1
|
Ishii M, Yamada T, Ohata S. An efficient gene targeting system using Δku80 and functional analysis of Cyp51A in Trichophyton rubrum. AMB Express 2024; 14:96. [PMID: 39215862 PMCID: PMC11365917 DOI: 10.1186/s13568-024-01755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Trichophyton rubrum is one of the most frequently isolated fungi in patients with dermatophytosis. Despite its clinical significance, the molecular mechanisms of drug resistance and pathogenicity of T. rubrum remain to be elucidated because of the lack of genetic tools, such as efficient gene targeting systems. In this study, we generated a T. rubrum strain that lacks the nonhomologous end-joining-related gene ku80 (Δku80) and then developed a highly efficient genetic recombination system with gene targeting efficiency that was 46 times higher than that using the wild-type strain. Cyp51A and Cyp51B are 14-α-lanosterol demethylase isozymes in T. rubrum that promote ergosterol biosynthesis and are the targets of azole antifungal drugs. The expression of cyp51A mRNA was induced by the addition of the azole antifungal drug efinaconazole, whereas no such induction was detected for cyp51B, suggesting that Cyp51A functions as an azole-responsive Cyp51 isozyme. To explore the contribution of Cyp51A to susceptibility to azole drugs, the neomycin phosphotransferase (nptII) gene cassette was inserted into the cyp51A 3'-untranslated region of Δku80 to destabilize the mRNA of cyp51A. In this mutant, the induction of cyp51A mRNA expression by efinaconazole was diminished. The minimum inhibitory concentration for several azole drugs of this strain was reduced, suggesting that dermatophyte Cyp51A contributes to the tolerance for azole drugs. These findings suggest that an efficient gene targeting system using Δku80 in T. rubrum is applicable for analyzing genes encoding drug targets.
Collapse
Affiliation(s)
- Masaki Ishii
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan.
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Teikyo University, Hachioji, Tokyo, 192-0395, Japan
- Asia International Institute of Infectious Disease Control, Teikyo University, Tokyo, Japan
| | - Shinya Ohata
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo, 202-8585, Japan.
| |
Collapse
|
2
|
Matsuse K, Hara M, Iwama R, Horiuchi H, Fukuda R. Phosphatidylserine synthase plays a critical role in the utilization of n-alkanes in the yeast Yarrowia lipolytica. FEMS Yeast Res 2024; 24:foae030. [PMID: 39293814 PMCID: PMC11462088 DOI: 10.1093/femsyr/foae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024] Open
Abstract
The yeast Yarrowia lipolytica can assimilate n-alkane as a carbon and energy source. To elucidate the significance of phosphatidylserine (PS) in the utilization of n-alkane in Y. lipolytica, we investigated the role of the Y. lipolytica ortholog (PSS1) of Saccharomyces cerevisiae PSS1/CHO1, which encodes a PS synthase. The PSS1 deletion mutant (pss1Δ) of Y. lipolytica could not grow on minimal medium in the absence of ethanolamine and choline but grew when either ethanolamine or choline was supplied to synthesize phosphatidylethanolamine and phosphatidylcholine. The pss1Δ strain exhibited severe growth defects on media containing n-alkanes even in the presence of ethanolamine and choline. In the pss1Δ strain, the transcription of ALK1, which encodes a primary cytochrome P450 that catalyses the hydroxylation of n-alkanes in the endoplasmic reticulum, was upregulated by n-alkane as in the wild-type strain. However, the production of functional P450 was not detected, as indicated by the absence of reduced CO-difference spectra in the pss1Δ strain. PS was undetectable in the lipid extracts of the pss1Δ strain. These results underscore the critical role of PSS1 in the biosynthesis of PS, which is essential for the production of functional P450 enzymes involved in n-alkane hydroxylation in Y. lipolytica.
Collapse
Affiliation(s)
- Katsuro Matsuse
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mariho Hara
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Kalli S, Vallieres C, Violet J, Sanders JW, Chapman J, Vincken JP, Avery SV, Araya-Cloutier C. Cellular Responses and Targets in Food Spoilage Yeasts Exposed to Antifungal Prenylated Isoflavonoids. Microbiol Spectr 2023; 11:e0132723. [PMID: 37428107 PMCID: PMC10433819 DOI: 10.1128/spectrum.01327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/17/2023] [Indexed: 07/11/2023] Open
Abstract
Prenylated isoflavonoids are phytochemicals with promising antifungal properties. Recently, it was shown that glabridin and wighteone disrupted the plasma membrane (PM) of the food spoilage yeast Zygosaccharomyces parabailii in distinct ways, which led us to investigate further their modes of action (MoA). Transcriptomic profiling with Z. parabailii showed that genes encoding transmembrane ATPase transporters, including Yor1, and genes homologous to the pleiotropic drug resistance (PDR) subfamily in Saccharomyces cerevisiae were upregulated in response to both compounds. Gene functions involved in fatty acid and lipid metabolism, proteostasis, and DNA replication processes were overrepresented among genes upregulated by glabridin and/or wighteone. Chemogenomic analysis using the genome-wide deletant collection for S. cerevisiae further suggested an important role for PM lipids and PM proteins. Deletants of gene functions involved in biosynthesis of very-long-chain fatty acids (constituents of PM sphingolipids) and ergosterol were hypersensitive to both compounds. Using lipid biosynthesis inhibitors, we corroborated roles for sphingolipids and ergosterol in prenylated isoflavonoid action. The PM ABC transporter Yor1 and Lem3-dependent flippases conferred sensitivity and resistance, respectively, to the compounds, suggesting an important role for PM phospholipid asymmetry in their MoAs. Impaired tryptophan availability, likely linked to perturbation of the PM tryptophan permease Tat2, was evident in response to glabridin. Finally, substantial evidence highlighted a role of the endoplasmic reticulum (ER) in cellular responses to wighteone, including gene functions associated with ER membrane stress or with phospholipid biosynthesis, the primary lipid of the ER membrane. IMPORTANCE Preservatives, such as sorbic acid and benzoic acid, inhibit the growth of undesirable yeast and molds in foods. Unfortunately, preservative tolerance and resistance in food spoilage yeast, such as Zygosaccharomyces parabailii, is a growing challenge in the food industry, which can compromise food safety and increase food waste. Prenylated isoflavonoids are the main defense phytochemicals in the Fabaceae family. Glabridin and wighteone belong to this group of compounds and have shown potent antifungal activity against food spoilage yeasts. The present study demonstrated the mode of action of these compounds against food spoilage yeasts by using advanced molecular tools. Overall, the cellular actions of these two prenylated isoflavonoids share similarities (at the level of the plasma membrane) but also differences. Tryptophan import was specifically affected by glabridin, whereas endoplasmic reticulum membrane stress was specifically induced by wighteone. Understanding the mode of action of these novel antifungal agents is essential for their application in food preservation.
Collapse
Affiliation(s)
- Sylvia Kalli
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Cindy Vallieres
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Joseph Violet
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - John Chapman
- Unilever Foods Innovation Centre, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
4
|
Remines M, Schoonover M, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling The Compendium Of Changes In Saccharomyces cerevisiae Due To Mutations That Alter Availability Of The Main Methyl Donor S-Adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544294. [PMID: 37333147 PMCID: PMC10274911 DOI: 10.1101/2023.06.09.544294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SAM1 and SAM2 genes encode for S-AdenosylMethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in S. cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1∆/sam1∆, and sam2∆/sam2∆ strains in 15 different Phenotypic Microarray plates with different components, equal to 1440 wells, and measured for growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. In this study, we explore how the phenotypic growth differences are linked to the altered gene expression, and thereby predict the mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact S. cerevisiae pathways and processes. We present six stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart, even when the conditions tested were not specifically selected as targeting known methyl involving pathways. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role is production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Makailyn Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kellyn M. Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Erin D. Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| |
Collapse
|
5
|
Singh G. In silico Prediction and Pharmacokinetic Studies on Glucosinolates as a Potential Drug and Key Inhibitor Molecule for Lanosterol-14α- demethylase: A Fungal Membrane Biosynthesis Enzyme. Curr Drug Discov Technol 2022; 19:e150622206033. [PMID: 35708080 DOI: 10.2174/1570163819666220615142933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Glucosinolates (β-thioglucoside-N-hydroxysulfates) are a water-soluble organic anion with sulfur- and nitrogen-containing glycosides which are found in abundance in Cruciferous plants. Ergosterol (ERG13) lanosterol-14α-demethylase protein has been targeted for inhibition studies as a key regulator enzyme of fungal membrane biosynthesis. OBJECTIVES To understand the molecular mechanism of inhibition of Ergosterol (ERG13) lanosterol- 14α-demethylase by various phytochemicals from brassicales, i.e., glucosinolates and their potential role as putative drug molecules. METHODS In this study, in silico analyses were performed to predict the molecular basis of various glucosinolates as a potential inhibitor of lanosterol-14α-demethylase protein, which is a key regulator of fungal membrane biosynthesis and its pharmacodynamics and toxicity profile. 3d structures of various glucosinolates were retrieved from PubChem, and the target protein, lanosterol-14α-demethylase (Pdb ID- 4lxj), was retrieved from the RCSB protein data bank. Molecular docking and interactions were carried out using the PyRx software using the AutoDOCK toolbar with default parameters. Dru- LiTo, ORISIS web servers were used to predict various drug likeliness predictions and Lipinski's Rule of 5, whereas admetSAR was used for prediction of toxicity, and PASS Program was used to study the antifungal and antimicrobial properties of these compounds. RESULTS This study shows that among the different compounds screened, gluconasturtiin, Glucotropaeolin, and Indolylmethyl-Glucosinolate showed the highest binding energies of -8.7 kcal/mol, -8.5 kcal/mol, and -8.3 kcal/mol with the lanosterol-14α-demethylase, respectively. Further all the compounds follow the Lipinski's rule as well as they are found to be non-carcinogenic and non-cytotoxic in nature. These compounds also show antifungal properties. CONCLUSION This study thus reveals that various glucosinolates interact with the ERG13 enzyme at various amino acid positions, which behaves as a catalytic site, thus indicates the probable mechanism of inactivation, and subsequently, these can be used as potential drug molecules. In vitro studies can be taken to further examine the utility of these compounds as antifungal agents.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Biotechnology, Lyallpur Khalsa College, Jalandhar, India
| |
Collapse
|
6
|
Phylogeny of Leptographium qinlingensis cytochrome P450 genes and transcription levels of six CYPs in response to different nutrition media or terpenoids. Arch Microbiol 2021; 204:16. [DOI: 10.1007/s00203-021-02616-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022]
|
7
|
Ma K, Zhang Y, Guo C, Yang Y, Han J, Yu B, Yin W, Liu H. Reconstitution of biosynthetic pathway for mushroom-derived cyathane diterpenes in yeast and generation of new "non-natural" analogues. Acta Pharm Sin B 2021; 11:2945-2956. [PMID: 34589407 PMCID: PMC8463280 DOI: 10.1016/j.apsb.2021.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Mushroom-derived cyathane-type diterpenes possess unusual chemical skeleton and diverse bioactivities. To efficiently supply bioactive cyathanes for deep studies and explore their structural diversity, de novo synthesis of cyathane diterpenes in a geranylgeranyl pyrophosphate engineered Saccharomyces cerevisiae is investigated. Aided by homologous analyses, one new unclustered FAD-dependent oxidase EriM accounting for the formation of allyl aldehyde and three new NADP(H)-dependent reductases in the biosynthesis of cyathanes are identified and elucidated. By combinatorial biosynthetic strategy, S. cerevisiae strains generating twenty-two cyathane-type diterpenes, including seven "unnatural" cyathane xylosides (12, 13, 14a, 14b, 19, 20, and 22) are established. Compounds 12-14, 19, and 20 show significant neurotrophic effects on PC12 cells in the dose of 6.3-25.0 μmol/L. These studies provide new insights into the divergent biosynthesis of mushroom-originated cyathanes and a straightforward approach to produce bioactive cyathane-type diterpenes.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlong Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Park M, Cho YJ, Lee YW, Jung WH. Genomic Multiplication and Drug Efflux Influence Ketoconazole Resistance in Malassezia restricta. Front Cell Infect Microbiol 2020; 10:191. [PMID: 32426297 PMCID: PMC7203472 DOI: 10.3389/fcimb.2020.00191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Malassezia restricta is an opportunistic fungal pathogen on human skin; it is associated with various skin diseases, including seborrheic dermatitis and dandruff, which are usually treated using ketoconazole. In this study, we clinically isolated ketoconazole-resistant M. restricta strains (KCTC 27529 and KCTC 27550) from patients with dandruff. To understand the mechanisms of ketoconazole resistance in the isolates, their genomes were sequenced and compared with the susceptible reference strain M. restricta KCTC 27527. Using comparative genome analysis, we identified tandem multiplications of the genomic loci containing ATM1 and ERG11 homologs in M. restricta KCTC 27529 and KCTC 27550, respectively. Additionally, we found that the copy number increase of ATM1 and ERG11 is reflected in the increased expression of these genes; moreover, we observed that overexpression of these homologs caused ketoconazole resistance in a genetically tractable fungal pathogen, Cryptococcus neoformans. In addition to tandem multiplications of the genomic region containing the ATM1 homolog, the PDR5 homolog, which encodes the drug efflux pump protein was upregulated in M. restricta KCTC 27529 compared to the reference strain. Biochemical analysis confirmed that drug efflux was highly activated in M. restricta KCTC 27529, implying that upregulation of the PDR5 homolog may also contribute to ketoconazole resistance in the strain. Overall, our results suggest that multiplication of the genomic loci encoding genes involved in ergosterol synthesis, mitochondrial iron metabolism, and oxidative stress response and overexpression of the drug efflux pumps are the mechanisms underlying ketoconazole resistance in M. restricta.
Collapse
Affiliation(s)
- Minji Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Yong-Joon Cho
- School of Biological Sciences and Research Institute of Basic Sciences, Seoul National University, Seoul, South Korea
| | - Yang Won Lee
- Department of Dermatology, School of Medicine, Konkuk University, Seoul, South Korea.,Research Institute of Medicine, Konkuk University, Seoul, South Korea
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
9
|
Lindahl PA. A comprehensive mechanistic model of iron metabolism in Saccharomyces cerevisiae. Metallomics 2019; 11:1779-1799. [PMID: 31531508 DOI: 10.1039/c9mt00199a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ironome of budding yeast (circa 2019) consists of approximately 139 proteins and 5 nonproteinaceous species. These proteins were grouped according to location in the cell, type of iron center(s), and cellular function. The resulting 27 groups were used, along with an additional 13 nonprotein components, to develop a mesoscale mechanistic model that describes the import, trafficking, metallation, and regulation of iron within growing yeast cells. The model was designed to be simultaneously mutually autocatalytic and mutually autoinhibitory - a property called autocatinhibitory that should be most realistic for simulating cellular biochemical processes. The model was assessed at the systems' level. General conclusions are presented, including a new perspective on understanding regulatory mechanisms in cellular systems. Some unsettled issues are described. This model, once fully developed, has the potential to mimic the phenotype (at a coarse-grain level) of all iron-related genetic mutations in this simple and well-studied eukaryote.
Collapse
Affiliation(s)
- Paul A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| |
Collapse
|
10
|
Shin J, Kim JE, Lee YW, Son H. Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum. Toxins (Basel) 2018; 10:E112. [PMID: 29518888 PMCID: PMC5869400 DOI: 10.3390/toxins10030112] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450s (CYPs), heme-containing monooxygenases, play important roles in a wide variety of metabolic processes important for development as well as biotic/trophic interactions in most living organisms. Functions of some CYP enzymes are similar across organisms, but some are organism-specific; they are involved in the biosynthesis of structural components, signaling networks, secondary metabolisms, and xenobiotic/drug detoxification. Fungi possess more diverse CYP families than plants, animals, or bacteria. Various fungal CYPs are involved in not only ergosterol synthesis and virulence but also in the production of a wide array of secondary metabolites, which exert toxic effects on humans and other animals. Although few studies have investigated the functions of fungal CYPs, a recent systematic functional analysis of CYP genes in the plant pathogen Fusarium graminearum identified several novel CYPs specifically involved in virulence, asexual and sexual development, and degradation of xenobiotics. This review provides fundamental information on fungal CYPs and a new platform for further metabolomic and biochemical studies of CYPs in toxigenic fungi.
Collapse
Affiliation(s)
| | | | | | - Hokyoung Son
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.); (J.-E.K.); (Y.-W.L.)
| |
Collapse
|
11
|
Ottilie S, Goldgof GM, Calvet CM, Jennings GK, LaMonte G, Schenken J, Vigil E, Kumar P, McCall LI, Lopes ESC, Gunawan F, Yang J, Suzuki Y, Siqueira-Neto JL, McKerrow JH, Amaro RE, Podust LM, Durrant JD, Winzeler EA. Rapid Chagas Disease Drug Target Discovery Using Directed Evolution in Drug-Sensitive Yeast. ACS Chem Biol 2017; 12:422-434. [PMID: 27977118 PMCID: PMC5649375 DOI: 10.1021/acschembio.6b01037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent advances in cell-based, high-throughput phenotypic screening have identified new chemical compounds that are active against eukaryotic pathogens. A challenge to their future development lies in identifying these compounds' molecular targets and binding modes. In particular, subsequent structure-based chemical optimization and target-based screening require a detailed understanding of the binding event. Here, we use directed evolution and whole-genome sequencing of a drug-sensitive S. cerevisiae strain to identify the yeast ortholog of TcCyp51, lanosterol-14-alpha-demethylase (TcCyp51), as the target of MMV001239, a benzamide compound with activity against Trypanosoma cruzi, the etiological agent of Chagas disease. We show that parasites treated with MMV0001239 phenocopy parasites treated with another TcCyp51 inhibitor, posaconazole, accumulating both lanosterol and eburicol. Direct drug-protein binding of MMV0001239 was confirmed through spectrophotometric binding assays and X-ray crystallography, revealing a binding site shared with other antitrypanosomal compounds that target Cyp51. These studies provide a new probe chemotype for TcCyp51 inhibition.
Collapse
Affiliation(s)
- Sabine Ottilie
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Gregory M Goldgof
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute , La Jolla, California 92037, United States
| | - Claudia Magalhaes Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
- Cellular Ultrastructure Laboratory, IOC, FIOCRUZ , Rio de Janeiro, Rio de Janeiro, Brazil 21045-360
| | - Gareth K Jennings
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Greg LaMonte
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Jake Schenken
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Edgar Vigil
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Prianka Kumar
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Laura-Isobel McCall
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Eduardo Soares Constantino Lopes
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
- Department of Pharmacy, Federal University of Paraná , Curitiba, Paraná, Brazil 80210-170
| | - Felicia Gunawan
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Jennifer Yang
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute , La Jolla, California 92037, United States
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - James H McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry, University of California, San Diego , La Jolla, California 92093-0340, United States
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego , La Jolla, California 92093, United States
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine , La Jolla, California 92093, United States
| |
Collapse
|
12
|
Lah L, Löber U, Hsiang T, Hartmann S. A genomic comparison of putative pathogenicity-related gene families in five members of the Ophiostomatales with different lifestyles. Fungal Biol 2016; 121:234-252. [PMID: 28215351 DOI: 10.1016/j.funbio.2016.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
Ophiostomatoid fungi are vectored by their bark-beetle associates and colonize different host tree species. To survive and proliferate in the host, they have evolved mechanisms for detoxification and elimination of host defence compounds, efficient nutrient sequestration, and, in pathogenic species, virulence towards plants. Here, we assembled a draft genome of the spruce pathogen Ophiostoma bicolor. For our comparative and phylogenetic analyses, we mined the genomes of closely related species (Ophiostoma piceae, Ophiostoma ulmi, Ophiostoma novo-ulmi, and Grosmannia clavigera). Our aim was to acquire a genomic and evolutionary perspective of gene families important in host colonization. Genome comparisons showed that both the nuclear and mitochondrial genomes in our assembly were largely complete. Our O. bicolor 25.3 Mbp draft genome had 10 018 predicted genes, 6041 proteins with gene ontology (GO) annotation, 269 carbohydrate-active enzymes (CAZymes), 559 peptidases and inhibitors, and 1373 genes likely involved in pathogen-host interactions. Phylogenetic analyses of selected protein families revealed core sets of cytochrome P450 genes, ABC transporters and backbone genes involved in secondary metabolite (SM) biosynthesis (polyketide synthases (PKS) and non-ribosomal synthases), and species-specific gene losses and duplications. Phylogenetic analyses of protein families of interest provided insight into evolutionary adaptations to host biochemistry in ophiostomatoid fungi.
Collapse
Affiliation(s)
- Ljerka Lah
- Evolutionary Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.
| | - Ulrike Löber
- Evolutionary Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, N1G 2W1 Guelph, ON, Canada
| | - Stefanie Hartmann
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
13
|
Alvarez-Rueda N, Fleury A, Logé C, Pagniez F, Robert E, Morio F, Le Pape P. The amino acid substitution N136Y in Candida albicans sterol 14alpha-demethylase is involved in fluconazole resistance. Med Mycol 2016; 54:764-775. [PMID: 27143634 DOI: 10.1093/mmy/myw023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 03/24/2016] [Indexed: 12/22/2022] Open
Abstract
Resistance to fluconazole antifungal is an ongoing impediment to a successful treatment of Candida albicans infections. One of the most prevalent mechanisms leading to azole resistance is genetic alterations of the 14α-demethylase, the target of azole antifungals, through point mutations. Site-directed mutagenesis and molecular modeling of 14α-demethylase rationalize biological data about the role of protein substitutions in the azole treatment failure. In this work, we investigated the role of N136Y substitution by site-directed mutagenesis into Pichia pastoris guided by structural analysis. Single amino acid substitutions were created by site-directed mutagenesis into P. pastoris with C. albicans ERG11 gene as template. In vitro susceptibility of P. pastoris transformants expressing wild-type and mutants to azole compounds was determined by CLSI M27-A2 and spot agar methods. The fluconazole effect on ergosterol biosynthesis was analyzed by gas chromatography-mass spectrometry. By microdilution and spot tests, N136Y transformants showed a reduced in vitro susceptibility to fluconazole compared to wild-type controls. As expected, ergosterol/lanosterol ratios were higher in N136Y transformants compared to the wild-type controls after treatment with fluconazole. Molecular modeling suggests that residue Asn136 located within the first mutation hot spot, could play a role during heme and azole binding. These results provide new insights into the structural basis for 14α-demethylase-azole interaction and could guide the design of novel azole antifungals.
Collapse
Affiliation(s)
| | - Audrey Fleury
- Département de Parasitologie et de Mycologie Médicale
| | - Cédric Logé
- Laboratoire de Chimie Thérapeutique, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, UFR des Sciences Pharmaceutiques et Biologiques, France
| | | | | | - Florent Morio
- Département de Parasitologie et de Mycologie Médicale.,Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
| | - Patrice Le Pape
- Département de Parasitologie et de Mycologie Médicale.,Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
| |
Collapse
|
14
|
Woods K, Höfken T. The zinc cluster proteins Upc2 and Ecm22 promote filamentation in Saccharomyces cerevisiae by sterol biosynthesis-dependent and -independent pathways. Mol Microbiol 2015; 99:512-27. [PMID: 26448198 DOI: 10.1111/mmi.13244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
The transition between a unicellular yeast form to multicellular filaments is crucial for budding yeast foraging and the pathogenesis of many fungal pathogens such as Candida albicans. Here, we examine the role of the related transcription factors Ecm22 and Upc2 in Saccharomyces cerevisiae filamentation. Overexpression of either ECM22 or UPC2 leads to increased filamentation, whereas cells lacking both ECM22 and UPC2 do not exhibit filamentous growth. Ecm22 and Upc2 positively control the expression of FHN1, NPR1, PRR2 and sterol biosynthesis genes. These genes all play a positive role in filamentous growth, and their expression is upregulated during filamentation in an Ecm22/Upc2-dependent manner. Furthermore, ergosterol content increases during filamentous growth. UPC2 expression also increases during filamentation and is inhibited by the transcription factors Sut1 and Sut2. The expression of SUT1 and SUT2 in turn is under negative control of the transcription factor Ste12. We suggest that during filamentation Ste12 becomes activated and reduces SUT1/SUT2 expression levels. This would result in increased UPC2 levels and as a consequence to transcriptional activation of FHN1, NPR1, PRR2 and sterol biosynthesis genes. Higher ergosterol levels in combination with the proteins Fhn1, Npr1 and Prr2 would then mediate the transition to filamentous growth.
Collapse
Affiliation(s)
- Kelly Woods
- Division of Biosciences, Brunel University London, Uxbridge, UK
| | - Thomas Höfken
- Division of Biosciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
15
|
Leiva K, Werner N, Sepúlveda D, Barahona S, Baeza M, Cifuentes V, Alcaíno J. Identification and functional characterization of the CYP51 gene from the yeast Xanthophyllomyces dendrorhous that is involved in ergosterol biosynthesis. BMC Microbiol 2015; 15:89. [PMID: 25906980 PMCID: PMC4415319 DOI: 10.1186/s12866-015-0428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/17/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, a carotenoid with great biotechnological impact. The ergosterol and carotenoid synthetic pathways derive from the mevalonate pathway and involve cytochrome P450 enzymes. Among these enzymes, the CYP51 family, which is involved in ergosterol biosynthesis, is one of the most remarkable that has C14-demethylase activity. RESULTS In this study, the CYP51 gene from X. dendrorhous was isolated and its function was analyzed. The gene is composed of ten exons and encodes a predicted 550 amino acid polypeptide that exhibits conserved cytochrome P450 structural characteristics and shares significant identity with the sterol C14-demethylase from other fungi. The functionality of this gene was confirmed by heterologous complementation in S. cerevisiae. Furthermore, a CYP51 gene mutation in X. dendrorhous reduced sterol production by approximately 40% and enhanced total carotenoid production by approximately 90% compared to the wild-type strain after 48 and 120 h of culture, respectively. Additionally, the CYP51 gene mutation in X. dendrorhous increased HMGR (hydroxy-methylglutaryl-CoA reductase, involved in the mevalonate pathway) and crtR (cytochrome P450 reductase) transcript levels, which could be associated with reduced ergosterol production. CONCLUSIONS These results suggest that the CYP51 gene identified in X. dendrorhous encodes a functional sterol C14-demethylase that is involved in ergosterol biosynthesis.
Collapse
Affiliation(s)
- Kritsye Leiva
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Nicole Werner
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas y Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Ñuñoa, Santiago, Chile.
| |
Collapse
|
16
|
Xu W, Hsu FF, Baykal E, Huang J, Zhang K. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania. PLoS Pathog 2014; 10:e1004427. [PMID: 25340392 PMCID: PMC4207814 DOI: 10.1371/journal.ppat.1004427] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022] Open
Abstract
Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Eda Baykal
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Juyang Huang
- Department of Physics, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
de Oliveira Ceita G, Vilas-Boas LA, Castilho MS, Carazzolle MF, Pirovani CP, Selbach-Schnadelbach A, Gramacho KP, Ramos PIP, Barbosa LV, Pereira GAG, Góes-Neto A. Analysis of the ergosterol biosynthesis pathway cloning, molecular characterization and phylogeny of lanosterol 14 α-demethylase (ERG11) gene of Moniliophthora perniciosa. Genet Mol Biol 2014; 37:683-93. [PMID: 25505843 PMCID: PMC4261968 DOI: 10.1590/s1415-47572014005000017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/04/2014] [Indexed: 11/22/2022] Open
Abstract
The phytopathogenic fungus Moniliophthora perniciosa (Stahel) Aime & Philips-Mora, causal agent of witches' broom disease of cocoa, causes countless damage to cocoa production in Brazil. Molecular studies have attempted to identify genes that play important roles in fungal survival and virulence. In this study, sequences deposited in the M. perniciosa Genome Sequencing Project database were analyzed to identify potential biological targets. For the first time, the ergosterol biosynthetic pathway in M. perniciosa was studied and the lanosterol 14α-demethylase gene (ERG11) that encodes the main enzyme of this pathway and is a target for fungicides was cloned, characterized molecularly and its phylogeny analyzed. ERG11 genomic DNA and cDNA were characterized and sequence analysis of the ERG11 protein identified highly conserved domains typical of this enzyme, such as SRS1, SRS4, EXXR and the heme-binding region (HBR). Comparison of the protein sequences and phylogenetic analysis revealed that the M. perniciosa enzyme was most closely related to that of Coprinopsis cinerea.
Collapse
Affiliation(s)
- Geruza de Oliveira Ceita
- Laboratório de Pesquisa em Microbiologia,
Departamento de Ciências Biológicas,
Universidade Estadual de Feira de Santana,
Feira de Santana,
BA,
Brazil
- Laboratório de Biologia Molecular,
Instituto de Biologia,
Departamento de Biologia Geral,
Universidade Federal da Bahia,
Salvador,
BA,
Brazil
| | - Laurival Antônio Vilas-Boas
- Centro de Ciências Biológicas,
Departamento de Biologia Geral,
Universidade Estadual de Londrina,
Londrina,
PR,
Brazil
| | - Marcelo Santos Castilho
- Laboratório de Bioinformática e Modelagem Molecular,
Departamento do Medicamento,
Faculdade de Farmácia,
Universidade Federal da Bahia,
Salvador,
BA,
Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Proteômica,
Departamento de Genética e Evolução,
Universidade Estadual de Campinas,
Campinas,
SP,
Brazil
| | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética,
Departamento de Ciências Biológicas,
Universidade Estadual de Santa Cruz,
Ilhéus,
BA,
Brazil
| | - Alessandra Selbach-Schnadelbach
- Laboratório de Biologia Molecular,
Instituto de Biologia,
Departamento de Biologia Geral,
Universidade Federal da Bahia,
Salvador,
BA,
Brazil
| | - Karina Peres Gramacho
- Laboratório de Fitopatologia Molecular,
Centro de Pesquisas do Cacau,
Ilhéus,
BA,
Brazil
| | - Pablo Ivan Pereira Ramos
- Laboratório de Biologia Molecular,
Instituto de Biologia,
Departamento de Biologia Geral,
Universidade Federal da Bahia,
Salvador,
BA,
Brazil
| | - Luciana Veiga Barbosa
- Laboratório de Biologia Molecular,
Instituto de Biologia,
Departamento de Biologia Geral,
Universidade Federal da Bahia,
Salvador,
BA,
Brazil
| | | | - Aristóteles Góes-Neto
- Laboratório de Pesquisa em Microbiologia,
Departamento de Ciências Biológicas,
Universidade Estadual de Feira de Santana,
Feira de Santana,
BA,
Brazil
| |
Collapse
|
18
|
Christadore LM, Pham L, Kolaczyk ED, Schaus SE. Improvement of experimental testing and network training conditions with genome-wide microarrays for more accurate predictions of drug gene targets. BMC SYSTEMS BIOLOGY 2014; 8:7. [PMID: 24444313 PMCID: PMC3911882 DOI: 10.1186/1752-0509-8-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/21/2013] [Indexed: 11/10/2022]
Abstract
Background Genome-wide microarrays have been useful for predicting chemical-genetic interactions at the gene level. However, interpreting genome-wide microarray results can be overwhelming due to the vast output of gene expression data combined with off-target transcriptional responses many times induced by a drug treatment. This study demonstrates how experimental and computational methods can interact with each other, to arrive at more accurate predictions of drug-induced perturbations. We present a two-stage strategy that links microarray experimental testing and network training conditions to predict gene perturbations for a drug with a known mechanism of action in a well-studied organism. Results S. cerevisiae cells were treated with the antifungal, fluconazole, and expression profiling was conducted under different biological conditions using Affymetrix genome-wide microarrays. Transcripts were filtered with a formal network-based method, sparse simultaneous equation models and Lasso regression (SSEM-Lasso), under different network training conditions. Gene expression results were evaluated using both gene set and single gene target analyses, and the drug’s transcriptional effects were narrowed first by pathway and then by individual genes. Variables included: (i) Testing conditions – exposure time and concentration and (ii) Network training conditions – training compendium modifications. Two analyses of SSEM-Lasso output – gene set and single gene – were conducted to gain a better understanding of how SSEM-Lasso predicts perturbation targets. Conclusions This study demonstrates that genome-wide microarrays can be optimized using a two-stage strategy for a more in-depth understanding of how a cell manifests biological reactions to a drug treatment at the transcription level. Additionally, a more detailed understanding of how the statistical model, SSEM-Lasso, propagates perturbations through a network of gene regulatory interactions is achieved.
Collapse
Affiliation(s)
| | | | | | - Scott E Schaus
- Department of Chemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
19
|
Dumas VG, Defelipe LA, Petruk AA, Turjanski AG, Marti MA. QM/MM study of the C-C coupling reaction mechanism of CYP121, an essential cytochrome p450 of Mycobacterium tuberculosis. Proteins 2013; 82:1004-21. [PMID: 24356896 DOI: 10.1002/prot.24474] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/15/2013] [Accepted: 11/04/2013] [Indexed: 11/06/2022]
Abstract
Among 20 p450s of Mycobacterium tuberculosis (Mt), CYP121 has received an outstanding interest, not only due to its essentiality for bacterial viability but also because it catalyzes an unusual carbon-carbon coupling reaction. Based on the structure of the substrate bound enzyme, several reaction mechanisms were proposed involving first Tyr radical formation, second Tyr radical formation, and C-C coupling. Key and unknown features, being the nature of the species that generate the first and second radicals, and the role played by the protein scaffold each step. In the present work we have used classical and quantum based computer simulation methods to study in detail its reaction mechanism. Our results show that substrate binding promotes formation of the initial oxy complex, Compound I is the responsible for first Tyr radical formation, and that the second Tyr radical is formed subsequently, through a PCET reaction, promoted by the presence of key residue Arg386. The final C-C coupling reaction possibly occurs in bulk solution, thus yielding the product in one oxygen reduction cycle. Our results thus contribute to a better comprehension of MtCYP121 reaction mechanism, with direct implications for inhibitor design, and also contribute to our general understanding of these type of enzymes.
Collapse
Affiliation(s)
- Victoria G Dumas
- Departamento de Quimica Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Química Física de los Materiales Medio Ambiente y Energia (INQUIMAE), UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güiraldes, 2160, C1428EGA, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
20
|
Lamb DC, Waterman MR, Zhao B. Streptomycescytochromes P450: applications in drug metabolism. Expert Opin Drug Metab Toxicol 2013; 9:1279-94. [DOI: 10.1517/17425255.2013.806485] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Kelly SL, Kelly DE. Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us? Philos Trans R Soc Lond B Biol Sci 2013; 368:20120476. [PMID: 23297358 DOI: 10.1098/rstb.2012.0476] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The first eukaryote genome revealed three yeast cytochromes P450 (CYPs), hence the subsequent realization that some microbial fungal genomes encode these proteins in 1 per cent or more of all genes (greater than 100) has been surprising. They are unique biocatalysts undertaking a wide array of stereo- and regio-specific reactions and so hold promise in many applications. Based on ancestral activities that included 14α-demethylation during sterol biosynthesis, it is now seen that CYPs are part of the genes and metabolism of most eukaryotes. In contrast, Archaea and Eubacteria often do not contain CYPs, while those that do are frequently interesting as producers of natural products undertaking their oxidative tailoring. Apart from roles in primary and secondary metabolism, microbial CYPs are actual/potential targets of drugs/agrochemicals and CYP51 in sterol biosynthesis is exhibiting evolution to resistance in the clinic and the field. Other CYP applications include the first industrial biotransformation for corticosteroid production in the 1950s, the diversion into penicillin synthesis in early mutations in fungal strain improvement and bioremediation using bacteria and fungi. The vast untapped resource of orphan CYPs in numerous genomes is being probed and new methods for discovering function and for discovering desired activities are being investigated.
Collapse
Affiliation(s)
- Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science and College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | | |
Collapse
|
22
|
Lah L, Haridas S, Bohlmann J, Breuil C. The cytochromes P450 of Grosmannia clavigera: Genome organization, phylogeny, and expression in response to pine host chemicals. Fungal Genet Biol 2012; 50:72-81. [PMID: 23111002 DOI: 10.1016/j.fgb.2012.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/29/2012] [Accepted: 10/16/2012] [Indexed: 01/04/2023]
Abstract
Grosmannia clavigera is a fungal associate of the mountain pine beetle (Dendroctonus ponderosae) and a pathogen of lodgepole pine (Pinus contorta) that must overcome terpenoid oleoresin and phenolic defenses of host trees. G. clavigera responds to monoterpene influx with complementary mechanisms that include export and the use of these compounds as a carbon source. Cytochromes P450 (CYPs) may also be involved in the metabolism of host defense compounds. We have identified and phylogenetically classified G. clavigera CYPs (CYPome). We show that although the G. clavigera CYPome has contracted in evolution, certain CYP families have expanded by duplication. We analyzed RNA-seq data for CYP expression following treatment with terpenes and pine phloem extracts to identify CYPs potentially involved in detoxification of these pine defense compounds. We also used transcriptome analysis of G. clavigera grown on monoterpenes, triglycerides or oleic acid as a carbon source to identify up-regulated CYPs that may be involved in the utilization of these compounds to support fungal growth. Finally, we identify secondary metabolite biosynthetic gene clusters that contain CYPs, and CYPs in clusters that may be involved in conversion of host chemicals.
Collapse
Affiliation(s)
- Ljerka Lah
- Department of Wood Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
23
|
Alvarez-Rueda N, Fleury A, Morio F, Pagniez F, Gastinel L, Le Pape P. Amino acid substitutions at the major insertion loop of Candida albicans sterol 14alpha-demethylase are involved in fluconazole resistance. PLoS One 2011; 6:e21239. [PMID: 21698128 PMCID: PMC3116904 DOI: 10.1371/journal.pone.0021239] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/24/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND In the fungal pathogen Candida albicans, amino acid substitutions of 14alpha-demethylase (CaErg11p, CaCYP51) are associated with azole antifungals resistance. This is an area of research which is very dynamic, since the stakes concern the screening of new antifungals which circumvent resistance. The impact of amino acid substitutions on azole interaction has been postulated by homology modeling in comparison to the crystal structure of Mycobacterium tuberculosis (MT-CYP51). Modeling of amino acid residues situated between positions 428 to 459 remains difficult to explain to date, because they are in a major insertion loop specifically present in fungal species. METHODOLOGY/PRINCIPAL FINDING Fluconazole resistance of clinical isolates displaying Y447H and V456I novel CaErg11p substitutions confirmed in vivo in a murine model of disseminated candidiasis. Y447H and V456I implication into fluconazole resistance was then studied by site-directed mutagenesis of wild-type CaErg11p and by heterogeneously expression into the Pichia pastoris model. CLSI modified tests showed that V447H and V456I are responsible for an 8-fold increase in fluconazole MICs of P. pastoris mutants compared to the wild-type controls. Moreover, mutants showed a sustained capacity for producing ergosterol, even in the presence of fluconazole. Based on these biological results, we are the first to propose a hybrid homology structure-function model of Ca-CYP51 using 3 different homology modeling programs. The variable position of the protein insertion loop, using different liganded or non-liganded templates of recently solved CYP51 structures, suggests its inherent flexibility. Mapping of recognized azole-resistant substitutions indicated that the flexibility of this region is probably enhanced by the relatively high glycine content of the consensus. CONCLUSIONS/SIGNIFICANCE The results highlight the potential role of the insertion loop in azole resistance in the human pathogen C. albicans. This new data should be taken into consideration for future studies aimed at designing new antifungal agents, which circumvent azole resistance.
Collapse
Affiliation(s)
- Nidia Alvarez-Rueda
- Département de Parasitologie et de Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie de Nantes, Nantes, France
- * E-mail: (PLP); (NAR)
| | - Audrey Fleury
- Département de Parasitologie et de Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie de Nantes, Nantes, France
| | - Florent Morio
- Département de Parasitologie et de Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie de Nantes, Nantes, France
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
| | - Fabrice Pagniez
- Département de Parasitologie et de Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie de Nantes, Nantes, France
| | - Louis Gastinel
- Laboratoire de Pharmacologie des Immunosuppresseurs en Transplantation, INSERM UMR 850, Université de Limoges, Limoges, France
| | - Patrice Le Pape
- Département de Parasitologie et de Mycologie Médicale, Université de Nantes, Nantes Atlantique Universités, EA1155 – IICiMed, Faculté de Pharmacie de Nantes, Nantes, France
- Laboratoire de Parasitologie-Mycologie, CHU de Nantes, Nantes, France
- * E-mail: (PLP); (NAR)
| |
Collapse
|
24
|
NKININ STEPHENSONW, STRINGER JAMESR, KEELY SCOTTP, SETCHELL KENNETHD, GINER JOSÉLUIS, KANESHIRO EDNAS. Pneumocystis carinii Sterol 14α-Demethylase Activity in Saccharomyces cerevisiae erg11 Knockout Mutant: Sterol Biochemistry. J Eukaryot Microbiol 2011; 58:383-92. [DOI: 10.1111/j.1550-7408.2011.00556.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Mechanism of binding of prothioconazole to Mycosphaerella graminicola CYP51 differs from that of other azole antifungals. Appl Environ Microbiol 2010; 77:1460-5. [PMID: 21169436 DOI: 10.1128/aem.01332-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prothioconazole is one of the most important commercially available demethylase inhibitors (DMIs) used to treat Mycosphaerella graminicola infection of wheat, but specific information regarding its mode of action is not available in the scientific literature. Treatment of wild-type M. graminicola (strain IPO323) with 5 μg of epoxiconazole, tebuconazole, triadimenol, or prothioconazole ml(-1) resulted in inhibition of M. graminicola CYP51 (MgCYP51), as evidenced by the accumulation of 14α-methylated sterol substrates (lanosterol and eburicol) and the depletion of ergosterol in azole-treated cells. Successful expression of MgCYP51 in Escherichia coli enabled us to conduct spectrophotometric assays using purified 62-kDa MgCYP51 protein. Antifungal-binding studies revealed that epoxiconazole, tebuconazole, and triadimenol all bound tightly to MgCYP51, producing strong type II difference spectra (peak at 423 to 429 nm and trough at 406 to 409 nm) indicative of the formation of classical low-spin sixth-ligand complexes. Interaction of prothioconazole with MgCYP51 exhibited a novel spectrum with a peak and trough observed at 410 nm and 428 nm, respectively, indicating a different mechanism of inhibition. Prothioconazole bound to MgCYP51 with 840-fold less affinity than epoxiconazole and, unlike epoxiconazole, tebuconazole, and triadimenol, which are noncompetitive inhibitors, prothioconazole was found to be a competitive inhibitor of substrate binding. This represents the first study to validate the effect of prothioconazole on the sterol composition of M. graminicola and the first on the successful heterologous expression of active MgCYP51 protein. The binding affinity studies documented here provide novel insights into the interaction of MgCYP51 with DMIs, especially for the new triazolinethione derivative prothioconazole.
Collapse
|
26
|
Montemiglio LC, Gianni S, Vallone B, Savino C. Azole Drugs Trap Cytochrome P450 EryK in Alternative Conformational States,. Biochemistry 2010; 49:9199-206. [DOI: 10.1021/bi101062v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linda Celeste Montemiglio
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| | - Stefano Gianni
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| | - Carmelinda Savino
- Department of Biochemical Sciences, “Sapienza” University of Rome and CNR Institute of Molecular Biology and Pathology, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
27
|
Expression, purification, and characterization of Aspergillus fumigatus sterol 14-alpha demethylase (CYP51) isoenzymes A and B. Antimicrob Agents Chemother 2010; 54:4225-34. [PMID: 20660663 DOI: 10.1128/aac.00316-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aspergillus fumigatus sterol 14-α demethylase (CYP51) isoenzymes A (AF51A) and B (AF51B) were expressed in Escherichia coli and purified. The dithionite-reduced CO-P450 complex for AF51A was unstable, rapidly denaturing to inactive P420, in marked contrast to AF51B, where the CO-P450 complex was stable. Type I substrate binding spectra were obtained with purified AF51B using lanosterol (K(s), 8.6 μM) and eburicol (K(s), 22.6 μM). Membrane suspensions of AF51A bound to both lanosterol (K(s), 3.1 μM) and eburicol (K(s), 4.1 μM). The binding of azoles, with the exception of fluconazole, to AF51B was tight, with the K(d) (dissociation constant) values for clotrimazole, itraconazole, posaconazole, and voriconazole being 0.21, 0.06, 0.12, and 0.42 μM, respectively, in comparison with a K(d) value of 4 μM for fluconazole. Characteristic type II azole binding spectra were obtained with AF51B, whereas an additional trough and a blue-shifted spectral peak were present in AF51A binding spectra for all azoles except clotrimazole. This suggests two distinct azole binding conformations within the heme prosthetic group of AF51A. All five azoles bound relatively weakly to AF51A, with K(d) values ranging from 1 μM for itraconazole to 11.9 μM for fluconazole. The azole binding properties of purified AF51A and AF51B suggest an explanation for the intrinsic azole (fluconazole) resistance observed in Aspergillus fumigatus.
Collapse
|
28
|
Azole binding properties of Candida albicans sterol 14-alpha demethylase (CaCYP51). Antimicrob Agents Chemother 2010; 54:4235-45. [PMID: 20625155 DOI: 10.1128/aac.00587-10] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purified Candida albicans sterol 14-α demethylase (CaCYP51) bound the CYP51 substrates lanosterol and eburicol, producing type I binding spectra with K(s) values of 11 and 25 μM, respectively, and a K(m) value of 6 μM for lanosterol. Azole binding to CaCYP51 was "tight" with both the type II spectral intensity (ΔA(max)) and the azole concentration required to obtain a half-ΔA(max) being proportional to the CaCYP51 concentration. Tight binding of fluconazole and itraconazole was confirmed by 50% inhibitory concentration determinations from CYP51 reconstitution assays. CaCYP51 had similar affinities for clotrimazole, econazole, itraconazole, ketoconazole, miconazole, and voriconazole, with K(d) values of 10 to 26 μM under oxidative conditions, compared with 47 μM for fluconazole. The affinities of CaCYP51 for fluconazole and itraconazole appeared to be 4- and 2-fold lower based on CO displacement studies than those when using direct ligand binding under oxidative conditions. Econazole and miconazole were most readily displaced by carbon monoxide, followed by clotrimazole, ketoconazole, and fluconazole, and then voriconazole (7.8 pmol min(-1)), but itraconzole could not be displaced by carbon monoxide. This work reports in depth the characterization of the azole binding properties of wild-type C. albicans CYP51, including that of voriconazole, and will contribute to effective screening of new therapeutic azole antifungal agents. Preliminary comparative studies with the I471T CaCYP51 protein suggested that fluconazole resistance conferred by this mutation was through a combination of increased turnover, increased affinity for substrate, and a reduced affinity for fluconazole in the presence of substrate, allowing the enzyme to remain functionally active, albeit at reduced velocity, at higher fluconazole concentrations.
Collapse
|
29
|
Abe F, Usui K, Hiraki T. Fluconazole modulates membrane rigidity, heterogeneity, and water penetration into the plasma membrane in Saccharomyces cerevisiae. Biochemistry 2009; 48:8494-504. [PMID: 19670905 DOI: 10.1021/bi900578y] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Azole anitifungal drugs such as fluconazole inhibit 14alpha-demethylase. The mechanism of fluconazole action on the plasma membrane is assumed to be ergosterol depletion and accumulation of a toxic sterol, 14alpha-methyl-3,6-diol, that differs in C-6 hydroxylation, B-ring saturation, C-14 methylation, and side-chain modification. Nevertheless, little is known about how these sterol modifications mechanically influence membrane properties and hence fungal viability. Employing time-resolved measurement with a fluorescence anisotropy probe, 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), we demonstrated that fluconazole administration decreased the rigidity of the plasma membrane of Saccharomyces cerevisiae, leading to a dramatic reduction in the order parameter (S) from 0.965 to 0.907 and a 5-fold acceleration of the rotational lipid motion. This suggests that the altered sterol has a deleterious impact on membrane packing, resulting in increased fluidity. Deletion of ERG3 confers hyperresistance to fluconazole by circumventing the accumulation of 14alpha-methyl-3,6-diol and instead produces 14alpha-methylfecosterol lacking the 6-OH group. We found that ERG3 deletion mitigated the fluconazole-induced loss of membrane rigidity with S remaining at a higher value (=0.922), which could contribute to the fluconazole resistance in the erg3Delta mutant. The reduced ability of the 6-OH sterol to stiffen lipid bilayers was supported by the finding that 30 mol % of 6alpha-hydroxy-5alpha-cholestanol marginally increased the S value of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes, while cholesterol and dihydrocholesterol markedly increased it. The decay of the TMA-DPH fluorescence was bimodal in the wild-type strain. This heterogeneity could have arisen from varying degrees of water penetration into the plasma membrane. Fluconazole eliminated the heterogeneity of the dielectric characteristic of the membrane interfacial region, and concomitantly the TMA-DPH lifetime was shortened. Therefore, we conclude that 14alpha-methyl-3,6-diol is insufficient to pack the plasma membrane, allowing water penetration, which is consistent with membrane disorder after fluconazole administration. Our findings illustrate the role of ergosterol in maintaining membrane heterogeneity and preventing water penetration as well as maintaining the rigidity of the plasma membrane interfacial region.
Collapse
Affiliation(s)
- Fumiyoshi Abe
- Molecular Evolution and Adaptation Research, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan.
| | | | | |
Collapse
|
30
|
Paluszynski JP, Klassen R, Meinhardt F. Genetic prerequisites for additive or synergistic actions of 5-fluorocytosine and fluconazole in baker's yeast. MICROBIOLOGY-SGM 2008; 154:3154-3164. [PMID: 18832321 DOI: 10.1099/mic.0.2008/020107-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During applications of 5-fluorocytosine (5FC) and fluconazole (FLC), additive or synergistic action may even occur when primary resistance to 5FC is established. Here, we analysed conjoint drug action in Saccharomyces cerevisiae strains deficient in genes known to be essential for 5FC or FLC function. Despite clear primary resistance, residual 5FC activity and additive 5FC+FLC action in cells lacking cytosine permease (Fcy2p) or uracil phosphoribosyl transferase (Fur1p) were detected. In contrast, Deltafcy1 mutants, lacking cytosine deaminase, became entirely resistant to 5FC, concomitantly losing 5FC+FLC additivity. Disruption of the orotate phosphoribosyltransferase gene (URA5) in the wild-type led to low-level 5FC tolerance, while an alternative orotate phosphoribosyltransferase, encoded by URA10, contributed to 5FC toxicity only in the Deltaura5 background. Remarkably, combination of Deltaura5 and Deltafur1 resulted in complete 5FC resistance. Thus, yeast orotate phosphoribosyltransferases are involved in 5FC metabolism. Similarly, disruption of the ergosterol Delta(5,6)-desaturase-encoding gene ERG3 resulted only in partial resistance to FLC, and concomitantly a synergistic effect with 5FC became evident. Full resistance to FLC occurred in Deltaerg3 Deltaerg11 double mutants and, simultaneously, synergism or even an additive effect with FLC and 5FC was no longer discernible. Since the majority of spontaneously occurring resistant yeast clones displayed residual sensitivity to either 5FC or FLC and those strains responded to combined drug treatment in a predictable manner, careful resistance profiling based on the findings reported here may help to address yeast infections by combined application of antimycotic compounds.
Collapse
Affiliation(s)
- John P Paluszynski
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149 Münster, Germany
| | - Roland Klassen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149 Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149 Münster, Germany
| |
Collapse
|
31
|
Warrilow A, Ugochukwu C, Lamb D, Kelly D, Kelly S. Expression and characterization of CYP51, the ancient sterol 14-demethylase activity for cytochromes P450 (CYP), in the white-rot fungus Phanerochaete chrysosporium. Lipids 2008; 43:1143-53. [PMID: 18853217 DOI: 10.1007/s11745-008-3239-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 09/10/2008] [Indexed: 11/30/2022]
Abstract
Phanerochaete chrysosporium was the first fungal genome to exhibit more than one hundred cytochrome P450 (CYP) genes for a fungus within its genome (approximately 150). It can metabolize lignocellulose and a wide range of environmental xenobiotics including many carcinogens and pollutants where cytochromes P450 may be involved. In the present paper we describe the heterologous expression and characterization of an ancestral CYP form, sterol 14alpha-demethylase (CYP51-EC1.14.13.70), from this organism. CYP51 was cloned from a cDNA library and expressed in both Escherichia coli, where it exhibited high affinity for azole antifungals, and Saccharomyces cerevisiae. Proof of function was observed by complementation of a conditional knock-down mutant of yeast CYP51. The CYP51 gene was found to be 1956 bases long and contained 7 exons and 6 introns coding for a polypeptide 550 amino acids long (62 kDa). The CYP51 protein exhibited high affinity (k (d) 0.25-0.45 microM) for azole antifungal compounds.
Collapse
Affiliation(s)
- Andrew Warrilow
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | | | | | | | | |
Collapse
|
32
|
Parker JE, Merkamm M, Manning NJ, Pompon D, Kelly SL, Kelly DE. Differential azole antifungal efficacies contrasted using a Saccharomyces cerevisiae strain humanized for sterol 14 alpha-demethylase at the homologous locus. Antimicrob Agents Chemother 2008; 52:3597-603. [PMID: 18694951 PMCID: PMC2565906 DOI: 10.1128/aac.00517-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/29/2008] [Accepted: 07/28/2008] [Indexed: 12/15/2022] Open
Abstract
Inhibition of sterol-14 alpha-demethylase, a cytochrome P450 (CYP51, Erg11p), is the mode of action of azole antifungal drugs, and with high frequencies of fungal infections new agents are required. New drugs that target fungal CYP51 should not inhibit human CYP51, although selective inhibitors of the human target are also of interest as anticholesterol agents. A strain of Saccharomyces cerevisiae that was humanized with respect to the amino acids encoded at the CYP51 (ERG11) yeast locus (BY4741:huCYP51) was produced. The strain was validated with respect to gene expression, protein localization, growth characteristics, and sterol content. The MIC was determined and compared to that for the wild-type parental strain (BY4741), using clotrimazole, econazole, fluconazole, itraconazole, ketoconazole, miconazole, and voriconazole. The humanized strain showed up to >1,000-fold-reduced susceptibility to the orally active azole drugs, while the topical agents showed no difference. Data from growth kinetic measurements substantiated this finding but also revealed reduced effectiveness against the humanized strain for the topical drugs. Cellular sterol profiles reflected the decreased susceptibility of BY4741:huCYP51 and showed a smaller depletion of ergosterol and accumulation of 14 alpha-methyl-ergosta-8, 24(28)-dien-3beta-6 alpha-diol than the parental strain under the same treatment conditions. This strain provides a useful tool for initial specificity testing for new drugs targeting CYP51 and clearly differentiates azole antifungals in a side-by-side comparison.
Collapse
Affiliation(s)
- J E Parker
- Institute of Life Science and School of Medicine, Swansea University, Swansea, Wales SA2 8PP, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Genetic analyses involving interactions between the ergosterol biosynthetic enzymes, lanosterol synthase (Erg7p) and 3-ketoreductase (Erg27p), in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:359-66. [PMID: 18555807 DOI: 10.1016/j.bbalip.2008.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/29/2008] [Accepted: 04/30/2008] [Indexed: 11/23/2022]
Abstract
Protein-protein interaction studies in the Saccharomyces cerevisiae ergosterol biosynthetic pathway suggest that enzymes in this pathway may act as an integrated multienzyme complex. The yeast sterol 3-ketoreductase (Erg27p) required for C-4 demethylation of sterols has previously been shown to also be required for the function of the upstream oxidosqualene cyclase/lanosterol synthase (Erg7p); thus, erg27 mutants accumulate oxidosqualenes as precursors rather than 3-ketosterones. In the present study, we have created various mutations in the ERG27 gene. These mutations include 5 C-terminal truncations, 6 internal deletions, and 32 point mutants of which 14 were obtained by site-directed mutagenesis and 18 by random mutagenesis. We have characterized these ERG27 mutations by determining the following: Erg27 and Erg7 enzyme activities, presence of Erg27p as determined by western immunoblots, ability to grow on various sterol substrates and GC sterol profiles. Mutations of the predicted catalytic residues, Y202F and K206A, resulted in the endogenous accumulation of 3-ketosterones rather than oxidosqualenes suggesting retention of Erg7 enzyme activity. This novel phenotype demonstrated that the catalytic function of Erg27p can be separated from its Erg7p chaperone ability. Other erg27 mutations resulted in proteins that were present, as determined by western immunoblotting, but unable to interact with the Erg7 protein. We also classify Erg27p as belonging to the SDR (short-chain dehydrogenase/reductase) family of enzymes and demonstrate the possibility of homo- or heterodimerization of the protein. This study provides new insights into the role of Erg27p in sterol biosynthesis.
Collapse
|
34
|
Lamb DC, Waterman MR, Kelly SL, Guengerich FP. Cytochromes P450 and drug discovery. Curr Opin Biotechnol 2007; 18:504-12. [PMID: 18006294 DOI: 10.1016/j.copbio.2007.09.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 09/27/2007] [Accepted: 09/29/2007] [Indexed: 10/22/2022]
Abstract
Cytochromes P450 (CYP) are a superfamily of haem-containing proteins distributed widely throughout nature. Historically, they have a central role in drug metabolism and following the advent of genomics they have been shown to have key roles in the biosynthesis of natural products which are used as medicines. Herein, we provide an overview of CYP systems with particular emphasis on their role as drug targets, their involvement in drug biosynthesis and potential strategies for developing new derivatives of drugs based on CYP engineering. The applied importance of CYPs for medicinal and biotechnological applications will also be discussed.
Collapse
Affiliation(s)
- David C Lamb
- Institute of Life Science, Swansea Medical School, Grove Building, Swansea University, Swansea SA2 8PP, UK.
| | | | | | | |
Collapse
|
35
|
Senior IJ, Hollomon DW, Loeffler RST, Baldwin BC. Sterol composition and resistance to DMI fungicides inErysiphe graminis. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780450109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
|
37
|
Abstract
Much progress has been made in the last decade in identifying genes responsible for antifungal resistance in Candida albicans. Attention has focused on five major C. albicans genes: ABC transporter genes CDR1 and CDR2, major facilitator efflux gene MDR1, and ergosterol biosynthesis genes ERG11 and ERG3. Resistance involves mutations in 14C-lanosterol demethylase, targeted by fluconazole (FLZ) and encoded by ERG11, and mutations that up-regulate efflux genes that probably efflux the antifungals. Mutations that affect ERG3 mutations have been understudied as mechanism resistance among clinical isolates. In vitro resistance in clinical isolates typically involves step-wise mutations affecting more than one of these genes, and often unidentified genes. Different approaches are needed to identify these other genes. Very little is understood about reversible adaptive resistance of C. albicans despite its potential clinical significance; most clinical failures to control infections other than oropharyngeal candidiasis (OPC) occur with in vitro susceptible strains. Tolerance of C. albicans to azoles has been attributed to the calcineurin stress-response pathway, offering new potential targets for next generation antifungals. Recent studies have identified genes that regulate CDR1 or ERG genes. The focus of this review is C. albicans, although information on Saccharomyces cerevisiae or Candida glabrata is provided in areas in where Candida research is underdeveloped. With the completion of the C. albicans genomic sequence, and new methods for high throughput gene overexpression and disruption, rapid progress towards understanding the regulation of resistance, novel resistance mechanisms, and adaptive resistance is expected in the near future.
Collapse
Affiliation(s)
- Robert A Akins
- Wayne State University School of Medicine, Departments of Biochemistry & Molecular Biology, 540 East Canfield, Detroit, Michigan 48201, USA.
| |
Collapse
|
38
|
O'Brien M, Chantha SC, Rahier A, Matton DP. Lipid signaling in plants. Cloning and expression analysis of the obtusifoliol 14alpha-demethylase from Solanum chacoense Bitt., a pollination- and fertilization-induced gene with both obtusifoliol and lanosterol demethylase activity. PLANT PHYSIOLOGY 2005; 139:734-49. [PMID: 16169959 PMCID: PMC1255992 DOI: 10.1104/pp.105.066639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The sterol 14alpha-demethylase (CYP51) is the most widely distributed cytochrome P450 gene family being found in all biological kingdoms. It catalyzes the first step following cyclization in sterol biosynthesis, leading to the formation of precursors of steroid hormones, including brassinosteroids, in plants. Most enzymes involved in the plant sterol biosynthesis pathway have been characterized biochemically and the corresponding genes cloned. Genes coding for enzymes promoting substrate modifications before 24-methylenelophenol lead to embryonic and seed defects when mutated, while mutants downstream the 24-methylenelophenol intermediate show phenotypes characteristic of brassinosteroid mutants. By a differential display approach, we have isolated a fertilization-induced gene, encoding a sterol 14alpha-demethylase enzyme, named CYP51G1-Sc. Functional characterization of CYP51G1-Sc expressed in yeast (Saccharomyces cerevisiae) showed that it could demethylate obtusifoliol, as well as nontypical plant sterol biosynthetic intermediates (lanosterol), in contrast with the strong substrate specificity of the previously characterized obtusifoliol 14alpha-demethylases found in other plant species. CYP51G1-Sc transcripts are mostly expressed in meristems and in female reproductive tissues, where they are induced following pollination. Treatment of the plant itself with obtusifoliol induced the expression of the CYP51G1-Sc mRNA, suggesting a possible role of this transient biosynthetic intermediate as a bioactive signaling lipid molecule. Furthermore, treatments of leaves with (14)C-labeled obtusifoliol demonstrated that this sterol could be transported in distal parts of the plant away from the sprayed leaves. Arabidopsis (Arabidopsis thaliana) CYP51 homozygous knockout mutants were also lethal, suggesting important roles for this enzymatic step and its substrate in plant development.
Collapse
MESH Headings
- Base Sequence
- Cholestadienols/metabolism
- Cloning, Molecular
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- DNA, Plant/genetics
- Fertilization
- Gene Dosage
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Fungal
- Genes, Plant
- Genetic Complementation Test
- Lipid Metabolism
- Molecular Sequence Data
- Mutation
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Signal Transduction
- Solanum/enzymology
- Solanum/genetics
- Solanum/physiology
- Sterol 14-Demethylase
- Substrate Specificity
Collapse
Affiliation(s)
- Martin O'Brien
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
39
|
Buurman ET, Andrews B, Blodgett AE, Chavda JS, Schnell NF. Utilization of target-specific, hypersensitive strains of Saccharomyces cerevisiae to determine the mode of action of antifungal compounds. Antimicrob Agents Chemother 2005; 49:2558-60. [PMID: 15917573 PMCID: PMC1140547 DOI: 10.1128/aac.49.6.2558-2560.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Target-specific hypersusceptible strains of Saccharomyces cerevisiae were used to screen antifungal compounds. Two novel Erg7p inhibitors were identified, providing proof of principle of the approach taken. However, observed hypersensitivities to antifungals acting via other targets imply that use of this tool to identify the mode of action requires significant deconvolution.
Collapse
Affiliation(s)
- Ed T Buurman
- Department of Microbiology, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA.
| | | | | | | | | |
Collapse
|
40
|
He F, Chen YT. Cloning and heterologous expression of the NADPH cytochrome P450 oxidoreductase genes from an industrial dicarboxylic acid-producingCandida tropicalis. Yeast 2005; 22:481-91. [PMID: 15849785 DOI: 10.1002/yea.1227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
NADPH cytochrome P450 oxidoreductase (CPR) catalyses the transfer of electrons during P450-mediated oxidation, which plays an important role in the omega-oxidation pathway of Candida tropicalis. Two putative allelic genes, CPR-a and CPR-b, were cloned from the long chain dicarboxylic acid-producing Candida tropicalis 1230, using cassette PCR methods. Both the identified open reading frames predict the gene products of 679 amino acid residues. The deduced amino acid sequences of CPR-a and CPR-b are highly homologous to CPR genes from C. tropicalis ATCC 750 and Candida maltosa. Both genes were individually expressed in a cpr mutant of Saccharomyces cerevisiae with high CPR activities, in which only a small distinction was observed between recombinant CPR-a and CPR-b. Both CPR-a and CPR-b contain one CTG codon, which codes for serine (amino acid 50) in C. tropicalis rather than universal leucine. A mutated cDNA of CPR-a with a TCG codon instead of CTG codon was constructed and expressed, resulting in little increase in CPR activity. This indicates that the alteration of Ser-50 has little effect on functional expression of CPR. Furthermore, high ketoconazole sensitivity for the cpr mutant was complemented by heterologous expression of the cloned CPR-a or CPR-b.
Collapse
Affiliation(s)
- Feng He
- Centre of Microbial Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China.
| | | |
Collapse
|
41
|
Abstract
Cytochromes P450 are a ubiquitous group of hemoproteins that perform vital cellular reactions in all lifeforms. Until recently, it was thought that P450s contained non-covalently bound heme. However, it was established that covalent linkage of the heme macrocycle occurs naturally in one major group of the P450 superfamily. The reaction involves heme linkage to a conserved amino acid and is autocatalytic, occurring as a consequence of P450 turnover. This finding presents opportunities to engineer biotechnologically important P450s to covalently link the heme, in order to stabilize cofactor binding and to enhance operational stability of these P450s. This opportunity has been taken in studies on two important bacterial P450s and has produced variants with intriguingly different properties. In this article we survey the developments in the field, the relationships with heme macrocycle ligations in other proteins and the important impact that recent studies of heme ligation have had on our general appreciation of P450 structure and mechanism.
Collapse
Affiliation(s)
- Harriet E Seward
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, UK LE1 9HN.
| | | | | |
Collapse
|
42
|
Rogers KM, Pierson CA, Culbertson NT, Mo C, Sturm AM, Eckstein J, Barbuch R, Lees ND, Bard M. Disruption of the Candida albicans CYB5 gene results in increased azole sensitivity. Antimicrob Agents Chemother 2004; 48:3425-35. [PMID: 15328107 PMCID: PMC514794 DOI: 10.1128/aac.48.9.3425-3435.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterol synthesis in fungi is an aerobic process requiring molecular oxygen and, for several cytochrome-mediated reactions, aerobically synthesized heme. Cytochrome b(5) is required for sterol C5-6 desaturation and the encoding gene, CYB5, is nonessential in Saccharomyces cerevisiae. Cyb5p and Ncp1p (cytochrome P-450 reductase) appear to have overlapping functions in this organism, with disruptions of each alone being viable. The cytochrome P-450 reductase phenotype has also been shown to demonstrate increased sensitivity to azole antifungals. Based on this phenotype, the CYB5 gene in the human pathogen Candida albicans was investigated to determine whether the cyb5 genotype was viable and would also demonstrate azole sensitivity. Sequential disruption of the CYB5 alleles by direct transformation resulted in viability, presumably conferred by the presence of a third copy of the CYB5 gene. Subsequent disruption procedures with a pMAL2-CYB5 rescue cassette and a CYB5-URA3 blaster cassette resulted in viable cyb5 strains with no third copy. The C. albicans CYB5 gene is concluded to be nonessential. Thus, the essentiality of this gene and whether we observed two or three alleles was dependent upon the gene disruption protocol. The C. albicans cyb5 strains produced a sterol profile containing low ergosterol levels and sterol intermediates similar to that reported for the S. cerevisiae cyb5. The C. albicans cyb5 shows increased sensitivity to azoles and terbinafine, an inhibitor of squalene epoxidase, and, unexpectedly, increased resistance to morpholines, which inhibit the ERG2 and ERG24 gene products. These results indicate that an inhibitor of Cyb5p would not be lethal but would make the cell significantly more sensitive to azole treatment.
Collapse
Affiliation(s)
- K M Rogers
- Department of Biology, Indiana University Purdue University Indianapolis, West Michigan St., Indianapolis, IN 46202-5132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Buckner FS, Joubert BM, Boyle SM, Eastman RT, Verlinde CLMJ, Matsuda SPT. Cloning and analysis of Trypanosoma cruzi lanosterol 14alpha-demethylase. Mol Biochem Parasitol 2004; 132:75-81. [PMID: 14599667 DOI: 10.1016/j.molbiopara.2003.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trypanosoma cruzi infection, transmitted by insect vectors or blood transfusions, is an important cause of morbidity and mortality in many Latin American countries. Treatments are toxic and frequently ineffective in curing patients with chronic manifestations of the infection (Chagas disease). Potentially exploitable chemotherapeutic targets of T. cruzi are enzymes of the sterol biosynthesis pathway. In particular, the P450 enzyme, lanosterol 14alpha-demethylase, has been implicated as the target of azole antifungal drugs that have potent anti-T. cruzi activity. In the work reported here, the T. cruzi lanosterol 14alpha-demethylase (Tc14DM) gene was cloned by degenerate PCR. The gene was found to be expressed in both insect and mammalian life-cycle stages of the parasite. Tc14DM was able to complement the function of the homologous gene in yeast (erg11) as demonstrated by restored ergosterol production in an erg11-deficient yeast strain. When the yeast strain was co-transfected with the P450 reductase gene from Trypanosoma brucei, the amount of ergosterol production was increased, indicating that the endogenous yeast P450 reductase was an inefficient partner with Tc14DM. Heterologous expression of Tc14DM in the baculovirus/Sf9 system resulted in a 52kDa product. The protein was observed to have the characteristic absorbance spectra of a P450 enzyme. A typical Type II binding spectrum was produced when the imidazole compound, ketoconazole, was mixed with the Tc14DM, demonstrating that ketoconazole binds the enzyme.
Collapse
Affiliation(s)
- Frederick S Buckner
- Department of Medicine, University of Washington, Box 357185, Seattle, WA 98195-7185, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Kelly SL, Lamb DC, Jackson CJ, Warrilow AG, Kelly DE. The biodiversity of microbial cytochromes P450. Adv Microb Physiol 2003; 47:131-86. [PMID: 14560664 DOI: 10.1016/s0065-2911(03)47003-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.
Collapse
Affiliation(s)
- Steven L Kelly
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, Wales, UK
| | | | | | | | | |
Collapse
|
45
|
Stergiopoulos I, Zwiers LH, De Waard MA. The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:689-98. [PMID: 12906113 DOI: 10.1094/mpmi.2003.16.8.689] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role in virulence of the ATP-binding cassette (ABC) transporters MgAtr1, MgAtr2, MgAtr3, MgAtr4, and MgAtr5 from Mycosphaerella graminicola was analyzed by gene disruption or replacement on seedlings of the susceptible wheat cultivar Obelisk. Disruption strains of MgAtr1 and MgAtr2 and replacement strains of MgAtr3 and MgAtr5 displayed the same phenotype as control strains, while virulence of the MgAtr4 disruption strains was significantly reduced. This reduction in virulence was independent of the wheat cultivar used. Histopathological analysis of the infection process revealed that MgAtr4 disruption strains colonize substomatal cavities less efficiently and display reduced intercellular growth in the apoplast of wheat leaves. In vitro growth experiments in different media showed no fitness penalty associated with the disruption of MgAtr4. Expression analysis demonstrated that transcripts of the constitutively expressed gene CYP51 encoding the fungal-specific cytochrome P450 sterol 14alpha-demethylase from M. graminicola were not detectable in interaction RNA from wheat infected with MgAtr4 disruption strains, thus confirming the reduced intercellular growth of these strains. The results indicate that MgAtr4 is a virulence factor of M. graminicola during pathogenesis on wheat and may function in protection against fungitoxic compounds present around the substomatal cavities of wheat leaves. MgAtr4 is the first virulence factor cloned from this important plant pathogen.
Collapse
Affiliation(s)
- Ioannis Stergiopoulos
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University, Binnenhaven 5, 6709 PD, P.O. Box 8025, 6700 EE Wageningen, The Netherlands
| | | | | |
Collapse
|
46
|
Hand RA, Jia N, Bard M, Craven RJ. Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane-associated progesterone receptor. EUKARYOTIC CELL 2003; 2:306-17. [PMID: 12684380 PMCID: PMC154842 DOI: 10.1128/ec.2.2.306-317.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The response to damage is crucial for cellular survival, and eukaryotic cells require a broad array of proteins for an intact damage response. We have found that the YPL170W (DAP1 [for damage response protein related to membrane-associated progesterone receptors]) gene is required for growth in the presence of the methylating agent methyl methanesulfonate (MMS). The DAP1 open reading frame shares homology with a broadly conserved family of membrane-associated progesterone receptors (MAPRs). Deletion of DAP1 leads to sensitivity to MMS, elongated telomeres, loss of mitochondrial function, and partial arrest in sterol synthesis. Sensitivity of dap1 strains to MMS is not due to loss of damage checkpoints. Instead, dap1 cells are arrested as unbudded cells after MMS treatment, suggesting that Dap1p is required for cell cycle progression following damage. Dap1p also directs resistance to itraconazole and fluconazole, inhibitors of sterol synthesis. We have found that dap1 cells have slightly decreased levels of ergosterol but increased levels of the ergosterol intermediates squalene and lanosterol, indicating that dap1 cells have a partial defect in sterol synthesis. This is the first evidence linking a MAPR family member to sterol regulation or the response to damage, and these functions are probably conserved in a variety of eukaryotes.
Collapse
Affiliation(s)
- Randal A Hand
- Department of Surgery, Division of Surgical Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
47
|
Lamb DC, Fowler K, Kieser T, Manning N, Podust LM, Waterman MR, Kelly DE, Kelly SL. Sterol 14alpha-demethylase activity in Streptomyces coelicolor A3(2) is associated with an unusual member of the CYP51 gene family. Biochem J 2002; 364:555-62. [PMID: 12023899 PMCID: PMC1222601 DOI: 10.1042/bj20011380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The annotation of the genome sequence of Streptomyces coelicolor A3(2) revealed a cytochrome P450 (CYP) resembling various sterol 14alpha-demethylases (CYP51). The putative CYP open reading frame (SC7E4.20) was cloned with a tetrahistidine tag appended to the C-terminus and expressed in Escherichia coli. Protein purified to electrophoretic homogeneity was observed to bind the 14-methylated sterols lanosterol and 24-methylene-24,25-dihydrolanosterol (24-MDL). Reconstitution experiments with E. coli reductase partners confirmed activity in 14alpha-demethylation for 24-MDL, but not lanosterol. An S. coelicolor A3(2) mutant containing a transposon insertion in the CYP51 gene, which will abolish synthesis of the functional haemoprotein, was isolated as a viable strain, the first time a CYP51 has been identified as non-essential. The role of this CYP in bacteria is intriguing. No sterol product was detected in non-saponifiable cell extracts of the parent S. coelicolor A3(2) strain or of the mutant. S. coelicolor A3(2) CYP51 contains very few of the conserved CYP51 residues and, even though it can catalyse 14alpha-demethylation, it probably has another function in Streptomyces. We propose that it is a member of a new CYP51 subfamily.
Collapse
Affiliation(s)
- David C Lamb
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth SY23 3DA, Wales, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ma D. Applications of yeast in drug discovery. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2002; 57:117-62. [PMID: 11728000 DOI: 10.1007/978-3-0348-8308-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The yeast Saccharomyces cerevisiae is perhaps the best-studied eukaryotic organism. Its experimental tractability, combined with the remarkable conservation of gene function throughout evolution, makes yeast the ideal model genetic organism. Yeast is a non-pathogenic model of fungal pathogens used to identify antifungal targets suitable for drug development and to elucidate mechanisms of action of antifungal agents. As a model of fundamental cellular processes and metabolic pathways of the human, yeast has improved our understanding and facilitated the molecular analysis of many disease genes. The completion of the Saccharomyces genome sequence helped launch the post-genomic era, focusing on functional analyses of whole genomes. Yeast paved the way for the systematic analysis of large and complex genomes by serving as a test bed for novel experimental approaches and technologies, tools that are fast becoming the standard in drug discovery research
Collapse
Affiliation(s)
- D Ma
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| |
Collapse
|
49
|
Lamb DC, Warrilow AG, Venkateswarlu K, Kelly DE, Kelly SL. Activities and kinetic mechanisms of native and soluble NADPH-cytochrome P450 reductase. Biochem Biophys Res Commun 2001; 286:48-54. [PMID: 11485306 DOI: 10.1006/bbrc.2001.5338] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Native yeast NADPH-cytochrome P450 oxidoreductase (CPR; EC 1.6.2.4) and a soluble derivative lacking 33 amino acids of the NH(2)-terminus have been overexpressed as recombinant proteins in Escherichia coli. The presence of a hexahistidine sequence at the N-terminus allowed protein purification in a single step using nickel-chelating affinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the predicted molecular weights of the proteins and indicated a purity of >95%. Protein functionality was demonstrated by cytochrome c reduction and reconstitution of CYP61-mediated sterol Delta(22)-desaturation. Steady-state kinetics of cytochrome c reductase activity revealed a random Bi-Bi mechanism with NADPH donating electrons directly to CPR to produce a reduced intermediary form of the enzyme. The kinetic mechanism studies showed no difference between the two yeast CPRs in mechanism or after reconstitution with CYP61-mediated 22-desaturation, confirming that the retention of the NH(2)-terminable membrane anchor is functionally dispensable.
Collapse
Affiliation(s)
- D C Lamb
- Institute of Biological Sciences, University of Wales-Aberystwyth, Aberystwyth SY23 3DA, Wales, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Oyama M, Ikeda T, Lim T, Ikebukuro K, Masuda Y, Karube I. Detection of toxic chemicals with high sensitivity by measuring the quantity of induced P450 mRNAs based on surface plasmon resonance. Biotechnol Bioeng 2001; 71:217-22. [PMID: 11291031 DOI: 10.1002/1097-0290(2000)71:3<217::aid-bit1011>3.0.co;2-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study we describe a novel sensor system to detect toxic chemicals based on measurement of the quantity of Saccharomyces cerevisiae P450 mRNAs induced by them. Detection was conducted using a flow-injection-type sensor system based on surface plasmon resonance (SPR). The DNA and peptide nucleic acid (PNA) probes containing a complementary sequence to a part of P450 mRNA were immobilized on the sensor chip and the P450 mRNAs hybridized to the probes were quantified. We succeeded in detecting 10 ng/L (10 ppt) of atrazine using both DNA and PNA probes. Using this sensor system, we were able to detect bisphenol A in addition to atrazine. Furthermore, we achieved higher sensitivity by amplifying the target P450 mRNA based on nucleic acid sequence-based amplification (NASBA). This method allows for sensitive, rapid, and easy detection of some toxic chemicals.
Collapse
Affiliation(s)
- M Oyama
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | | | | | |
Collapse
|