1
|
Ferro-Gallego P, Vila-Sanjurjo A, Valderrama Pereira AK, Porres Pérez G, Domínguez-Gerpe L. Circular PCR as an efficient and precise umbrella of methods for the generation of circular dsDNA with staggered nicks: Mechanism and types. Biol Methods Protoc 2024; 9:bpae051. [PMID: 39139995 PMCID: PMC11319657 DOI: 10.1093/biomethods/bpae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Here, we introduce the highly versatile circular polymerase chain reaction (CiPCR) technique, propose a mechanism of action, and describe a number of examples demonstrating the versatility of this technique. CiPCR takes place between two fragments of dsDNA with two homologous regions, as long as one of the fragments carries said regions at its 3'- and 5'-ends. Upon hybridization, elongation by a polymerase occurs from all 3'-ends continuously until a 5'-end is reached, leading to stable circular dsDNA with staggered nicks. When both dsDNA fragments carry the homology at their 3'- and 5'-ends (Type I CiPCR), all four 3'-ends effectively prime amplification of the intervening region and CiPCR products can function as template during the reaction. In contrast, when only one of the two dsDNA fragments carries the homologous regions at its 3'- and 5'-ends and the other carries such regions internally (Type II CiPCR), only two 3'-ends can be amplified and CiPCR products possess no template activity. We demonstrate the applicability of both CiPCR types via well-illustrated experimental examples. CiPCR is well adapted to the quick resolution of most of the molecular cloning challenges faced by the biology/biomedicine laboratory, including the generation of insertions, deletions, and mutations.
Collapse
Affiliation(s)
- Pedro Ferro-Gallego
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Present Address: IBIMA, Instituto de Investigación Biomédica y Plataforma en Nanomedicina, BIONAND, Málaga, 29590, Spain
| | - Antón Vila-Sanjurjo
- Grupo GIBE, Biology Department of the School of Sciences & Interdisciplinary Center for Chemistry and Biology (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Andrea Katherine Valderrama Pereira
- Chemistry Department of the School of Sciences & Interdisciplinary Center for Chemistry and Biology (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Gonzalo Porres Pérez
- Grupo GIBE, Biology Department of the School of Sciences & Interdisciplinary Center for Chemistry and Biology (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Lourdes Domínguez-Gerpe
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
2
|
Zhou Y, Bo F, Tian T, Wu B, Zhu B. Excessive addition split peak formed by the non-templated nucleotide addition property of Taq DNA polymerase after PCR amplification. Front Bioeng Biotechnol 2023; 11:1180542. [PMID: 37180044 PMCID: PMC10174434 DOI: 10.3389/fbioe.2023.1180542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Because of its non-template addition feature, Taq DNA polymerase can catalyze one or more extra nucleotides onto the 3' terminus of PCR products. An extra peak is observed at DYS391 locus after the PCR products stored for 4 days at 4°C. To explore the formation mechanism of this artifact, PCR primers and amplicon sequences of Y-STR loci are analyzed, furthermore, PCR products storage conditions and termination of PCR are discussed. The extra peak is a + 2 addition product, which we call excessive addition split peak (EASP). The most significant difference between EASP and the incomplete addition of adenine product is that the size of EASP is about one base larger than the true allele, and the EASP locates on the right side of the real allelic peak. The EASP cannot be eliminated by increasing loading mixture volume and conducting heat denaturation prior to electrophoresis injection. However, the EASP is not observed when the PCR is terminated with ethylenediaminetetraacetic acid or formamide. These findings suggest that formation of EASP is a result of 3' end non-template extension by Taq DNA polymerase, rather than being the result of DNA fragment secondary structure produced under a suboptimal electrophoresis condition. In addition, the EASP formation is affected by the primer sequences and the storage conditions of PCR products.
Collapse
Affiliation(s)
- Yongsong Zhou
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Bo
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tian Tian
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, China
- *Correspondence: Buling Wu, ; Bofeng Zhu,
| | - Bofeng Zhu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, Guangdong, China
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shanxi, China
- *Correspondence: Buling Wu, ; Bofeng Zhu,
| |
Collapse
|
3
|
Yang Z, Chen Z, Zhang Y. A simple and economical site-directed mutagenesis method for large plasmids by direct transformation of two overlapping PCR fragments. Biotechniques 2022; 73:239-245. [DOI: 10.2144/btn-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite the development of various methods and commercial kits, site-directed mutagenesis of large plasmids remains a challenge in many laboratories. A site-directed mutagenesis method was developed for large plasmids by directly transforming two overlapping PCR fragments into Escherichia coli. This method successfully generated mutations for plasmids of 8.3 kb and 11.0 kb with high efficiencies. The method only requires Q5 DNA polymerase and DpnI, which greatly reduces costs. The procedure is simple, including PCR reaction, DpnI treatment and transformation. This simple, efficient and economical site-directed mutagenesis method for large plasmids is likely to be widely applied in the future.
Collapse
Affiliation(s)
- Zhibo Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yueping Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Complex target SELEX-based identification of DNA aptamers against Bungarus caeruleus venom for the detection of envenomation using a paper-based device. Biosens Bioelectron 2021; 193:113523. [PMID: 34333364 DOI: 10.1016/j.bios.2021.113523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022]
Abstract
Complex target SELEX always have been an intriguing approach to the scientific community, as it offers the potential discovery of novel biomarkers. We herein successfully performed SELEX on Bungarus caeruleus venom to develop a panel of highly affine aptamers that specifically recognizes the B. caeruleus (common krait) venom and was able to discriminate the B. caeruleus venom from Cobra, Russell's, and Saw-scaled viper's venom. The aptamers generated against the crude venom also lead to the identification of the specific component of the venom, which is β-Bungarotoxin, a toxin uniquely present in the B. caeruleus venom. The best performing aptamer candidates were used as a molecular recognition element in a paper-based device and were able to detect as low as 2 ng krait venom in human serum background. The developed aptamer-based paper device can be used for potential point-of-care venom detection applications due to its simplicity and affordability.
Collapse
|
5
|
Cojocaru R, Unrau PJ. Processive RNA polymerization and promoter recognition in an RNA World. Science 2021; 371:1225-1232. [PMID: 33737482 DOI: 10.1126/science.abd9191] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Early life is thought to have required the self-replication of RNA by RNA replicases. However, how such replicases evolved and subsequently enabled gene expression remains largely unexplored. We engineered and selected a holopolymerase ribozyme that uses a sigma factor-like specificity primer to first recognize an RNA promoter sequence and then, in a second step, rearrange to a processive elongation form. Using its own sequence, the polymerase can also program itself to polymerize from certain RNA promoters and not others. This selective promoter-based polymerization could allow an RNA replicase ribozyme to define "self" from "nonself," an important development for the avoidance of replicative parasites. Moreover, the clamp-like mechanism of this polymerase could eventually enable strand invasion, a critical requirement for replication in the early evolution of life.
Collapse
Affiliation(s)
- Razvan Cojocaru
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| |
Collapse
|
6
|
Gade CR, Sharma NK. Synthesis and biochemical evaluation of Aminopropanolyl-Thymine tri-Phosphate ( ap-TTP). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:730-743. [PMID: 31722606 DOI: 10.1080/15257770.2019.1688831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Deoxyribonucleoside triphosphates (dNTPs) are building blocks for the biosynthesis of DNA. Various modified dNTPs' analogs have synthesized by structural changes of nucleoside's susgar and nucleobases and employed for synthesis of modified DNA. A very few modified dNTPs have prepared from non-sugar nucleoside analogs. This report describes the synthesis of acyclic nucleoside triphosphate (NTP) analog from amino acid L-Serine as aminopropanolyl-thymine triphosphate (ap-TTP) and demonstrate its biochemical evaluation as enzymatic incorporation of ap-TTP into DNA with DNA polymerases with primer extension methods. Alanyl peptide nucleicacids (Ala-PNA) are the analogs of DNA which contains alanyl backbone. Aminopropanolyl - analogs are derivatives of alanyl back bone. Ap-TTP analog is nucleoside triphosphate analog derived from Ala-PNA. Importantly, this report also sheds light on the crystal packing arrangement of alaninyl thymine ester derivative in solid-state and reveals the formation of self-duplex assembly in anti-parallel fashion via reverse Watson-Crick hydrogen bonding and π-π interactions. Hence, ap-TTP is a useful analog which also generates the free amine functional group at the terminal of DNA oligonucleotide after incorporation.
Collapse
Affiliation(s)
- Chandrasekhar Reddy Gade
- National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Khurda, Odisha, India.,HBNI-Mumbai, Mumbai, India.,Indian Institute of Science Education and Research, Karakambadi Rd, Opp Sree Rama Engineering College, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Khurda, Odisha, India.,HBNI-Mumbai, Mumbai, India
| |
Collapse
|
7
|
Green MR, Sambrook J. Polymerase Chain Reaction. Cold Spring Harb Protoc 2019; 2019:2019/6/pdb.top095109. [PMID: 31160389 DOI: 10.1101/pdb.top095109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The polymerase chain reaction (PCR) underlies almost all of modern molecular cloning. Using PCR, a defined target sequence that occurs once within a DNA of high complexity and large size-an entire mammalian genome, for example-can be rapidly and selectively amplified in a quasi-exponential chain reaction that generates millions of copies. The reaction is simple to set up, cheap, and undemanding, the only requirement being some knowledge of the nucleotide sequences of the target. In addition to its simplicity, PCR is robust, speedy, flexible, and sensitive.
Collapse
|
8
|
König S, Yang Z, Wandall HH, Mussolino C, Bennett EP. Fast and Quantitative Identification of Ex Vivo Precise Genome Targeting-Induced Indel Events by IDAA. Methods Mol Biol 2019; 1961:45-66. [PMID: 30912039 DOI: 10.1007/978-1-4939-9170-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recent developments in gene targeting methodologies such as ZFNs, TALENs, and CRISPR/Cas9 have revolutionized approaches for gene modifications in cells, tissues, and whole animals showing great promise for translational applications. With regard to CRISPR/Cas9, a variety of repurposed systems have been developed to achieve gene knock-out, base editing, targeted knock-in, gene activation/repression, epigenetic modulation, and locus-specific labeling. A functional communality of all CRISPR/Cas9 applications is the gRNA-dependent targeting specificity of the Cas9/gRNA complex that, for gene knock-out (KO) purposes, has been shown to dictate the indel formation potential. Therefore, the objective of a CRISPR/Cas9 KO set up is to identify gRNA designs that enable maximum out-of-frame insertion and/or deletion (indel) formation and thus, gRNA design becomes a proxy for optimal functionality of CRISPR/Cas9 KO and repurposed systems. To this end, validation of gRNA functionality depends on efficient, accurate, and sensitive identification of indels induced by a given gRNA design. For in vitro indel profiling the most commonly used methods are based on amplicon size discrimination or sequencing. Indel detection by amplicon analysis (IDAA™) is an alternative sensitive, fast, and cost-efficient approach ideally suited for profiling of indels induced by Cas9/gRNA with similar sensitivity, specificity, and resolution, down to single base discrimination, as the preferred next-generation sequencing-based indel profiling methodologies. Here we provide a protocol that is based on complexed Cas9/gRNA RNPs delivered to primary peripheral blood mononuclear cells (PBMCs) isolated from healthy individuals followed by quantitative IDAA indel profiling. Importantly, the protocol described benefits from a short "sample-to-data" turnaround time of less than 5 h. Thus, this protocol describes a methodology that provides a suitable and effective solution to validate and quantify the extent of ex vivo CRISPR/Cas9 targeting in primary cells.
Collapse
Affiliation(s)
- Saskia König
- Medical Center-University of Freiburg, Institute for Transfusion Medicine and Gene Therapy and Center for Chronic Immunodeficiency at Center for Translational Cell Research (ZTZ), Freiburg, Germany
| | - Zhang Yang
- Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Hans Heugh Wandall
- Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claudio Mussolino
- Medical Center-University of Freiburg, Institute for Transfusion Medicine and Gene Therapy and Center for Chronic Immunodeficiency at Center for Translational Cell Research (ZTZ), Freiburg, Germany.
| | - Eric Paul Bennett
- Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), Department of Odontology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Kolganova NA, Vasiliskov VA, Kuznetsova VE, Shershov VE, Lapa SA, Guseinov TO, Spitsyn MA, Timofeev EN, Chudinov AV. Factors Affecting the Tailing of Blunt End DNA with Fluorescent Pyrimidine dNTPs. Mol Biotechnol 2018; 60:879-886. [PMID: 30244435 DOI: 10.1007/s12033-018-0124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The transferase activity of non-proofreading DNA polymerases is a well-known phenomenon that has been utilized in cloning and sequencing applications. The non-templated addition of modified nucleotides at DNA blunt ends is a potentially useful feature of DNA polymerases that can be used for selective transformation of DNA 3' ends. In this paper, we characterized the tailing reaction at perfectly matched and mismatched duplex ends with Cy3- and Cy5-modified pyrimidine nucleotides. It was shown that the best DNA tailing substrate does not have a perfect Watson-Crick base pair at the end. Mismatched duplexes with a 3' dC were the most efficient in the Taq DNA polymerase-catalysed tailing reaction with a Cy5-modified dUTP. We further demonstrated that the arrangement of the dye residue relative to the nucleobase notably affects the outcome of the tailing reaction. A comparative study of labelled deoxycytidine and deoxyuridine nucleotides showed higher efficiency for dUTP derivatives. The non-templated addition of modified nucleotides by Taq polymerase at a duplex blunt end was generally complicated by the pyrophosphorolysis and 5' exonuclease activity of the enzyme.
Collapse
Affiliation(s)
- Natalia A Kolganova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Vadim A Vasiliskov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Viktoriya E Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Valeriy E Shershov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Sergey A Lapa
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Timur O Guseinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Maksim A Spitsyn
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| | - Edward N Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991.
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow, Russia, 119991
| |
Collapse
|
10
|
Zhang A, Li S, Apone L, Sun X, Chen L, Ettwiller LM, Langhorst BW, Noren CJ, Xu MQ. Solid-phase enzyme catalysis of DNA end repair and 3' A-tailing reduces GC-bias in next-generation sequencing of human genomic DNA. Sci Rep 2018; 8:15887. [PMID: 30367148 PMCID: PMC6203771 DOI: 10.1038/s41598-018-34079-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/06/2018] [Indexed: 01/28/2023] Open
Abstract
The use of next-generation sequencing (NGS) has been instrumental in advancing biological research and clinical diagnostics. To fully utilize the power of NGS, complete, uniform coverage of the entire genome is required. In this study, we identified the primary sources of bias observed in sequence coverage across AT-rich regions of the human genome with existing amplification-free DNA library preparation methods. We have found evidence that a major source of bias is the inefficient processing of AT-rich DNA in end repair and 3' A-tailing, causing under-representation of extremely AT-rich regions. We have employed immobilized DNA modifying enzymes to catalyze end repair and 3' A-tailing reactions, to notably reduce the GC bias observed with existing library construction methods.
Collapse
Affiliation(s)
- Aihua Zhang
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Shaohua Li
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Lynne Apone
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Xiaoli Sun
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Lixin Chen
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | | | | | | | - Ming-Qun Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
11
|
Zasedateleva OA, Vasiliskov VA, Surzhikov SA, Kuznetsova VE, Shershov VE, Guseinov TO, Smirnov IP, Yurasov RA, Spitsyn MA, Chudinov AV. dUTPs conjugated with zwitterionic Cy3 or Cy5 fluorophore analogues are effective substrates for DNA amplification and labelling by Taq polymerase. Nucleic Acids Res 2018; 46:e73. [PMID: 29648660 PMCID: PMC6158613 DOI: 10.1093/nar/gky247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 03/13/2018] [Accepted: 03/24/2018] [Indexed: 02/05/2023] Open
Abstract
To develop structural modifications of dNTPs that are compatible with Taq DNA polymerase activity, we synthesized eight dUTP derivatives conjugated with Cy3 or Cy5 dye analogues that differed in charge and charge distribution throughout the fluorophore. These dUTP derivatives and commercial Cy3- and Cy5-dUTP were studied in Taq polymerase-dependent polymerase chain reactions (PCRs) and in primer extension reactions using model templates containing one, two and three adjacent adenine nucleotides. The relative amounts of amplified DNA and the kinetic parameters Km and Vmax characterizing the incorporation of labelled dUMPs have been estimated using fluorescence measurements and analysed. The dUTPs labelled with electroneutral zwitterionic analogues of Cy3 or Cy5 fluorophores were used by Taq polymerase approximately one order of magnitude more effectively than the dUTPs labelled with negatively charged analogues of Cy3 or Cy5. The nucleotidyl transferase activity of Taq polymerase was also observed and resulted in the addition of dUMPs labelled with electroneutral or positively charged fluorophores to the 3' ends of DNA. The introduction of mutually compensating charges into fluorophores or other functional groups conjugated to dNTPs can be considered a basis for the creation of PCR-compatible modified nucleoside triphosphates.
Collapse
Affiliation(s)
- Olga A Zasedateleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | - Vadim A Vasiliskov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | - Sergey A Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | - Viktoriya E Kuznetsova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | - Valeriy E Shershov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | - Timur O Guseinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | - Igor P Smirnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | - Roman A Yurasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | - Maksim A Spitsyn
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| | - Alexander V Chudinov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russia
| |
Collapse
|
12
|
Fuse T, Katsumata K, Morohoshi K, Mukai Y, Ichikawa Y, Kurumizaka H, Yanagida A, Urano T, Kato H, Shimizu M. Parallel mapping with site-directed hydroxyl radicals and micrococcal nuclease reveals structural features of positioned nucleosomes in vivo. PLoS One 2017; 12:e0186974. [PMID: 29073207 PMCID: PMC5658119 DOI: 10.1371/journal.pone.0186974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
Micrococcal nuclease (MNase) has been widely used for analyses of nucleosome locations in many organisms. However, due to its sequence preference, the interpretations of the positions and occupancies of nucleosomes using MNase have remained controversial. Next-generation sequencing (NGS) has also been utilized for analyses of MNase-digests, but some technical biases are commonly present in the NGS experiments. Here, we established a gel-based method to map nucleosome positions in Saccharomyces cerevisiae, using isolated nuclei as the substrate for the histone H4 S47C-site-directed chemical cleavage in parallel with MNase digestion. The parallel mapping allowed us to compare the chemically and enzymatically cleaved sites by indirect end-labeling and primer extension mapping, and thus we could determine the nucleosome positions and the sizes of the nucleosome-free regions (or nucleosome-depleted regions) more accurately, as compared to nucleosome mapping by MNase alone. The analysis also revealed that the structural features of the nucleosomes flanked by the nucleosome-free region were different from those within regularly arrayed nucleosomes, showing that the structures and dynamics of individual nucleosomes strongly depend on their locations. Moreover, we demonstrated that the parallel mapping results were generally consistent with the previous genome-wide chemical mapping and MNase-Seq results. Thus, the gel-based parallel mapping will be useful for the analysis of a specific locus under various conditions.
Collapse
Affiliation(s)
- Tomohiro Fuse
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Koji Katsumata
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Koya Morohoshi
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
| | - Yukio Mukai
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuichi Ichikawa
- Graduate School of Advanced Science and Engineering/RISE/IMSB, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE/IMSB, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Mitsuhiro Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Program in Chemistry and Life Science, School of Science and Engineering, Meisei University, Hino, Tokyo, Japan
- * E-mail:
| |
Collapse
|
13
|
Mabizela-Mokoena NB, Limani SW, Ncube I, Piater LA, Litthauer D, Nthangeni MB. Genetic determinant of Bacillus pumilus lipase lethality and its application as positive selection cloning vector in Escherichia coli. Protein Expr Purif 2017. [DOI: 10.1016/j.pep.2017.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
TfoI produced by Tepidimonas fonticaldi PL17, a moderate thermophilic bacterium, is an isoschizomer of MseI. Extremophiles 2017; 21:523-535. [DOI: 10.1007/s00792-017-0922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
|
15
|
QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLoS One 2017; 12:e0175146. [PMID: 28406948 PMCID: PMC5390991 DOI: 10.1371/journal.pone.0175146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Incorporation of synthetic degenerate oligonucleotides into plasmids for building highly diverse genetic libraries requires efficient and quantitative DNA manipulation. We present a fast and seamless method for generating libraries of PCR-synthesized plasmids designed with a degenerate sequence and short overlapping ends. Our method called QuickLib should find many applications in synthetic biology; as an example, we easily prepared genetic libraries of Escherichia coli expressing billions of different backbone cyclic peptides.
Collapse
|
16
|
Perez-Lara E, Semagn K, Chen H, Iqbal M, N’Diaye A, Kamran A, Navabi A, Pozniak C, Spaner D. QTLs Associated with Agronomic Traits in the Cutler × AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers. PLoS One 2016; 11:e0160623. [PMID: 27513976 PMCID: PMC4981373 DOI: 10.1371/journal.pone.0160623] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/24/2016] [Indexed: 11/30/2022] Open
Abstract
We recently reported three earliness per se quantitative trait loci (QTL) associated with flowering and maturity in a recombinant inbred lines (RILs) population derived from a cross between the spring wheat (Triticum aestivum L.) cultivars ‘Cutler’ and ‘AC Barrie’ using 488 microsatellite and diversity arrays technology (DArT) markers. Here, we present QTLs associated with flowering time, maturity, plant height, and grain yield using high density single nucleotide polymorphic (SNP) markers in the same population. A mapping population of 158 RILs and the two parents were evaluated at five environments for flowering, maturity, plant height and grain yield under field conditions, at two greenhouse environments for flowering, and genotyped with a subset of 1809 SNPs out of the 90K SNP array and 2 functional markers (Ppd-D1 and Rht-D1). Using composite interval mapping on the combined phenotype data across all environments, we identified a total of 19 QTLs associated with flowering time in greenhouse (5), and field (6) conditions, maturity (5), grain yield (2) and plant height (1). We mapped these QTLs on 8 chromosomes and they individually explained between 6.3 and 37.8% of the phenotypic variation. Four of the 19 QTLs were associated with multiple traits, including a QTL on 2D associated with flowering, maturity and grain yield; two QTLs on 4A and 7A associated with flowering and maturity, and another QTL on 4D associated with maturity and plant height. However, only the QTLs on both 2D and 4D had major effects, and they mapped adjacent to well-known photoperiod response Ppd-D1 and height reducing Rht-D1 genes, respectively. The QTL on 2D reduced flowering and maturity time up to 5 days with a yield penalty of 436 kg ha-1, while the QTL on 4D reduced plant height by 13 cm, but increased maturity by 2 days. The high density SNPs allowed us to map eight moderate effect, two major effect, and nine minor effect QTLs that were not identified in our previous study using microsatellite and DArT markers. Results from this study provide additional information to wheat researchers developing early maturing and short stature spring wheat cultivars.
Collapse
Affiliation(s)
- Enid Perez-Lara
- Department of Agricultural, Food and Nutritional Science, 4–10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Kassa Semagn
- Department of Agricultural, Food and Nutritional Science, 4–10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Hua Chen
- Department of Agricultural, Food and Nutritional Science, 4–10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Muhammad Iqbal
- Department of Agricultural, Food and Nutritional Science, 4–10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Amidou N’Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Atif Kamran
- Seed Centre, Department of Botany, The University of Punjab, New Campus, Lahore, 54590, Pakistan
| | - Alireza Navabi
- Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Dean Spaner
- Department of Agricultural, Food and Nutritional Science, 4–10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
- * E-mail:
| |
Collapse
|
17
|
Nelissen FHT, Tessari M, Wijmenga SS, Heus HA. Stable isotope labeling methods for DNA. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 96:89-108. [PMID: 27573183 DOI: 10.1016/j.pnmrs.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis.
Collapse
Affiliation(s)
- Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Sybren S Wijmenga
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Xie B, Yang W, Ouyang Y, Chen L, Jiang H, Liao Y, Liao DJ. Two RNAs or DNAs May Artificially Fuse Together at a Short Homologous Sequence (SHS) during Reverse Transcription or Polymerase Chain Reactions, and Thus Reporting an SHS-Containing Chimeric RNA Requires Extra Caution. PLoS One 2016; 11:e0154855. [PMID: 27148738 PMCID: PMC4858267 DOI: 10.1371/journal.pone.0154855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/20/2016] [Indexed: 11/18/2022] Open
Abstract
Tens of thousands of chimeric RNAs have been reported. Most of them contain a short homologous sequence (SHS) at the joining site of the two partner genes but are not associated with a fusion gene. We hypothesize that many of these chimeras may be technical artifacts derived from SHS-caused mis-priming in reverse transcription (RT) or polymerase chain reactions (PCR). We cloned six chimeric complementary DNAs (cDNAs) formed by human mitochondrial (mt) 16S rRNA sequences at an SHS, which were similar to several expression sequence tags (ESTs).These chimeras, which could not be detected with cDNA protection assay, were likely formed because some regions of the 16S rRNA are reversely complementary to another region to form an SHS, which allows the downstream sequence to loop back and anneal at the SHS to prime the synthesis of its complementary strand, yielding a palindromic sequence that can form a hairpin-like structure.We identified a 16S rRNA that ended at the 4th nucleotide(nt) of the mt-tRNA-leu was dominant and thus should be the wild type. We also cloned a mouse Bcl2-Nek9 chimeric cDNA that contained a 5-nt unmatchable sequence between the two partners, contained two copies of the reverse primer in the same direction but did not contain the forward primer, making it unclear how this Bcl2-Nek9 was formed and amplified. Moreover, a cDNA was amplified because one primer has 4 nts matched to the template, suggesting that there may be many more artificial cDNAs than we have realized, because the nuclear and mt genomes have many more 4-nt than 5-nt or longer homologues. Altogether, the chimeric cDNAs we cloned are good examples suggesting that many cDNAs may be artifacts due to SHS-caused mis-priming and thus greater caution should be taken when new sequence is obtained from a technique involving DNA polymerization.
Collapse
Affiliation(s)
- Bingkun Xie
- Guangxi Institute of Animal Sciences, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, Guangxi, 530001, P.R. China
- * E-mail: (BKX); (HSJ); (DJL)
| | - Wei Yang
- Guangxi Veterinary Research Institute, Nanning, Guangxi, P.R. China
| | - Yongchang Ouyang
- Hormel Institute, University of Minnesota, Austin, Minnesota, 55912, United States of America
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, Minnesota, 55912, United States of America
| | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P.R. China
- * E-mail: (BKX); (HSJ); (DJL)
| | - Yuying Liao
- Guangxi Institute of Animal Sciences, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, Guangxi, 530001, P.R. China
| | - D. Joshua Liao
- Department of Pathology, Guizhou Medical University Hospital, Guizhou, Guiyang, 550004, P.R. China
- * E-mail: (BKX); (HSJ); (DJL)
| |
Collapse
|
19
|
Perez-Lara E, Semagn K, Chen H, Iqbal M, N'Diaye A, Kamran A, Navabi A, Pozniak C, Spaner D. QTLs Associated with Agronomic Traits in the Cutler × AC Barrie Spring Wheat Mapping Population Using Single Nucleotide Polymorphic Markers. PLoS One 2016. [PMID: 27513976 DOI: 10.1371/journalpone0160623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
We recently reported three earliness per se quantitative trait loci (QTL) associated with flowering and maturity in a recombinant inbred lines (RILs) population derived from a cross between the spring wheat (Triticum aestivum L.) cultivars 'Cutler' and 'AC Barrie' using 488 microsatellite and diversity arrays technology (DArT) markers. Here, we present QTLs associated with flowering time, maturity, plant height, and grain yield using high density single nucleotide polymorphic (SNP) markers in the same population. A mapping population of 158 RILs and the two parents were evaluated at five environments for flowering, maturity, plant height and grain yield under field conditions, at two greenhouse environments for flowering, and genotyped with a subset of 1809 SNPs out of the 90K SNP array and 2 functional markers (Ppd-D1 and Rht-D1). Using composite interval mapping on the combined phenotype data across all environments, we identified a total of 19 QTLs associated with flowering time in greenhouse (5), and field (6) conditions, maturity (5), grain yield (2) and plant height (1). We mapped these QTLs on 8 chromosomes and they individually explained between 6.3 and 37.8% of the phenotypic variation. Four of the 19 QTLs were associated with multiple traits, including a QTL on 2D associated with flowering, maturity and grain yield; two QTLs on 4A and 7A associated with flowering and maturity, and another QTL on 4D associated with maturity and plant height. However, only the QTLs on both 2D and 4D had major effects, and they mapped adjacent to well-known photoperiod response Ppd-D1 and height reducing Rht-D1 genes, respectively. The QTL on 2D reduced flowering and maturity time up to 5 days with a yield penalty of 436 kg ha-1, while the QTL on 4D reduced plant height by 13 cm, but increased maturity by 2 days. The high density SNPs allowed us to map eight moderate effect, two major effect, and nine minor effect QTLs that were not identified in our previous study using microsatellite and DArT markers. Results from this study provide additional information to wheat researchers developing early maturing and short stature spring wheat cultivars.
Collapse
Affiliation(s)
- Enid Perez-Lara
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Kassa Semagn
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Hua Chen
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Muhammad Iqbal
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Amidou N'Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Atif Kamran
- Seed Centre, Department of Botany, The University of Punjab, New Campus, Lahore, 54590, Pakistan
| | - Alireza Navabi
- Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Dean Spaner
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
20
|
Güixens-Gallardo P, Hocek M, Perlíková P. Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorg Med Chem Lett 2015; 26:288-291. [PMID: 26707394 DOI: 10.1016/j.bmcl.2015.12.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
A simple and elegant method for inhibition of non-templated nucleotide addition by DNA polymerases and for following DNA 3'-heterogeneity in enzymatic DNA synthesis by primer extension (PEX) is described. When template bearing ortho-twisted intercalating nucleic acid (ortho-TINA) at the 5'-end is used, non-templated nucleotide addition is reduced in both the A- and B-family DNA polymerases (KOD XL, KOD (exo-), Bst 2.0, Therminator, Deep Vent (exo-) and Taq). Formation of a single oligonucleotide product was observed with ortho-TINA modified template and KOD XL, KOD (exo-), Bst 2.0, Deep Vent (exo-) and Taq DNA polymerases. This approach can be applied to the synthesis of both unmodified and base-modified oligonucleotides.
Collapse
Affiliation(s)
- Pedro Güixens-Gallardo
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic.
| |
Collapse
|
21
|
Stevenson J, Brown AJ. Universal CG cloning of polymerase chain reaction products. Anal Biochem 2014; 471:80-2. [PMID: 25447497 DOI: 10.1016/j.ab.2014.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022]
Abstract
Single-insert cloning of DNA fragments without restriction enzymes has traditionally been achieved using TA cloning, with annealing of a polymerase chain reaction (PCR) fragment containing a single overhanging 3' A to a plasmid vector containing a 3' T. In this article, we show that the analogous "CG cloning" is faster and far more efficient, using AhdI to generate a C-vector. For an afternoon ligation, CG cloning achieved double the cloning efficiency and more than 4-fold the number of transformants compared with TA cloning. However, blunt-end ligation was markedly more efficient than both. CG cloning could prove to be extremely useful for single-copy high-throughput cloning.
Collapse
Affiliation(s)
- Julian Stevenson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Department of Nutrition and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
22
|
Construction of a lentiviral T/A vector for direct analysis of PCR-amplified promoters. Mol Biol Rep 2014; 41:7651-8. [PMID: 25091945 DOI: 10.1007/s11033-014-3656-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/27/2014] [Indexed: 10/24/2022]
Abstract
The promoter plays an important role in the regulation of gene expression. To analyze a promoter's activity, we developed a novel lentiviral T/A vector that contains two reporter genes, a luciferase (Luc2) gene and a green fluorescent protein (Venus) gene, that are linked via an internal ribosome entry site (IRES2). To test the performance of this vector, phosphoglycerate kinase-1 (PGK) and elongation factor-1α (EF1α) promoters were amplified by PCR and inserted into this lentiviral T/A vector using T4 DNA ligase, yielding two promoter-reporter vectors: pLent-T-PGK and pLent-T-EF1α. When these vectors were transfected into 293T cells, we observed a higher level of Venus expression under a fluorescence microscopy in the case of pLent-T-EF1α as compared to pLent-T-PGK. The results of the luciferase reporter assay showed that the ratio of the promoter activities of EF1α and PGK was approximately 9:1. The two promoter-reporter vectors were also packaged as lentiviral particles to conduct promoter activity assay in cultured cells. The ratio of the promoter activities of EF1α and PGK was 4.23:1 when they were infected into 293T cells at a multiplicity of infection of 1. This value is comparable to that of a parallel experiment using the commercial luciferase reporter vector pGL4.10 with an activity ratio of 5.99:1 for EF1α and PGK. These results indicate that lentiviral T/A vector will be a useful tool for analysis of promoter activity and specificity.
Collapse
|
23
|
Zhao G, Li J, Hu T, Wei H, Guan Y. Realizing directional cloning using sticky ends produced by 3'-5' exonuclease of Klenow fragment. J Biosci 2014; 38:857-66. [PMID: 24296888 DOI: 10.1007/s12038-013-9389-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Klenow fragment (KF) has been used to make the blunt end as a tool enzyme. Its 5'-3' polymerase activity can extend the 5' overhanging sticky end to the blunt end, and 3'-5' exonuclease activity can cleave the 3' overhanging sticky end to the blunt end. The blunt end is useful for cloning. Here, we for the first time determined that a sticky end can be made by using the 3'-5' exonuclease activity of KF. We found that KF can cleave the blunt end into certain sticky ends under controlled conditions. We optimized enzyme cleavage conditions, and characterized the cleaved sticky ends to be mainly 2 nt 5' overhang. By using these sticky ends, we realized ligation reaction in vitro, and accomplished cloning short oligonucleotides directionally with high cloning efficiency. In some cases, this method can provide sticky end fragments in large scale for subsequent convenient cloning at low cost.
Collapse
Affiliation(s)
- Guojie Zhao
- Department of Biochemistry and Molecular Biology, Preclinical Medicine College, China Medical University, Shenyang, Liaoning Province, P.R.China
| | | | | | | | | |
Collapse
|
24
|
Buechner CN, Tessmer I. DNA substrate preparation for atomic force microscopy studies of protein-DNA interactions. J Mol Recognit 2013; 26:605-17. [DOI: 10.1002/jmr.2311] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Claudia N. Buechner
- Rudolf Virchow Center for Experimental Biomedicine; University of Wuerzburg; Josef Schneider Str. 2 97080 Wuerzburg Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine; University of Wuerzburg; Josef Schneider Str. 2 97080 Wuerzburg Germany
| |
Collapse
|
25
|
Chiou CS, Izumiya H, Thong KL, Larsson JT, Liang SY, Kim J, Koh XP. A simple approach to obtain comparable Shigella sonnei MLVA results across laboratories. Int J Med Microbiol 2013; 303:678-84. [PMID: 24168955 DOI: 10.1016/j.ijmm.2013.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/17/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022] Open
Abstract
Multilocus variable-number tandem repeat analysis (MLVA) is a promising subtyping tool to complement pulsed-field gel electrophoresis for discriminating closely related strains of some monomorphic organisms, including Shigella sonnei, which is one of the major foodborne pathogens. However, MLVA results are usually difficult to compare directly between laboratories, impeding the application of MLVA as a subtyping tool for disease surveillance and investigation of common outbreaks across regions or countries. It has long been a big challenge in seeking an approach that can be implemented to obtain comparable MLVA results across laboratories. By implementing a panel of calibration strains in each participating laboratory for data normalization, the MLVA results of 20 test strains were comparable even though some analytical conditions were different among the laboratories. This approach is simple, protocol independent, and easy to implement in every laboratory, and a small calibration set is sufficient to generate mathematical equations for accurate copy number conversion.
Collapse
Affiliation(s)
- Chien-Shun Chiou
- Center of Research and Diagnostics, Centers for Disease Control, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Novel functional Renilla luciferase mutant provides long-term serum stability and high luminescence activity. Protein Expr Purif 2013; 91:215-20. [DOI: 10.1016/j.pep.2013.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/15/2013] [Accepted: 08/02/2013] [Indexed: 11/22/2022]
|
27
|
Jang MY, Song XP, Froeyen M, Marlière P, Lescrinier E, Rozenski J, Herdewijn P. A synthetic substrate of DNA polymerase deviating from the bases, sugar, and leaving group of canonical deoxynucleoside triphosphates. ACTA ACUST UNITED AC 2013; 20:416-23. [PMID: 23521798 DOI: 10.1016/j.chembiol.2013.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/15/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
The selection of artificial nucleic acids to be used for synthetic biology purposes is based on their structural and biochemical orthogonality to the natural system. We describe the example of a nucleotide mimic that functions as a substrate for polymerases and in which the carbohydrate moiety as well as the base moiety and the leaving group are different from that of the natural building blocks. The nucleotides themselves have two anomeric centers, and different leaving group properties of substituents at both anomeric centers need to be exploited to perform selective glycosylation reactions for their synthesis. In addition, the reversibility of the polymerase reaction at the level of the template has been demonstrated when pyrophosphate functions as leaving group and not with the alternative leaving groups.
Collapse
Affiliation(s)
- Mi-Yeon Jang
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, 3000, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
Schumm JW, Gutierrez-Mateo C, Tan E, Selden R. A 27-locus STR assay to meet all United States and European law enforcement agency standards. J Forensic Sci 2013; 58:1584-92. [PMID: 23822765 DOI: 10.1111/1556-4029.12214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 08/15/2012] [Accepted: 08/19/2012] [Indexed: 11/27/2022]
Abstract
Different national and international agencies have selected specific STR sets for forensic database use. To enhance database comparison across national and international borders, a 27-locus multiplex system was developed comprising all 15 STR loci of the European standard set, the current 13 STR loci of the CODIS core, the proposed 22 STR loci of the expanded CODIS core, 4 additional commonly used STR loci, and the amelogenin locus. Development required iterative primer design to resolve primer-related artifacts, amplicon sizing, and locus-to-locus balance issues. The 19.5-min assay incorporated newly developed six-dye chemistry analyzed using a novel microfluidic electrophoresis instrument capable of simultaneous detection and discrimination of 8 or more fluorescent dyes. The 27-locus multiplex offers the potential for a new international STR standard permitting laboratories in any jurisdiction to use a single reaction to determine profiles for loci they typically generate plus an expanded common STR profiling set of global interest.
Collapse
|
29
|
Le Y, Chen H, Zagursky R, Wu JHD, Shao W. Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. DNA Res 2013; 20:375-82. [PMID: 23633530 PMCID: PMC3738163 DOI: 10.1093/dnares/dst016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymerase chain reaction (PCR) is a powerful method to produce linear DNA fragments. Here we describe the Tma thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. In this thermostable DNA ligase-mediated whole-plasmid amplification method, the resultant DNA nick between the 5′ end of the PCR primer and the extended newly synthesized DNA 3′ end of each PCR cycle is ligated by Tma DNA ligase, resulting in circular plasmid DNA product that can be directly transformed. The template plasmid DNA is eliminated by ‘selection marker swapping’ upon transformation. When performed under an error-prone condition with Taq DNA polymerase, PPCP allows one-step construction of mutagenesis libraries based on in situ error-prone PCR so that random mutations are introduced into the target gene without altering the expression vector plasmid. A significant difference between PPCP and previously published methods is that PPCP allows exponential amplification of circular DNA. We used this method to create random mutagenesis libraries of a xylanase gene and two cellulase genes. Screening of these libraries resulted in mutant proteins with desired properties, demonstrating the usefulness of in situ error-prone PPCP for creating random mutagenesis libraries for directed evolution.
Collapse
Affiliation(s)
- Yilin Le
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | | | | | | | | |
Collapse
|
30
|
Nguyen TTM, Lakhan SE, Finette BA. Development of a cost-effective high-throughput process of microsatellite analysis involving miniaturized multiplexed PCR amplification and automated allele identification. Hum Genomics 2013; 7:6. [PMID: 23496942 PMCID: PMC3600708 DOI: 10.1186/1479-7364-7-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/14/2013] [Indexed: 12/11/2022] Open
Abstract
Background Microsatellites are nucleotide sequences of tandem repeats occurring throughout the genome, which have been widely used in genetic linkage analysis, studies of loss of heterozygosity, determination of lineage and clonality, and the measurement of genome instability or the emergence of drug resistance reflective of mismatch repair deficiency. Such analyses may involve the parallel evaluation of many microsatellite loci, which are often limited by sample DNA, are labor intensive, and require large data processing. Results To overcome these challenges, we developed a cost-effective high-throughput approach of microsatellite analysis, in which the amplifications of microsatellites are performed in miniaturized, multiplexed polymerase chain reaction (PCR) adaptable to 96 or 384 well plates, and accurate automated allele identification has been optimized with a collective reference dataset of 5,508 alleles using the GeneMapper software. Conclusions In this investigation, we have documented our experience with the optimization of multiplex PCR conditions and automated allele identification, and have generated a unique body of data that provide a starting point for a cost-effective, high-throughput process of microsatellite analysis using the studied markers.
Collapse
Affiliation(s)
- Truc T M Nguyen
- Department of Pediatrics, Vermont Cancer Center, University of Vermont, Burlington, VT 05401, USA
| | | | | |
Collapse
|
31
|
Bessa D, Pereira F, Moreira R, Johansson B, Queirós O. Improved gap repair cloning in yeast: treatment of the gapped vector with Taq DNA polymerase avoids vector self-ligation. Yeast 2012; 29:419-23. [PMID: 23018625 DOI: 10.1002/yea.2919] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 08/16/2012] [Indexed: 11/08/2022] Open
Abstract
Gap repair is a fast and efficient method for assembling recombinant DNA molecules in Saccharomyces cerevisiae. This method produces a circular DNA molecule by homologous recombination between two or more linear DNA fragments, one of which is typically a vector carrying replicative sequences and a selective marker. This technique avoids laborious and costly in vitro purification and ligation of DNA. The DNA repair machinery can also close and ligate the linear vector by mechanisms other than homologous recombination, resulting in an empty vector. The frequency of these unwanted events can be lowered by removing the 5'-phosphate groups using phosphatase, which is the standard method used for in vitro ligation. However, phosphatase treatment is less effective for gap repair cloning than for in vitro ligation, presumably due to the ability of the S. cerevisiae DNA repair machinery to efficiently repair the missing phosphate group to allow religation. We have developed a more efficient method to prevent vector religation, based on treatment of the vector fragment with Taq DNA polymerase and dATP. This procedure prevents vector recircularization almost completely, facilitating the screening for true recombinant clones.
Collapse
Affiliation(s)
- Daniela Bessa
- Centro de Investigação em Ciências da Saúde (CICS), Instituto Superior de Ciências da Saúde-Norte/CESPU, 4585-116 Gandra, PRD, Portugal
| | | | | | | | | |
Collapse
|
32
|
Gonzalez K, Faustoferri RC, Quivey RG. Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans. Mol Microbiol 2012; 85:361-77. [PMID: 22651851 DOI: 10.1111/j.1365-2958.2012.08116.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The oral pathogen, Streptococcus mutans, possesses inducible DNA repair defences for protection against pH fluctuations and production of reactive oxygen metabolites such as hydrogen peroxide (H(2) O(2) ), which are present in the oral cavity. DNA base excision repair (BER) has a critical role in genome maintenance by preventing the accumulation of mutations associated with environmental factors and normal products of cellular metabolism. In this study, we examined the consequences of compromising the DNA glycosylases (Fpg and MutY) and endonucleases (Smx and Smn) of the BER pathway and their relative role in adaptation and virulence. Enzymatic characterization of the BER system showed that it protects the organism against the effects of the highly mutagenic lesion, 7,8-dihydro-8-oxo-2'-deoxyguanine (8-oxo-dG). S. mutans strains lacking a functional Fpg, MutY or Smn showed elevated spontaneous mutation frequencies; and, these mutator phenotypes correlated with the ability of the strains to survive killing by acid and oxidative agents. In addition, in the Galleria mellonella virulence model, strains of S. mutans deficient in Fpg, MutY and Smn showed increased virulence as compared with the parent strain. Our results suggest that, for S. mutans, mutator phenotypes, due to loss of BER enzymes, may confer an advantage to virulence of the organism.
Collapse
Affiliation(s)
- Kaisha Gonzalez
- Department of Microbiology and Immunology Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
33
|
White TB, Lambowitz AM. The retrohoming of linear group II intron RNAs in Drosophila melanogaster occurs by both DNA ligase 4-dependent and -independent mechanisms. PLoS Genet 2012; 8:e1002534. [PMID: 22359518 PMCID: PMC3280974 DOI: 10.1371/journal.pgen.1002534] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/24/2011] [Indexed: 12/31/2022] Open
Abstract
Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3' end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase θ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and potential biotechnological applications.
Collapse
Affiliation(s)
- Travis B. White
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry and Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry and Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
34
|
Mutation of the NADH oxidase gene (nox) reveals an overlap of the oxygen- and acid-mediated stress responses in Streptococcus mutans. Appl Environ Microbiol 2011; 78:1215-27. [PMID: 22179247 DOI: 10.1128/aem.06890-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
NADH oxidase (Nox) is a flavin-containing enzyme used by Streptococcus mutans to reduce dissolved oxygen encountered during growth in the oral cavity. In this study, we characterized the role of the NADH oxidase in the oxidative and acid stress responses of S. mutans. A nox-defective mutant strain of S. mutans and its parental strain, the genomic type strain UA159, were exposed to various oxygen concentrations at pH values of 5 and 7 to better understand the adaptive mechanisms used by the organism to withstand environmental pressures. With the loss of nox, the activities of oxygen stress response enzymes such as superoxide dismutase and glutathione oxidoreductase were elevated compared to those in controls, resulting in a greater adaptation to oxygen stress. In contrast, the loss of nox led to a decreased ability to grow in a low-pH environment despite an increased resistance to severe acid challenge. Analysis of the membrane fatty acid composition revealed that for both the nox mutant and UA159 parent strain, growth in an oxygen-rich environment resulted in high proportions of unsaturated membrane fatty acids, independent of external pH. The data indicate that S. mutans membrane fatty acid composition is responsive to oxidative stress, as well as changes in environmental pH, as previously reported (E. M. Fozo and R. G. Quivey, Jr., Appl. Environ. Microbiol. 70:929-936, 2004). The heightened ability of the nox strain to survive acidic and oxidative environmental stress suggests a multifaceted response system that is partially dependent on oxygen metabolites.
Collapse
|
35
|
Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ. Current trends in microsatellite genotyping. Mol Ecol Resour 2011; 11:591-611. [PMID: 21565126 DOI: 10.1111/j.1755-0998.2011.03014.x] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microsatellites have been popular molecular markers ever since their advent in the late eighties. Despite growing competition from new genotyping and sequencing techniques, the use of these versatile and cost-effective markers continues to increase, boosted by successive technical advances. First, methods for multiplexing PCR have considerably improved over the last years, thereby decreasing genotyping costs and increasing throughput. Second, next-generation sequencing technologies allow the identification of large numbers of microsatellite loci at reduced cost in non-model species. As a consequence, more stringent selection of loci is possible, thereby further enhancing multiplex quality and efficiency. However, current practices are lagging behind. By surveying recently published population genetic studies relying on simple sequence repeats, we show that more than half of the studies lack appropriate quality controls and do not make use of multiplex PCR. To make the most of the latest technical developments, we outline the need for a well-established strategy including standardized high-throughput bench protocols and specific bioinformatic tools, from primer design to allele calling.
Collapse
Affiliation(s)
- E Guichoux
- INRA, UMR 1202 Biodiversity Genes & Communities, F-33610 Cestas, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Isolation of genomic insertion sites of proviruses using Splinkerette-PCR-based procedures. Methods Mol Biol 2011; 687:25-42. [PMID: 20967599 DOI: 10.1007/978-1-60761-944-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The availability of whole genomic sequences provides a great framework for biologists to address a broad range of scientific questions. However, functions of most mammalian genes remain obscure. The forward genetics strategy of insertional mutagenesis uses DNA mutagens such as retroviruses and transposable elements; this strategy represents a powerful approach to functional genomics. A variety of methods to uncover insertion sites have been described. This chapter details SplinkTA-PCR and SplinkBlunt-PCR, modified from splinkerette-PCR, for mapping chromosomally the insertion sites of a murine leukemia virus that causes leukemia in the BXH-2 strain of mice. These protocols are easy to use, reliable, and efficient.
Collapse
|
37
|
Miyazaki K. MEGAWHOP cloning: a method of creating random mutagenesis libraries via megaprimer PCR of whole plasmids. Methods Enzymol 2011; 498:399-406. [PMID: 21601687 DOI: 10.1016/b978-0-12-385120-8.00017-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
MEGAWHOP allows for the cloning of DNA fragments into a vector and is used for conventional restriction digestion/ligation-based procedures. In MEGAWHOP, the DNA fragment to be cloned is used as a set of complementary primers that replace a homologous region in a template vector through whole-plasmid PCR. After synthesis of a nicked circular plasmid, the mixture is treated with DpnI, a dam-methylated DNA-specific restriction enzyme, to digest the template plasmid. The DpnI-treated mixture is then introduced into competent Escherichia coli cells to yield plasmids carrying replaced insert fragments. Plasmids produced by the MEGAWHOP method are virtually free of contamination by species without any inserts or with multiple inserts, and also the parent. Because the fragment is usually long enough to not interfere with hybridization to the template, various types of fragments can be used with mutations at any site (either known or unknown, random, or specific). By using fragments having homologous sequences at the ends (e.g., adaptor sequence), MEGAWHOP can also be used to recombine nonhomologous sequences mediated by the adaptors, allowing rapid creation of novel constructs and chimeric genes.
Collapse
Affiliation(s)
- Kentaro Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| |
Collapse
|
38
|
Nawaz S, Khan FA, Tabasum S, Iqbal MZ, Saeed A. Genetic studies of "noble cane" for identification and exploitation of genetic markers. GENETICS AND MOLECULAR RESEARCH 2010; 9:1011-22. [PMID: 20533196 DOI: 10.4238/vol9-2gmr795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Forty genotypes (clones) of sugarcane, including elite lines, commercial cultivars of Saccharum officinarum and clones of S. barberi were fingerprinted with 50 SSR markers using a PCR-based marker assay. Nei's genetic distances for SSR data were determined and relationships between accessions were portrayed graphically in the form of a dendrogram. Genetic distance values ranging from 0.60 to 1.11 were observed among the 40 sugarcane accessions. The shortest genetic distance of 0.60 was seen between genotypes US-804 and US-130. These two genotypes differed from each other only in 10 bands, with 20 primers. The most dissimilar of the accessions were CP-77-400 and US-133, with a genetic distance of 1.11. SSR fingerprints can help sugarcane breeders to clarify the genetic pedigree of commercial sugarcane varieties and evaluate the efficiency of breeding methods.
Collapse
Affiliation(s)
- S Nawaz
- CABB, University of Agriculture, Faisalabad, Pakistan
| | | | | | | | | |
Collapse
|
39
|
One-Step Preparation of a TA-cloning Vector from a Specially Designed Parent Plasmid Containing a Dual lacZ Gene System. Mol Biotechnol 2009; 45:9-14. [DOI: 10.1007/s12033-009-9233-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Børsting C, Rockenbauer E, Morling N. Validation of a single nucleotide polymorphism (SNP) typing assay with 49 SNPs for forensic genetic testing in a laboratory accredited according to the ISO 17025 standard. Forensic Sci Int Genet 2009; 4:34-42. [DOI: 10.1016/j.fsigen.2009.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/03/2009] [Accepted: 04/09/2009] [Indexed: 11/25/2022]
|
41
|
Abstract
INTRODUCTIONCloning polymerase chain reaction (PCR)-amplified fragments into plasmids offers several advantages. Bacteria containing plasmids can be frozen, providing a ready supply of amplified material. Because of the variety of available plasmids with different promoters and selectable markers, cloning is also useful when mutations are to be introduced into the fragment before expression, or when sequence tags encoded in the vector are to be added in-frame. The ease with which nucleotide sequences can be added to the ends of PCR products has led to the development of a variety of cloning strategies. Because such cloning is typically the first step for generating a reagent that will be used to achieve a specific experimental goal, the efficiency of the cloning procedure is an important consideration: Cloning strategies should be simple in design and execution, requiring a minimum of enzymatic steps. Toward this goal, many companies market and continue to develop reagent kits that improve the ease and rapidity of cloning PCR products. This article focuses on some common and efficient cloning strategies, such as those that use DNA ligase or vaccinia virus topoisomerase I (TOPO), as well as techniques for in vitro and in vivo recombination of PCR products and vectors having homologous duplex ends. Also covered is the production of linear PCR products with defined 5′ and 3′ functional elements, which enable direct mammalian cell expression or in vitro transcription/translation. We present an overview of these strategies, their molecular basis, and their advantages and disadvantages for specific applications.
Collapse
|
42
|
Cairns MJ, Thomas T, Beltran CE, Tillett D. Primer fabrication using polymerase mediated oligonucleotide synthesis. BMC Genomics 2009; 10:344. [PMID: 19643029 PMCID: PMC2733156 DOI: 10.1186/1471-2164-10-344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/31/2009] [Indexed: 11/10/2022] Open
Abstract
Background Custom solid phase oligonucleotide synthesis is an important foundation supporting nearly every aspect of current genomics. In spite of the demand for oligonucleotide primers, their synthesis remains relatively expensive, time consuming and in many circumstances a wasteful process. In this methodology, described as polymerase mediated oligonucleotide synthesis (PMOS), a DNA polymerase is used to increase the hybridization affinity of one oligonucleotide by using another as a template for DNA synthesis. This self-assembly process provides an opportunity to instantly generate a very large number of useful gene-specific primers from a small library of simple precursors. PMOS can be used to generate primers directly in the end-users laboratory within the context of any DNA polymerase chemistry such as in PCR or sequencing reactions Results To demonstrate the utility of PMOS, a universal 768-member oligonucleotide library (UniSeq) was designed, fabricated and its performance optimized and evaluated in a range of PCR and DNA sequencing reactions. This methodology used to derive specific 11-mers, performed well in each of these activities and produced the desired amplification or sequencing analysis with results comparable to primers made by time consuming and expensive custom synthesis. Conclusion On the basis of these experiments, we believe this novel system would be broadly applicable and could in many circumstances replace the need for conventional oligonucleotide synthesis.
Collapse
Affiliation(s)
- Murray J Cairns
- Schizophrenia Research Institute, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
43
|
Ogata S, Takahashi M, Minakawa N, Matsuda A. Unnatural imidazopyridopyrimidine:naphthyridine base pairs: selective incorporation and extension reaction by Deep Vent (exo- ) DNA polymerase. Nucleic Acids Res 2009; 37:5602-9. [PMID: 19628664 PMCID: PMC2761277 DOI: 10.1093/nar/gkp611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In our previous communication we reported the enzymatic recognition of unnatural imidazopyridopyrimidine:naphthyridine (Im:Na) base pairs, i.e. ImO(N):NaN(O) and ImN(O):NaO(N), using the Klenow fragment exo(-) [KF (exo(-))]. We describe herein the successful results of (i) improved enzymatic recognition for ImN(O):NaO(N) base pairs and (ii) further primer extension reactions after the Im:Na base pairs by Deep Vent DNA polymerase exo(-) [Deep Vent (exo(-))]. Since KF (exo(-)) did not catalyze primer extension reactions after the Im:Na base pair, we carried out a screening of DNA polymerases to promote the primer extension reaction as well as to improve the selectivity of base pair recognition. As a result, a family B DNA polymerase, especially Deep Vent (exo(-)), seemed most promising for this purpose. In the ImO(N):NaN(O) base pair, incorporation of NaN(O)TP against ImO(N) in the template was preferable to that of the natural dNTPs, while incorporation of dATP as well as dGTP competed with that of ImO(N)TP when NaN(O) was placed in the template. Thus, the selectivity of base pair recognition by Deep Vent (exo(-)) was less than that by KF (exo(-)) in the case of the ImO(N):NaN(O) base pair. On the other hand, incorporation of NaO(N)TP against ImN(O) in the template and that of ImN(O)TP against NaO(N) were both quite selective. Thus, the selectivity of base pair recognition was improved by Deep Vent (exo(-)) in the ImN(O):NaO(N) base pair. Moreover, this enzyme catalyzed further primer extension reactions after the ImN(O):NaO(N) base pair to afford a faithful replicate, which was confirmed by MALDI-TOF mass spectrometry as well as the kinetics data for extension fidelity next to the ImN(O):NaO(N) base pair. The results presented in this paper revealed that the ImN(O):NaO(N) base pair might be a third base pair beyond the Watson-Crick base pairs.
Collapse
Affiliation(s)
- Shintaro Ogata
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
44
|
Fujii K, Miyashita K, Yamada Y, Eguchi T, Taguchi KI, Oda Y, Oda S, Yoshida MA, Tanaka M, Tsuneyoshi M. Simulation-based analyses reveal stable microsatellite sequences in human pancreatic cancer. ACTA ACUST UNITED AC 2009; 189:5-14. [PMID: 19167606 DOI: 10.1016/j.cancergencyto.2008.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 08/29/2008] [Accepted: 09/12/2008] [Indexed: 11/17/2022]
Abstract
Genomic analysis using tissue samples is an essential approach in cancer genetics. However, technical and biological limits exist in this approach. Microsatellite instability (MSI) is frequently observed in human tumors. MSI assays are now prevalent and regarded as commonplace. However, several technical problems have been left unsolved in the conventional assay technique. Indeed, the reported frequencies of MSI differ widely in each malignancy. An example is pancreatic cancer. Using a unique fluorescent technique, we found that MSI is extremely infrequent in this malignancy, despite the relatively high frequencies in some reports. In a series of simulations, we have demonstrated that the extremely low frequency was derived neither from less sensitive assays nor from a scarcity of cancer cells in tissue samples. Furthermore, analyzing laser-capture microdissection (LCM)-processed cell populations of a microsatellite-unstable colorectal cancer cell line, HCT116, we have shown that MSI can be detected only when comparing two cell populations that have grown independently to a sufficiently large size. When MSI is not detected in analyses using tissue samples, LCM is not advisable. We therefore did not extend our study to LCM of tissue specimens. We conclude that microsatellite sequence alterations are not detectable in human pancreatic cancer.
Collapse
Affiliation(s)
- Kei Fujii
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schlapschy M, Fogarasi M, Gruber H, Gresch O, Schäfer C, Aguib Y, Skerra A. Functional humanization of an anti-CD16 Fab fragment: obstacles of switching from murine {lambda} to human {lambda} or {kappa} light chains. Protein Eng Des Sel 2008; 22:175-88. [PMID: 19022801 DOI: 10.1093/protein/gzn066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An alphaCD30xalphaCD16 bispecific monoclonal antibody (MAb) was previously shown to induce remission of Hodgkin's disease refractory to chemo- and radiotherapy through specific activation of natural killer (NK) cells, but the appearance of a human anti-mouse antibody (HAMA) response prevented its use for prolonged therapy. Here, we describe an effort to humanize the Fab arm directed against FcgammaRIII (CD16), which-in context with the previously humanized CD30 Fab fragment-provides the necessary component for the design of a clinically useful bispecific antibody. Thus, the CDRs of the anti-CD16 mouse IgG1/lambda MAb A9 were grafted onto human Ig sequences. In a first attempt, the murine V(lambda) domain was converted to a humanized lambda chain, which led, however, to complete loss of antigen-binding activity and extremely poor folding efficiency upon periplasmic expression in Escherichia coli. Hence, its CDRs were transplanted onto a human kappa light chain in a second attempt, which resulted in a functional recombinant Fab fragment, yet with 100-fold decreased antigen affinity. In the next step, an in vitro affinity maturation was performed, wherein random mutations were introduced into the humanized V(H) and V(kappa) domains through error-prone PCR, followed by a filter sandwich colony screening assay for increased binding activity towards the bacterially produced extracellular CD16 fragment. Finally, an optimized Fab fragment was obtained, which carries nine additional amino acid exchanges and exhibits an affinity that is within a factor of 2 identical to that of the original murine A9 Fab fragment. The resulting humanized Fab fragment was fully functional with respect to binding of the recombinant CD16 antigen in enzyme-linked immunosorbent assay and in cytofluorimetry with CD16-positive granulocytes, thus providing a promising starting point for the preparation of a fully human bispecific antibody that permits the therapeutic recruitment of NK cells.
Collapse
Affiliation(s)
- Martin Schlapschy
- Lehrstuhl für Biologische Chemie, Technische Universität München, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Gury J, Zinger L, Gielly L, Taberlet P, Geremia RA. Exonuclease activity of proofreading DNA polymerases is at the origin of artifacts in molecular profiling studies. Electrophoresis 2008; 29:2437-44. [PMID: 18429330 DOI: 10.1002/elps.200700667] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CE fingerprint methods are commonly used in microbial ecology. We have previously noticed that the position and number of peaks in CE-SSCP (single-strand conformation polymorphism) profiles depend on the DNA polymerase used in PCR [1]. Here, we studied the fragments produced by Taq polymerase as well as four commercially available proofreading polymerases, using the V3 region of the Escherichia coli rss gene as a marker. PCR products rendered multiple peaks in denaturing CE; Taq polymerase was observed to produce the longest fragments. Incubation of the fragments with T4 DNA polymerase indicated that the 3'-ends of the proofreading polymerase amplicons were recessed, while the Taq amplicon was partially +A tailed. Treatment of the PCR product with proofreading DNA polymerase rendered trimmed fragments. This was due to the 3'-5' exonuclease activity of these enzymes, which is essential for proofreading. The nuclease activity was reduced by increasing the concentration of dNTP. The Platinum Pfx DNA polymerase generated very few artifacts and could produce 85% of blunted PCR products. Nevertheless, despite the higher error rate, we recommend the use of Taq polymerase rather than proofreading in the framework for molecular fingerprint studies. They are more cost-effective and therefore ideally suited for high-throughput analysis; the +A tail artifact rate can be controlled by modifying the PCR primers and the reaction conditions.
Collapse
Affiliation(s)
- Jerome Gury
- Laboratoire d'écologie alpine, UMR UJF-CNRS 5553, Université Joseph Fourier, Grenoble, France
| | | | | | | | | |
Collapse
|
47
|
Tomas C, Stangegaard M, Børsting C, Hansen AJ, Morling N. Typing of 48 autosomal SNPs and amelogenin with GenPlex SNP genotyping system in forensic genetics. Forensic Sci Int Genet 2008; 3:1-6. [PMID: 19083859 DOI: 10.1016/j.fsigen.2008.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/19/2008] [Accepted: 06/30/2008] [Indexed: 11/30/2022]
Abstract
GenPlex (Applied Biosystems) is a new SNP genotyping system based on an initial PCR amplification followed by an oligo ligation assay (OLA). The OLA consists of the hybridization of allele and locus specific oligonucleotides (ASOs and LSOs) to PCR products and posterior ligation of ASOs and LSOs. The ligation products are immobilized to microtitre plates and reporter oligonucleotides (ZipChute probes) are hybridized to the ligation products. ZipChute probes are subsequently eluted and detected using capillary electrophoresis. Applied Biosystems developed the GenPlex SNP genotyping system with amelogenin and 48 of the 52 SNPs used in the 52 SNP-plex assay developed by the SNPforID consortium. The system requires equipment that is usually found in forensic genetic laboratories. The use of a robot for performance of the pipetting steps is highly recommendable. A total of 286 individuals from Denmark, Somalia and Greenland were investigated with GenPlex using a Biomek 3000 (Beckman Coulter) robot. The results were compared to results obtained with an ISO 17025 accredited SNP typing assay based on single base extension (SBE). With the GenPlex SNP genotyping system, full SNP profiles were obtained in 97.6% of the investigations. Perfect concordance was obtained in duplicate investigations and the SNP genotypes obtained with the GenPlex system were concordant with those of the accredited SBE based SNP typing system except for one result in rs901398 in one of 286 individuals most likely due to a mutation 6 bp downstream of the SNP. Reproducible SNP genotypes were obtained from as little as 250 pg of DNA.
Collapse
Affiliation(s)
- Carmen Tomas
- Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, 11 Frederik V's Vej, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
48
|
Park HK, Zeng C. A vector for purification-free cloning of polymerase chain reaction products. Anal Biochem 2008; 377:108-10. [DOI: 10.1016/j.ab.2008.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
49
|
Havemann SA, Hoshika S, Hutter D, Benner SA. Incorporation of multiple sequential pseudothymidines by DNA polymerases and their impact on DNA duplex structure. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:261-78. [PMID: 18260010 DOI: 10.1080/15257770701853679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Thermal denaturation and circular dichroism studies suggested that multiple (up to 12), sequential pseudothymidines, a representative C-glycoside, do not perturb the structure of a representative DNA duplex. Further, various Family A and B DNA polymerases were found to extend a primer by incorporating four sequential pseudothymidine triphosphates, and then continue the extension to generate full-length product. Detailed studies showed that Taq polymerase incorporated up to five sequential C-glycosides, but not more. These results constrain architectures for sequencing, quantitating, and analyzing DNA analogs that exploit C-glycosides, and define better the challenge of creating a synthetic biology using these with natural polymerases.
Collapse
Affiliation(s)
- Stephanie A Havemann
- Department of Microbiology & Cell Science, Space Life Sciences Laboratory, Kennedy Space Center, University of Florida, FL, USA
| | | | | | | |
Collapse
|
50
|
Abstract
During the past several years, retroviral insertional mutagenesis has been fruitfully applied to search for genes/pathways involved in tumorigenesis. Techniques used to identify proviral insertion sites are critical for fulfilling these projects. Although a variety of approaches have been described, an improvement over existing methods is required to recover every possible insertion site for cancer gene discovery, so-called saturation analysis. Here, we have described the development of two ligation-mediated PCR variants, SplinkTA-PCR (STA-PCR) and SplinkBlunt-PCR, for efficient isolation of insertion sites in retrovirus-induced leukemia. Our results demonstrated that these two protocols are complementary to each other and that they are better employed in combination for maximal cloning efficiency. These protocols are easy-to-use, reliable and efficient, and are readily applicable to large-scale cloning of insertion sites of provirus and other integrated DNA elements, as well as for detection and cloning of differential insertions unique to drug-resistant cells.
Collapse
Affiliation(s)
- Bin Yin
- University of Minnesota, Minneapolis, MN, USA.
| | | |
Collapse
|