1
|
Yao C, Zhang W, Bao P, Ma J, Zhuo W, Chen M, Shi Z, Zhou J, Ye Y, Ming L, Yan T, Penty R, Cheng Q. Chip-scale sensor for spectroscopic metrology. Nat Commun 2024; 15:10305. [PMID: 39604361 PMCID: PMC11603224 DOI: 10.1038/s41467-024-54708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Miniaturized spectrometers hold great promise for in situ, in vitro, and even in vivo sensing applications. However, their size reduction imposes vital performance constraints in meeting the rigorous demands of spectroscopy, including fine resolution, high accuracy, and ultra-wide observation window. The prevailing view in the community holds that miniaturized spectrometers are most suitable for coarse identification of signature peaks. Here, we present an integrated reconstructive spectrometer that enables near-infrared (NIR) spectroscopic metrology, and demonstrate a fully packaged sensor with auxiliary electronics. Such a sensor operates over a 520 nm bandwidth together with a resolution below 8 pm, yielding a record-breaking bandwidth-to-resolution ratio of over 65,000. The classification of different types of solid substances and the concentration measurement of aqueous and organic solutions are performed, all achieving approximately 100% accuracy. Notably, the detection limit of our sensor matches that of commercial benchtop counterparts, which is as low as 0.1% (i.e. 100 mg/dL) for identifying the concentration of glucose solution.
Collapse
Affiliation(s)
- Chunhui Yao
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- GlitterinTech Limited, Xuzhou, China
| | - Wanlu Zhang
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Peng Bao
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Jie Ma
- GlitterinTech Limited, Xuzhou, China
| | - Wei Zhuo
- GlitterinTech Limited, Xuzhou, China
| | - Minjia Chen
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Zhitian Shi
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | | | - Yuxiao Ye
- GlitterinTech Limited, Xuzhou, China
| | | | - Ting Yan
- GlitterinTech Limited, Xuzhou, China
| | - Richard Penty
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Qixiang Cheng
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
- GlitterinTech Limited, Xuzhou, China.
| |
Collapse
|
2
|
Yao J, Sprick JD, Jeong J, Park J, Reiter DA. Differences in peripheral microcirculatory blood flow regulation in chronic kidney disease based on wavelet analysis of resting near-infrared spectroscopy. Microvasc Res 2024; 151:104624. [PMID: 37926135 PMCID: PMC11018197 DOI: 10.1016/j.mvr.2023.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Vascular impairment is closely related to increased mortality in chronic kidney disease (CKD). The objective of this study was to assess impairments in the regulation of peripheral microvascular perfusion in patients with CKD based on time-frequency spectral analysis of resting near-infrared spectroscopy (NIRS) signals. Total hemoglobin (tHb) concentration and tissue saturation index (TSI) signals were collected using NIRS for a continuous 5 mins at 10 Hz from the forearm of 55 participants (34 CKD including 5 with end-stage renal disease, and 21 age-matched control). Continuous wavelet transform-based spectral analysis was used to quantify the spectral amplitude within five pre-defined frequency intervals (I, 0.0095-0.021 Hz; II, 0.021-0.052 Hz; III, 0.052-0.145 Hz; IV, 0.145-0.6 Hz and V, 0.6-2.0 Hz), representing endothelial, neurogenic, myogenic, respiratory and heartbeat activity, respectively. CKD patients showed lower tHb average spectral amplitude within the neurogenic frequency interval compared with controls (p = 0.014), consistent with an increased sympathetic outflow observed in CKD. CKD patients also showed lower TSI average spectral amplitude within the endothelial frequency interval compared with controls (p = 0.046), consistent with a reduced endothelial function in CKD. These findings demonstrate the potential of wavelet analysis of NIRS to provide complementary information on peripheral microvascular regulation in CKD.
Collapse
Affiliation(s)
- Jingting Yao
- Department of Radiology and Imaging Science, Emory University, Atlanta, GA, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Justin D Sprick
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, United States
| | - Jinhee Jeong
- Division of Renal Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - Jeanie Park
- Division of Renal Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
| | - David A Reiter
- Department of Radiology and Imaging Science, Emory University, Atlanta, GA, United States; Department of Orthopedics, Emory University, Atlanta, GA, United States; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States.
| |
Collapse
|
3
|
Li A, Yao C, Xia J, Wang H, Cheng Q, Penty R, Fainman Y, Pan S. Advances in cost-effective integrated spectrometers. LIGHT, SCIENCE & APPLICATIONS 2022; 11:174. [PMID: 35672298 PMCID: PMC9174208 DOI: 10.1038/s41377-022-00853-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/10/2022] [Accepted: 05/15/2022] [Indexed: 05/15/2023]
Abstract
The proliferation of Internet-of-Things has promoted a wide variety of emerging applications that require compact, lightweight, and low-cost optical spectrometers. While substantial progresses have been made in the miniaturization of spectrometers, most of them are with a major focus on the technical side but tend to feature a lower technology readiness level for manufacturability. More importantly, in spite of the advancement in miniaturized spectrometers, their performance and the metrics of real-life applications have seldomly been connected but are highly important. This review paper shows the market trend for chip-scale spectrometers and analyzes the key metrics that are required to adopt miniaturized spectrometers in real-life applications. Recent progress addressing the challenges of miniaturization of spectrometers is summarized, paying a special attention to the CMOS-compatible fabrication platform that shows a clear pathway to massive production. Insights for ways forward are also presented.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Litin Technology, Xuzhou, Jiangsu, China
| | - Chunhui Yao
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Junfei Xia
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Huijie Wang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Qixiang Cheng
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK.
| | - Richard Penty
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Yeshaiahu Fainman
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA, USA.
| | - Shilong Pan
- Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
4
|
Pullano SA, Greco M, Bianco MG, Foti D, Brunetti A, Fiorillo AS. Glucose biosensors in clinical practice: principles, limits and perspectives of currently used devices. Theranostics 2022; 12:493-511. [PMID: 34976197 PMCID: PMC8692922 DOI: 10.7150/thno.64035] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
The demand of glucose monitoring devices and even of updated guidelines for the management of diabetic patients is dramatically increasing due to the progressive rise in the prevalence of diabetes mellitus and the need to prevent its complications. Even though the introduction of the first glucose sensor occurred decades ago, important advances both from the technological and clinical point of view have contributed to a substantial improvement in quality healthcare. This review aims to bring together purely technological and clinical aspects of interest in the field of glucose devices by proposing a roadmap in glucose monitoring and management of patients with diabetes. Also, it prospects other biological fluids to be examined as further options in diabetes care, and suggests, throughout the technology innovation process, future directions to improve the follow-up, treatment, and clinical outcomes of patients.
Collapse
Affiliation(s)
| | - Marta Greco
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Maria Giovanna Bianco
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Daniela Foti
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonino S. Fiorillo
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| |
Collapse
|
5
|
An interrelated CataFlower enzyme system for sensitively monitoring sweat glucose. Talanta 2021; 235:122799. [PMID: 34517657 DOI: 10.1016/j.talanta.2021.122799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/13/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
An accurate measurement of sweat glucose is a promising alternative to invasive finger prick blood test, and may provide effective self-monitoring of blood glucose with good patient compliance. Herein, an interrelated catalytic enzyme system has been developed, termed as CataFlower, which is composed of nanoflower MoS2 (peroxidase) decorated with GOx (glucose oxidase) and MnO2 (oxygen generator), and exhibits synergistic oxidative capability for sensitively monitoring sweat glucose. CataFlower can not only generate oxygen in situ to maximize GOx activity, but promote peroxidase-triggered H2O2 oxidation of methylene blue, resulting in sensitive colorimetric detection of glucose. We identify that CataFlower can precisely detect glucose with a detection limit of 10 μM, allowing for measuring glucose levels in different biological samples, such as blood and urine. Particularly, CataFlower is capable of monitoring dynamic changes in sweat glucose with high sensitivity and accuracy during exercise. Therefore, CataFlower provides a stepping stone to eliminate invasive blood tests, significantly improving the diagnosis and management of diabetes mellitus.
Collapse
|
6
|
Gao Y, Huang Y, Chen J, Liu Y, Xu Y, Ning X. A Novel Luminescent "Nanochip" as a Tandem Catalytic System for Chemiluminescent Detection of Sweat Glucose. Anal Chem 2021; 93:10593-10600. [PMID: 34291923 DOI: 10.1021/acs.analchem.1c01798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accurate sweat glucose detection is a promising alternative to invasive finger-prick blood tests, allowing for self-monitoring of blood glucose with good patient compliance. In this study, we have developed a tandem catalytic system, termed as a luminescent "nanochip" (LAON), which was composed of gold nanoparticles (AuNPs) and N-(aminobutyl)-N-(ethylisoluminol) (ABEI)-engineered oxygen-doped carbon nitride (O-g-C3N4), for chemiluminescent detection of sweat glucose. The LAON exhibits dual catalytic activity of glucose oxidase and peroxidase and can not only oxidize glucose to generate H2O2 but catalyze H2O2-mediated luminol chemiluminescence, resulting in sensitive detection of glucose. We identify that the LAON can precisely detect glucose with a detection limit of 0.1 μM, enabling us to measure glucose levels in different biological samples. Particularly, the LAON is capable of sensitively and accurately monitoring dynamic changes in sweat glucose during exercise. Therefore, the LAON provides an alternative approach to supersede invasive blood tests and may improve the management of diabetes mellitus.
Collapse
Affiliation(s)
- Ya Gao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yu Huang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yuhang Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Enhancing the Accuracy of Non-Invasive Glucose Sensing in Aqueous Solutions Using Combined Millimeter Wave and Near Infrared Transmission. SENSORS 2021; 21:s21093275. [PMID: 34068507 PMCID: PMC8125979 DOI: 10.3390/s21093275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
We reported measurement results relating to non-invasive glucose sensing using a novel multiwavelength approach that combines radio frequency and near infrared signals in transmission through aqueous glucose-loaded solutions. Data were collected simultaneously in the 37–39 GHz and 900–1800 nm electromagnetic bands. We successfully detected changes in the glucose solutions with varying glucose concentrations between 80 and 5000 mg/dl. The measurements showed for the first time that, compared to single modality systems, greater accuracy on glucose level prediction can be achieved when combining transmission data from these distinct electromagnetic bands, boosted by machine learning algorithms.
Collapse
|
8
|
Meyhöfer S, Wilms B, Ihling F, Windjäger A, Kalscheuer H, Augustinov A, Herrmann V, Lehnert H, Schmid SM. Evaluation of a near-infrared light ultrasound system as a non-invasive blood glucose monitoring device. Diabetes Obes Metab 2020; 22:694-698. [PMID: 31709726 DOI: 10.1111/dom.13914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the newly developed non-invasive blood glucose system NIRLUS® (Near-Infra Red Light Ultra Sound; NIRLUS Engineering AG, Lübeck, Germany) under standardized conditions. Seventeen healthy men of normal weight (body mass index 22.4 ± 1.4 kg/m2 ), aged 18 to 45 years, were enrolled in this study. During an intravenous glucose tolerance test, blood glucose profiles were measured simultaneously using the NIRLUS system and a "gold standard" laboratory reference system. Correlation analysis revealed a strong association between NIRLUS and reference values (r = 0.934; P < 0.001). Subsequent Bland-Altman analysis showed a symmetric distribution (r = 0.047; P = 0.395), and 95.5% of the NIRLUS-reference pairs were within the difference (d) of d ± 2 SD. The median deviation of all paired NIRLUS-reference values was 0.5 mmol/L and the mean percent deviation was 11.5%. Error grid analysis showed that 93.6% of NIRLUS-reference pairs are located in the area A, and 6.4% in the area B. No data were allocated in the areas C to E. This proof-of-concept study demonstrates the reproducibility of accurate blood glucose measures obtained by NIRLUS as compared to a gold standard laboratory reference system. The technology of NIRLUS is an important step forward in the development of non-invasive glucose monitoring.
Collapse
Affiliation(s)
- Svenja Meyhöfer
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- German Centre for Diabetes Research, Neuherberg, Germany
| | - Britta Wilms
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- German Centre for Diabetes Research, Neuherberg, Germany
| | - Flavia Ihling
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- German Centre for Diabetes Research, Neuherberg, Germany
| | - Anne Windjäger
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- German Centre for Diabetes Research, Neuherberg, Germany
| | - Hannes Kalscheuer
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- German Centre for Diabetes Research, Neuherberg, Germany
| | | | | | - Hendrik Lehnert
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- German Centre for Diabetes Research, Neuherberg, Germany
| | - Sebastian M Schmid
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- German Centre for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
9
|
Tuchina DK, Shi R, Bashkatov AN, Genina EA, Zhu D, Luo Q, Tuchin VV. Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. JOURNAL OF BIOPHOTONICS 2015; 8:332-46. [PMID: 25760425 DOI: 10.1002/jbio.201400138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/21/2015] [Accepted: 02/16/2015] [Indexed: 05/22/2023]
Abstract
The aim of this study was to estimate the glucose diffusion coefficients ex vivo in skin of mice with diabetes induced in vivo by alloxan in comparison to non-diabetic mice. The temporal dependences of collimated transmittance of tissue samples immersed in glucose solutions were measured in the VIS-NIR spectral range to quantify the glucose diffusion/permeability coefficients and optical clearing efficiency of mouse skin. The average thickness of intact healthy and diabetic skin was 0.023 ± 0.006 cm and 0.019 ± 0.005 cm, respectively. Considerable differences in optical and kinetic properties of diabetic and non-diabetic skin were found: clearing efficiency was 1.5-fold better and glucose diffusivity was 2-fold slower for diabetic skin. Experimental Setup for measuring collimated transmittance spectra of mouse skin samples.
Collapse
Affiliation(s)
- Daria K Tuchina
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China; Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia.
| | | | | | | | | | | | | |
Collapse
|
10
|
Yadav J, Rani A, Singh V, Murari BM. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomed Signal Process Control 2015. [DOI: 10.1016/j.bspc.2015.01.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Optical screening of diabetes mellitus using non-invasive Fourier-transform infrared spectroscopy technique for human lip. J Pharm Biomed Anal 2013; 76:169-76. [DOI: 10.1016/j.jpba.2012.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 11/17/2022]
|
12
|
Hoshino M, Haraguchi Y, Mizushima I, Sakai M. Recent progress in mechanical artificial pancreas. J Artif Organs 2009; 12:141-9. [PMID: 19894087 DOI: 10.1007/s10047-009-0463-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Indexed: 12/14/2022]
Affiliation(s)
- Masami Hoshino
- Department of Surgery, Shisei Hospital, Sayama-shi, Saitama, Japan.
| | | | | | | |
Collapse
|
13
|
Blackwell J, Katika KM, Pilon L, Dipple KM, Levin SR, Nouvong A. In vivo time-resolved autofluorescence measurements to test for glycation of human skin. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:014004. [PMID: 18315362 DOI: 10.1117/1.2830658] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present an evaluation of time-resolved fluorescence measurements on human skin for screening type 2 diabetes. In vivo human skin is excited with a pulse diode at 375 nm and pulse width of 700 ps. Fluorescence decays are recorded at four different emission wavelengths: 442, 460, 478, and 496 nm. Experiments are performed at various locations, including the palms, arms, legs, and cheeks of a healthy Caucasian subject to test single-subject variability. The fluorescence decays obtained are modeled using a three-exponential decay. The variations in the lifetimes and amplitudes from one location to another are minimal, except on the cheek. We compare the fluorescent decays of 38 diabetic subjects and 37 nondiabetic subjects, with different skin complexions and of ages ranging from 6 to 85 yr. The average lifetimes for nondiabetic subjects were 0.5, 2.6, and 9.2 ns with fractional amplitudes of 0.78, 0.18, and 0.03, respectively. The effects of average hemoglobin A1c (HbA1c) from the previous 4 yr and diabetes duration are evaluated. While no significant differences between the fluorescence lifetimes of nondiabetic and diabetic subjects are observed, two of the fractional amplitudes are statistically different. Additionally, none of the six fluorescence parameters correlated with diabetes duration or HbA1c. One of the lifetimes as well as two of the fractional amplitudes differ between diabetic subjects with foot ulcers and nondiabetic subjects.
Collapse
Affiliation(s)
- Jennifer Blackwell
- University of California, Los Angeles, Mechanical and Aerospace Engineering Department, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|