1
|
Du Z, Behrens SF. Effect of target gene sequence evenness and dominance on real-time PCR quantification of artificial sulfate-reducing microbial communities. PLoS One 2024; 19:e0299930. [PMID: 38452018 PMCID: PMC10919606 DOI: 10.1371/journal.pone.0299930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
Quantitative real-time PCR of phylogenetic and functional marker genes is among the most commonly used techniques to quantify the abundance of microbial taxa in environmental samples. However, in most environmental applications, the approach is a rough assessment of population abundance rather than an exact absolute quantification method because of PCR-based estimation biases caused by multiple factors. Previous studies on these technical issues have focused on primer or template sequence features or PCR reaction conditions. However, how target gene sequence characteristics (e.g., evenness and dominance) in environmental samples affect qPCR quantifications has not been well studied. Here, we compared three primer sets targeting the beta subunit of the dissimilatory sulfite reductase (dsrB) to investigate qPCR quantification performance under different target gene sequence evenness and dominance conditions using artificial gBlock template mixtures designed accordingly. Our results suggested that the qPCR quantification performance of all tested primer sets was determined by the comprehensive effect of the target gene sequence evenness and dominance in environmental samples. Generally, highly degenerate primer sets have equivalent or better qPCR quantification results than a more target-specific primer set. Low template concentration in this study (~105 copies/L) will exaggerate the qPCR quantification results difference among tested primer sets. Improvements to the accuracy and reproducibility of qPCR assays for gene copy number quantification in environmental microbiology and microbial ecology studies should be based on prior knowledge of target gene sequence information acquired by metagenomic analysis or other approaches, careful selection of primer sets, and proper reaction conditions optimization.
Collapse
Affiliation(s)
- Zhe Du
- Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing, China
- The BioTechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, United States of America
| | - Sebastian F. Behrens
- The BioTechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, United States of America
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
You C, Jiang S, Ding Y, Ye S, Zou X, Zhang H, Li Z, Chen F, Li Y, Ge X, Guo X. RNA barcode segments for SARS-CoV-2 identification from HCoVs and SARSr-CoV-2 lineages. Virol Sin 2024; 39:156-168. [PMID: 38253258 PMCID: PMC10877444 DOI: 10.1016/j.virs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible for coronavirus disease 2019 (COVID-19), continues to evolve, giving rise to more variants and global reinfections. Previous research has demonstrated that barcode segments can effectively and cost-efficiently identify specific species within closely related populations. In this study, we designed and tested RNA barcode segments based on genetic evolutionary relationships to facilitate the efficient and accurate identification of SARS-CoV-2 from extensive virus samples, including human coronaviruses (HCoVs) and SARSr-CoV-2 lineages. Nucleotide sequences sourced from NCBI and GISAID were meticulously selected and curated to construct training sets, encompassing 1733 complete genome sequences of HCoVs and SARSr-CoV-2 lineages. Through genetic-level species testing, we validated the accuracy and reliability of the barcode segments for identifying SARS-CoV-2. Subsequently, 75 main and subordinate species-specific barcode segments for SARS-CoV-2, located in ORF1ab, S, E, ORF7a, and N coding sequences, were intercepted and screened based on single-nucleotide polymorphism sites and weighted scores. Post-testing, these segments exhibited high recall rates (nearly 100%), specificity (almost 30% at the nucleotide level), and precision (100%) performance on identification. They were eventually visualized using one and two-dimensional combined barcodes and deposited in an online database (http://virusbarcodedatabase.top/). The successful integration of barcoding technology in SARS-CoV-2 identification provides valuable insights for future studies involving complete genome sequence polymorphism analysis. Moreover, this cost-effective and efficient identification approach also provides valuable reference for future research endeavors related to virus surveillance.
Collapse
Affiliation(s)
- Changqiao You
- College of Biology, Hunan University, Changsha, 410082, China
| | - Shuai Jiang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yunyun Ding
- College of Biology, Hunan University, Changsha, 410082, China
| | - Shunxing Ye
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Hongming Zhang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Zeqi Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha, 410082, China
| | - Yongliang Li
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Xingyi Ge
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
3
|
Messenger SR, McGuinniety EMR, Stevenson LJ, Owen JG, Challis GL, Ackerley DF, Calcott MJ. Metagenomic domain substitution for the high-throughput modification of nonribosomal peptides. Nat Chem Biol 2024; 20:251-260. [PMID: 37996631 DOI: 10.1038/s41589-023-01485-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
The modular nature of nonribosomal peptide biosynthesis has driven efforts to generate peptide analogs by substituting amino acid-specifying domains within nonribosomal peptide synthetase (NRPS) enzymes. Rational NRPS engineering has increasingly focused on finding evolutionarily favored recombination sites for domain substitution. Here we present an alternative evolution-inspired approach that involves large-scale diversification and screening. By amplifying amino acid-specifying domains en masse from soil metagenomic DNA, we substitute more than 1,000 unique domains into a pyoverdine NRPS. Initial fluorescence and mass spectrometry screens followed by sequencing reveal more than 100 functional domain substitutions, collectively yielding 16 distinct pyoverdines as major products. This metagenomic approach does not require the high success rates demanded by rational NRPS engineering but instead enables the exploration of large numbers of substitutions in parallel. This opens possibilities for the discovery and production of nonribosomal peptides with diverse biological activities.
Collapse
Affiliation(s)
- Sarah R Messenger
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Edward M R McGuinniety
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Luke J Stevenson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Jeremy G Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, Australia
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| | - Mark J Calcott
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
4
|
McElhoe JA, Addesso A, Young B, Holland MM. A New Tool for Probabilistic Assessment of MPS Data Associated with mtDNA Mixtures. Genes (Basel) 2024; 15:194. [PMID: 38397184 PMCID: PMC10887502 DOI: 10.3390/genes15020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial (mt) DNA plays an important role in the fields of forensic and clinical genetics, molecular anthropology, and population genetics, with mixture interpretation being of particular interest in medical and forensic genetics. The high copy number, haploid state (only a single haplotype contributed per individual), high mutation rate, and well-known phylogeny of mtDNA, makes it an attractive marker for mixture deconvolution in damaged and low quantity samples of all types. Given the desire to deconvolute mtDNA mixtures, the goals of this study were to (1) create a new software, MixtureAceMT™, to deconvolute mtDNA mixtures by assessing and combining two existing software tools, MixtureAce™ and Mixemt, (2) create a dataset of in-silico MPS mixtures from whole mitogenome haplotypes representing a diverse set of population groups, and consisting of two and three contributors at different dilution ratios, and (3) since amplicon targeted sequencing is desirable, and is a commonly used approach in forensic laboratories, create biological mixture data associated with two amplification kits: PowerSeq™ Whole Genome Mito (Promega™, Madison, WI, USA) and Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific by AB™, Waltham, MA, USA) to further validate the software for use in forensic laboratories. MixtureAceMT™ provides a user-friendly interface while reducing confounding features such as NUMTs and noise, reducing traditionally prohibitive processing times. The new software was able to detect the correct contributing haplogroups and closely estimate contributor proportions in sequencing data generated from small amplicons for mixtures with minor contributions of ≥5%. A challenge of mixture deconvolution using small amplicon sequencing is the potential generation of spurious haplogroups resulting from private mutations that differ from Phylotree. MixtureAceMT™ was able to resolve these additional haplogroups by including known haplotype/s in the evaluation. In addition, for some samples, the inclusion of known haplotypes was also able to resolve trace contributors (minor contribution 1-2%), which remain challenging to resolve even with deep sequencing.
Collapse
Affiliation(s)
- Jennifer A McElhoe
- Forensic Science Program, Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; (A.A.); (M.M.H.)
| | - Alyssa Addesso
- Forensic Science Program, Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; (A.A.); (M.M.H.)
| | - Brian Young
- NicheVision LLC, 526 South Main St., Akron, OH 44311, USA;
| | - Mitchell M Holland
- Forensic Science Program, Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; (A.A.); (M.M.H.)
| |
Collapse
|
5
|
Rihtman B, Torcello-Requena A, Mikhaylina A, Puxty RJ, Clokie MRJ, Millard AD, Scanlan DJ. Coordinated transcriptional response to environmental stress by a Synechococcus virus. THE ISME JOURNAL 2024; 18:wrae032. [PMID: 38431846 PMCID: PMC10976474 DOI: 10.1093/ismejo/wrae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.
Collapse
Affiliation(s)
- Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Alberto Torcello-Requena
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Alevtina Mikhaylina
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Richard J Puxty
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Martha R J Clokie
- Leicester Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Andrew D Millard
- Leicester Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Xia H, Zhang Z, Luo C, Wei K, Li X, Mu X, Duan M, Zhu C, Jin L, He X, Tang L, Hu L, Guan Y, Lam DCC, Yang J. MultiPrime: A reliable and efficient tool for targeted next-generation sequencing. IMETA 2023; 2:e143. [PMID: 38868227 PMCID: PMC10989836 DOI: 10.1002/imt2.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 06/14/2024]
Abstract
We present multiPrime, a novel tool that automatically designs minimal primer sets for targeted next-generation sequencing, tailored to specific microbiomes or genes. MultiPrime enhances primer coverage by designing primers with mismatch tolerance and ensures both high compatibility and specificity. We evaluated the performance of multiPrime using a data set of 43,016 sequences from eight viruses. Our results demonstrated that multiPrime outperformed conventional tools, and the primer set designed by multiPrime successfully amplified the target amplicons. Furthermore, we expanded the application of multiPrime to 30 types of viruses and validated the work efficacy of multiPrime-designed primers in 80 clinical specimens. The subsequent sequencing outcomes from these primers indicated a sensitivity of 94% and a specificity of 89%.
Collapse
Affiliation(s)
- Han Xia
- School of Automation Science and Engineering, Faculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'anChina
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'anChina
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Zhe Zhang
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong KongChina
| | - Chen Luo
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Kangfei Wei
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Xuming Li
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Xiyu Mu
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Meilin Duan
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Chuanlong Zhu
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Luyi Jin
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Xiaoqing He
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Lingjie Tang
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Long Hu
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - Yuanlin Guan
- Department of Research and DevelopmentHugobiotechBeijingChina
| | - David C. C. Lam
- Department of Mechanical and Aerospace EngineeringThe Hong Kong University of Science and TechnologyHong KongChina
| | - Junbo Yang
- Department of Research and DevelopmentHugobiotechBeijingChina
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
7
|
Sajeer Paramabth M, Varma M. Demystifying PCR tests, challenges, alternatives, and future: A quick review focusing on COVID and fungal infections. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 51:719-728. [PMID: 37485773 DOI: 10.1002/bmb.21771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
The polymerase chain reaction (PCR) technique is one of the most potent tools in molecular biology. It is extensively used for various applications ranging from medical diagnostics to forensic science and food quality testing. This technique has facilitated to survive COVID-19 pandemic by identifying the virus-infected individuals effortlessly and effectively. This review explores the principles, recent advancements, challenges, and alternatives of PCR technique in the context of COVID-19 and fungal infections. The introduction of PCR technique for anyone new to this field is the primary aim of this review and thereby equips them to understand the science of COVID-19 and related fungal infections in a simplistic manner.
Collapse
Affiliation(s)
| | - Manoj Varma
- Center for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Waechter C, Fehse L, Welzel M, Heider D, Babalija L, Cheko J, Mueller J, Pöling J, Braun T, Pankuweit S, Weihe E, Kinscherf R, Schieffer B, Luesebrink U, Soufi M, Ruppert V. Comparative analysis of full-length 16s ribosomal RNA genome sequencing in human fecal samples using primer sets with different degrees of degeneracy. Front Genet 2023; 14:1213829. [PMID: 37564874 PMCID: PMC10411958 DOI: 10.3389/fgene.2023.1213829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Next-generation sequencing has revolutionized the field of microbiology research and greatly expanded our knowledge of complex bacterial communities. Nanopore sequencing provides distinct advantages, combining cost-effectiveness, ease of use, high throughput, and high taxonomic resolution through its ability to process long amplicons, such as the entire 16s rRNA genome. We examine the performance of the conventional 27F primer (27F-I) included in the 16S Barcoding Kit distributed by Oxford Nanopore Technologies (ONT) and that of a more degenerate 27F primer (27F-II) in the context of highly complex bacterial communities in 73 human fecal samples. The results show striking differences in both taxonomic diversity and relative abundance of a substantial number of taxa between the two primer sets. Primer 27F-I reveals a significantly lower biodiversity and, for example, at the taxonomic level of the phyla, a dominance of Firmicutes and Proteobacteria as determined by relative abundances, as well as an unusually high ratio of Firmicutes/Bacteriodetes when compared to the more degenerate primer set (27F-II). Considering the findings in the context of the gut microbiomes common in Western industrial societies, as reported in the American Gut Project, the more degenerate primer set (27F-II) reflects the composition and diversity of the fecal microbiome significantly better than the 27F-I primer. This study provides a fundamentally relevant comparative analysis of the in situ performance of two primer sets designed for sequencing of the entire 16s rRNA genome and suggests that the more degenerate primer set (27F-II) should be preferred for nanopore sequencing-based analyses of the human fecal microbiome.
Collapse
Affiliation(s)
- Christian Waechter
- Department of Cardiology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Leon Fehse
- Department of Mathematics and Computer Science, Philipps University Marburg, Marburg, Germany
| | - Marius Welzel
- Department of Mathematics and Computer Science, Philipps University Marburg, Marburg, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, Philipps University Marburg, Marburg, Germany
| | - Lek Babalija
- Department of Cardiology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Juan Cheko
- Department of Cardiology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Julian Mueller
- Department of Cardiology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Jochen Pöling
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sabine Pankuweit
- Department of Cardiology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Eberhard Weihe
- Institute of Anatomy and Cell Biology, Medical Faculty, Philipps University Marburg, Marburg, Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology, Medical Faculty, Philipps University Marburg, Marburg, Germany
| | - Bernhard Schieffer
- Department of Cardiology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Ulrich Luesebrink
- Department of Cardiology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Muhidien Soufi
- Department of Cardiology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
- Center for Undiagnosed and Rare Diseases, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| | - Volker Ruppert
- Department of Cardiology, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
- Center for Undiagnosed and Rare Diseases, University Hospital Marburg, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
9
|
Travadi T, Shah AP, Pandit R, Sharma S, Joshi C, Joshi M. A combined approach of DNA metabarcoding collectively enhances the detection efficiency of medicinal plants in single and polyherbal formulations. FRONTIERS IN PLANT SCIENCE 2023; 14:1169984. [PMID: 37255553 PMCID: PMC10225634 DOI: 10.3389/fpls.2023.1169984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
Introduction Empirical research has refined traditional herbal medicinal systems. The traditional market is expanding globally, but inadequate regulatory guidelines, taxonomic knowledge, and resources are causing herbal product adulteration. With the widespread adoption of barcoding and next-generation sequencing, metabarcoding is emerging as a potential tool for detecting labeled and unlabeled plant species in herbal products. Methods This study validated newly designed rbcL and ITS2 metabarcode primers for metabarcoding using in-house mock controls of medicinal plant gDNA pools and biomass pools. The applicability of the multi-barcode sequencing approach was evaluated on 17 single drugs and 15 polyherbal formulations procured from the Indian market. Results The rbcL metabarcode demonstrated 86.7% and 71.7% detection efficiencies in gDNA plant pools and biomass mock controls, respectively, while the ITS2 metabarcode demonstrated 82.2% and 69.4%. In the gDNA plant pool and biomass pool mock controls, the cumulative detection efficiency increased by 100% and 90%, respectively. A 79% cumulative detection efficiency of both metabarcodes was observed in single drugs, while 76.3% was observed in polyherbal formulations. An average fidelity of 83.6% was observed for targeted plant species present within mock controls and in herbal formulations. Discussion In the present study, we achieved increasing cumulative detection efficiency by combining the high universality of the rbcL locus with the high-resolution power of the ITS2 locus in medicinal plants, which shows applicability of multilocus strategies in metabarcoding as a potential tool for the Pharmacovigilance of labeled and unlabeled plant species in herbal formulations.
Collapse
|
10
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Isolation, screening and molecular characterization of phytase-producing microorganisms to discover the novel phytase. Biologia (Bratisl) 2023; 78:2527-2537. [DOI: 10.1007/s11756-023-01391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/10/2023] [Indexed: 09/02/2023]
|
11
|
Persson S, Larsson C, Simonsson M, Ellström P. rprimer: an R/bioconductor package for design of degenerate oligos for sequence variable viruses. BMC Bioinformatics 2022; 23:239. [PMID: 35717145 PMCID: PMC9206141 DOI: 10.1186/s12859-022-04781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background This paper presents a new R/Bioconductor package, rprimer, for design of degenerate oligos and PCR assays for sequence variable viruses. A multiple DNA sequence alignment is used as input data, while the outputs consist of comprehensive tables (data frames) and dashboard-like plots. The workflow can be run directly from the R console or through a graphical user interface (Shiny application). Here, rprimer is demonstrated and evaluated by using it to design two norovirus genogroup I (GI) assays: one RT-qPCR assay for quantitative detection and one RT‑PCR assay for Sanger sequencing and polymerase-capsid based genotyping. Results The assays generated were evaluated using stool samples testing positive for norovirus GI. The RT-qPCR assay accurately amplified and quantified all samples and showed comparable performance to a widely-used standardised assay, while the RT-PCR assay resulted in successful sequencing and genotyping of all samples. Merits and limitations of the package were identified through comparison with three similar freely available software packages. Several features were comparable across the different tools, but important advantages of rprimer were its speed, flexibility in oligo design and capacity for visualisation. Conclusions An R/Bioconductor package, rprimer, was developed and shown to be successful in designing primers and probes for quantitative detection and genotyping of a sequence-variable virus. The package provides an efficient, flexible and visual approach to degenerate oligo design, and can therefore assist in virus research and method development. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04781-0.
Collapse
Affiliation(s)
- Sofia Persson
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Dag Hammarskjölds väg 56 A, 752 37, Uppsala, Sweden. .,Department of Medical Sciences, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden.
| | - Christina Larsson
- Section of Clinical Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Magnus Simonsson
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Dag Hammarskjölds väg 56 A, 752 37, Uppsala, Sweden
| | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Ma L, Ouyang H, Su A, Zhang Y, Pang D, Zhang T, Sun R, Wang W, Xie Z, Lv D. AbSE Workflow: Rapid Identification of the Coding Sequence and Linear Epitope of the Monoclonal Antibody at the Single-cell Level. ACS Synth Biol 2022; 11:1856-1864. [PMID: 35503752 DOI: 10.1021/acssynbio.2c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monoclonal antibody (mAb) has been widely used in immunity research and disease diagnosis and therapy. Antibody sequence and epitope are the prerequisites and basis of mAb applications, which determine the properties of antibodies and make the preparation of antibody-based molecules controllable and reliable. Here, we present the antibody sequence and epitope identification (AbSE) workflow, a time-saving and cost-effective route for rapid determination of antibody sequence and linear epitope of mAb even at the single-cell level. The feasibility and accuracy of the AbSE workflow were demonstrated through the identification and validation of the coding sequence and epitope of antihuman serum albumin (antiHSA) mAb. It can be inferred that the AbSE workflow is a powerful and universal approach for paired antibody-epitope sequence identification. It may characterize antibodies not only on a single hybridoma cell but also on any other antibody-secreting cells.
Collapse
Affiliation(s)
- Lerong Ma
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - HongSheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen 518100, China
| | - Ang Su
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401123, China
| | - Tao Zhang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ruize Sun
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wentao Wang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zicong Xie
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Dongmei Lv
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
A Method for Degenerate Primer Design Based on Artificial Bee Colony Algorithm. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aiming to address the complex degenerate primer design problem in the biological field, in this paper, we design a degenerate primer optimization model considering primer coverage and degeneracy that allows a small number of base mismatches, and propose a global optimization method based on the artificial bee colony algorithm. The proposed algorithm combines the idea of the ant colony algorithm with the optimization process of the artificial bee colony algorithm, overcomes the disadvantage of the uncertain candidate solution length of the artificial bee colony algorithm in solving discrete optimization problems, designs the search space model according to the construction process of candidate solution in ant colony optimization algorithm, and redesigns various bee foraging strategies according to the optimization process information. In the comparative experiments on DNA template sequences of different scales, the degenerate primer designed by the proposed algorithm is superior to the existing methods in terms of stability, specificity, coverage and degeneracy.
Collapse
|
14
|
Varliero G, Wray J, Malandain C, Barker G. PhyloPrimer: a taxon-specific oligonucleotide design platform. PeerJ 2021; 9:e11120. [PMID: 33986979 PMCID: PMC8098674 DOI: 10.7717/peerj.11120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/25/2021] [Indexed: 11/26/2022] Open
Abstract
Many environmental and biomedical biomonitoring and detection studies aim to explore the presence of specific organisms or gene functionalities in microbiome samples. In such cases, when the study hypotheses can be answered with the exploration of a small number of genes, a targeted PCR-approach is appropriate. However, due to the complexity of environmental microbial communities, the design of specific primers is challenging and can lead to non-specific results. We designed PhyloPrimer, the first user-friendly platform to semi-automate the design of taxon-specific oligos (i.e., PCR primers) for a gene of interest. The main strength of PhyloPrimer is the ability to retrieve and align GenBank gene sequences matching the user’s input, and to explore their relationships through an online dynamic tree. PhyloPrimer then designs oligos specific to the gene sequences selected from the tree and uses the tree non-selected sequences to look for and maximize oligo differences between targeted and non-targeted sequences, therefore increasing oligo taxon-specificity (positive/negative consensus approach). Designed oligos are then checked for the presence of secondary structure with the nearest-neighbor (NN) calculation and the presence of off-target matches with in silico PCR tests, also processing oligos with degenerate bases. Whilst the main function of PhyloPrimer is the design of taxon-specific oligos (down to the species level), the software can also be used for designing oligos to target a gene without any taxonomic specificity, for designing oligos from preselected sequences and for checking predesigned oligos. We validated the pipeline on four commercially available microbial mock communities using PhyloPrimer to design genus- and species-specific primers for the detection of Streptococcus species in the mock communities. The software performed well on these mock microbial communities and can be found at https://www.cerealsdb.uk.net/cerealgenomics/phyloprimer.
Collapse
Affiliation(s)
- Gilda Varliero
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jared Wray
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Gary Barker
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Primer evaluation and development of a droplet digital PCR protocol targeting amoA genes for the quantification of Comammox in lakes. Sci Rep 2021; 11:2982. [PMID: 33536606 PMCID: PMC7858572 DOI: 10.1038/s41598-021-82613-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
To date, little is known about the ecological significance of Comammox (COMplete AMMonia OXidizers) Nitrospira in the water column of freshwater lakes. Water samples collected along depth profiles were used to investigate the distribution of Comammox in 13 lakes characterized by a wide range of physicochemical properties. Several published primers, which target the α-subunit of the ammonia monooxygenase, generated non-specific PCR products or did not amplify target genes from lake water and other habitats. Therefore, a new primer set has been designed for specific detection of Comammox in lakes. The high specificity of the PCR assay was confirmed by sequencing analysis. Quantification of Comammox amoA genes in lake water samples based on droplet digital PCR (ddPCR) revealed very low abundances (not exceeding 85 amoA copies ml-1), which suggest that Comammox is of minor importance for the nitrification process in the water column of the study sites. Surprisingly, samples taken from the sediment/water-interface along an oxygen gradient in dimictic Piburger See showed Comammox abundances three to four magnitudes higher than in the pelagic realm of the lake, which indicates a preference of Comammox to a particle-attached lifestyle.
Collapse
|
16
|
Abstract
Primers are critical components of any PCR assay, as they are the main determinants of its specificity, sensitivity, and robustness. Despite the publication of numerous guidelines, the actual design of many published assays is often unsound: primers lack the claimed specificity, they may have to compete with secondary structures at their binding sites, primer dimer formation may affect the assay's sensitivity or they may bind only within a narrow temperature range. This chapter provides simple guidance to avoid these most common issues.
Collapse
Affiliation(s)
- Stephen A Bustin
- Faculty of Health, Education, Medicine, and Social Care, Anglia Ruskin University, Chelmsford, Essex, UK.
| | | | - Tania Nolan
- Faculty of Medical and Human Sciences, Institute of Population Health, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N, Ferrari BC, Burns BP. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Front Microbiol 2020; 11:1950. [PMID: 32973707 PMCID: PMC7472256 DOI: 10.3389/fmicb.2020.01950] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desiccation, and ultraviolet (UV) radiation. Microorganisms living in extreme ecosystems are thought to potentially encode for secondary metabolites as a survival strategy. Many secondary metabolites are natural products encoded by a grouping of genes known as biosynthetic gene clusters (BGCs). Natural products have diverse chemical structures and functions which provide competitive advantages for microorganisms and can also have biotechnology applications. In the present study, the diversity of BGC were described in detail for the first time from Shark Bay microbial mats. A total of 1477 BGCs were detected in metagenomic data over a 20 mm mat depth horizon, with the surface layer possessing over 200 BGCs and containing the highest relative abundance of BGCs of all mat layers. Terpene and bacteriocin BGCs were highly represented and their natural products are proposed to have important roles in ecosystem function in these mat systems. Interestingly, potentially novel BGCs were detected from Heimdallarchaeota and Lokiarchaeota, two evolutionarily significant archaeal phyla not previously known to possess BGCs. This study provides new insights into how secondary metabolites from BGCs may enable diverse microbial mat communities to adapt to extreme environments.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Fraser Iain MacLeod
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Ch'ng ACW, Chan SK, Ignatius J, Lim TS. Human T-cell receptor V gene segment of alpha and beta families: A revised primer design strategy. Eur J Immunol 2019; 49:1186-1199. [PMID: 30919413 DOI: 10.1002/eji.201747328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/28/2019] [Accepted: 03/25/2019] [Indexed: 11/11/2022]
Abstract
The application of human TCR in cancer immunotherapy has gained momentum with developments in tumor killing strategies using endogenous adaptive immune responses. The successful coverage of a diverse TCR repertoire is mainly attributed to the primer design of the human TCR V genes. Here, we present a refined primer design strategy of the human TCR V gene by clustering V gene sequence homolog for degenerate primer design based on the data from IMGT. The primers designed were analyzed and the PCR efficiency of each primer set was optimized. A total of 112 alpha and 160 beta sequences were aligned and clustered using a phylogram yielding 32 and 27 V gene primers for the alpha and beta family. The new primer set was able to provide 93.75% and 95.63% coverage for the alpha and beta family, respectively. A semi-qualitative approach using the designed primer set was able to provide a relative view of the TCR V gene diversity in different populations. Taken together, the new primers provide a more comprehensive coverage of the TCR gene diversity for improved TCR library generation and TCR V gene analysis studies.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Joshua Ignatius
- Warwick Manufacturing Group, University of Warwick, Coventry, United Kingdom
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.,Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
19
|
Chen R, Wong HL, Burns BP. New Approaches to Detect Biosynthetic Gene Clusters in the Environment. MEDICINES 2019; 6:medicines6010032. [PMID: 30823559 PMCID: PMC6473659 DOI: 10.3390/medicines6010032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/22/2023]
Abstract
Microorganisms in the environment can produce a diverse range of secondary metabolites (SM), which are also known as natural products. Bioactive SMs have been crucial in the development of antibiotics and can also act as useful compounds in the biotechnology industry. These natural products are encoded by an extensive range of biosynthetic gene clusters (BGCs). The developments in omics technologies and bioinformatic tools are contributing to a paradigm shift from traditional culturing and screening methods to bioinformatic tools and genomics to uncover BGCs that were previously unknown or transcriptionally silent. Natural product discovery using bioinformatics and omics workflow in the environment has demonstrated an extensive distribution of BGCs in various environments, such as soil, aquatic ecosystems and host microbiome environments. Computational tools provide a feasible and culture-independent route to find new secondary metabolites where traditional approaches cannot. This review will highlight some of the advances in the approaches, primarily bioinformatic, in identifying new BGCs, especially in environments where microorganisms are rarely cultured. This has allowed us to tap into the huge potential of microbial dark matter.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia.
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia.
| | - Brendan Paul Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
20
|
Kim JW, Lee CY, Nguyen TT, Kim IH, Kwon HJ, Kim JH. An optimized molecular method for detection of influenza A virus using improved generic primers and concentration of the viral genomic RNA and nucleoprotein complex. J Vet Diagn Invest 2019; 31:175-183. [PMID: 30795722 DOI: 10.1177/1040638719830760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
For reported primer sets used to detect influenza A viruses (IAVs), we verified the nucleotide identities with 9,103 complete sequences of matrix (M) genes. At best, only 93.2% and 85.3% of the sequences had a 100% match with reported forward and reverse primers, respectively. Therefore, we designed new degenerate forward and reverse primers with 100% identity to 94.4% and 96.2% of compared genes, respectively, and the primer set was used with SYBR-based reverse-transcription real-time PCR (SYBR-RT-rtPCR) for lower detection limits. The sensitivity of SYBR-RT-rtPCR with the new primers was 10-fold higher than that with a conventional method in ~2.37% of all M genes in the database used in our study. We successfully increased the sensitivity of SYBR-RT-rtPCR by concentrating the viral ribonucleoprotein (RNP) using immunomagnetic beads and Triton X-100. The improved generic primer set and RNP concentration method may be useful for sensitive detection of IAVs.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Laboratory of Avian Diseases (J-W Kim, Lee, Nguyen, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Farm Animal Medicine (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Farm Animal Clinical Training and Research Center, Institutes of Green Bio Science and Technology (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Research Institute for Veterinary Science (Kwon, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Division of Antimicrobial Resistance, Center for Infectious Diseases, National Research Institute of Health, Cheongju, Republic of Korea (I-H Kim)
| | - Chung-Young Lee
- Laboratory of Avian Diseases (J-W Kim, Lee, Nguyen, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Farm Animal Medicine (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Farm Animal Clinical Training and Research Center, Institutes of Green Bio Science and Technology (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Research Institute for Veterinary Science (Kwon, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Division of Antimicrobial Resistance, Center for Infectious Diseases, National Research Institute of Health, Cheongju, Republic of Korea (I-H Kim)
| | - Thanh Trung Nguyen
- Laboratory of Avian Diseases (J-W Kim, Lee, Nguyen, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Farm Animal Medicine (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Farm Animal Clinical Training and Research Center, Institutes of Green Bio Science and Technology (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Research Institute for Veterinary Science (Kwon, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Division of Antimicrobial Resistance, Center for Infectious Diseases, National Research Institute of Health, Cheongju, Republic of Korea (I-H Kim)
| | - Il-Hwan Kim
- Laboratory of Avian Diseases (J-W Kim, Lee, Nguyen, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Farm Animal Medicine (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Farm Animal Clinical Training and Research Center, Institutes of Green Bio Science and Technology (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Research Institute for Veterinary Science (Kwon, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Division of Antimicrobial Resistance, Center for Infectious Diseases, National Research Institute of Health, Cheongju, Republic of Korea (I-H Kim)
| | - Hyuk-Joon Kwon
- Laboratory of Avian Diseases (J-W Kim, Lee, Nguyen, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Farm Animal Medicine (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Farm Animal Clinical Training and Research Center, Institutes of Green Bio Science and Technology (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Research Institute for Veterinary Science (Kwon, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Division of Antimicrobial Resistance, Center for Infectious Diseases, National Research Institute of Health, Cheongju, Republic of Korea (I-H Kim)
| | - Jae-Hong Kim
- Laboratory of Avian Diseases (J-W Kim, Lee, Nguyen, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Farm Animal Medicine (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Farm Animal Clinical Training and Research Center, Institutes of Green Bio Science and Technology (Kwon), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Research Institute for Veterinary Science (Kwon, J-H Kim), College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Division of Antimicrobial Resistance, Center for Infectious Diseases, National Research Institute of Health, Cheongju, Republic of Korea (I-H Kim)
| |
Collapse
|
21
|
Combining bioinformatics and conventional PCR optimization strategy for one-time design of high-specificity primers for WRKY gene family using unigene database. Mol Biol Rep 2019; 46:3461-3475. [PMID: 30725349 DOI: 10.1007/s11033-018-04577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
Gene families, like the conserved transcription factor families, evolve through gene duplications and share moderate similarity between member genes. Lack of genomic data makes it difficult to design high-specificity primers to the target genes. Furthermore, many primers under-perform in highly sensitive assays like quantitative PCR due to issues of thermodynamic nature, thereby increasing the cost and time for analysis. A methodology involving intra-species and inter-generic bioinformatic sequence comparison combined with thermodynamic estimation of primer performance was used for one-time design of gene specific primers for different WRKYs, Mitogen Activated Protein-kinases and N-methyltransferases of Coffea canephora without the aid of genome sequence resources. Out of a total 37 primer sets including 31 pairs of primers for WRKY from 34 mined WRKY Unigenes/ESTs and six pairs for genes coding for MAP kinases and NBS-LRR proteins, 32 sets exhibited high specificity of amplification upon genome analysis as well as in the high-resolution melt analysis. Furthermore, PCR optimization strategies-both in silico and experimental-indicated a superior performance of the primer sets for different applications like quantitative PCR and rapid amplification of cDNA ends. Only one set of primer resulted in mis-priming upon confirmation by DNA sequencing of the cloned amplicons. The intra-species differences and inter-generic similarities ensure high specificity of primers in all cases studied. The procedure allowed design of primers for the use in different downstream applications with high performance, specificity, yield and ease-of-use.
Collapse
|
22
|
Li Y, Ni L, Chen J, Yang J, Deng F, Wang H. Development of Multi-analyte Suspension Assay for Simultaneously Efficient Detection of Avian Influenza Virus A Subtypes. Virol Sin 2018; 33:111-115. [PMID: 29500693 DOI: 10.1007/s12250-018-0018-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/31/2018] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yi Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Longquan Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Juan Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
23
|
Abstract
The emergence of novel zoonotic pathogens is one of the greatest challenges to global health security. The advent of increasingly sophisticated diagnostics tools has revolutionized our capacity to detect and respond to these health threats more rapidly than ever before. Yet, no matter how sophisticated these tools become, the initial identification of emerging infectious diseases begins at the local community level. It is here that the initial human or animal case resides, and it is here that early pathogen detection would have maximum benefit. Unfortunately, many areas at highest risk of zoonotic disease emergence lack sufficient infrastructure capacity to support robust laboratory diagnostic systems. Multiple factors are essential for pathogen detection networks, including an understanding of the complex sociological and ecological factors influencing disease transmission risk, community engagement, surveillance along high-risk human-animal interfaces, and a skilled laboratory workforce. Here we discuss factors relevant to the emerging disease paradigm, recent technical advances in diagnostic methods, and strategies for comprehensive and sustainable approaches to rapid zoonotic disease detection.
Collapse
Affiliation(s)
- Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | - Jonna A K Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| |
Collapse
|
24
|
Design and evaluation of primers targeting genes encoding NO-forming nitrite reductases: implications for ecological inference of denitrifying communities. Sci Rep 2016; 6:39208. [PMID: 27966627 PMCID: PMC5155301 DOI: 10.1038/srep39208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
The detection of NO-forming nitrite reductase genes (nir) has become the standard when studying denitrifying communities in the environment, despite well-known amplification biases in available primers. We review the performance of 35 published and 121 newly designed primers targeting the nirS and nirK genes, against sequences from complete genomes and 47 metagenomes from three major habitats where denitrification is important. There were no optimal universal primer pairs for either gene, although published primers targeting nirS displayed up to 75% coverage. The alternative is clade-specific primers, which show a trade-off between coverage and specificity. The test against metagenomic datasets showed a distinct performance of primers across habitats. The implications of clade-specific nir primers choice and their performance for ecological inference when used for quantitative estimates and in sequenced-based community ecology studies are discussed and our phylogenomic primer evaluation can be used as a reference along with their environmental specificity as a guide for primer selection. Based on our results, we also propose a general framework for primer evaluation that emphasizes the testing of coverage and phylogenetic range using full-length sequences from complete genomes, as well as accounting for environmental range using metagenomes. This framework serves as a guideline to simplify primer performance comparisons while explicitly addressing the limitations and biases of the primers evaluated.
Collapse
|
25
|
Bekker EI, Karabanov DP, Galimov YR, Kotov AA. DNA Barcoding Reveals High Cryptic Diversity in the North Eurasian Moina Species (Crustacea: Cladocera). PLoS One 2016; 11:e0161737. [PMID: 27556403 PMCID: PMC4996527 DOI: 10.1371/journal.pone.0161737] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/10/2016] [Indexed: 11/19/2022] Open
Abstract
Species of the genus Moina Baird (Cladocera: Moinidae) often dominate freshwater crustacean communities in temporary water bodies. Several species of Moina are used as food for fish larvae in aquaculture, as bioindicators in toxicological studies, and as common subjects for physiological studies. The aim of this paper is to estimate biodiversity of Moina in northern Eurasia using the standard DNA barcoding approach based on the cytochrome c oxidase subunit I (COI) gene. We analysed 160 newly obtained and 157 existing COI sequences, and found evidence for 21 phylogroups of Moina, some of which were detected here for the first time. Our study confirmed the opinion that the actual species diversity of cladocerans is several times higher than is presently accepted. Our results also indicated that Moina has the second richest species diversity among the cladoceran genera (with only Daphnia O. F. Mueller having a greater diversity of species). Our study strongly supports division of Moina into two faunistic groups: European-Western Siberian and Eastern Siberian-Far Eastern, with a transitional zone at the Yenisey River basin (Eastern Siberia). Here, we refrain from taxonomic descriptions of new species, as this requires a thorough morphological and taxonomic study for each putative taxon.
Collapse
Affiliation(s)
- Eugeniya I. Bekker
- Laboratory of Aquatic Ecology and Invasions, A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| | - Dmitry P. Karabanov
- Laboratory of Aquatic Ecology and Invasions, A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
- Laboratory of Fish Ecology, I. D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok, Yaroslavl Area, Russia
| | - Yan R. Galimov
- Laboratory of Aquatic Ecology and Invasions, A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
- Laboratory of Experimental Embryology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Kotov
- Laboratory of Aquatic Ecology and Invasions, A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
|
27
|
Abstract
Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.
Collapse
|
28
|
Armani A, Giusti A, Guardone L, Castigliego L, Gianfaldoni D, Guidi A. Universal Primers Used for Species Identification of Foodstuff of Animal Origin: Effects of Oligonucleotide Tails on PCR Amplification and Sequencing Performance. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0301-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Kim H, Kang N, Chon KW, Kim S, Lee N, Koo J, Kim MS. MRPrimer: a MapReduce-based method for the thorough design of valid and ranked primers for PCR. Nucleic Acids Res 2015; 43:e130. [PMID: 26109350 PMCID: PMC4787749 DOI: 10.1093/nar/gkv632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
Primer design is a fundamental technique that is widely used for polymerase chain reaction (PCR). Although many methods have been proposed for primer design, they require a great deal of manual effort to generate feasible and valid primers, including homology tests on off-target sequences using BLAST-like tools. That approach is inconvenient for many target sequences of quantitative PCR (qPCR) due to considering the same stringent and allele-invariant constraints. To address this issue, we propose an entirely new method called MRPrimer that can design all feasible and valid primer pairs existing in a DNA database at once, while simultaneously checking a multitude of filtering constraints and validating primer specificity. Furthermore, MRPrimer suggests the best primer pair for each target sequence, based on a ranking method. Through qPCR analysis using 343 primer pairs and the corresponding sequencing and comparative analyses, we showed that the primer pairs designed by MRPrimer are very stable and effective for qPCR. In addition, MRPrimer is computationally efficient and scalable and therefore useful for quickly constructing an entire collection of feasible and valid primers for frequently updated databases like RefSeq. Furthermore, we suggest that MRPrimer can be utilized conveniently for experiments requiring primer design, especially real-time qPCR.
Collapse
Affiliation(s)
- Hyerin Kim
- Department of Information and Communication Engineering, DGIST, 333, Techno Jungang Daero, Daegu, 711-873, South Korea
| | - NaNa Kang
- Department of Brain and Cognitive Sciences, DGIST, 333, Techno Jungang Daero, Daegu, 711-873, South Korea
| | - Kang-Wook Chon
- Department of Information and Communication Engineering, DGIST, 333, Techno Jungang Daero, Daegu, 711-873, South Korea
| | - Seonho Kim
- Department of Information and Communication Engineering, DGIST, 333, Techno Jungang Daero, Daegu, 711-873, South Korea
| | - NaHye Lee
- Department of Brain and Cognitive Sciences, DGIST, 333, Techno Jungang Daero, Daegu, 711-873, South Korea
| | - JaeHyung Koo
- Department of Brain and Cognitive Sciences, DGIST, 333, Techno Jungang Daero, Daegu, 711-873, South Korea
| | - Min-Soo Kim
- Department of Information and Communication Engineering, DGIST, 333, Techno Jungang Daero, Daegu, 711-873, South Korea
| |
Collapse
|
30
|
Abstract
This chapter is intended as a guide on polymerase chain reaction (PCR) primer design (for information on PCR, see General PCR and Explanatory Chapter: Troubleshooting PCR). In the next section, general guidelines will be provided, followed by a discussion on primer design for specific applications. A list of recommended software tools is shown at the end.
Collapse
|
31
|
Zuiter AS, Sawwan J, Al Abdallat A. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia. BMC Res Notes 2012; 5:427. [PMID: 22883984 PMCID: PMC3492024 DOI: 10.1186/1756-0500-5-427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/02/2012] [Indexed: 01/06/2023] Open
Abstract
Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.
Collapse
Affiliation(s)
- Afnan Saeid Zuiter
- Department of Horticulture and Crop Science, University of Jordan, Amman, Jordan
| | | | | |
Collapse
|
32
|
Rosenkranz D. easyPAC: A Tool for Fast Prediction, Testing and Reference Mapping of Degenerate PCR Primers from Alignments or Consensus Sequences. Evol Bioinform Online 2012. [PMCID: PMC3310402 DOI: 10.4137/ebo.s8870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The PCR-amplification of unknown homologous or paralogous genes generally relies on PCR primers predicted from multi sequence alignments. But increasing sequence divergence can induce the need to use degenerate primers which entails the problem of testing the characteristics, unwanted interactions and potential mispriming of degenerate primers. Here I introduce easyPAC, a new software for the prediction of degenerate primers from multi sequence alignments or single consensus sequences. As a major innovation, easyPAC allows to apply all customary primer test procedures to degenerate primer sequences including fast mapping to reference files. Thus, easyPAC simplifies and expedites the designing of specific degenerate primers enormously. Degenerate primers suggested by easyPAC were used in PCR amplification with subsequent de novo sequencing of TDRD1 exon 11 homologs from several representatives of the haplorrhine primate phylogeny. The results demonstrate the efficient performance of the suggested primers and therefore show that easyPAC can advance upcoming comparative genetic studies.
Collapse
Affiliation(s)
- David Rosenkranz
- Institute of Anthropology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| |
Collapse
|
33
|
Sun Y, Liu HY, Mu L, Luo EJ. Degenerate primer design to clone the human repertoire of immunoglobulin heavy chain variable regions. World J Microbiol Biotechnol 2012; 28:381-6. [PMID: 22806814 PMCID: PMC7089251 DOI: 10.1007/s11274-011-0830-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 06/28/2011] [Indexed: 11/30/2022]
Abstract
Amplifying the variable (Fv or V) regions of immunoglobulins (Ig) has become a challenge in cloning antibody genes for phage display, a technique used to study protein-protein, protein-peptide, and protein-DNA interactions using bacteriophages to connect proteins with the genetic information that encodes them. Key parameters affecting the amplification of full antibody repertoires includes the availability of primers that can amplify as many V genes as possible; however the strategy used to design these primers and programs used to make the necessary alignments have not been well studied and clearly detailed in the literature. Here, we present a set of primers computationally designed by iCODEHOP based on a database of human germline Ig sequences. We used reverse transcription polymerase chain reaction (RT-PCR) protocols that would recognize the V(H) genes from human peripheral blood mononuclear cells. We identified the most highly conserved region in framework 1 and framework 4 of the Ig cDNA, and designed a set of degenerated 5' primers. The V(H) genes were successfully amplified by RT-PCR. This new primer has facilitated the creation of more diverse V(H) libraries than has been previously possible. Moreover, iCODEHOP improved the primer design efficiency and was found useful both for cloning unknown genes in gene families and for building V(H) gene libraries.
Collapse
Affiliation(s)
- Ying Sun
- Department of Microbiology and Parasitology and Institute of Pathology and Pathophysiology, China Medical University, No. 92, Beier Road, Heping District, Shen Yang, 110001 China
| | - Hong-Yan Liu
- Shenyang Hospital for Infectious Diseases, No. 85, Heping South Avenue, Heping District, Shen Yang, 110006 China
| | - Ling Mu
- Shenyang Hospital for Infectious Diseases, No. 85, Heping South Avenue, Heping District, Shen Yang, 110006 China
| | - En-Jie Luo
- Department of Microbiology and Parasitology and Institute of Pathology and Pathophysiology, China Medical University, No. 92, Beier Road, Heping District, Shen Yang, 110001 China
| |
Collapse
|
34
|
Malory S, Shapter FM, Elphinstone MS, Chivers IH, Henry RJ. Characterizing homologues of crop domestication genes in poorly described wild relatives by high-throughput sequencing of whole genomes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1131-40. [PMID: 21762354 DOI: 10.1111/j.1467-7652.2011.00640.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Wild crop relatives represent a source of novel alleles for crop genetic improvement. Screening biodiversity for useful or diverse gene homologues has often been based upon the amplification of targeted genes using available sequence information to design primers that amplify the target gene region across species. The crucial requirement of this approach is the presence of sequences with sufficient conservation across species to allow for the design of universal primers. This approach is often not successful with diverse organisms or highly variable genes. Massively parallel sequencing (MPS) can quickly produce large amounts of sequence data and provides a viable option for characterizing homologues of known genes in poorly described genomes. MPS of genomic DNA was used to obtain species-specific sequence information for 18 rice genes related to domestication characteristics in a wild relative of rice, Microlaena stipoides. Species-specific primers were available for 16 genes compared with 12 genes using the universal primer method. The use of species-specific primers had the potential to cover 92% of the sequence of these genes, while traditional universal primers could only be designed to cover 80%. A total of 24 species-specific primer pairs were used to amplify gene homologues, and 11 primer pairs were successful in capturing six gene homologues. The 23 million, 36-base pair (bp) paired end reads, equated to an average of 2X genome coverage, facilitated the successful amplification and sequencing of six target gene homologues, illustrating an important approach to the discovery of useful genes in wild crop relatives.
Collapse
Affiliation(s)
- Sylvia Malory
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | | | | | | | | |
Collapse
|
35
|
Friedl MA, Druzhinina IS. Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other's development. MICROBIOLOGY-SGM 2011; 158:69-83. [PMID: 22075025 PMCID: PMC3352360 DOI: 10.1099/mic.0.052555-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we report on the in situ diversity of the mycotrophic fungus Trichoderma (teleomorph Hypocrea, Ascomycota, Dikarya) revealed by a taxon-specific metagenomic approach. We designed a set of genus-specific internal transcribed spacer (ITS)1 and ITS2 rRNA primers and constructed a clone library containing 411 molecular operational taxonomic units (MOTUs). The overall species composition in the soil of the two distinct ecosystems in the Danube floodplain consisted of 15 known species and two potentially novel taxa. The latter taxa accounted for only 1.5 % of all MOTUs, suggesting that almost no hidden or uncultivable Hypocrea/Trichoderma species are present at least in these temperate forest soils. The species were unevenly distributed in vertical soil profiles although no universal factors controlling the distribution of all of them (chemical soil properties, vegetation type and affinity to rhizosphere) were revealed. In vitro experiments simulating infrageneric interactions between the pairs of species that were detected in the same soil horizon showed a broad spectrum of reactions from very strong competition over neutral coexistence to the pronounced synergism. Our data suggest that only a relatively small portion of Hypocrea/Trichoderma species is adapted to soil as a habitat and that the interaction between these species should be considered in a screening for Hypocrea/Trichoderma as an agent(s) of biological control of pests.
Collapse
Affiliation(s)
- Martina A Friedl
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9-1665, A-1060 Vienna, Austria
| | - Irina S Druzhinina
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9-1665, A-1060 Vienna, Austria
| |
Collapse
|
36
|
Fan E, Huang J, Hu S, Mei L, Yu K. Cloning, sequencing and expression of a glutamate decarboxylase gene from the GABA-producing strain Lactobacillus brevis CGMCC 1306. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0307-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Meiring T, Mulako I, Tuffin MI, Meyer Q, Cowan DA. Retrieval of full-length functional genes using subtractive hybridization magnetic bead capture. Methods Mol Biol 2011; 668:287-97. [PMID: 20830572 DOI: 10.1007/978-1-60761-823-2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Numerous gene-specific PCR methods have been developed for the cultivation-independent discovery of novel genes from complex environmental DNA samples. The recovery of full-length genes is, however, technically challenging. Here, we present an efficient and relatively simple approach that combines magnetic bead capture with subtractive hybridization for the rapid and direct recovery of full-length target ORFs. When compared with other PCR-based techniques, a higher degree of specificity is achieved through the use of larger gene fragments during hybridization followed by several high-stringency washes. Together with the recent advances in environmental nucleic acid extraction techniques, this approach should allow for the further exploration of the metagenomic sequence space.
Collapse
Affiliation(s)
- Tracy Meiring
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
38
|
Tieri P, Grignolio A, Zaikin A, Mishto M, Remondini D, Castellani GC, Franceschi C. Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system. Theor Biol Med Model 2010; 7:32. [PMID: 20701759 PMCID: PMC2927512 DOI: 10.1186/1742-4682-7-32] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/11/2010] [Indexed: 12/31/2022] Open
Abstract
Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. 'bow tie architecture'. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information.
Collapse
Affiliation(s)
- Paolo Tieri
- Interdept, Center Luigi Galvani for Bioinformatics, Biophysics and Biocomplexity (CIG), University of Bologna, Via F, Selmi 3, 40126 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Chang HW, Chuang LY, Cheng YH, Hung YC, Wen CH, Gu DL, Yang CH. Prim-SNPing: a primer designer for cost-effective SNP genotyping. Biotechniques 2009; 46:421-31. [PMID: 19480636 DOI: 10.2144/000113092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many kinds of primer design (PD) software tools have been developed, but most of them lack a single nucleotide polymorphism (SNP) genotyping service. Here, we introduce the web-based freeware "Prim-SNPing," which, in addition to general PD, provides three kinds of primer design functions for cost-effective SNP genotyping: natural PD, mutagenic PD, and confronting two-pair primers (CTPP) PD. The natural PD and mutagenic PD provide primers and restriction enzyme mining for polymerase chain reaction-restriction fragment of length polymorphism (PCR-RFLP), while CTPP PD provides primers for restriction enzyme-free SNP genotyping. The PCR specificity and efficiency of the designed primers are improved by BLAST searching and evaluating secondary structure (such as GC clamps, dimers, and hairpins), respectively. The length pattern of PCR-RFLP using natural PD is user-adjustable, and the restriction sites of the RFLP enzymes provided by Prim-SNPing are confirmed to be absent within the generated PCR product. In CTPP PD, the need for a separate digestion step in RFLP is eliminated, thus making it faster and cheaper. The output of Prim-SNPing includes the primer list, melting temperature (Tm) value, GC percentage, and amplicon size with enzyme digestion information. The reference SNP (refSNP, or rs) clusters from the Single Nucleotide Polymorphism database (dbSNP) at the National Center for Biotechnology Information (NCBI), and multiple other formats of human, mouse, and rat SNP sequences are acceptable input. In summary, Prim-SNPing provides interactive, user-friendly and cost-effective primer design for SNP genotyping. It is freely available at http://bio.kuas.edu.tw/prim-snping.
Collapse
Affiliation(s)
- Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Boyce R, Chilana P, Rose TM. iCODEHOP: a new interactive program for designing COnsensus-DEgenerate Hybrid Oligonucleotide Primers from multiply aligned protein sequences. Nucleic Acids Res 2009; 37:W222-8. [PMID: 19443442 PMCID: PMC2703993 DOI: 10.1093/nar/gkp379] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PCR amplification using COnsensus DEgenerate Hybrid Oligonucleotide Primers (CODEHOPs) has proven to be highly effective for identifying unknown pathogens and characterizing novel genes. We describe iCODEHOP; a new interactive web application that simplifies the process of designing and selecting CODEHOPs from multiply-aligned protein sequences. iCODEHOP intelligently guides the user through the degenerate primer design process including uploading sequences, creating a multiple alignment, deriving CODEHOPs and calculating their annealing temperatures. The user can quickly scan over an entire set of degenerate primers designed by the program to assess their relative quality and select individual primers for further analysis. The program displays phylogenetic information for input sequences and allows the user to easily design new primers from selected sequence sub-clades. It also allows the user to bias primer design to favor specific clades or sequences using sequence weights. iCODEHOP is freely available to all interested researchers at https://icodehop.cphi.washington.edu/i-codehop-context/Welcome.
Collapse
Affiliation(s)
- Richard Boyce
- Department of Biomedical Informatics, University of Pittsburgh, UPMC Cancer Pavilion, Suite 301, Pittsburgh, PA 15232, USA.
| | | | | |
Collapse
|
41
|
MAD-DPD: designing highly degenerate primers with maximum amplification specificity. Biotechniques 2008; 44:519-20, 522, 524-6. [PMID: 18476816 DOI: 10.2144/000112694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This work introduces minimum accumulative degeneracy, a variant of the degenerate primer design problem, which is particularly useful when a large number of sequences are to be covered by a set of restricted number of primers. A primer set, which is designed on a minimum accumulative degeneracy basis, especially helps to reduce nonspecific PCR amplification of undesired DNA fragments, as fewer primer species are present in PCR. A Boltzmann machine is designed to solve the minimum accumulative degeneracy degenerate primer design problem, called the MAD-DPD Boltzmann machine. This algorithm shows great flexibility, as it can be determined either to solve the problem with strict fidelity to covering all input sequences or to exclude some input sequences if it results in less degenerate primers. This Boltzmann machine is successfully implemented in designing a new set of primers for amplification of antibody variable fragments from mouse spleen cells, which theoretically covers more diverse antibody sequences than currently available primers. The MAD-DPD Boltzmann machine is available online at bioinf.cs.ipm.ir/download/MAD_DPD08172007.zip.
Collapse
|
42
|
LeClair EE. Teaching the toolkit: A laboratory series to demonstrate the evolutionary conservation of metazoan cell signaling pathways. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 36:225-233. [PMID: 21591195 DOI: 10.1002/bmb.20174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A major finding of comparative genomics and developmental genetics is that metazoans share certain conserved, embryonically deployed signaling pathways that instruct cells as to their ultimate fate. Because the DNA encoding these pathways predates the evolutionary split of most animal groups, it should in principle be possible to clone representatives of such signaling pathways from almost any species, demonstrating their sequence conservation. Here I describe an 8-week laboratory series that tests this prediction by attempting to clone multiple members of a known signaling pathway from a species where the targets are unknown. Beginning with the molecular components of a signaling pathway and publicly available sequence information from related taxa, students designed partially degenerate PCR primers to amplify the corresponding mRNA sequences from a "new" organism, in this case a turtle (Trachemys scripta). Using a single round of degenerate PCR and standard DNA cloning techniques, we were able to retrieve 6 out of 16 species-specific homologs on the first attempt (~40% success rate). To conclude the project, the novel sequences were submitted back into the original public database. The molecular methods of the lab can be adapted to any combination of pathway and organism, demonstrating the conserved components of cellular signaling in any biological process, from gastrulation to aging. The linked labs offer intensive research-based training in bioinformatics and molecular biology, while empirically demonstrating the ubiquity of the metazoan cell-signaling toolkit.
Collapse
|
43
|
Chapman MA, Leebens-Mack JH, Burke JM. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Mol Biol Evol 2008; 25:1260-73. [PMID: 18390478 DOI: 10.1093/molbev/msn001] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Members of the CYCLOIDEA (CYC)/TEOSINTE-BRANCHED1 (TB1) group of transcription factors have been implicated in the evolution of zygomorphic (i.e., bilaterally symmetric) flowers in Antirrhinum and Lotus and the loss of branching phenotype during the domestication of maize. The composite inflorescences of sunflower (Helianthus annuus L. Asteraceae) contain both zygomorphic and actinomorphic (i.e., radially symmetric) florets (rays and disks, respectively), and the cultivated sunflower has evolved an unbranched phenotype in response to domestication from its highly branched wild progenitor; hence, genes related to CYC/TB1 are of great interest in this study system. We identified 10 members of the CYC/TB1 gene family in sunflower, which is more than found in any other species investigated to date. Phylogenetic analysis indicates that these genes occur in 3 distinct clades, consistent with previous research in other eudicot species. A combination of dating the duplication events and linkage mapping indicates that only some of the duplications were associated with polyploidization. Cosegregation between CYC-like genes and branching-related quantitative trait loci suggest a minor, if any, role for these genes in conferring differences in branching. However, the expression patterns of one gene suggest a possible role in the development of ray versus disk florets. Molecular evolutionary analyses reveal that residues in the conserved domains were the targets of positive selection following gene duplication. Taken together, these results indicate that gene duplication and functional divergence have played a major role in diversification of the sunflower CYC gene family.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Plant Biology, Miller Plant Sciences Building, University of Georgia, GA, USA.
| | | | | |
Collapse
|
44
|
Najafabadi HS, Torabi N, Chamankhah M. Designing multiple degenerate primers via consecutive pairwise alignments. BMC Bioinformatics 2008; 9:55. [PMID: 18221562 PMCID: PMC2253518 DOI: 10.1186/1471-2105-9-55] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 01/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background Different algorithms have been proposed to solve various versions of degenerate primer design problem. For one of the most general cases, multiple degenerate primer design problem, very few algorithms exist, none of them satisfying the criterion of designing low number of primers that cover high number of sequences. Besides, the present algorithms require high computation capacity and running time. Results PAMPS, the method presented in this work, usually results in a 30% reduction in the number of degenerate primers required to cover all sequences, compared to the previous algorithms. In addition, PAMPS runs up to 3500 times faster. Conclusion Due to small running time, using PAMPS allows designing degenerate primers for huge numbers of sequences. In addition, it results in fewer primers which reduces the synthesis costs and improves the amplification sensitivity.
Collapse
Affiliation(s)
- Hamed Shateri Najafabadi
- Nanobiotechnology Research Center, Avesina Research Institute, Shahid Beheshti University, Evin Ave., Tehran, Iran.
| | | | | |
Collapse
|
45
|
Abstract
A polymerase chain reaction (PCR) primer sequence is called degenerate if some of its positions have several possible bases. The degeneracy of the primer is the number of unique sequence combinations it contains. We study the problem of designing a pair of primers with prescribed degeneracy that match a maximum number of given input sequences. Such problems occur, for example, when studying a family of genes that is known only in part or is known in a related species. We discuss the complexity of several versions of the problem and give approximation algorithms for one simplified variant. On the basis of these algorithms, we developed a program called HYDEN for designing highly degenerate primers for a set of genomic sequences. We describe HYDEN, and report on its success in several applications for identifying olfactory receptor genes in mammals.
Collapse
|
46
|
Chen YF, Chen RC, Tseng LY, Lin E, Chan YK, Pan RH. NTMG (N-terminal Truncated Mutants Generator for cDNA): an automatic multiplex PCR assays design for generating various N-terminal truncated cDNA mutants. Nucleic Acids Res 2007; 35:W66-70. [PMID: 17488836 PMCID: PMC1933230 DOI: 10.1093/nar/gkm305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The sequential deletion method is generally used to locate the functional domain of a protein. With this method, in order to find the various N-terminal truncated mutants, researchers have to investigate the ATG-like codons, to design various multiplex polymerase chain reaction (PCR) forward primers and to do several PCR experiments. This web server (N-terminal Truncated Mutants Generator for cDNA) will automatically generate groups of forward PCR primers and the corresponding reverse PCR primers that can be used in a single batch of a multiplex PCR experiment to extract the various N-terminal truncated mutants. This saves much time and money for those who use the sequential deletion method in their research. This server is available at http://oblab.cs.nchu.edu.tw:8080/WebSDL/.
Collapse
Affiliation(s)
- Yung-Fu Chen
- Department of Health Services Management, China Medical University, Taichung, Taiwan, ROC, Department of Information Management, Chaoyang University of Technology, Taichung, Taiwan, ROC, Department of Computer Science, National Chung Hsing University, Taichung, Taiwan, ROC, Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC and Department of Management Information System, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Rung-Ching Chen
- Department of Health Services Management, China Medical University, Taichung, Taiwan, ROC, Department of Information Management, Chaoyang University of Technology, Taichung, Taiwan, ROC, Department of Computer Science, National Chung Hsing University, Taichung, Taiwan, ROC, Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC and Department of Management Information System, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Lin-Yu Tseng
- Department of Health Services Management, China Medical University, Taichung, Taiwan, ROC, Department of Information Management, Chaoyang University of Technology, Taichung, Taiwan, ROC, Department of Computer Science, National Chung Hsing University, Taichung, Taiwan, ROC, Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC and Department of Management Information System, National Chung Hsing University, Taichung, Taiwan, ROC
- *To whom correspondence should be addressed. +886-4-22874020+886-4-22853869
| | - Elong Lin
- Department of Health Services Management, China Medical University, Taichung, Taiwan, ROC, Department of Information Management, Chaoyang University of Technology, Taichung, Taiwan, ROC, Department of Computer Science, National Chung Hsing University, Taichung, Taiwan, ROC, Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC and Department of Management Information System, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yung-Kuan Chan
- Department of Health Services Management, China Medical University, Taichung, Taiwan, ROC, Department of Information Management, Chaoyang University of Technology, Taichung, Taiwan, ROC, Department of Computer Science, National Chung Hsing University, Taichung, Taiwan, ROC, Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC and Department of Management Information System, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Ren-Hao Pan
- Department of Health Services Management, China Medical University, Taichung, Taiwan, ROC, Department of Information Management, Chaoyang University of Technology, Taichung, Taiwan, ROC, Department of Computer Science, National Chung Hsing University, Taichung, Taiwan, ROC, Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC and Department of Management Information System, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
47
|
Balla S, Rajasekaran S. An efficient algorithm for minimum degeneracy primer selection. IEEE Trans Nanobioscience 2007; 6:12-7. [PMID: 17393845 DOI: 10.1109/tnb.2007.891895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selecting degenerate primers for multiplex polymerase chain reaction (MP-PCR) experiments, called the degenerate primer design problem (DPDP), is an important problem in computational molecular biology and has drawn the attention of numerous researchers in the recent past. Several variants of DPDP were formulated by Linhart and Shamir and proven to be NP-complete. A number of algorithms have been proposed for one such variant, namely, the maximum coverage degenerate primer design problem (MC-DPDP). In this paper, we consider another important variant called the minimum degeneracy degenerate primer design with errors problem (MD-DPDEP), propose an algorithm to design a degenerate primer of minimum degeneracy for a given set of DNA sequences and show experimental results of its performance on random and real biological datasets. Our algorithm combines methodologies in motif discovery and an iterative technique to design the primer.
Collapse
Affiliation(s)
- Sudha Balla
- Computer Science and Engineering Department, University of Connecticut, Storrs, CT 06269-2155, USA.
| | | |
Collapse
|
48
|
Meyer QC, Burton SG, Cowan DA. Subtractive hybridization magnetic bead capture: a new technique for the recovery of full-length ORFs from the metagenome. Biotechnol J 2007; 2:36-40. [PMID: 17124705 DOI: 10.1002/biot.200600156] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new method for the recovery of full-length open reading frames from metagenomic nucleic acid samples is reported. This technique, based on subtractive hybridization magnetic bead capture technology, has the potential to access multiple gene variants from a single amplification reaction. It is now widely accepted that classical microbiological methods provide only limited access to the true microbial biodiversity (less than 1%). The desire to access a higher proportion of the metagenome has led to the development of efficient environmental nucleic acid extraction technologies and to a range of sequence-dependent and sequence-independent gene discovery techniques. These methods avoid many of the limitations of culture-dependent gene targeting.
Collapse
Affiliation(s)
- Quinton C Meyer
- Advanced Research Centre for Applied Microbiology, Department of Biotechnology, University of the Western Cape, Cape Town, South Africa
| | | | | |
Collapse
|