1
|
Bajpeyi S, Pasarica M, Conley KE, Newcomer BR, Jubrias SA, Gamboa C, Murray K, Sereda O, Sparks LM, Smith SR. Pioglitazone-induced improvements in insulin sensitivity occur without concomitant changes in muscle mitochondrial function. Metabolism 2017; 69:24-32. [PMID: 28285649 DOI: 10.1016/j.metabol.2016.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/19/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Abstract
AIMS Pioglitazone (Pio) is known to improve insulin sensitivity in skeletal muscle. However, the role of Pio in skeletal muscle lipid metabolism and skeletal muscle oxidative capacity is not clear. The aim of this study was to determine the effects of chronic Pio treatment on skeletal muscle mitochondrial activity in individuals with type 2 diabetes (T2D). MATERIALS AND METHODS Twenty-four participants with T2D (13M/11F 53.38±2.1years; BMI 36.47±1.1kg/m2) were randomized to either a placebo (CON, n=8) or a pioglitazone (PIO, n=16) group. Following 12weeks of treatment, we measured insulin sensitivity by hyperinsulinemic-euglycemic clamp (clamp), metabolic flexibility by calculating the change in respiratory quotient (ΔRQ) during the steady state of the clamp, intra- and extra-myocellular lipid content (IMCL and EMCL, respectively) by 1H magnetic resonance spectroscopy (1H-MRS) and muscle maximal ATP synthetic capacity (ATPmax) by 31P-MRS. RESULTS Following 12weeks of PIO treatment, insulin sensitivity (p<0.0005 vs. baseline) and metabolic flexibility (p<0.05 vs. CON) significantly increased. PIO treatment significantly decreased IMCL content and increased EMCL content in gastrocnemius, soleus and tibialis anterior muscles. ATPmax was unaffected by PIO treatment. CONCLUSIONS These results suggest that 12weeks of pioglitazone treatment improves insulin sensitivity, metabolic flexibility and myocellular lipid distribution without any effect on maximal ATP synthetic capacity in skeletal muscle. Consequently, pioglitazone-induced enhancements in insulin responsiveness and fuel utilization are independent of mitochondrial function.
Collapse
Affiliation(s)
- Sudip Bajpeyi
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA; Department of Kinesiology, University of Texas in El Paso, 500 University Ave, El Paso, TX 79968, USA
| | - Magdalena Pasarica
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, USA
| | - Kevin E Conley
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Bradley R Newcomer
- Department of Clinical and Diagnostic Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sharon A Jubrias
- Department of Radiology, University of Washington Medical Center, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Cecilia Gamboa
- Department of Kinesiology, University of Texas in El Paso, 500 University Ave, El Paso, TX 79968, USA
| | - Kori Murray
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Olga Sereda
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Lauren M Sparks
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, USA; Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL 32804, USA; Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
2
|
Di Martino M, Pacifico L, Bezzi M, Di Miscio R, Sacconi B, Chiesa C, Catalano C. Comparison of magnetic resonance spectroscopy, proton density fat fraction and histological analysis in the quantification of liver steatosis in children and adolescents. World J Gastroenterol 2016; 22:8812-8819. [PMID: 27818597 PMCID: PMC5075556 DOI: 10.3748/wjg.v22.i39.8812] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a threshold value for liver fat content between healthy children and those with non-alcoholic fatty liver disease (NAFLD) by using magnetic resonance imaging (MRI), with liver biopsy serving as a reference standard.
METHODS The study was approved by the local ethics committee, and written informed consent was obtained from all participants and their legal guardians before the study began. Twenty-seven children with NAFLD underwent liver biopsy to assess the presence of nonalcoholic steatohepatitis. The assessment of liver fat fraction was performed using MRI, with a high field magnet and 2D gradient-echo and multiple-echo T1-weighted sequence with low flip angle and single-voxel point-resolved ¹H MR-Spectroscopy (¹H-MRS), corrected for T1 and T2* decays. Receiver operating characteristic curve analysis was used to determine the best cut-off value. Lin coefficient test was used to evaluate the correlation between histology, MRS and MRI-PDFF. A Mann-Whitney U-test and multivariate analysis were performed to analyze the continuous variables.
RESULTS According to MRS, the threshold value between healthy children and those with NAFLD is 6%; using MRI-PDFF, a cut-off value of 3.5% is suggested. The Lin analysis revealed a good fit between the histology and MRS as well as MRI-PDFF.
CONCLUSION MRS is an accurate and precise method for detecting NAFLD in children.
Collapse
|
3
|
Zhang HX, Xu XQ, Fu JF, Lai C, Chen XF. Predicting hepatic steatosis and liver fat content in obese children based on biochemical parameters and anthropometry. Pediatr Obes 2015; 10:112-7. [PMID: 24903159 DOI: 10.1111/ijpo.232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 02/12/2014] [Accepted: 04/03/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Predictors of quantitative evaluation of hepatic steatosis and liver fat content (LFC) using clinical and laboratory variables available in the general practice in the obese children are poorly identified. OBJECTIVE To build predictive models of hepatic steatosis and LFC in obese children based on biochemical parameters and anthropometry. METHODS Hepatic steatosis and LFC were determined using proton magnetic resonance spectroscopy in 171 obese children aged 5.5-18.0 years. Routine clinical and laboratory parameters were also measured in all subjects. Group analysis, univariable correlation analysis, and multivariate logistic and linear regression analysis were used to develop a liver fat score to identify hepatic steatosis and a liver fat equation to predict LFC in each subject. RESULTS The predictive model of hepatic steatosis in our participants based on waist circumference and alanine aminotransferase had an area under the receiver operating characteristic curve of 0.959 (95% confidence interval: 0.927-0.990). The optimal cut-off value of 0.525 for determining hepatic steatosis had sensitivity of 93% and specificity of 90%. A liver fat equation was also developed based on the same parameters of hepatic steatosis liver fat score, which would be used to calculate the LFC in each individual. CONCLUSIONS The liver fat score and liver fat equation, consisting of routinely available variables, may help paediatricians to accurately determine hepatic steatosis and LFC in clinical practice, but external validation is needed before it can be employed for this purpose.
Collapse
Affiliation(s)
- H-X Zhang
- Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | | | | | | | |
Collapse
|
4
|
Inverse correlation of serum inflammatory markers with metabolic parameters in healthy, Black and White prepubertal youth. Int J Obes (Lond) 2013; 38:563-8. [PMID: 24276016 DOI: 10.1038/ijo.2013.220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/01/2013] [Accepted: 11/17/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To examine for the first time the associations between pro-inflammatory cytokines and obesity-related metabolic biomarkers in, exclusively prepubertal, otherwise healthy obese and non-obese Black and White children, 7-9 years of age. DESIGN AND METHODS Body mass index (BMI), homeostasis model assessment-estimated insulin resistance, visceral adipose tissue and subcutaneous adipose tissue (SAT (magnetic resonance imaging)); total body fat (dual-energy X-ray absorptiometry), ectopic, intrahepatic lipid (IHL) and intramyocellular lipid (IMCL) fat (proton magnetic resonance spectroscopy) and serum levels of interleukin (IL)-1, IL-6, IL-8, tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein-1 were measured in 40 obese and non-obese children. Relationships between inflammatory cytokines and obesity were assessed by analysis of variance and Spearman's rank correlation. RESULTS Significant inverse correlations were found between BMI z-score, SAT, total BF, and IHL and levels of TNF-α (Spearman's ρ=-0.36, -0.39, -0.43 and -0.39, respectively; P<0.05). Levels of IL-8 were significantly and inversely correlated with IMCL (-0.39; P=0.03) and remained significant after adjusting for race. IMCL was inversely associated with TNF-α only after adjusting for race (-0.37; P=0.04). CONCLUSIONS Relationships between pro-inflammatory and metabolic markers commonly observed in adults are reversed in healthy, Black and White children before puberty. Prospective studies are warranted to determine how these inverse relationships modify chronic disease risk later in life.
Collapse
|
5
|
Bennett B, Larson-Meyer DE, Ravussin E, Volaufova J, Soros A, Cefalu WT, Chalew S, Gordon S, Smith SR, Newcomer BR, Goran M, Sothern M. Impaired insulin sensitivity and elevated ectopic fat in healthy obese vs. nonobese prepubertal children. Obesity (Silver Spring) 2012; 20:371-5. [PMID: 21869763 PMCID: PMC4410716 DOI: 10.1038/oby.2011.264] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin sensitivity is impaired and ectopic fat (accretion of lipids outside of typical adipose tissue depots) increased in obese adults and adolescents. It is unknown how early in life this occurs; thus, it is important to evaluate young children to identify potential factors leading to the development of metabolic syndrome. We examined an ethnically diverse cohort of healthy, exclusively prepubertal children (N = 123; F = 57, M = 66; age 8.04 ± 0.77 years) to examine differences in insulin sensitivity and ectopic and visceral fat deposition between obese and nonobese youth. Obesity was categorized by age- and sex-adjusted BMI z-scores (nonobese = z-score <2 (N = 94) and obese = z-score ≥2 (N = 29)). Insulin sensitivity was assessed by both a frequently sampled intravenous glucose tolerance test (S(i)) and the homeostatic model assessment of insulin resistance (HOMA(IR)). Intramyocellular lipids (IMCLs) from soleus and intrahepatic lipids (IHLs) were assessed by magnetic resonance spectroscopy, visceral adipose tissue (VAT) by magnetic resonance imaging, and total body fat by dual-energy X-ray absorptiometry. We also examined serum lipids (total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol) and blood pressure (diastolic and systolic). Obese children exhibited significantly lower S(i) (5.9 ± 5.98 vs. 13.43 ± 8.18 (mµ/l)(-1)·min(-1), P = 0.01) and HDL-C and higher HOMA(IR) (1.68 ± 1.49 vs. 0.63 ± 0.47, P < 0.0001), IMCL (0.74 ± 0.39 vs. 0.44 ± 0.21% water peak, P < 0.0001), IHL (1.49 ± 1.13 vs. 0.54 ± 0.42% water peak, P < 0.0001), VAT (20.16 ± 8.01 vs. 10.62 ± 5.44 cm(2), P < 0.0001), total cholesterol, triglycerides, low-density lipoprotein cholesterol, and systolic blood pressure relative to nonobese children. These results confirm significantly increased ectopic fat and insulin resistance in healthy obese vs. nonobese children prior to puberty. Excessive adiposity during early development appears concomitant with precursors of type 2 diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Brian Bennett
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Julia Volaufova
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Arlette Soros
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - William T. Cefalu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Stuart Chalew
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Stewart Gordon
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Steven R. Smith
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Bradley R. Newcomer
- Department of Diagnostic and Therapeutic Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Goran
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Melinda Sothern
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
6
|
Krishnapuram R, Dhurandhar EJ, Dubuisson O, Kirk-Ballard H, Bajpeyi S, Butte N, Sothern MS, Larsen-Meyer E, Chalew S, Bennett B, Gupta AK, Greenway FL, Johnson W, Brashear M, Reinhart G, Rankinen T, Bouchard C, Cefalu WT, Ye J, Javier R, Zuberi A, Dhurandhar NV. Template to improve glycemic control without reducing adiposity or dietary fat. Am J Physiol Endocrinol Metab 2011; 300:E779-89. [PMID: 21266671 PMCID: PMC3093976 DOI: 10.1152/ajpendo.00703.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Drugs that improve chronic hyperglycemia independently of insulin signaling or reduction of adiposity or dietary fat intake may be highly desirable. Ad36, a human adenovirus, promotes glucose uptake in vitro independently of adiposity or proximal insulin signaling. We tested the ability of Ad36 to improve glycemic control in vivo and determined if the natural Ad36 infection in humans is associated with better glycemic control. C57BL/6J mice fed a chow diet or made diabetic with a high-fat (HF) diet were mock infected or infected with Ad36 or adenovirus Ad2 as a control for infection. Postinfection (pi), systemic glycemic control, hepatic lipid content, and cell signaling in tissues pertinent to glucose metabolism were determined. Next, sera of 1,507 adults and children were screened for Ad36 antibodies as an indicator of past natural infection. In chow-fed mice, Ad36 significantly improved glycemic control for 12 wk pi. In HF-fed mice, Ad36 improved glycemic control and hepatic steatosis up to 20 wk pi. In adipose tissue (AT), skeletal muscle (SM), and liver, Ad36 upregulated distal insulin signaling without recruiting the proximal insulin signaling. Cell signaling suggested that Ad36 increases AT and SM glucose uptake and reduces hepatic glucose release. In humans, Ad36 infection predicted better glycemic control and lower hepatic lipid content independently of age, sex, or adiposity. We conclude that Ad36 offers a novel tool to understand the pathways to improve hyperglycemia and hepatic steatosis independently of proximal insulin signaling, and despite a HF diet. This metabolic engineering by Ad36 appears relevant to humans for developing more practical and effective antidiabetic approaches.
Collapse
Affiliation(s)
- R Krishnapuram
- Infections and Obesity Laboratory, Pennington Biomedical Research Center, Louisiana State Univ. System, 6400 Perkins Rd., Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Larson-Meyer DE, Newcomer BR, Ravussin E, Volaufova J, Bennett B, Chalew S, Cefalu WT, Sothern M. Intrahepatic and intramyocellular lipids are determinants of insulin resistance in prepubertal children. Diabetologia 2011; 54:869-75. [PMID: 21181394 PMCID: PMC3053439 DOI: 10.1007/s00125-010-2022-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/18/2010] [Indexed: 01/24/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that ectopic fat deposition is present in liver and skeletal muscle before puberty and that both are potentially important factors in the early pathogenesis of insulin resistance. METHODS Proton magnetic resonance spectroscopy was used to evaluate intramyocellular and intrahepatic lipids in 50 male and 42 female multi-ethnic, prepubertal (Tanner < 2) children (8.1 ± 0.8 years; 35.4 ± 10.7 kg; 27.9 ± 8.3% body fat; means ± SD). Intramyocellular lipid was measured in soleus muscle and intrahepatic lipid in the middle right lobe. Abdominal fat was measured by magnetic resonance imaging, body fat by dual energy X-ray absorptiometry, and insulin resistance using homeostatic model assessment. RESULTS Intrahepatic lipid ranged from 0.11% to 4.6% relative to the liver water signal (mean 0.79 ± 0.79%) whereas intramyocellular lipid ranged from 0.13% to 1.86% relative to the muscle water signal (mean 0.51 ± 0.28%). Intramyocellular and intrahepatic lipids were significantly correlated with total adiposity (r = 0.49 and 0.59), abdominal adiposity (r = 0.44 and 0.54), and each other (r = 0.39, p < 0.05, Spearman). Both intramyocellular and intrahepatic lipid were positively correlated with fasting insulin (r = 0.37 and 0.38 respectively) and insulin resistance (r = 0.37 and 0.37; p < 0.01). After adjustment for race and sex, the relations between ectopic fat and insulin resistance remained, whereas both disappeared when further adjusted for body fat or BMI z scores. CONCLUSIONS/INTERPRETATIONS These results suggest that typical relations between body composition, ectopic fat and insulin resistance are present in children before puberty. Thus, interventions aimed at reducing adiposity have the potential to decrease ectopic fat accumulation, delay the onset of insulin resistance and decrease the risk for development of type 2 diabetes in children.
Collapse
Affiliation(s)
- D E Larson-Meyer
- Department of Family and Consumer Sciences Human Nutrition, Dept 3354, University of Wyoming, 1000 E, University Avenue, Laramie, WY 82071, USA.
| | | | | | | | | | | | | | | |
Collapse
|