humoral immune response will need to be overcome. Likewise, the barriers posed by the activation of the innate immune system and coagulative pathway will have to be controlled. As far as xenogeneic nonviable xenografts, increasing evidence suggests that considerable immune reactions, mediated by both innate and adaptive immunity, take place and influence the long-term outcome of xenogeneic materials in patients, possibly precluding the use of bioprosthetic heart valves in young individuals. In this context, the present article provides an overview of current knowledge on the immune processes following xenotransplantation and on the possible therapeutic interventions to overcome the immunological drawbacks involved in xenotransplantation.
Collapse
Affiliation(s)
- M Vadori
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy
| | - E Cozzi
- CORIT (Consortium for Research in Organ Transplantation), Via dell'Università 10, 35020 Legnaro, Padua, Italy.,Transplant Immunology Unit, Department of Transfusion Medicine, Padua University Hospital, Via Giustiniani, 2, 35128 Padua, Italy
| |
Collapse
|
11
|
Park HM, Kim YW, Kim KJ, Kim YJ, Yang YH, Jin JM, Kim YH, Kim BG, Shim H, Kim YG. Comparative N-linked glycan analysis of wild-type and α1,3-galactosyltransferase gene knock-out pig fibroblasts using mass spectrometry approaches. Mol Cells 2015; 38:65-74. [PMID: 25518929 PMCID: PMC4314127 DOI: 10.14348/molcells.2015.2240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023] Open
Abstract
Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after α1,3-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identified and quantified totally 47 N-glycans from wild-type (WT) and GalT-KO pig fibroblasts using mass spectrometry. First, our results confirmed the absence of galactose-alpha-1,3-galactose (α-Gal) residue in the GalT-KO pig cells. Interestingly, we showed that the level of overall fucosylated N-glycans from GalT-KO pig fibroblasts is much higher than from WT pig fibroblasts. Moreover, the relative quantity of the N-glycolylneuraminic acid (NeuGc) antigen is slightly higher in the GalT-KO pigs. Thus, this study will contribute to a better understanding of cellular glycan alterations on GalT-KO pigs for successful xenotransplantation.
Collapse
Affiliation(s)
- Hae-Min Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Yoon-Woo Kim
- Department of Chemical Engineering, Soongsil University, Seoul 156-743,
Korea
| | - Kyoung-Jin Kim
- Department of Chemical Engineering, Soongsil University, Seoul 156-743,
Korea
| | - Young June Kim
- Department of Nanobiomedical Science and BK21+ NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714,
Korea
| | - Yung-Hun Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul 143-701,
Korea
| | - Jang Mi Jin
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang 363-883,
Korea
| | - Young Hwan Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang 363-883,
Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 305-764,
Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742,
Korea
| | - Hosup Shim
- Department of Nanobiomedical Science and BK21+ NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714,
Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 156-743,
Korea
| |
Collapse
|
12
|
Zeyland J, Lipiński D, Słomski R. The current state of xenotransplantation. J Appl Genet 2014; 56:211-8. [PMID: 25487710 PMCID: PMC4412840 DOI: 10.1007/s13353-014-0261-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/29/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022]
Abstract
Pigs as a source of grafts for xenotransplantation can help to overcome the rapidly growing shortage of human donors. However, in the case of pig-to-human transplantation, the antibody-xenoantigen complexes lead to the complement activation and immediate hyperacute rejection. Methods eliminating hyperacute rejection (HAR) include α1,3-galactosyltransferase (GGTA1) inactivation, regulation of the complement system and modification of the oligosaccharide structure of surface proteins. The humoral immune response control and reduction of the risk of coagulation disorders are the priority tasks in attempts to overcome acute humoral xenograft rejection that may occur after the elimination of HAR. The primary targets for research are connected with the identification of obstacles and development of strategies to tackle them. Because of the magnitude of factors involved in the immune, genetic engineers face a serious problem of producing multitransgenic animals in the shortest possible time.
Collapse
Affiliation(s)
- J Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Dojazd 11, 60-632, Poland,
| | | | | |
Collapse
|
13
|
Salama A, Evanno G, Harb J, Soulillou JP. Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation. Xenotransplantation 2014; 22:85-94. [PMID: 25308416 DOI: 10.1111/xen.12142] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
Abstract
Human beings do not synthesize the glycolyl form of the sialic acid (Neu5Gc) and only express the acetylated form of the sugar, whereas a diet-based intake of Neu5Gc provokes a natural immunization and production of anti-Neu5Gc antibodies in human serum. However, Neu5Gc is expressed on mammal glycoproteins and glycolipids in most organs and cells. We review here the relevance of Neu5Gc and anti-Neu5Gc antibodies in the context of xenotransplantation and the use of animal-derived molecules and products, as well as the possible consequences of a long-term exposure to anti-Neu5Gc antibodies in recipients of xenografts. In addition, the importance of an accurate estimation of the anti-Neu5Gc response following xenotransplantation and the future contribution of knockout animals mimicking the human situation are also assessed.
Collapse
Affiliation(s)
- Apolline Salama
- INSERM UMR1064, Centre for Research in Transplantation and Immunology-ITUN, Université de Nantes, Centre Hospitalier Universitaire Hôtel-Dieu, Nantes, France; Société d'Accélération du Transfert de Technologies Ouest Valorisation, Rennes Cedex, France
| | | | | | | |
Collapse
|
14
|
Kim MK, Choi HJ, Kwon I, Pierson RN, Cooper DKC, Soulillou JP, O'Connell PJ, Vabres B, Maeda N, Hara H, Scobie L, Gianello P, Takeuchi Y, Yamada K, Hwang ES, Kim SJ, Park CG. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of xenocorneal transplantation. Xenotransplantation 2014; 21:420-30. [PMID: 25176471 DOI: 10.1111/xen.12129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/20/2014] [Indexed: 11/27/2022]
Abstract
To develop an international consensus regarding the appropriate conditions for undertaking clinical trials in xenocorneal transplantation, here we review specific ethical, logistical, scientific, and regulatory issues regarding xenocorneal transplantation, and propose guidelines for conduct of clinical xenocorneal transplantation trials. These proposed guidelines are modeled on the published consensus statement of the International Xenotransplantation Association regarding recommended guidelines for conduct of clinical islet xenotransplantation. It is expected that this initial consensus statement will be revised over time in response to scientific advances in the field, and changes in the regulatory framework based on accumulating clinical experience.
Collapse
Affiliation(s)
- Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea; Xenotransplantation Research Center, Seoul National University College Of Medicine and Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee W, Miyagawa Y, Long C, Cooper DKC, Hara H. A comparison of three methods of decellularization of pig corneas to reduce immunogenicity. Int J Ophthalmol 2014; 7:587-93. [PMID: 25161926 DOI: 10.3980/j.issn.2222-3959.2014.04.01] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/30/2014] [Indexed: 12/24/2022] Open
Abstract
AIM To investigate whether decellularization using different techniques can reduce immunogenicity of the cornea, and to explore the decellularized cornea as a scaffold for cultured corneal endothelial cells (CECs). Transplantation of decellularized porcine corneas increases graft transparency and survival for longer periods compared with fresh grafts. METHODS Six-month-old wild-type pig corneas were cut into 100-200 µm thickness, and then decellularized by three different methods: 1) 0.1% sodium dodecyl sulfate (SDS); 2) hypoxic nitrogen (N2); and 3) hypertonic NaCl. Thickness and transparency were assessed visually. Fresh and decellularized corneas were stained with hematoxylin/eosin (H&E), and for the presence of galactose-α1,3-galactose (Gal) and N-glycolylneuraminic acid (NeuGc, a nonGal antigen). Also, a human IgM/IgG binding assay was performed. Cultured porcine CECs were seeded on the surface of the decellularized cornea and examined after H&E staining. RESULTS All three methods of decellularization reduced the number of keratocytes in the stromal tissue by >80% while the collagen structure remained preserved. No remaining nuclei stained positive for Gal or NeuGc, and expression of these oligosaccharides on collagen was also greatly decreased compared to expression on fresh corneas. Human IgM/IgG binding to decellularized corneal tissue was considerably reduced compared to fresh corneal tissue. The cultured CECs formed a confluent monolayer on the surface of decellularized tissue. CONCLUSION Though incomplete, the significant reduction in the cellular component of the decellularized cornea should be associated with a significantly reduced in vivo immune response compared to fresh corneas.
Collapse
Affiliation(s)
- Whayoung Lee
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yuko Miyagawa
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cassandra Long
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David K C Cooper
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hidetaka Hara
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
16
|
Abstract
PURPOSE The aim of this study was to investigate the distribution of antigens other than galactose-α-1,3-galactose (Gal) (non-Gal) recognized by human and rhesus monkey serum antibodies in the α-1,3-galactosyltransferase gene-knockout (GTKO) pig cornea. METHODS The distribution of non-Gal, specifically N-glycolylneuraminic acid (NeuGc), in the corneas from wild-type (WT) and GTKO pigs was identified. Corneal sections from WT and GTKO pigs were incubated with human or rhesus monkey serum to determine immunoglobulin (Ig)M and IgG binding to corneal tissue by means of fluorescent microscopy. RESULTS Strong expression of NeuGc was found in all layers of both WT and GTKO pig corneas. In both humans and monkeys, antibody binding (IgG > IgM) to GTKO was found to be weaker than that to entire WT pig corneas, but in both, most antibody binding, especially IgG, was to the epithelium. There was weak diffuse antibody binding, especially of IgG, to the corneal stroma, suggesting binding to antigens expressed on collagen. There was no or minimal binding of IgM/IgG to the corneal endothelium. CONCLUSIONS Although the cornea is avascular, antibodies in primate serum can bind to pig antigens, especially on epithelial cells and stromal collagen. Although the binding to entire GTKO corneas was weaker than that to WT corneas, deletion of the expression of NeuGc and expression of human complement-regulatory proteins in the pig cornea will be important if prolonged clinical corneal xenograft survival is to be achieved.
Collapse
|
17
|
Harris DG, Quinn KJ, Dahi S, Burdorf L, Azimzadeh AM, Pierson RN. Lung xenotransplantation: recent progress and current status. Xenotransplantation 2014; 21:496-506. [PMID: 25040467 DOI: 10.1111/xen.12116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Xenotransplantation has undergone important progress in controlling initial hyperacute rejection in many preclinical models, with some cell, tissue, and organ xenografts advancing toward clinical trials. However, acute injury, driven primarily by innate immune and inflammatory responses, continues to limit results in lung xenograft models. The purpose of this article is to review the current status of lung xenotransplantation--including the seemingly unique challenges posed by this organ-and summarize proven and emerging means of overcoming acute lung xenograft injury.
Collapse
Affiliation(s)
- Donald G Harris
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
18
|
Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci Rep 2014; 3:1981. [PMID: 23760311 PMCID: PMC4070623 DOI: 10.1038/srep01981] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/22/2013] [Indexed: 11/09/2022] Open
Abstract
After the knock-out (KO) of α1,3 galactosyltransfease (Gal-T), the Hanganutziu-Deicher antigen became a major antigen of the "non-Gal antigen" that is implicated in subsequent xenograft rejection. For deletion of non-Gal antigen, we successfully produced zinc finger nuclease (ZFN)-mediated monoallelic/biallelic male and female CMP-N-acetylneuraminic acid hydroxylase (CMAH) KO miniature pigs: the efficiency of the gene targeting (41.7%) was higher when donor DNA was used with the ZFN than those of ZFN alone (9.1%). Monoallelic KO pigs had no integration of exogenous DNA into their genome, indicating that this technique would provide a new avenue to reduce the risk of antibiotics resistance when organs from genetically modified pigs are transplanted into patients. Until now, both monoallelic and biallelic CMAH KO pigs are healthy and show no sign of abnormality and off-target mutations. Therefore, these CMAH null pigs on the Gal-T KO background could serve as an important model for the xenotransplantation.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Pigs have emerged as potential sources of islets for clinical transplantation. Wild-type porcine islets (adult and neonatal) transplanted into the portal vein have successfully reversed diabetes in nonhuman primates. However, there is a rapid loss of the transplanted islets on exposure to blood, known as the instant blood-mediated inflammatory reaction (IBMIR), as well as a T-cell response that leads to rejection of the graft. RECENT FINDINGS Genetically modified pig islets offer a number of potential advantages, particularly with regard to reducing the IBMIR-related graft loss and protecting the islets from the primate immune response. Emerging data indicate that transgenes specifically targeted to pig β cells using an insulin promoter (in order to maximize target tissue expression while limiting host effects) can be achieved without significant effects on the pig's glucose metabolism. SUMMARY Experience with the transplantation of islets from genetically engineered pigs into nonhuman primates is steadily increasing, and has involved the deletion of pig antigenic targets to reduce the primate humoral response, the expression of transgenes for human complement-regulatory and coagulation-regulatory proteins, and manipulations to reduce the effect of the T-cell response. There is increasing evidence of the advantages of using genetically engineered pigs as sources of islets for future clinical trials.
Collapse
|
20
|
Vadori M, Cozzi E. Immunological challenges and therapies in xenotransplantation. Cold Spring Harb Perspect Med 2014; 4:a015578. [PMID: 24616201 DOI: 10.1101/cshperspect.a015578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xenotransplantation, or the transplantation of cells, tissues, or organs between different species, was proposed a long time ago as a possible solution to the worldwide shortage of human organs and tissues for transplantation. In this setting, the pig is currently seen as the most likely candidate species. In the last decade, progress in this field has been remarkable and includes a better insight into the immunological mechanisms underlying the rejection process. Several immunological hurdles nonetheless remain, such as the strong antibody-mediated and innate or adaptive cellular immune responses linked to coagulation derangements, precluding indefinite xenograft survival. This article reviews our current understanding of the immunological mechanisms involved in xenograft rejection and the potential strategies that may enable xenotransplantation to become a clinical reality in the not-too-distant future.
Collapse
Affiliation(s)
- Marta Vadori
- CORIT (Consortium for Research in Organ Transplantation), Legnaro, 35020 Padua, Italy
| | | |
Collapse
|
21
|
Thorlacius-Ussing L, Ludvigsen M, Kirkeby S, Vorum H, Honoré B. Proteomic analysis of tissue from α1,3-galactosyltransferase knockout mice reveals that a wide variety of proteins and protein fragments change expression level. PLoS One 2013; 8:e80600. [PMID: 24244699 PMCID: PMC3828281 DOI: 10.1371/journal.pone.0080600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022] Open
Abstract
A barrier in a pig-to-man xenotransplantation is that the Galα1-3Galβ1-4GlcNAc-R carbohydrate (α-Gal epitope) expressed on pig endothelial cells reacts with naturally occurring antibodies in the recipient’s blood leading to rejection. Deletion of the α1,3-galactosyltransferase gene prevents the synthesis of the α-Gal epitope. Therefore, knockout models of the α1,3-galactosyltransferase gene are widely used to study xenotransplantation. We have performed proteomic studies on liver and pancreas tissues from wild type and α1,3-galactosyltransferase gene knockout mice. The tissues were analyzed by two-dimensional polyacrylamide gel electrophoresis and liquid chromatography - tandem mass spectrometry. The analyses revealed that a wide variety of proteins and protein fragments are differentially expressed suggesting that knockout of the α1,3-galactosyltransferase gene affects the expression of several other genes.
Collapse
Affiliation(s)
| | - Maja Ludvigsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Svend Kirkeby
- Institute of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
22
|
Deng L, Chen X, Varki A. Exploration of sialic acid diversity and biology using sialoglycan microarrays. Biopolymers 2013; 99:650-65. [PMID: 23765393 PMCID: PMC7161822 DOI: 10.1002/bip.22314] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 06/04/2013] [Indexed: 12/13/2022]
Abstract
Sialic acids (Sias) are a group of α-keto acids with a nine-carbon backbone, which display many types of modifications in nature. The diversity of natural Sia presentations is magnified by a variety of glycosidic linkages to underlying glycans, the sequences and classes of such glycans, as well as the spatial organization of Sias with their surroundings. This diversity is closely linked to the numerous and varied biological functions of Sias. Relatively large libraries of natural and unnatural Sias have recently been chemically/chemoenzymatically synthesized and/or isolated from natural sources. The resulting sialoglycan microarrays have proved to be valuable tools for the exploration of diversity and biology of Sias. Here we provide an overview of Sia diversity in nature, the approaches used to generate sialoglycan microarrays, and the achievements and challenges arising.
Collapse
Affiliation(s)
- Lingquan Deng
- Departments of Medicine and Cellular & Molecular MedicineGlycobiology Research and Training Center, University of CaliforniaSan Diego, La JollaCA92093‐0687
| | - Xi Chen
- Department of ChemistryUniversity of CaliforniaDavisCA95616
| | - Ajit Varki
- Departments of Medicine and Cellular & Molecular MedicineGlycobiology Research and Training Center, University of CaliforniaSan Diego, La JollaCA92093‐0687
| |
Collapse
|
23
|
Chihara RK, Lutz AJ, Paris LL, Wang ZY, Sidner RA, Heyrman AT, Downey SM, Burlak C, Tector AJ. Fibronectin from alpha 1,3-galactosyltransferase knockout pigs is a xenoantigen. J Surg Res 2013; 184:1123-33. [PMID: 23673165 DOI: 10.1016/j.jss.2013.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/21/2013] [Accepted: 04/05/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND Antibody-mediated rejection continues to be an obstacle for xenotransplantation despite development of α1,3-galactosyltransferase knockout (GTKO) pigs. Fibronectin (Fn) from GTKO pigs was identified as a xenoantigen in baboons. N-glycolylneuraminic acid (Neu5Gc), similar to galactose α1,3-galactose, is an antigenic carbohydrate found in pigs. We evaluated human antibody reactivity and performed initial antigenic epitope characterization of Fn from GTKO pigs. MATERIALS AND METHODS GTKO pig aortic endothelial cells (AEC) were isolated and assessed for antibody-mediated complement-dependent cytotoxicity (CDC). Human and GTKO pig Fn were purified and analyzed using immunoblots. GTKO pig and human AEC absorbed human sera were assessed for CDC and anti-GTKO pig Fn antibodies. GTKO pig proteins were assessed for Neu5Gc. Immunoaffinity-purified human IgG anti-GTKO pig (hIgG-GTKOp) Fn using a GTKO pig Fn column were evaluated for cross-reactivity with other proteins. RESULTS GTKO pig AEC had greater human antibody binding, complement deposition and CDC compared with allogeneic human AEC. Human sera absorbed with GTKO pig AEC resulted in diminished anti-GTKO pig Fn antibody. Neu5Gc was identified on GTKO pig Fn and other proteins. The hIgG-GTKOp Fn cross-reacted with multiple GTKO pig proteins and was enriched with anti-Neu5Gc antibody. CONCLUSIONS Removal of antigenic epitopes from GTKO pig AEC would improve xenograft compatibility. GTKO pig Fn has antigenic epitopes, one identified as Neu5Gc, which may be responsible for pathology and cross-reactivity of hIgG-GTKOp Fn. Genetic knockout of Neu5Gc appears necessary to address significance and identification of non-Neu5Gc GTKO pig Fn antigenic epitopes.
Collapse
Affiliation(s)
- Ray K Chihara
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, September-October 2012. Xenotransplantation 2012. [PMID: 23198733 DOI: 10.1111/xen.12010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|