1
|
Zambrowicz A, Zabłocka A, Bednarz D, Bobak Ł. Importance for humans of recently discovered protein compounds - yolkin and yolk glycopeptide 40, present in the plasma of hen egg yolk. Poult Sci 2023; 102:102770. [PMID: 37244087 DOI: 10.1016/j.psj.2023.102770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023] Open
Abstract
Vitellogenin (Vt) is considered the primary protein precursor of egg yolk, serving as a source of protein- and lipid-rich nutrients for the developing embryo. However, recent research has revealed that the functions of Vt and Vt-derived polypeptides, such as yolkin (Y) and yolk glycopeptide 40 (YGP40), extend beyond their nutritional roles as a source of amino acids. Emerging evidence has demonstrated that both Y and YGP40 possess immunomodulatory properties and can contribute to host immune defenses. Additionally, Y polypeptides have been shown to exhibit neuroprotective activity, participating in the modulation of neurons' survival and activity, inhibiting neurodegeneration processes, and improving cognitive functions in rats. These non-nutritional functions not only enhance our understanding of the physiological roles of these molecules during embryonic development but also offer a promising basis for the potential application of these proteins in human health.
Collapse
Affiliation(s)
- Aleksandra Zambrowicz
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland.
| | - Agnieszka Zabłocka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, 53-114 Wrocław, Poland
| | - Dominika Bednarz
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Science, 51-640 Wrocław, Poland
| |
Collapse
|
2
|
Du X, Lai S, Zhao W, Xu X, Xu W, Zeng T, Tian Y, Lu L. Single-cell RNA sequencing revealed the liver heterogeneity between egg-laying duck and ceased-laying duck. BMC Genomics 2022; 23:857. [PMID: 36577943 PMCID: PMC9798604 DOI: 10.1186/s12864-022-09089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In the late phase of production, ducks untimely cease laying, leading to a lower feed conversion. Liver plays a vital role in the synthesis and transport of yolk materials during egg formation in birds. However, the molecular mechanism of liver in ceased-laying duck is far from clear, higher resolution and deeper analysis is needed. Sing-cell RNA-sequencing of 10 × Genomics platform can help to map the liver single cell gene expression atlas of Shaoxing duck and provide new insights into the liver between egg-laying and ceased-laying ducks. RESULTS About 20,000 single cells were profiled and 22 clusters were identified. All the clusters were identified as 6 cell types. The dominant cell type is hepatocyte, accounted for about 60% of all the cells. Of note, the heterogeneity of cells between egg-laying duck and ceased-laying duck mainly occurred in hepatocytes. Cells of cluster 3 and 12 were the unique hepatocyte states of egg-laying ducks, while cells of cluster 0 and 15 were the unique hepatocyte states of ceased-laying ducks. The expression mode of yolk precursor transporters, lipid metabolizing enzymes and fibrinogens were different in hepatocytes between egg-laying duck and ceased-laying duck. APOV1, VTG2, VTG1, APOB, RBP, VTDB and SCD might be activated in egg-laying ducks, while APOA1, APOA4, APOC3, FGB and FGG might be activated in ceased-laying ducks. CONCLUSIONS Our study further proofs that APOV1 and APOB play key roles in egg production, rather than APOA1 and APOA4. It is also the first to detect a correlation between the higher expression of APOC3, FGB, FGG and ceased-laying in duck.
Collapse
Affiliation(s)
- Xue Du
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China ,grid.443483.c0000 0000 9152 7385College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Shujing Lai
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqiu Zhao
- grid.410744.20000 0000 9883 3553Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310022 Zhejiang China
| | - Xiaoqin Xu
- grid.411527.40000 0004 0610 111XInstitute of Ecology, China West Normal University, Nanchong, 637002 Sichuan China
| | - Wenwu Xu
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Tao Zeng
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Yong Tian
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| | - Lizhi Lu
- grid.410744.20000 0000 9883 3553State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 Zhejiang China
| |
Collapse
|
3
|
Melo Diaz JM, Moran AB, Peel SR, Hendel JL, Spencer DIR. Egg yolk sialylglycopeptide: purification, isolation and characterization of N-glycans from minor glycopeptide species. Org Biomol Chem 2022; 20:4905-4914. [PMID: 35593095 DOI: 10.1039/d2ob00615d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sialylglycopeptide (SGP) is a readily available naturally occurring glycopeptide obtained from hen egg yolk which is now commercially available. During SGP extraction, other minor glycopeptide species are identified, bearing N-glycan structures that might be of interest, such as asymmetrically branched and triantennary glycans. As the scale of SGP production increases, recovery of minor glycopeptides and their N-glycans can become more feasible. In this paper, we aim to provide structural characterization of the N-glycans derived from these minor glycopeptides.
Collapse
Affiliation(s)
- Javier Mauricio Melo Diaz
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
- Department of Chemistry Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin, Ireland
| | - Alan B Moran
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Simon R Peel
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
| | | | | |
Collapse
|
4
|
Sharma L, Pipil S, Rawat VS, Sehgal N. Role of cathepsins B and D in proteolysis of yolk in the catfish Clarias gariepinus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:749-765. [PMID: 35482165 DOI: 10.1007/s10695-022-01062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Yolk processing pathways vary in the oocytes of benthophil and pelagophil teleosts. The present study investigated the yolk processing pattern in the oocytes of the fresh water catfish Clarias gariepinus at vitellogenic, maturation, and ovulated stages. This study concludes that during maturation stage, an electrophoretic shift in the major peptide band on Polyacrylamide gel electrophoresis (PAGE) occurs due to a decrease in the size of the yolk protein. The PMF spectrum of corresponding peptides from vitellogenic and ovulated oocytes revealed a difference in the minor ions. A minor difference in the molecular weight of the corresponding peptides occurs due to a difference in their amino acid composition. Maximal activity of the proteases cathepsin D and cathepsin B was observed in the vitellogenic oocytes, thus confirming their role in the processing of yolk. A significant transient increase in the activity of cathepsin B in the mature oocytes also suggests its role in oocyte maturation.
Collapse
Affiliation(s)
- Luni Sharma
- Maitreyi College, University of Delhi, Delhi, 110021, India
| | - Supriya Pipil
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
Shbailat SJ, Aslan IO, El-sallaq MMO. Cysteine and Aspartic Proteases Underlie the Digestion of Egg Yolk Proteins during the Development of Columba livia domestica Embryo. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2022-1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - IO Aslan
- The Hashemite University, Jordan
| | | |
Collapse
|
6
|
Meng Y, Qiu N, Guyonnet V, Mine Y. Omics as a Window To Unravel the Dynamic Changes of Egg Components during Chicken Embryonic Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12947-12955. [PMID: 34709815 DOI: 10.1021/acs.jafc.1c05883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chicken egg, as a completely aseptic and self-sufficient biological entity, contains all of the components required for embryonic development. As such, it constitutes not only an excellent model to study the mechanisms of early embryo nutrition and disease origin but can also be used to develop egg-based products with specific applications. Different omics disciplines, like transcriptomics, proteomics, and metabolomics, represent promising approaches to assess nutritional and functional molecules in eggs under development. However, these individual molecules do not act in isolation during the dynamic embryogenic process (e.g., migration, transportation, and absorption). Unless we integrate the information from all of these omics disciplines, there will remain an unbridged gap in the systematic and holistic assessment of the information from one omics level to the other. This integrative review of the dynamic molecular processes of the different chicken egg components involved in embryo development describes the critical interplay between the egg components and their implications in immunity, hematopoiesis, organ formation, and nutrient transport functions during the embryonic process.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Vincent Guyonnet
- FFI Consulting, Limited, 2488 Lyn Road, Brockville, Ontario K6V 5T3, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
7
|
Mfoundou JDL, Guo YJ, Liu MM, Ran XR, Fu DH, Yan ZQ, Li MN, Wang XR. The morphological and histological study of chicken left ovary during growth and development among Hy-line brown layers of different ages. Poult Sci 2021; 100:101191. [PMID: 34242943 PMCID: PMC8271164 DOI: 10.1016/j.psj.2021.101191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 10/25/2022] Open
Abstract
Chicken ovaries are known to develop asymmetrically and only the left ovary fully develops. Although both have been greatly investigated, a gap in scientific reports is still felt between 2-mo-old and sexual maturity. In this study, we aimed at investigating the changes in components that occur during growth to analyze the morphohistological correlation between the left ovary and the follicle development at different age stages in Gallus domesticus. The ovaries were harvested from 60 chickens aged 1 and 3-wk-old, 1, 2, 3, and 4-mo-old (n = 10 per age group), then fixed in AAF solution. Hematoxylin-and Eosin protocol was used to stain the tissue for microscopic observations. Results revealed that the left ovary exhibited an ovarian tissue, a site of follicular growth that displayed various shapes from smooth to greatly indented as the follicles differentiated. Atretic follicles at various regression stages were noticed frequently as the chicks grew in age from 3-wk-old onward along with their differentiation. Rete ovarii, remnants from the male homologs were observed throughout the whole study showing epoöphoron, connecting rete, and gland-like structures that tend to diminish with age. The feature of the left ovary is closely related to the follicular developmental stage, and the bigger and differentiated the follicles are, the more indented and irregular its epithelium appears. Atresia is a normal physiological process that we observed throughout the whole study. Also that, rete ovarii do not spontaneously arise in the ovary but it develops and grows in juvenile chicken as well as in adult ones.
Collapse
Affiliation(s)
- J D L Mfoundou
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - Y J Guo
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - M M Liu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - X R Ran
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - D H Fu
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - Z Q Yan
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - M N Li
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China
| | - X R Wang
- College of Animal Science and Technology, Gansu Agricultural University, No. 1, Yingmen Village, Bei Binhe West Road, Anning District, Lanzhou, Gansu Province 730070, China.
| |
Collapse
|
8
|
Myers JN, Dyce PW, Chatakondi NG, Gorman SA, Quiniou SM, Su B, Peatman E, Dunham RA, Butts IA. Analysis of specific mRNA gene expression profiles as markers of egg and embryo quality for hybrid catfish aquaculture. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110675. [DOI: 10.1016/j.cbpa.2020.110675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
|
9
|
Wang M, Hu Y, Li M, Xu Q, Zhang X, Wang X, Xue X, Xiao Q, Liu J, Wang H. A proteomics analysis of the ovarian development in females of Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2020; 80:289-309. [PMID: 31919614 DOI: 10.1007/s10493-020-00469-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Haemaphysalis longicornis is an ixodid tick that can spread a wide variety of pathogens, affecting humans, livestock and wildlife health. The high reproductive capability of this species is initiated by the ingestion of a large amount of blood ingested by the engorged female tick. The degree of ovarian development is proportional to the number of eggs laid. Studying the regulatory mechanism of tick ovary development is relevant for the development of novel tick control methods. In this study, we used quantitative proteomics to study the dynamic changes in protein expression and protein phosphorylation during ovarian development of engorged female H. longicornis ticks. Synergistic action of many proteins (n = 3031) is required to achieve ovarian development and oocyte formation rapidly. Through bioinformatics analysis, changes in protein expressions and phosphorylation modifications in regulating the ovarian development of female ticks are described. Many proteins play an essential role during ovarian development. Also, protein phosphorylation appeared an important reproductive strategy to enable ticks to efficiently convert large amounts of blood in the ovaries into egg-producing components and ultimately produce many eggs.
Collapse
Affiliation(s)
- Minjing Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yuhong Hu
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mengxue Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qianqian Xu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoli Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoshuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaomin Xue
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qi Xiao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- , Shijiazhuang, Hebei, China.
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
- , Shijiazhuang, Hebei, China.
| |
Collapse
|
10
|
González-Castellano I, Manfrin C, Pallavicini A, Martínez-Lage A. De novo gonad transcriptome analysis of the common littoral shrimp Palaemon serratus: novel insights into sex-related genes. BMC Genomics 2019; 20:757. [PMID: 31640556 PMCID: PMC6805652 DOI: 10.1186/s12864-019-6157-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The common littoral shrimp Palaemon serratus is an economically important decapod resource in some European communities. Aquaculture practices prevent the genetic deterioration of wild stocks caused by overfishing and at the same time enhance the production. The biotechnological manipulation of sex-related genes has the proved potential to improve the aquaculture production but the scarcity of genomic data about P. serratus hinders these applications. RNA-Seq analysis has been performed on ovary and testis samples to generate a reference gonadal transcriptome. Differential expression analyses were conducted between three ovary and three testis samples sequenced by Illumina HiSeq 4000 PE100 to reveal sex-related genes with sex-biased or sex-specific expression patterns. RESULTS A total of 224.5 and 281.1 million paired-end reads were produced from ovary and testis samples, respectively. De novo assembly of ovary and testis trimmed reads yielded a transcriptome with 39,186 transcripts. The 29.57% of the transcriptome retrieved at least one annotation and 11,087 differentially expressed genes (DEGs) were detected between ovary and testis replicates. Six thousand two hundred seven genes were up-regulated in ovaries meanwhile 4880 genes were up-regulated in testes. Candidate genes to be involved in sexual development and gonadal development processes were retrieved from the transcriptome. These sex-related genes were discussed taking into account whether they were up-regulated in ovary, up-regulated in testis or not differentially expressed between gonads and in the framework of previous findings in other crustacean species. CONCLUSIONS This is the first transcriptome analysis of P. serratus gonads using RNA-Seq technology. Interesting findings about sex-related genes from an evolutionary perspective (such as Dmrt1) and for putative future aquaculture applications (Iag or vitellogenesis genes) are reported here. We provide a valuable dataset that will facilitate further research into the reproductive biology of this shrimp.
Collapse
Affiliation(s)
- Inés González-Castellano
- Universidade da Coruña, Departamento de Biología and Centro de Investigaciones Científicas Avanzadas (CICA), 15071, A Coruña, Spain.
| | - Chiara Manfrin
- Università degli Studi di Trieste, Dipartimento di Scienze della Vita, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Università degli Studi di Trieste, Dipartimento di Scienze della Vita, 34127, Trieste, Italy
| | - Andrés Martínez-Lage
- Universidade da Coruña, Departamento de Biología and Centro de Investigaciones Científicas Avanzadas (CICA), 15071, A Coruña, Spain.
| |
Collapse
|
11
|
Identification of new chicken egg proteins by mass spectrometry-based proteomic analysis. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933907001808] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Reducing shell egg cholesterol content. I. Overview, genetic approaches, and nutritional strategies. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933906001206] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Meng Y, Sun H, Qiu N, Geng F, Zhu F, Li S, Huo Y. Comparative proteomic analysis of hen egg yolk plasma proteins during embryonic development. J Food Biochem 2019; 43:e13045. [PMID: 31506970 DOI: 10.1111/jfbc.13045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 09/01/2019] [Indexed: 01/17/2023]
Abstract
Avian egg yolk provides essential nutrients and physiological support for the developing embryo. To reveal the dynamics of yolk proteins during the entire period of incubation, we analyzed the alterations of egg yolk plasma proteins at different times during incubation (day 0, 7, 14, and 18). Day 14 (D14) of incubation was considered as the key point on the alteration of egg yolk proteins according to the SDS-PAGE analysis. The two-dimensional electrophoresis-based comparative proteomic analysis was conducted, and 26 spots representing 13 proteins were detected with significant changes in abundance. An accelerating transfer of ovalbumin from egg white into egg yolk was observed at D14 in fertilized eggs but not detected in unfertilized eggs, indicating an unrevealed absorbing pathway for the egg proteins/peptides particularly in fertilized eggs. Meanwhile, the abundance of yolk riboflavin-binding protein constantly decreased after D14, which might meet the need for essential riboflavin during embryo development. PRACTICAL APPLICATIONS: These findings provide fundamental insight into the effects of incubation on egg yolk plasma protein alterations during the entire embryonic development for a better understanding of plasma protein biological functions, especially in nutrient transportations and the formation of embryonic organs.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Haohao Sun
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.,Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, P.R. China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Fangli Zhu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Shugang Li
- Faculty of Light Industry, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, P. R. China
| | - Yinqiang Huo
- Department of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, P.R. China
| |
Collapse
|
14
|
Abstract
Our understanding of the functions of vitellogenin (Vtg) in reproduction has undergone an evolutionary transformation over the past decade. Primarily, Vtg was regarded as a female-specific reproductive protein, which is cleaved into yolk proteins including phosvitin (Pv) and lipovitellin (Lv), stored in eggs, providing the nutrients for early embryos. Recently, Vtg has been shown to be an immunocomponent factor capable of protecting the host against the attack by microbes including bacteria and viruses. Moreover, Pv and Lv that both are proteolytically cleaved products of maternal Vtg, as well as Pv-derived small peptides, all display an antibacterial role in developing embryos. In addition, both Vtg and yolk protein Pv possess antioxidant activity capable of protecting cells from damage by free radicals. Collectively, these data indicate that Vtg, in addition to being involved in yolk protein formation, also plays non-nutritional roles via functioning as immune-relevant molecules and antioxidant reagents.
Collapse
|
15
|
Da Silva M, Dombre C, Brionne A, Monget P, Chessé M, De Pauw M, Mills M, Combes-Soia L, Labas V, Guyot N, Nys Y, Réhault-Godbert S. The Unique Features of Proteins Depicting the Chicken Amniotic Fluid. Mol Cell Proteomics 2019; 18:S174-S190. [PMID: 29444982 PMCID: PMC6427230 DOI: 10.1074/mcp.ra117.000459] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/18/2018] [Indexed: 11/06/2022] Open
Abstract
In many amniotes, the amniotic fluid is depicted as a dynamic milieu that participates in the protection of the embryo (cushioning, hydration, and immunity). However, in birds, the protein profile of the amniotic fluid remains unexplored, even though its proteomic signature is predicted to differ compared with that of humans. In fact, unlike humans, chicken amniotic fluid does not collect excretory products and its protein composition strikingly changes at mid-development because of the massive inflow of egg white proteins, which are thereafter swallowed by the embryo to support its growth. Using GeLC-MS/MS and shotgun strategies, we identified 91 nonredundant proteins delineating the chicken amniotic fluid proteome at day 11 of development, before egg white transfer. These proteins were essentially associated with the metabolism of nutrients, immune response and developmental processes. Forty-eight proteins were common to both chicken and human amniotic fluids, including serum albumin, apolipoprotein A1 and alpha-fetoprotein. We further investigated the effective role of chicken amniotic fluid in innate defense and revealed that it exhibits significant antibacterial activity at day 11 of development. This antibacterial potential is drastically enhanced after egg white transfer, presumably due to lysozyme, avian beta-defensin 11, vitelline membrane outer layer protein 1, and beta-microseminoprotein-like as the most likely antibacterial candidates. Interestingly, several proteins recovered in the chicken amniotic fluid prior and after egg white transfer are uniquely found in birds (ovalbumin and related proteins X and Y, avian beta-defensin 11) or oviparous species (vitellogenins 1 and 2, riboflavin-binding protein). This study provides an integrative overview of the chicken amniotic fluid proteome and opens stimulating perspectives in deciphering the role of avian egg-specific proteins in embryonic development, including innate immunity. These proteins may constitute valuable biomarkers for poultry production to detect hazardous situations (stress, infection, etc.), that may negatively affect the development of the chicken embryo.
Collapse
Affiliation(s)
| | - Clara Dombre
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly 37380, France
| | | | - Philippe Monget
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly 37380, France
| | - Magali Chessé
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | | | - Maryse Mills
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | - Lucie Combes-Soia
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly 37380, France;; INRA, Plate-forme de Chirurgie et Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), F-37380 Nouzilly, France
| | - Valérie Labas
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly 37380, France;; INRA, Plate-forme de Chirurgie et Imagerie pour la Recherche et l'Enseignement (CIRE), Pôle d'Analyse et d'Imagerie des Biomolécules (PAIB), F-37380 Nouzilly, France
| | - Nicolas Guyot
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | - Yves Nys
- BOA, INRA, Université de Tours, 37380 Nouzilly, France
| | | |
Collapse
|
16
|
Oestrogen regulates the expression of cathepsin E-A-like gene through ER
$$\upbeta $$
β
in liver of chicken (Gallus gallus). J Genet 2018. [DOI: 10.1007/s12041-018-0890-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Yang S, Liu S, Qu B, Dong Y, Zhang S. Identification of sea bass pIgR shows its interaction with vitellogenin inducing antibody-like activities in HEK 293T cells. FISH & SHELLFISH IMMUNOLOGY 2017; 63:394-404. [PMID: 27919759 DOI: 10.1016/j.fsi.2016.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/11/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Fish vitellogenin (Vg) has been shown to mediate the phagocytosis via interaction with a Fcγ-like phagocytic receptor on macrophages, but identification of such a receptor and its functional characterization remains lacking. In this study, we isolated a cDNA of polymeric immunoglobulin receptor (pIgR) from sea bass, which encoded a single-spanning transmembrane protein of 326 amino acids including a 21-amino acid signal peptide, an extracellular region, a transmembrane region and a 36-amino acid intracellular region included two Ig-like domains (ILDs), and was expressed in multiple lymphoid organs. We then showed that recombinant extracellular domain of sea bass pIgR was capable of binding to Vg as well as IgG and IgM. We also showed that Vg as well as IgG and IgM interacted with pIgR-expressing HEK 293T cells. Importantly, we demonstrated that Vg as well as IgG and IgM were all capable of enhancing phagocytosis by HEK 293T cells and inducing expression of tnf-α and il-1β, via interacting with pIgR. Collectively, these results suggest that fish Vg, analogous to IgG and IgM, can interact with pIgR and result in similar down-stream immune responses, providing an additional evidence that Vg plays an antibody-like role.
Collapse
Affiliation(s)
- Shuangshuang Yang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, China
| | - Shousheng Liu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, China
| | - Baozhen Qu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, China
| | - Yuan Dong
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, China; Department of Marine Biology, Ocean University of China, China.
| |
Collapse
|
18
|
Sun C, Zhang S. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 2015. [PMID: 26506386 DOI: 10.3390/nu710543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
19
|
Sun C, Zhang S. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 2015; 7:8818-29. [PMID: 26506386 PMCID: PMC4632452 DOI: 10.3390/nu7105432] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Zhang S, Dong Y, Cui P. Vitellogenin is an immunocompetent molecule for mother and offspring in fish. FISH & SHELLFISH IMMUNOLOGY 2015; 46:710-715. [PMID: 26282682 DOI: 10.1016/j.fsi.2015.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
Our understanding of the function of vitellogenin (Vg) in reproduction has undergone a transformation over the past decade in parallel with new insights into the role of Vg in immunity. Initially, Vg was regarded as a female-specific reproductive protein, which is cleaved into yolk proteins such as phosvitin (Pv) and lipovitellin (Lv), stored in egg, providing the nutrients for developing embryos. Recently, Vg is shown to be an immune-relevant molecule involved in the defense of the host against the microbes including bacterium and virus. Furthermore, Pv and Lv, that both are proteolytically cleaved products of Vg, play a defense role in developing embryos. Importantly, yolk protein-derived small peptides also display antimicrobial activity. These data together indicate that Vg, in addition to being involved in yolk protein formation, plays a non-reproductive role via functioning as an immune-relevant molecule in both parent fishes and their offspring. It also shows that yolk proteins and their degraded peptides are novel players in maternal immunity, opening a new avenue to study the functions of reproductive proteins.
Collapse
Affiliation(s)
- Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Yuan Dong
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Pengfei Cui
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
21
|
Lee JW, Lee YM, Yang H, Noh JK, Kim HC, Park CJ, Park JW, Hwang IJ, Kim SY, Lee JH. Expression Analysis of Cathepsin F during Embryogenesis and Early Developmental Stage in Olive Flounder (Paralichthys olivaceus). Dev Reprod 2015; 17:221-9. [PMID: 25949137 PMCID: PMC4282294 DOI: 10.12717/dr.2013.17.3.221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 08/28/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022]
Abstract
Cathepsins are members of the multigene family of lysosomal cysteine proteinases and have regulated function in several life processes. The potential role of cathepsin F cysteine gene was expected as protease in the yolk processing mechanism during early developmental stage, but expression analysis was unknown after fertilization. The alignment analysis showed that amino acid sequence of cathepsin F from olive flounder liver expressed sequence tag (EST) homologous to cathepsin F of other known cathepsin F sequences with 87-98% identity. In this study, we examined the gene expression analysis of cathepsin F in various tissues at variety age flounder. Tissue distribution of the cathepsin F mRNA has been shown to be ubiquitous and constitutive pattern regardless of age in each group, although derived from cDNA library using liver sample. The mRNA level of cathepsin F more increased as developmental proceed during embryogenesis and early developmental stage, especially increased in the blastula, hatching stage and 3 days post hatching (dph). As a result, it may suggest that the proteolysis of yolk proteins (YPs) has been implicated as a mechanism for nutrient supply during early larval stages in olive flounder.
Collapse
Affiliation(s)
- Jang-Wook Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Young Mee Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Hyun Yang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jae Koo Noh
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Hyun Chul Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Choul-Ji Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - In Joon Hwang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Sung Yeon Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jeong-Ho Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| |
Collapse
|
22
|
Choi KM, Shim SH, An CM, Nam BH, Kim YO, Kim JW, Park CI. Cloning, characterisation, and expression analysis of the cathepsin D gene from rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2014; 40:253-258. [PMID: 25038285 DOI: 10.1016/j.fsi.2014.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/05/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Cathepsins are lysosomal cysteine proteases belonging to the papain family, members of which play important roles in normal metabolism for the maintenance of cellular homeostasis. Rock bream (Oplegnathus fasciatus) cathepsin D (RbCTSD) cDNAs were identified by expressed sequence tag analysis of a lipopolysaccharide-stimulated rock bream liver cDNA library. The full-length RbCTSD cDNA (1644 bp) contained an open reading frame of 1191 bp encoding 396 amino acids. Alignment analysis revealed that the active sites and N-glycosylation sites of the deduced protein were well conserved. Phylogenetic analysis revealed that RbCTSD is most closely related to the Mi-iuy croaker (Miichthys miiuy) cathepsin D. RbCTSD was ubiquitously expressed in all the examined tissues, predominantly in muscle and kidneys. RbCTSD mRNA expression was also examined in several tissues under conditions of bacterial and viral challenge. All examined tissues of fish infected with Edwardsiella tarda (E. tarda), Streptococcus iniae (S. iniae), and red sea bream iridovirus (RSIV) showed significant increases in RbCTSD expression compared with the control. In the kidney and spleen, RbCTSD mRNA expression was markedly upregulated following infection with all tested pathogens. These findings indicate that RbCTSD plays an important role in the innate immune response of rock bream. Furthermore, these results provide important information for the identification of other cathepsin D genes in various fish species.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Sang Hee Shim
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Cheul-Min An
- Biotechnology Research Division, National Fisheries Research and Development Institute, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Fisheries Research and Development Institute, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Fisheries Research and Development Institute, 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan 619-705, Republic of Korea
| | - Ju-Won Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea
| | - Chan-il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong 650-160, Republic of Korea.
| |
Collapse
|
23
|
Réhault-Godbert S, Mann K, Bourin M, Brionne A, Nys Y. Effect of embryonic development on the chicken egg yolk plasma proteome after 12 days of incubation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2531-2540. [PMID: 24588396 DOI: 10.1021/jf404512x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To better appreciate the dynamics of yolk proteins during embryonic development, we analyzed the protein quantitative changes occurring in the yolk plasma at the day of lay and after 12 days of incubation, by comparing unfertilized and fertilized chicken eggs. Of the 127 identified proteins, 69 showed relative abundance differences among conditions. Alpha-fetoprotein and two uncharacterized proteins (F1NHB8 and F1NMM2) were identified for the first time in the egg. After 12 days of incubation, five proteins (vitronectin, α-fetoprotein, similar to thrombin, apolipoprotein B, and apovitellenin-1) showed a major increase in relative abundance, whereas 15 proteins showed a significant decrease in the yolks of fertilized eggs. In unfertilized/table eggs, we observed an accumulation of proteins likely to originate from other egg compartments during incubation. This study provides basic knowledge on the utilization of egg yolk proteins by the embryo and gives some insight into how storage can affect egg quality.
Collapse
Affiliation(s)
- Sophie Réhault-Godbert
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'Œuf, F-37380 Nouzilly, France
| | | | | | | | | |
Collapse
|
24
|
Eresheim C, Plieschnig J, Ivessa NE, Schneider WJ, Hermann M. Expression of microsomal triglyceride transfer protein in lipoprotein-synthesizing tissues of the developing chicken embryo. Biochimie 2014; 101:67-74. [PMID: 24394625 PMCID: PMC4008936 DOI: 10.1016/j.biochi.2013.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/21/2013] [Indexed: 12/01/2022]
Abstract
In contrast to mammals, in the chicken major sites of lipoprotein synthesis and secretion are not only the liver and intestine, but also the kidney and the embryonic yolk sac. Two key components in the assembly of triglyceride-rich lipoproteins are the microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB). We have analyzed the expression of MTP in the embryonic liver, small intestine, and kidney, and have studied the expression of MTP in, and the secretion of apoB from, the developing yolk sac (YS). Transcript and protein levels of MTP increase during embryogenesis in YS, liver, kidney, and small intestine, and decrease in YS, embryonic liver, and kidney after hatching. In small intestine, the MTP mRNA level rises sharply during the last trimester of embryo development (after day 15), while MTP protein is detectable only after hatching (day 21). In the YS of 15- and 20-day old embryos, apoB secretion was detected by pulse-chase metabolic radiolabeling experiments and subsequent immunoprecipitation. Taken together, our data reveal the importance of coordinated production of MTP and apoB in chicken tissues capable of secreting triglyceride-rich lipoproteins even before hatching. MTP is expressed in liver, small intestine, and kidney of chicken embryos. MTP is expressed in the chicken yolk sac. ApoB is secreted from the chicken yolk sac. Embryonic tissues contribute to the lipoprotein pool of the developing chick.
Collapse
Affiliation(s)
- Christine Eresheim
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Julia Plieschnig
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - N Erwin Ivessa
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Wolfgang J Schneider
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Marcela Hermann
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria.
| |
Collapse
|
25
|
Recombinant proteins produced into yolk of genetically manipulated chickens are partly sialylated in N-glycan. Cytotechnology 2013; 65:985-92. [DOI: 10.1007/s10616-013-9613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/05/2013] [Indexed: 11/25/2022] Open
|
26
|
Transcriptome analysis of androgenic gland for discovery of novel genes from the oriental river prawn, Macrobrachium nipponense, using Illumina Hiseq 2000. PLoS One 2013; 8:e76840. [PMID: 24204682 PMCID: PMC3810145 DOI: 10.1371/journal.pone.0076840] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/29/2013] [Indexed: 12/20/2022] Open
Abstract
Background The oriental river prawn, Macrobrachium nipponense, is an important aquaculture species in China, even in whole of Asia. The androgenic gland produces hormones that play crucial roles in sexual differentiation to maleness. This study is the first de novo M. nipponense transcriptome analysis using cDNA prepared from mRNA isolated from the androgenic gland. Illumina/Solexa was used for sequencing. Methodology and Principal Finding The total volume of RNA sample was more than 5 ug. We generated 70,853,361 high quality reads after eliminating adapter sequences and filtering out low-quality reads. A total of 78,408 isosequences were obtained by clustering and assembly of the clean reads, producing 57,619 non-redundant transcripts with an average length of 1244.19 bp. In total 70,702 isosequences were matched to the Nr database, additional analyses were performed by GO (33,203), KEGG (17,868), and COG analyses (13,817), identifying the potential genes and their functions. A total of 47 sex-determination related gene families were identified from the M. nipponense androgenic gland transcriptome based on the functional annotation of non-redundant transcripts and comparisons with the published literature. Furthermore, a total of 40 candidate novel genes were found, that may contribute to sex-determination based on their extremely high expression levels in the androgenic compared to other sex glands,. Further, 437 SSRs and 65,535 high-confidence SNPs were identified in this EST dataset from which 14 EST-SSR markers have been isolated. Conclusion Our study provides new sequence information for M. nipponense, which will be the basis for further genetic studies on decapods crustaceans. More importantly, this study dramatically improves understanding of sex-determination mechanisms, and advances sex-determination research in all crustacean species. The huge number of potential SSR and SNP markers isolated from the transcriptome may shed the lights on research in many fields, including the evolution and molecular ecology of Macrobrachium species.
Collapse
|
27
|
Cirkvenčič N, Narat M, Dovč P, Benčina D. Distribution of chicken cathepsins B and L, cystatin and ovalbumin in extra-embryonic fluids during embryogenesis. Br Poult Sci 2013; 53:623-30. [PMID: 23281756 DOI: 10.1080/00071668.2012.729131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Concentrations of chicken cathepsin B, cathepsin L, cystatin and ovalbumin were determined in the allantoic fluid, amniotic fluid and extracts of chorioallantoic membranes during days 6 to 12 of embryogenesis. 2. Similar trends for cystatin and ovalbumin were observed in the allantoic fluid with maximum concentrations of cystatin on day 7 (12 ± 4 µg/ml) and ovalbumin on day 8 (∼19 ± 2.5 µg/ml) of embryonic development. The highest concentrations of cathepsin B was found on day 7 and of cathepsin L on day 10, but were significantly lower than those of cystatin and ovalbumin. 3. In the allantoic fluid, especially on day 7, considerable proportions of cystatin and ovalbumin were phosphorylated and contained phosphorylated serine. 4. Concentrations of cathepsin B and L, cystatin and ovalbumin in the amniotic fluid were variable but were comparable to those in allantoic fluid.
Collapse
Affiliation(s)
- N Cirkvenčič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, 1230 Domžale, Slovenia
| | | | | | | |
Collapse
|
28
|
Sheng Q, Cao D, Zhou Y, Lei Q, Han H, Li F, Lu Y, Wang C. Detection of SNPs in the cathepsin D gene and their association with yolk traits in chickens. PLoS One 2013; 8:e56656. [PMID: 23431385 PMCID: PMC3576367 DOI: 10.1371/journal.pone.0056656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 01/14/2013] [Indexed: 11/17/2022] Open
Abstract
CTSD (Cathepsin D) is a key enzyme in yolk formation, and it primarily affects egg yolk weight and egg weight. However, recent research has mostly focused on the genomic structure of the CTSD gene and the enzyme's role in pathology, and less is known about the enzyme's functions in chickens. In this paper, the correlations between CTSD polymorphisms and egg quality traits were analyzed in local Shandong chicken breeds. CTSD polymorphisms were investigated by PCR-SSCP (polymerase chain reaction single strand conformation polymorphism) and sequencing analysis. Two variants were found to be associated with egg quality traits. One variant (2614T>C), located in exon 3, was novel. Another variant (5274G>T), located in intron 4, was previously referred to as rs16469410. Overall, our results indicated that CTSD would be a useful candidate gene in selection programs for improving yolk traits.
Collapse
Affiliation(s)
- Qian Sheng
- Shandong Provincial Key Laboratory of Microbiological Engineering, Shandong Polytechnic University, Ji'nan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bauer R, Plieschnig JA, Finkes T, Riegler B, Hermann M, Schneider WJ. The developing chicken yolk sac acquires nutrient transport competence by an orchestrated differentiation process of its endodermal epithelial cells. J Biol Chem 2012; 288:1088-98. [PMID: 23209291 DOI: 10.1074/jbc.m112.393090] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During chicken yolk sac (YS) growth, mesodermal cells in the area vasculosa follow the migrating endodermal epithelial cell (EEC) layer in the area vitellina. Ultimately, these cells form the vascularized YS that functions in nutrient transfer to the embryo. How and when EECs, with their apical aspect directly contacting the oocytic yolk, acquire the ability to take up yolk macromolecules during the vitellina-to-vasculosa transition has not been investigated. In addressing these questions, we found that with progressive vascularization, the expression level in EECs of the nutrient receptor triad, LRP2-cubilin-amnionless, changes significantly. The receptor complex, competent for uptake of yolk proteins, is produced by EECs in the area vasculosa but not in the area vitellina. Yolk components endocytosed by LRP2-cubilin-amnionless, preformed and newly formed lipid droplets, and yolk-derived very low density lipoprotein, shown to be efficiently endocytosed and lysosomally processed by EECs, probably provide substrates for resynthesis and secretion of nutrients, such as lipoproteins. In fact, as directly demonstrated by pulse-chase experiments, EECs in the vascularized, but not in the avascular, region efficiently produce and secrete lipoproteins containing apolipoprotein A-I (apoA-I), apoB, and/or apoA-V. In contrast, perilipin 2, a lipid droplet-stabilizing protein, is produced exclusively by the EECs of the area vitellina. These data suggest a differentiation process that orchestrates the vascularization of the developing YS with the induction of yolk uptake and lipoprotein secretion by EECs to ensure embryo nutrition.
Collapse
Affiliation(s)
- Raimund Bauer
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr Gasse 9/2, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
30
|
Elkin R, Bauer R, Schneider W. The restricted ovulator chicken strain: an oviparous vertebrate model of reproductive dysfunction caused by a gene defect affecting an oocyte-specific receptor. Anim Reprod Sci 2012; 136:1-13. [PMID: 23123285 PMCID: PMC3521959 DOI: 10.1016/j.anireprosci.2012.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/23/2012] [Accepted: 10/12/2012] [Indexed: 01/26/2023]
Abstract
A unique non-laying strain of chickens with heritable hyperlipidemia and aortic atherosclerosis was first described in 1974. Subsequent work established that the phenotype results from a naturally occurring point mutation in the gene specifying the very low density lipoprotein (VLDL) receptor, a 95-kDa membrane protein which normally mediates the massive uptake of the main circulating hepatically-synthesized yolk precursors, VLDL and vitellogenin. As a result, hens of the mutant strain termed "restricted ovulator" (R/O) have approximately 5-fold elevations in circulating cholesterol and triglyceride concentrations compared with normal layers, and hepatic lipogenesis and cholesterogenesis are markedly attenuated due to feedback inhibition. R/O hens also exhibit hyperestrogenemia, hypoprogesteronemia, elevated circulating gonadotropins, and up-regulated pituitary progesterone receptor mRNA and isoforms. The ovaries of R/O hens are abnormal in that they lack a follicular hierarchy and contain many small preovulatory follicles of various colors, shapes, and sizes. However, since R/O hens occasionally lay eggs, it is possible that endocytic receptors other than the VLDL receptor may be able to facilitate oocyte growth and/or that yolk precursor uptake can occur via a nonspecific bulk process. A mammalian model of impaired fecundity with abnormal lipoprotein metabolism also has been described, but different mechanisms are likely responsible for its reproductive dysfunction. Nevertheless, as our understanding of the molecular physiology and biochemistry of avian oocyte growth continues to expand, in part due to studies of the R/O model, new analogies may emerge between avian and mammalian systems, which ultimately could help to answer important questions in reproductive biology.
Collapse
Affiliation(s)
- R.G. Elkin
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - R. Bauer
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| | - W.J. Schneider
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| |
Collapse
|
31
|
Dong ZD, Zhang J, Ji XS, Zhou FN, Fu Y, Chen W, Zeng YQ, Li TM, Wang H. Molecular cloning, characterization and expression of cathepsin D from grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2012; 33:1207-1214. [PMID: 23009921 DOI: 10.1016/j.fsi.2012.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Cathepsin D is a lysosomal aspartic proteinase which participates in various degradation functions within the cell. In this current study, we cloned and characterized the complete cDNA of grass carp cathepsin D through 5'- and 3'-RACE. The cathepsin D contained a 56 bp 5' terminal untranslated region (5'-UTR), a 1197 bp open reading frame encoding 398 amino acids, and a 394 bp 3'-UTR. Grass carp cathepsin D shared high similarity with those from other species, and showed the highest amino acid identity of 91% to Danio rerio. Unlike many other organisms, the grass carp cathepsin D contains only one N-glycosylation site closest to the N-terminal. Real-time quantitative RT-PCR demonstrated that Cathepsin D expressed in all twelve tissues (bladder, brain, liver, heart, gill, muscle, fin, eye, intestines, spleen, gonad and head kidney). The relative expression levels of Cathepsin D in gonad and liver were 26.58 and 24.95 times as much as those in fin, respectively. The expression level of Cathepsin D in muscle approximately 16-fold higher, in intestines and spleen were 12-fold higher. The cathepsin D expression showed an upward trend during embryonic development. After challenged with Aeromonas hydrophil, the expression of grass carp cathepsin D gene showed significant changes in the four test tissues (liver, head kidney, spleen and intestines). The fact that the bacterial infection can obviously improve the cathepsin D expression in immune-related organs, may suggest that cathepsin D plays an important role in the innate immune response of grass carp.
Collapse
Affiliation(s)
- Zhong-dian Dong
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bourin M, Gautron J, Berges M, Hennequet-Antier C, Cabau C, Nys Y, Réhault-Godbert S. Transcriptomic profiling of proteases and antiproteases in the liver of sexually mature hens in relation to vitellogenesis. BMC Genomics 2012; 13:457. [PMID: 22950364 PMCID: PMC3495648 DOI: 10.1186/1471-2164-13-457] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/22/2012] [Indexed: 11/15/2022] Open
Abstract
Background Most egg yolk precursors are synthesized by the liver, secreted into the blood and transferred into oocytes, to provide nutrients and bioactive molecules for the avian embryo. Three hundred and sixteen distinct proteins have been identified in egg yolk. These include 37 proteases and antiproteases, which are likely to play a role in the formation of the yolk (vitellogenesis), as regulators of protein metabolism. We used a transcriptomic approach to define the protease and antiprotease genes specifically expressed in the hen liver in relation to vitellogenesis by comparing sexually mature and pre-laying chickens showing different steroid milieu. Results Using a 20 K chicken oligoarray, a total of 582 genes were shown to be over-expressed in the liver of sexually mature hens (1.2 to 67 fold-differences). Eight of the top ten over-expressed genes are known components of the egg yolk or perivitelline membrane. This list of 582 genes contains 12 proteases and 3 antiproteases. We found that “uncharacterized protein LOC419301/similar to porin” (GeneID:419301), an antiprotease and “cathepsin E-A-like/similar to nothepsin” (GeneID:417848), a protease, were the only over-expressed candidates (21-fold and 35-fold difference, respectively) that are present in the egg yolk. Additionally, we showed the 4-fold over-expression of “ovochymase-2/similar to oviductin” (GeneID:769290), a vitelline membrane-specific protease. Conclusions Our approach revealed that three proteases and antiproteases are likely to participate in the formation of the yolk. The role of the other 12 proteases and antiproteases which are over-expressed in our model remains unclear. At least 1/3 of proteases and antiproteases identified in egg yolk and vitelline membrane proteomes are expressed similarly in the liver regardless of the maturity of hens, and have been initially identified as regulators of haemostasis and inflammatory events. The lack of effect of sex steroids on these genes expressed in the liver but the products of which are found in the yolk suggests that these may be passively incorporated into the yolk rather than actively produced for that purpose. These results raise the question of the biological significance of egg yolk proteases and antiproteases, and more generally of all minor proteins that have been identified in egg yolk.
Collapse
Affiliation(s)
- Marie Bourin
- INRA, SIGENAE, UR83 Recherches Avicoles, 37380, F-37380 Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Bourin M, Gautron J, Berges M, Nys Y, Réhault-Godbert S. Sex- and tissue-specific expression of “similar to nothepsin” and cathepsin D in relation to egg yolk formation in Gallus gallus. Poult Sci 2012; 91:2288-93. [DOI: 10.3382/ps.2011-01910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Constructing and random sequencing analysis of normalized cDNA library of testis tissue from oriental river prawn (Macrobrachium nipponense). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:268-76. [DOI: 10.1016/j.cbd.2012.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
|
35
|
Khaled HB, Ghorbel-Bellaaj O, Hmidet N, Jellouli K, Ali NEH, Ghorbel S, Nasri M. A novel aspartic protease from the viscera of Sardinelle (Sardinella aurita): Purification and characterisation. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.03.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Follo C, Ozzano M, Mugoni V, Castino R, Santoro M, Isidoro C. Knock-down of cathepsin D affects the retinal pigment epithelium, impairs swim-bladder ontogenesis and causes premature death in zebrafish. PLoS One 2011; 6:e21908. [PMID: 21747967 PMCID: PMC3128622 DOI: 10.1371/journal.pone.0021908] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/14/2011] [Indexed: 02/04/2023] Open
Abstract
The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates.
Collapse
Affiliation(s)
- Carlo Follo
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Matteo Ozzano
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Vera Mugoni
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Roberta Castino
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
| | - Massimo Santoro
- Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Ciro Isidoro
- Laboratorio di Patologia Molecolare del Dipartimento di Scienze Mediche and Centro di Biotecnologie per la Ricerca Medica Applicata dell'Università del Piemonte Orientale, Novara, Italy
- * E-mail:
| |
Collapse
|
37
|
Balti R, Hmidet N, Jellouli K, Nedjar-Arroume N, Guillochon D, Nasri M. Cathepsin D from the hepatopancreas of the cuttlefish (Sepia officinalis): purification and characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:10623-10630. [PMID: 20843039 DOI: 10.1021/jf102233d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cathepsin D from the hepatopancreas of cuttlefish ( Sepia officinalis ) was purified to homogeneity by precipitation with ammonium sulfate (30-60%, w/v), Sephadex G-100 gel filtration, Mono-S cation-exchange chromatography, Sephadex G-75 gel filtration, and Mono-S FPLC with a 54-fold increase in specific activity and 17% recovery. The molecular weight of the purified cathepsin D was estimated to be 37.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). On the basis of the native-PAGE and hemoglobin zymography, the purified protease appeared as a single band. The optimum pH and temperature for the cathepsin D activity were pH 3.0 and 50 °C, respectively, using hemoglobin as a substrate. The purified enzyme was completely inhibited by pepstatin A; however, no inhibition was observed with phenylmethylsulfonyl fluoride and ethylenediaminetetraacetic acid. Moreover, the activity was strongly inhibited by SDS and molybdate and enhanced by ATP. The purified cathepsin D was activated by Mg(2+), Ni(2+), Zn(2+), Cu(2+), Cd(2+), Sr(2+), and Co(2+) ions, whereas it was not affected by Na(+), K(+), and Ca(2+) ions. The N-terminal amino acid sequence of the first 13 amino acids of the purified cathepsin D was APTPEPLSNYMDA. S. officinalis cathepsin D, which showed high homology with cathepsin D from marine vertebrates and invertebrates, had a Pro residue at position 6 and a Ser residue at position 8, where Thr and Lys are common in all marine vertebrates cathepsins D. S. officinalis cathepsin D showed high efficiency for the hydrolysis of myofibrillar proteins extracted from cuttlefish muscle.
Collapse
Affiliation(s)
- Rafik Balti
- Laboratoire de Génie Enzymatique et de Microbiologie, Ecole Nationale d'Ingénieurs de Sfax, Route Soukra Km 3,5 BP 1173, 3038 Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
38
|
Reading BJ, Hiramatsu N, Sawaguchi S, Matsubara T, Hara A, Lively MO, Sullivan CV. Conserved and variant molecular and functional features of multiple egg yolk precursor proteins (vitellogenins) in white perch (Morone americana) and other teleosts. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:169-187. [PMID: 18766402 DOI: 10.1007/s10126-008-9133-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/07/2008] [Accepted: 07/11/2008] [Indexed: 05/26/2023]
Abstract
Three complete cDNAs encoding different forms of vitellogenin (Vtg) were isolated from a white perch (Morone americana) liver cDNA library and characterized with respect to immunobiochemical and functional features of the three Vtgs and their product yolk proteins (YPs) in this species and in the congeneric striped bass (Morone saxatilis). The two longest cDNAs encoded Vtgs with a complete suite of yolk protein domains that, based on comparisons with vtg sequences from other species, were categorized as VtgAa and VtgAb using the current nomenclature for multiple teleost Vtgs. The shorter cDNA encoded a Vtg that lacked a phosvitin domain, had a shortened C-terminus, and was categorized as VtgC. Mapping of peptide sequences from the purified Vtgs and their derived YPs to Vtg sequences deduced from the cDNAs definitively identified the white perch VtgAa, VtgAb, and VtgC proteins. Detailed comparisons of the primary structures of each Vtg with partial or complete sequences of Morone yolk proteins or of Vtgs from other fishes revealed conserved and variant structural elements of teleost Vtgs with functional significance, including, as examples, signal peptide cleavage sites, dimerization sites, cathepsin D protease recognition sites, and receptor-binding domains. These comparisons also yielded an interim revision of the classification scheme for multiple teleost Vtgs.
Collapse
Affiliation(s)
- Benjamin J Reading
- Department of Zoology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Babin PJ, Gibbons GF. The evolution of plasma cholesterol: direct utility or a "spandrel" of hepatic lipid metabolism? Prog Lipid Res 2008; 48:73-91. [PMID: 19049814 DOI: 10.1016/j.plipres.2008.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 02/07/2023]
Abstract
Fats provide a concentrated source of energy for multicellular organisms. The efficient transport of fats through aqueous biological environments raises issues concerning effective delivery to target tissues. Furthermore, the utilization of fatty acids presents a high risk of cytotoxicity. Improving the efficiency of fat transport while simultaneously minimizing the cytotoxic risk confers distinct selective advantages. In humans, most of the plasma cholesterol is associated with low-density lipoprotein (LDL), a metabolic by-product of very-low-density lipoprotein (VLDL), which originates in the liver. However, the functions of VLDL are not clear. This paper reviews the evidence that LDL arose as a by-product during the natural selection of VLDL. The latter, in turn, evolved as a means of improving the efficiency of diet-derived fatty acid storage and utilization, as well as neutralizing the potential cytotoxicity of fatty acids while conserving their advantages as a concentrated energy source. The evolutionary biology of lipid transport processes has provided a fascinating insight into how and why these VLDL functions emerged during animal evolution. As causes of historical origin must be separated from current utilities, our spandrel-LDL theory proposes that LDL is a spandrel of VLDL selection, which appeared non-adaptively and may later have become crucial for vertebrate fitness.
Collapse
Affiliation(s)
- Patrick J Babin
- Université Bordeaux 1, Génomique et Physiologie des Poissons, UMR NuAGe, 33405 Talence, France
| | | |
Collapse
|
40
|
Maradonna F, Carnevali O. Vitellogenin, zona radiata protein, cathepsin D and heat shock protein 70 as biomarkers of exposure to xenobiotics. Biomarkers 2008; 12:240-55. [PMID: 17453739 DOI: 10.1080/13547500601070859] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The antagonistic and/or synergistic effects of different chemical compounds were examined in the marine teleost, Gobius niger, by testing a series of biomarkers involved in fish reproduction. Among the biomarkers analysed, vitellogenin (VTG) and zona radiata proteins (ZRP) are key molecules involved in reproduction, widely used to detect the presence of pollutants in the marine environment, while heat shock protein 70 (HSP70) and cathepsin D (CATD) have recently been introduced as bioindicators of endocrine disruption. The detection of VTG and ZRP in the plasma of wild male specimens is universally accepted as an early warning signal of environmental pollution. The evaluation of VTG, ZRP and CATD expression demonstrated the oestrogenic effect of nonylphenol on both male and female fish; on the contrary beta-naphthoflavone behaves mainly as an anti-oestrogen although, when co-injected with compounds with oestrogenic activity, it enhances ZRP gene expression. Regarding the chaperone, all treatments stressed the fish, inducing an increase in HSP70 gene transcription. The results obtained underlined the importance of testing the effects of compound mixtures: fish in the wild are subjected to a blend of chemicals and the effects observed derive from the synergic or antagonistic interactions of these compounds.
Collapse
Affiliation(s)
- F Maradonna
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy
| | | |
Collapse
|
41
|
Réhault-Godbert S, Gautron J, Labas V, Belghazi M, Nys Y. Identification and characterization of the precursor of chicken matrix metalloprotease 2 (pro-MMP-2) in hen egg. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:6294-6303. [PMID: 18620399 DOI: 10.1021/jf8003948] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Using zymography and mass spectrometry, we identified for the first time the precursor of chicken matrix metalloprotease 2 (pro-MMP-2) as a complex with TIMP-2 (tissue inhibitor of metalloproteinases) in egg white and yolk. Real-time polymerase chain reaction confirmed that MMP-2 and its inhibitors TIMP-2 and TIMP-3 were expressed all along the oviduct and in the liver of laying hens. We also demonstrated that the processing of pro-MMP-2 into mature MMP-2 by serine proteases does not occur in vivo, although purified pro-MMP-2 undergoes proteolytic maturation by these proteases in vitro. Moreover, the relative pro-MMP-2 activity assessed by gelatin zymography was shown to decrease in egg white during the storage of unfertilized or fertilized eggs. However, the mature form of 62 kDa MMP-2 could not be detected. The fact that MMP-2 is found as a proform in fresh eggs suggests that the activity of this metalloprotease is regulated under specific conditions during embryonic development.
Collapse
Affiliation(s)
- Sophie Réhault-Godbert
- INRA, UR83 Recherches Avicoles, Fonction et Regulation des Proteines de l'Oeuf, F-37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
42
|
Mei Y, Chen Y, Li J, Gao P, Wang C, Zhang H, Ling F, Li Y, Xie S, Li S, Zhang G. Sequence identification, tissue distribution and polymorphism of the porcine cathepsin D (CTSD) gene. Anim Biotechnol 2008; 19:144-58. [PMID: 18607787 DOI: 10.1080/10495390802072088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cathepsin D (CTSD), a major ubiquitously expressed aspartic protease, is not only involved in muscle protein degradation, but also related to some pathological processes. In this study, we characterized the full-length cDNA, genomic DNA sequence, expression profile and polymorphism of the porcine CTSD gene. The full-length cDNA of porcine CTSD gene and the predicted protein sequence shared high identities wih other mammalian orthologous. Northern-blot analysis and Reverse transcription (RT)-PCR results indicated that the CTSD gene has one transcript of approximately 2.0 kb in normal tissues and was expressed ubiquitously in pigs, without significant differences in porcine heart, liver, spleen, lung, kidney, stomach, fat, triceps brachi, biceps femoris, and longissimus muscles. The porcine CTSD gene spans approximately 9.0 kb including nine exons. All exon/intron boundaries adhere to the GT/AG rule. Altogether 35 nucleotide polymorphisms of CTSD gene were discovered between Duroc, Landrace, Erhualian, and Dahuabai pigs. These polymorphisms included three missense mutations, eight synonymous mutations, and 24 intronic substitutions, and most polymorphisms are located in the intron 4 and 5. Three polymorphisms were genotyped in Duroc, Landrace, Dahuabai, and Erhualian pigs by PCR-RFLP method, and significant differences of their genotype frequencies were observed between Chinese native breeds (Dahuabai and Erhualian) and western breeds (Duroc and Landrace).
Collapse
Affiliation(s)
- Yingjie Mei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangdong, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kao CM, Huang FL. Cloning and expression of carp cathepsin Z: Possible involvement in yolk metabolism. Comp Biochem Physiol B Biochem Mol Biol 2008; 149:541-51. [DOI: 10.1016/j.cbpb.2006.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 05/15/2006] [Accepted: 05/16/2006] [Indexed: 11/28/2022]
|
44
|
Wang Y, Zhao B, Ding F, Jiang X. Gut-specific expression of cathepsin L and B in amphioxus Branchiostoma belcheri tsingtauense larvae. Eur J Cell Biol 2008; 87:185-93. [DOI: 10.1016/j.ejcb.2007.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 09/29/2007] [Accepted: 10/04/2007] [Indexed: 11/29/2022] Open
|
45
|
|
46
|
ELKIN R. Reducing shell egg cholesterol content. I. Overview, genetic approaches, and nutritional strategies. WORLD POULTRY SCI J 2007. [DOI: 10.1079/wps2006120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Song JL, Wong JL, Wessel GM. Oogenesis: Single cell development and differentiation. Dev Biol 2006; 300:385-405. [PMID: 17074315 DOI: 10.1016/j.ydbio.2006.07.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 11/23/2022]
Abstract
Oocytes express a unique set of genes that are essential for their growth, for meiotic recombination and division, for storage of nutrients, and for fertilization. We have utilized the newly sequenced genome of Strongylocentrotus purpuratus to identify genes that help the oocyte accomplish each of these tasks. This study emphasizes four classes of genes that are specialized for oocyte function: (1) Transcription factors: many of these factors are not significantly expressed in embryos, but are shared by other adult tissues, namely the ovary, testis, and gut. (2) Meiosis: A full set of meiotic genes is present in the sea urchin, including those involved in cohesion, in synaptonemal complex formation, and in meiotic recombination. (3) Yolk uptake and storage: Nutrient storage for use during early embryogenesis is essential to oocyte function in most animals; the sea urchin accomplishes this task by using the major yolk protein and a family of accessory proteins called YP30. Comparison of the YP30 family members across their conserved, tandem fasciclin domains with their intervening introns reveals an incongruence in the evolution of its major clades. (4) Fertilization: This set of genes includes many of the cell surface proteins involved in sperm interaction and in the physical block to polyspermy. The majority of these genes are active only in oocytes, and in many cases, their anatomy reflects the tandem repeating interaction domains essential for the function of these proteins. Together, the expression profile of these four gene classes highlights the transitions of the oocyte from a stem cell precursor, through stages of development, to the clearing and re-programming of gene expression necessary to transition from oocyte, to egg, to embryo.
Collapse
Affiliation(s)
- Jia L Song
- Department of Molecular and Cellular Biology and Biochemistry, Box G, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
48
|
Hashmi S, Zhang J, Oksov Y, Ji Q, Lustigman S. The Caenorhabditis elegans CPI-2a cystatin-like inhibitor has an essential regulatory role during oogenesis and fertilization. J Biol Chem 2006; 281:28415-29. [PMID: 16857685 DOI: 10.1074/jbc.m600254200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we characterized a sterile cpi-2a(ok1256) deletion mutant in Caenorhabditis elegans and showed that CPI-2a has an essential regulatory role during oogenesis and fertilization. We have also shown that the CPI2a inhibitor and both Ce-CPL-1 and Ce-CPZ-1 enzymes are present in the myoepithelial sheath surrounding germ cells, oocytes, and embryos as well as in the yolk granules within normal oocytes. Staining of mutant worms with anti-yolk protein antibodies has indicted that the proteins are not present in the mature oocytes. Moreover, green fluorescent protein expression was absence or reduced in cpi-2a/yp170:gfp mutant oocytes, although it was expressed in one of the successfully developed embryos. Based on these results, we hypothesize that the sterility in cpi-2a(ok1256) mutant worms is potentially caused by two possible mechanisms: 1) defects in the uptake and/or processing of yolk proteins by the growing oocytes and 2) indirect induction of defects in cell-cell signaling that is critical for promoting germ line development, oocyte maturation, ovulation, and fertilization. A defect in any of these processes would have detrimental effects on the development of normal embryos and consequently normal production of progenies as we observed in cpi-2a mutant worms. This is the first study that demonstrates the expression of cysteine proteases and their endogenous inhibitor in the gonadal sheath cells surrounding germ cells and oocytes, which indirectly have established their potential involvement in proteolytic processing of molecules within the gonadal sheath cells, such as components of the extracellular matrix or the cytoskeletal proteins, which are essential for proper cell-cell signaling activities of the gonadal sheath cells during normal maturation and ovulation processes.
Collapse
Affiliation(s)
- Sarwar Hashmi
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
49
|
Hayakawa H, Andoh T, Watanabe T. Precursor structure of egg proteins in the coral Galaxea fascicularis. Biochem Biophys Res Commun 2006; 344:173-80. [PMID: 16616007 DOI: 10.1016/j.bbrc.2006.03.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 03/17/2006] [Indexed: 11/16/2022]
Abstract
In the egg of the reef coral Galaxea fascicularis, four proteins (named GfEP-1 to -4) are stored in high abundance. In the present study, a cDNA containing a full-length open reading frame for GfEP-1 was cloned, and the translated protein sequence was compared to the N-terminal sequences of GfEP-2, -3, and -4. GfEP-1 and -2 were shown to be generated by processing of a precursor of 1439 amino acids, and GfEP-3 turned out to be a partial fragment of GfEP-2. The precursor protein contained regions which exhibited similarities to vitellogenins (Vgs) in bilaterian animals (oviparous vertebrates and invertebrates including nematodes, arthropods, and molluscs). This study reports the first cloning and characterization of a full-length cDNA encoding a Vg in a non-bilaterian animal, and argues that the emergence of Vg as a precursor of egg yolk proteins predated the divergence of the cnidarian and bilaterian lineages.
Collapse
Affiliation(s)
- Hideki Hayakawa
- Division of Molecular Marine Biology, Department of Marine Bioscience, Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan.
| | | | | |
Collapse
|
50
|
Carnevali O, Cionna C, Tosti L, Lubzens E, Maradonna F. Role of cathepsins in ovarian follicle growth and maturation. Gen Comp Endocrinol 2006; 146:195-203. [PMID: 16430893 DOI: 10.1016/j.ygcen.2005.12.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/28/2005] [Accepted: 12/04/2005] [Indexed: 11/22/2022]
Abstract
Several complex processes are involved in the production of viable eggs. The aim of this review is to provide an overview on the role played by lysosomal enzymes, especially cathepsins B, D, and L, during ovarian follicle growth and maturation. Specific attention is focused on the relationship between the second proteolytic cleavage of yolk proteins (YP) and the resumption of the meiosis during germinal vesicle break down (GVBD). Maturation represents the final stage of oocytes development prior to ovulation. Oocytes in this phase appear translucent. In many teleosts GVBD is accompanied by water uptake and among marine teleosts with pelagic eggs, most of the final volume is reached by this process. The last phase of maturation in benthonic eggs also occurs concomitant to a second proteolytic cleavage and is related with a slight hydration process. In vitro maturation by 17alpha,20beta-dihydroxy-4-pregnen-3one in class III Danio rerio oocytes, induced 80% of GVBD. The maturation of these oocytes is known to be associated with proteolysis of their major yolk components. In the present study, we show that inhibition of specific enzymes (cathepsins) involved in the second YP processing, did not affect the occurrence of GVBD as the oocytes become translucent and display a slight increase in size. More specifically, in vitro incubation of the maturing oocytes with a cathepsin B inhibitor suppressed both cathepsin B and L activities and the proteolysis of YP. On the contrary, the addition of cathepsin L inhibitor, only affected cathepsin L activity, indicating that cathepsin B is probably involved in Cathepsin L activation, and this enzyme is probably responsible for the second YP processing. These results, together with previous studies, indicate that the GVBD process is independent of the occurrence of the second proteolytic process. It supports the hypothesis that the maturation process is under K+ ion flux control, while yolk proteolysis is related to the temporal and specific activation of cathepsins by acidification of yolk spheres.
Collapse
Affiliation(s)
- O Carnevali
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Via Brecce Bianche 60131, Ancona, Italy.
| | | | | | | | | |
Collapse
|