1
|
Huang G, Wang J, Yin L, Khan I, Law BYK, Zheng Y, Xu M, Wong VKW, Hsiao WLW. The impact of test anxiety on oral microbiota among medical students-A pilot study. Stress Health 2024; 40:e3479. [PMID: 39291875 DOI: 10.1002/smi.3479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Test anxiety (TA) is a common emotion among students during examinations. Test-induced stress can remarkably impact students' emotions and limit their performance. Mental stress is a crucial factor that could significantly alter gut microbial composition, but rare reports focus on the correlation between TA and oral microbial composition. This study aims to investigate the impact of TA on students' oral microbiota composition. This study targeted medical students who usually face heavier workloads than average undergraduates. 28 females and 19 males aged 18-30 were enrolled in this study. Questionnaires and saliva samples were collected from the participants before, during, and after the end-term examination. The level of anxiety was classified as normal, mild, moderate, and severe based on the questionnaire scores. In addition, 16S amplicon sequencing was used to analyse the composition of oral microbes. More than half of the students faced different levels of TA before and after the examination. Over three-quarters of students showed anxiety during the examination, and a quarter suffered severe TA. The 16S sequencing data showed that TA significantly altered the oral microbial composition between students with and without TA in all three survey periods. Moreover, during the examination, the genera Rothia and Streptococcus, the oral-beneficial bacteria, markedly decreased in students with TA. On the other hand, the potential pathogenic genera, such as Prevotella, Fusobacterium, and Haemophilus, significantly increased in the students with TA. And the TA effect on oral microbes displayed a gender difference among students. A high ratio of TA existed in the students during their examination period, and TA could significantly alter the oral microbial composition, decrease beneficial microbes, and promote potential pathogenic oral microbes.
Collapse
Affiliation(s)
- Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Jingyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Lin Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Yi Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Mengze Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
- Foshan Maternity and Child Healthcare Hospital, Affiliated Southern Medical University, Foshan, China
| |
Collapse
|
2
|
Parrott DL, Baxter BK. Fungi of Great Salt Lake, Utah, USA: a spatial survey. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1438347. [PMID: 39347460 PMCID: PMC11427377 DOI: 10.3389/ffunb.2024.1438347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
The natural system at Great Salt Lake, Utah, USA was augmented by the construction of a rock-filled railroad causeway in 1960, creating two lakes at one site. The north arm is sequestered from the mountain snowmelt inputs and thus became saturated with salts (250-340 g/L). The south arm is a flourishing ecosystem with moderate salinity (90-190 g/L) and a significant body of water for ten million birds on the avian flyways of the western US who engorge themselves on the large biomass of brine flies and shrimp. The sediments around the lake shores include calcium carbonate oolitic sand and clay, and further away from the saltwater margins, a zone with less saline soil. Here a small number of plants can thrive, including Salicornia and Sueda species. At the north arm at Rozel Point, halite crystals precipitate in the salt-saturated lake water, calcium sulfate precipitates to form gypsum crystals embedded in the clay, and high molecular weight asphalt seeps from the ground. It is an ecosystem with gradients and extremes, and fungi are up to the challenge. We have collected data on Great Salt Lake fungi from a variety of studies and present them here in a spatial survey. Combining knowledge of cultivation studies as well as environmental DNA work, we discuss the genera prevalent in and around this unique ecosystem. A wide diversity of taxa were found in multiple microniches of the lake, suggesting significant roles for these genera: Acremonium, Alternaria, Aspergillus, Cladosporium, Clydae, Coniochaeta, Cryptococcus, Malassezia, Nectria, Penicillium, Powellomyces, Rhizophlyctis, and Wallemia. Considering the species present and the features of Great Salt Lake as a terminal basin, we discuss of the possible roles of the fungi. These include not only nutrient cycling, toxin mediation, and predation for the ecosystem, but also roles that would enable other life to thrive in the water and on the shore. Many genera that we discovered may help other organisms in alleviating salinity stress, promoting growth, or affording protection from dehydration. The diverse taxa of Great Salt Lake fungi provide important benefits for the ecosystem.
Collapse
Affiliation(s)
| | - Bonnie K. Baxter
- Great Salt Lake Institute, Westminster University, Salt Lake
City, UT, United States
| |
Collapse
|
3
|
Younge NE, Parris DJ, Hatch D, Barnes A, Brandon DH. The skin microbiota of preterm infants and impact of diaper change frequency. PLoS One 2024; 19:e0306333. [PMID: 39088446 PMCID: PMC11293746 DOI: 10.1371/journal.pone.0306333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 06/12/2024] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE To evaluate the impact of diaper change frequency, clinical characteristics, and skin health metrics on development of the skin microbiota in preterm infants. DESIGN A randomized controlled parallel design was used. METHODS Medically stable preterm infants born <33 weeks' gestation were randomized to receive diaper changes at a frequency of every 3-hours or every 6-hours. Skin swabs were collected longitudinally from the diapered skin (buttocks) and chest. Skin pH and transepidermal water loss were measured with each sample collection. Stool samples were collected from the diaper. The microbiome at each site was characterized by 16S rRNA gene sequencing. Associations between microbiome features, diaper change frequency, and other covariates were examined using mixed effect models and redundancy analysis. RESULTS A total of 1179 samples were collected from 46 preterm infants, beginning at a median postnatal age of 44 days and continuing through hospital discharge. Alpha-diversity of the skin microbiota increased over time, but did not differ significantly between 3-hour (n = 20) and 6-hour (n = 26) diaper change groups. Alpha-diversity of the skin microbiota was inversely correlated with skin pH, but not transepidermal water loss. Microbiota community structure differed significantly between body sites (buttocks, chest, and stool) and between individuals. Among samples collected from the diapered skin, diaper change frequency, infant diet, antibiotic exposure, and delivery mode accounted for minor proportions of the variation in microbiota community structure between samples. Relative abundances of multiple genera differed between 3- and 6-hour diaper change groups over time. DISCUSSION/CONCLUSION The diversity and composition of the diapered skin microbiota is dynamic over time and differs from other body sites. Multiple factors including interindividual effects, diaper change frequency, diet, and antibiotics contribute to variation in the diapered skin microbiota.
Collapse
Affiliation(s)
- Noelle E. Younge
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States of America
| | - D. Joshua Parris
- Kimberly-Clark Corporation, Neenah, WI, United States of America
| | - Daniel Hatch
- Duke University School of Nursing, Durham, NC, United States of America
| | - Angel Barnes
- Duke University School of Nursing, Durham, NC, United States of America
| | - Debra H. Brandon
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States of America
- Duke University School of Nursing, Durham, NC, United States of America
| |
Collapse
|
4
|
Choi H, Duarte YG, Pasquali GAM, Kim SW. Investigation of the nutritional and functional roles of a combinational use of xylanase and β-glucanase on intestinal health and growth of nursery pigs. J Anim Sci Biotechnol 2024; 15:63. [PMID: 38704593 PMCID: PMC11070102 DOI: 10.1186/s40104-024-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Xylanase and β-glucanase combination (XG) hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds. This study aimed to evaluate the effects of increasing levels of XG on intestinal health and growth performance of nursery pigs. METHODS Forty pigs (6.5 ± 0.4 kg) were assigned to 5 dietary treatments and fed for 35 d in 3 phases (11, 9, and 15 d, respectively). Basal diets mainly included corn, soybean meal, and corn distiller's dried grains with solubles, contained phytase (750 FTU/kg), and were supplemented with 5 levels of XG at (1) 0, (2) 280 TXU/kg xylanase and 125 TGU/kg β-glucanase, (3) 560 and 250, (4) 840 and 375, or (5) 1,120 and 500, respectively. Growth performance was measured. On d 35, all pigs were euthanized and jejunal mucosa, jejunal digesta, jejunal tissues, and ileal digesta were collected to determine the effects of increasing XG levels and XG intake on intestinal health. RESULTS Increasing XG intake tended to quadratically decrease (P = 0.059) viscosity of jejunal digesta (min: 1.74 mPa·s at 751/335 (TXU/TGU)/kg). Increasing levels of XG quadratically decreased (P < 0.05) Prevotellaceae (min: 0.6% at 630/281 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically increased (P < 0.05) Lactobacillaceae (max: 40.3% at 608/271 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically decreased (P < 0.05) Helicobacteraceae (min: 1.6% at 560/250 (TXU/TGU)/kg) in the jejunal mucosa. Increasing levels of XG tended to linearly decrease (P = 0.073) jejunal IgG and tended to quadratically increase (P = 0.085) jejunal villus height to crypt depth ratio (max: 2.62 at 560/250 (TXU/TGU)/kg). Increasing XG intake tended to linearly increase the apparent ileal digestibility of dry matter (P = 0.087) and ether extract (P = 0.065). Increasing XG intake linearly increased (P < 0.05) average daily gain. CONCLUSIONS A combinational use of xylanase and β-glucanase would hydrolyze the non-starch polysaccharides fractions, positively modulating the jejunal mucosa-associated microbiota. Increased intake of these enzyme combination possibly reduced digesta viscosity and humoral immune response in the jejunum resulting in improved intestinal structure, and ileal digestibility of nutrients, and finally improving growth of nursery pigs. The beneficial effects were maximized at a combination of 550 to 800 TXU/kg xylanase and 250 to 360 TGU/kg β-glucanase.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Yesid Garavito Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
5
|
Ramkissoon NK, Macey MC, Kucukkilic-Stephens E, Barton T, Steele A, Johnson DN, Stephens BP, Schwenzer SP, Pearson VK, Olsson-Francis K. Experimental Identification of Potential Martian Biosignatures in Open and Closed Systems. ASTROBIOLOGY 2024; 24:538-558. [PMID: 38648554 DOI: 10.1089/ast.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
NASA's Perseverance and ESA's Rosalind Franklin rovers have the scientific goal of searching for evidence of ancient life on Mars. Geochemical biosignatures that form because of microbe-mineral interactions could play a key role in achieving this, as they can be preserved for millions of years on Earth, and the same could be true for Mars. Previous laboratory experiments have explored the formation of biosignatures under closed systems, but these do not represent the open systems that are found in natural martian environments, such as channels and lakes. In this study, we have conducted environmental simulation experiments using a global regolith simulant (OUCM-1), a thermochemically modelled groundwater, and an anaerobic microbial community to explore the formation of geochemical biosignatures within plausible open and closed systems on Mars. This initial investigation showed differences in the diversity of the microbial community developed after 28 days. In an open-system simulation (flow-through experiment), the acetogenic Acetobacterium (49% relative abundance) and the sulfate reducer Desulfosporomusa (43% relative abundance) were the dominant genera. Whereas in the batch experiment, the sulfate reducers Desulfovibrio, Desulfomicrobium, and Desulfuromonas (95% relative abundance in total) were dominant. We also found evidence of enhanced mineral dissolution within the flow-through experiment, but there was little evidence of secondary deposits in the presence of biota. In contrast, SiO2 and Fe deposits formed within the batch experiment with biota but not under abiotic conditions. The results from these initial experiments indicate that different geochemical biosignatures can be generated between open and closed systems, and therefore, biosignature formation in open systems warrants further investigation.
Collapse
Affiliation(s)
| | - Michael C Macey
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | | | - Timothy Barton
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution of Washington, Washington, DC, USA
| | - David N Johnson
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | - Ben P Stephens
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | | | | | | |
Collapse
|
6
|
Elliott DR, Thomas AD, Hoon SR, Sen R. Spatial organisation of fungi in soil biocrusts of the Kalahari is related to bacterial community structure and may indicate ecological functions of fungi in drylands. Front Microbiol 2024; 15:1173637. [PMID: 38741739 PMCID: PMC11090246 DOI: 10.3389/fmicb.2024.1173637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/27/2024] [Indexed: 05/16/2024] Open
Abstract
Biological soil crusts, or biocrusts, are microbial communities found in soil surfaces in drylands and in other locations where vascular plant cover is incomplete. They are functionally significant for numerous ecosystem services, most notably in the C fixation and storage due to the ubiquity of photosynthetic microbes. Whereas carbon fixation and storage have been well studied in biocrusts, the composition, function and characteristics of other organisms in the biocrust such as heterotrophic bacteria and especially fungi are considerably less studied and this limits our ability to gain a holistic understanding of biocrust ecology and function. In this research we characterised the fungal community in biocrusts developed on Kalahari Sand soils from a site in southwest Botswana, and combined these data with previously published bacterial community data from the same site. By identifying organisational patterns in the community structure of fungi and bacteria, we found fungi that were either significantly associated with biocrust or the soil beneath biocrusts, leading to the conclusion that they likely perform functions related to the spatial organisation observed. Furthermore, we showed that within biocrusts bacterial and fungal community structures are correlated with each other i.e., a change in the bacterial community is reflected by a corresponding change in the fungal community. Importantly, this correlation but that this correlation does not occur in nearby soils. We propose that different fungi engage in short-range and long-range interactions with dryland soil surface bacteria. We have identified fungi which are candidates for further studies into their potential roles in biocrust ecology at short ranges (e.g., processing of complex compounds for waste management and resource provisioning) and longer ranges (e.g., translocation of resources such as water and the fungal loop model). This research shows that fungi are likely to have a greater contribution to biocrust function and dryland ecology than has generally been recognised.
Collapse
Affiliation(s)
- David R. Elliott
- Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Andrew D. Thomas
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Stephen R. Hoon
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Robin Sen
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
7
|
Singh AS, Pathak D, Devi MS, Anifowoshe AT, Nongthomba U. Antibiotic alters host's gut microbiota, fertility, and antimicrobial peptide gene expression vis-à-vis ampicillin treatment on model organism Drosophila melanogaster. Int Microbiol 2024:10.1007/s10123-024-00507-9. [PMID: 38502456 DOI: 10.1007/s10123-024-00507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Antibiotics are commonly used to treat infectious diseases; however, persistence is often expressed by the pathogenic bacteria and their long-term relative effect on the host have been neglected. The present study investigated the impact of antibiotics in gut microbiota (GM) and metabolism of host. The effect of ampicillin antibiotics on GM of Drosophila melanogaster was analyzed through deep sequencing of 16S rRNA amplicon gene. The dominant phyla consisted of Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Planctomycetes, Chloroflexi, Euryarchaeota, Acedobacteria, Verrucomicrobia, and Cyanobacteria. It was found that the composition of GM was significantly altered on administration of antibiotics. On antibiotic treatments, there were decline in relative abundance of Proteobacteria and Firmicutes, while there were increase in relative abundance of Chlorophyta and Bacteroidota. High abundance of 14 genera, viz., Wolbachia, Lactobacillus, Bacillus, Pseudomonas, Thiolamprovum, Pseudoalteromonas, Vibrio, Romboutsia, Staphylococcus, Alteromonas, Clostridium, Lysinibacillus, Litoricola, and Cellulophaga were significant (p ≤ 0.05) upon antibiotic treatment. Particularly, the abundance of Acetobacter was significantly (p ≤ 0.05) declined but increased for Wolbachia. Further, a significant (p ≤ 0.05) increase in Wolbachia endosymbiont of D. melanogaster, Wolbachia endosymbiont of Curculio okumai, and Wolbachia pipientis and a decrease in the Acinetobacter sp. were observed. We observed an increase in functional capacity for biosynthesis of certain nucleotides and the enzyme activities. Further, the decrease in antimicrobial peptide production in the treated group and potential effects on the host's defense mechanisms were observed. This study helps shed light on an often-overlooked dimension, namely the persistence of antibiotics' effects on the host.
Collapse
Affiliation(s)
- Asem Sanjit Singh
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012.
| | - Dhruv Pathak
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012
| | - Manoharmayum Shaya Devi
- ICAR-Central Inland Fisheries Research Institute, P.O. Monirampore, Barrackpore, Kolkata, India, 700 120
| | - Abass Toba Anifowoshe
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012
| | - Upendra Nongthomba
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India, 560012.
| |
Collapse
|
8
|
Liao SF, Ji F, Fan P, Denryter K. Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. Int J Mol Sci 2024; 25:1237. [PMID: 38279233 PMCID: PMC10816286 DOI: 10.3390/ijms25021237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Many researchers consider gut microbiota (trillions of microorganisms) an endogenous organ of its animal host, which confers a vast genetic diversity in providing the host with essential biological functions. Particularly, the gut microbiota regulates not only gut tissue structure but also gut health and gut functionality. This paper first summarized those common bacterial species (dominated by the Firmicutes, Bacteroidota, and Proteobacteria phyla) in swine gut and then briefly discussed their roles in swine nutrition and health, which include roles in nutrient metabolism, pathogen exclusion, and immunity modulation. Secondly, the current knowledge on how dietary nutrients and feed additives affect the gut bacterial composition and nutrient metabolism in pigs was discussed. Finally, how dietary amino acids affect the relative abundances and metabolism of bacteria in the swine gut was reviewed. Tryptophan supplementation promotes the growth of beneficial bacteria and suppresses pathogens, while arginine metabolism affects nitrogen recycling, impacting gut immune response and health. Glutamate and glutamine supplementations elevate the levels of beneficial bacteria and mitigate pathogenic ones. It was concluded that nutritional strategies to manipulate gut microbial ecosystems are useful measures to optimize gut health and gut functions. For example, providing pigs with nutrients that promote the growth of Lactobacillus and Bifidobacterium can lead to better gut health and growth performance, especially when dietary protein is limited. Further research to establish the mechanistic cause-and-effect relationships between amino acids and the dynamics of gut microbiota will allow swine producers to reap the greatest return on their feed investment.
Collapse
Affiliation(s)
- Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Peixin Fan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Kristin Denryter
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| |
Collapse
|
9
|
Zhang A, Yang Y, Li Y, Zheng Y, Wang H, Cui H, Yin W, Lv M, Liang Y, Chen W. Effects of wheat-based fermented liquid feed on growth performance, nutrient digestibility, gut microbiota, intestinal morphology, and barrier function in grower-finisher pigs. J Anim Sci 2024; 102:skae229. [PMID: 39155623 PMCID: PMC11495224 DOI: 10.1093/jas/skae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Fermented liquid feed (FLF) can improve dietary nutrient absorption levels, degrade antinutrient factors in diets, and increase beneficial bacteria abundance in animal guts. However, few systematic studies have been conducted on wheat-based fermented liquid feed (WFLF) in pigs. The present study evaluates the effects of WFLF on the growth performance, nutrient digestibility, gastric volume, intestinal morphology, intestinal health, intestinal barrier function, serum biochemical immunity, gut microbiota, and intestinal microbial diversity of grower-finisher pigs. In total, 80 weaned pigs were randomly allocated to two treatment groups based on their initial body weight: a basal diet with pellet dry feeding (CON) and a basal diet with WFLF, with four replicate pens per group. The experiment lasted 82 d. Compared with CON pigs, those fed WFLF were significantly heavier at 60 to 82 d and had significantly higher average daily feed intake, average daily gain, and gain: feed ratio at 60 to 82 d and 1 to 82 d. WFLF pigs had significantly greater jejunum, total tract, and ileal digestibility for all nutrients and amino acids, excluding arginine, than CON pigs. WFLF intake influenced villus height, villus height:crypt depth ratio of the anterior segment of the jejunum (A-jejunum), crypt depth, and redox potential of the posterior segment of the jejunum (P-jejunum) while significantly affecting body weight. Additionally, FLF improved gastric capacity significantly. Furthermore, mRNA expression of occludin and claudin-1 in the mucosa of the ileum and jejunum was significantly higher in WFLF pigs than in CON pigs. WFLF increased serum concentrations of alanine transaminase and reduced low-density lipoprotein cholesterol, total cholesterol, and total bile acid content. The alpha diversity (Shannon and Simpson indices) in the stomachs of WFLF pigs was significantly higher than in CON pigs. Microbial diversity in the stomach, ileum, and cecum, as well as the abundance of lactic acid bacteria, were increased in WFLF pigs compared to CON pigs. In conclusion, WFLF intake may positively influence intestinal ecology by improving digestive tract structure, upregulating intestinal barrier-related genes, and improving intestinal morphology to enhance intestinal digestive function and health. Collectively, the present study shows that WFLF intake can increase growth performance while maintaining beneficial nutrient digestibility in grower-finisher pigs.
Collapse
Affiliation(s)
- Aoran Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yanyi Yang
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yong Li
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yunfan Zheng
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Hongmei Wang
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Hongxiao Cui
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Wang Yin
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Mei Lv
- Henan Heshun Automation Equipment Co. Ltd., Zhengzhou, Henan, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Khan S, Banerjee G, Setua S, Jones DH, Chauhan BV, Dhasmana A, Banerjee P, Yallapu MM, Behrman S, Chauhan SC. Metagenomic analysis unveils the microbial landscape of pancreatic tumors. Front Microbiol 2023; 14:1275374. [PMID: 38179448 PMCID: PMC10764597 DOI: 10.3389/fmicb.2023.1275374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The composition of resident microbes in the human body is linked to various diseases and their treatment outcomes. Although studies have identified pancreatic ductal adenocarcinoma (PDAC)-associated bacterial communities in the oral and gut samples, herein, we hypothesize that the prevalence of microbiota in pancreatic tumor tissues is different as compared with their matched adjacent, histologically normal appearing tissues, and these microbial molecular signatures can be highly useful for PDAC diagnosis/prognosis. In this study, we performed comparative profiling of bacterial populations in pancreatic tumors and their respective adjacent normal tissues using 16S rRNA-based metagenomics analysis. This study revealed a higher abundance of Proteobacteria and Actinomycetota in tumor tissues compared with adjacent normal tissues. Interestingly, the linear discriminant analysis (LDA) scores unambiguously revealed an enrichment of Delftia in tumor tissues, whereas Sphingomonas, Streptococcus, and Citrobacter exhibited a depletion in tumor tissues. Furthermore, we analyzed the microbial composition between different groups of patients with different tumor differentiation stages. The bacterial genera, Delftia and Staphylococcus, were very high at the G1 stages (well differentiated) compared with G2 (well to moderate/moderately differentiated) and G3/G4 (poorly differentiated) stages. However, the abundance of Actinobacter and Cloacibacterium was found to be very high in G2 and G3, respectively. Additionally, we evaluated the correlation of programmed death-ligand (PDL1) expression with the abundance of bacterial genera in tumor lesions. Our results indicated that three genera such as Streptomyces, Cutibacterium, and Delftia have a positive correlation with PD-L1 expression. Collectively, these findings demonstrate that PDAC lesions harbor relatively different microbiota compared with their normal tumor adjacent tissues, and this information may be helpful for the diagnosis and prognosis of PADC patients.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
| | - Saini Setua
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Blood Oxygen Transport and Hemostasis (CBOTH), Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - Daleniece Higgins Jones
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, United States
- Department of Public Health, University of Tennessee, Knoxville, TN, United States
| | - Bhavin V. Chauhan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 105 Agricultural Bioprocess Laboratory, Urbana, IL, United States
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, United States
| | - Murali Mohan Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Stephen Behrman
- Department of Surgery, Baptist Memorial Hospital and Medical Education, Memphis, TN, United States
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, the University of Texas Rio Grande Valley, McAllen, TX, United States
| |
Collapse
|
11
|
Daniel AGS, Pereira CER, Dorella F, Pereira FL, Laub RP, Andrade MR, Barrera-Zarate JA, Gabardo MP, Otoni LVA, Macedo NR, Correia PA, Costa CM, Vasconcellos AO, Wagatsuma MM, Marostica TP, Figueiredo HCP, Guedes RMC. Synergic Effect of Brachyspira hyodysenteriae and Lawsonia intracellularis Coinfection: Anatomopathological and Microbiome Evaluation. Animals (Basel) 2023; 13:2611. [PMID: 37627402 PMCID: PMC10451556 DOI: 10.3390/ani13162611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Brachyspira hyodysenteriae and Lawsonia intracellularis coinfection has been observed in the diagnostic routine; however, no studies have evaluated their interaction. This study aimed to characterize lesions and possible synergisms in experimentally infected pigs. Four groups of piglets, coinfection (CO), B. hyodysenteriae (BRA), L. intracellularis (LAW), and negative control (NEG), were used. Clinical signals were evaluated, and fecal samples were collected for qPCR. At 21 days post infection (dpi), all animals were euthanized. Gross lesions, bacterial isolation, histopathology, immunohistochemistry, and fecal microbiome analyses were performed. Diarrhea started at 12 dpi, affecting 11/12 pigs in the CO group and 5/11 pigs in the BRA group. Histopathological lesions were significantly more severe in the CO than the other groups. B. hyodysenteriae was isolated from 11/12 pigs in CO and 5/11 BRA groups. Pigs started shedding L. intracellularis at 3 dpi, and all inoculated pigs tested positive on day 21. A total of 10/12 CO and 7/11 BRA animals tested positive for B. hyodysenteriae by qPCR. A relatively low abundance of microbiota was observed in the CO group. Clinical signs and macroscopic and microscopic lesions were significantly more severe in the CO group compared to the other groups. The presence of L. intracellularis in the CO group increased the severity of swine dysentery.
Collapse
Affiliation(s)
- Amanda G. S. Daniel
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Carlos E. R. Pereira
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Fernanda Dorella
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Felipe L. Pereira
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (F.L.P.); (H.C.P.F.)
| | - Ricardo P. Laub
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Mariana R. Andrade
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Javier A. Barrera-Zarate
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Michelle P. Gabardo
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Luísa V. A. Otoni
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Nubia R. Macedo
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Paula A. Correia
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Camila M. Costa
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Amanda O. Vasconcellos
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Mariane M. Wagatsuma
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Thaire P. Marostica
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| | - Henrique C. P. Figueiredo
- Department of Preventive Veterinary Medicine, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (F.L.P.); (H.C.P.F.)
| | - Roberto M. C. Guedes
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Belo Horizonte 130161-970, Brazil; (A.G.S.D.); (C.E.R.P.); (F.D.); (R.P.L.); (M.R.A.); (J.A.B.-Z.); (M.P.G.); (L.V.A.O.); (P.A.C.); (C.M.C.); (A.O.V.); (M.M.W.); (T.P.M.)
| |
Collapse
|
12
|
Kawash J, Oudemans PV, Erndwein L, Polashock JJ. Assessment and comparison of rhizosphere communities in cultivated Vaccinium spp. provide a baseline for study of causative agents in decline. FRONTIERS IN PLANT SCIENCE 2023; 14:1173023. [PMID: 37441173 PMCID: PMC10333580 DOI: 10.3389/fpls.2023.1173023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023]
Abstract
It has long been recognized that the community of organisms associated with plant roots is a critical component of the phytobiome and can directly or indirectly contribute to the overall health of the plant. The rhizosphere microbial community is influenced by a number of factors including the soil type, the species of plants growing in those soils, and in the case of cultivated plants, the management practices associated with crop production. Vaccinium species, such as highbush blueberry and American cranberry, are woody perennials that grow in sandy, acidic soils with low to moderate levels of organic matter and a paucity of nutrients. When properly maintained, fields planted with these crops remain productive for many years. In some cases, however, yields and fruit quality decline over time, and it is suspected that degenerating soil health and/or changes in the rhizosphere microbiome are contributing factors. Determining the assemblage of bacterial and fungal microorganisms typically associated with the rhizosphere of these crops is a critical first step toward addressing the complex issue of soil health. We hypothesized that since blueberry and cranberry are in the same genus and grow in similar soils, that their associated rhizosphere microbial communities would be similar to each other. We analyzed the eukaryotic (primarily fungal) and bacterial communities from the rhizosphere of representative blueberry and cranberry plants growing in commercial fields in New Jersey. The data presented herein show that while the bacterial communities between the crops is very similar, the fungal communities associated with each crop are quite different. These results provide a framework for examining microbial components that might contribute to the health of Vaccinium spp. crops in New Jersey and other parts of the northeastern U.S.
Collapse
Affiliation(s)
- Joseph Kawash
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Chatsworth, NJ, United States
| | - Peter V. Oudemans
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Lindsay Erndwein
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Scholar, USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Chatsworth, NJ, United States
| | - James J. Polashock
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Chatsworth, NJ, United States
| |
Collapse
|
13
|
Macey MC, Ramkissoon NK, Cogliati S, Toubes-Rodrigo M, Stephens BP, Kucukkilic-Stephens E, Schwenzer SP, Pearson VK, Preston LJ, Olsson-Francis K. Habitability and Biosignature Formation in Simulated Martian Aqueous Environments. ASTROBIOLOGY 2023; 23:144-154. [PMID: 36577028 DOI: 10.1089/ast.2021.0197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water present on early Mars is often assumed to have been habitable. In this study, experiments were performed to investigate the habitability of well-defined putative martian fluids and to identify the accompanying potential formation of biosignatures. Simulated martian environments were developed by combining martian fluid and regolith simulants based on the chemistry of the Rocknest sand shadow at Gale Crater. The simulated chemical environment was inoculated with terrestrial anoxic sediment from the Pyefleet mudflats (United Kingdom). These enrichments were cultured for 28 days and subsequently subcultured seven times to ensure that the microbial community was solely grown on the defined, simulated chemistry. The impact of the simulated chemistries on the microbial community was assessed by cell counts and sequencing of 16S rRNA gene profiles. Associated changes to the fluid and precipitate chemistries were established by using ICP-OES, IC, FTIR, and NIR. The fluids were confirmed as habitable, with the enriched microbial community showing a reduction in abundance and diversity over multiple subcultures relating to the selection of specific metabolic groups. The final community comprised sulfate-reducing, acetogenic, and other anaerobic and fermentative bacteria. Geochemical characterization and modeling of the simulant and fluid chemistries identified clear differences between the biotic and abiotic experiments. These differences included the elimination of sulfur owing to the presence of sulfate-reducing bacteria and more general changes in pH associated with actively respiring cells that impacted the mineral assemblages formed. This study confirmed that a system simulating the fluid chemistry of Gale Crater could support a microbial community and that variation in chemistries under biotic and abiotic conditions can be used to inform future life-detection missions.
Collapse
Affiliation(s)
- Michael C Macey
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Nisha K Ramkissoon
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Simone Cogliati
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Mario Toubes-Rodrigo
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Ben P Stephens
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Ezgi Kucukkilic-Stephens
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P Schwenzer
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K Pearson
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Louisa J Preston
- Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, London, United Kingdom
| | - Karen Olsson-Francis
- AstrobiologyOU, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
14
|
Mohammadi-Aragh MK, Linhoss JE, Marty CA, Evans JD, Purswell JL, Chaves-Cordoba B, Chesser GD, Lowe JW. Evaluating the Effects of Pine and Miscanthus Biochar on Escherichia coli, Total Aerobic Bacteria, and Bacterial Communities in Commercial Broiler Litter. Avian Dis 2022; 67:1-10. [PMID: 36715465 DOI: 10.1637/aviandiseases-d-22-00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Escherichia coli (E. coli) is a commensal bacteria found in the gastrointestinal tract of poultry; however, some strains are pathogenic and can cause a wide range of diseases. In addition, some strains of pathogenic E. coli can survive in the litter between flocks, making litter management critical for reducing E. coli-associated infections. Biochar (BC) is a porous, carbonaceous material that may be a beneficial litter amendment to reduce moisture and microbial loads. The objectives of this study were to evaluate the effects of pine BC, miscanthus BC, and Poultry Litter Treatment (PLT) on E. coli, total aerobic bacteria populations, and bacterial communities when added to used broiler litter. Pine and miscanthus BC were mixed into poultry litter at inclusion rates of 5%, 10%, 20%, 25%, and 30% w/w. PLT was surface applied at a rate of 0.73 kg/m2. Baseline E. coli and aerobics were measured after a 48-hr litter incubation period and just prior to adding litter treatments. Escherichia coli and aerobics were enumerated 2 and 7 days after adding treatments. Overall, pine BC at 30% had the lowest E. coli and aerobic counts (5.98 and 6.44 log 10 colony-forming units [CFU]/g, respectively); however, they were not significantly different from the control (P ≤ 0.05). At day 2, 30% pine BC inclusion rate treatment resulted in a significant reduction in E. coli and aerobic bacteria counts compared to the control. Miscanthus BC application did not result in significant reductions in E. coli or aerobic bacteria at days 2 or 7. PLT had the highest E. coli (7.07 log 10 CFU/g) and aerobic counts (7.21 log 10 CFU/g) overall. Bacterial community analysis revealed that the alpha and beta diversity between pine BC- and PLT-treated litter were significantly different. However, neither BC type significantly impacted bacterial diversity when compared to the control. Differences in E. coli and aerobic counts between BC types may be attributed to variations in feedstock physiochemical properties.
Collapse
Affiliation(s)
- Maryam K Mohammadi-Aragh
- Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762
| | - John E Linhoss
- Biosystems Engineering, Auburn University, Auburn, AL 36849,
| | - Christopher A Marty
- Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762
| | | | | | | | - G Daniel Chesser
- Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762
| | - J Wesley Lowe
- Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
15
|
Condensed and Hydrolyzable Tannins for Reducing Methane and Nitrous Oxide Emissions in Dairy Manure-A Laboratory Incubation Study. Animals (Basel) 2022; 12:ani12202876. [PMID: 36290258 PMCID: PMC9598578 DOI: 10.3390/ani12202876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
The objectives of this study were to (1) examine the effects of plant condensed (CT) and hydrolyzable tannin (HT) extracts on CH4 and N2O emissions; (2) identify the reactions responsible for manure-derived GHG emissions, and (3) examine accompanying microbial community changes in fresh dairy manure. Five treatments were applied in triplicate to the freshly collected dairy manure, including 4% CT, 8% CT, 4% HT, 8% HT (V/V), and control (no tannin addition). Fresh dairy manure was placed into 710 mL glass incubation chambers. In vitro composted dairy manure samples were collected at 0, 24, 48, and 336 h after the start of incubation. Fluxes of N2O and CH4 were measured for 5-min/h for 14 d at a constant ambient incubation temperature of 39 °C. The addition of quebracho CT significantly decreased the CH4 flux rates compared to the tannin-free controls (215.9 mg/m2/h), with peaks of 75.6 and 89.6 mg/m2/h for 4 and 8% CT inclusion rates, respectively. Furthermore, CT significantly reduced cumulative CH4 emission by 68.2 and 57.3% at 4 and 8% CT addition, respectively. The HT treatments failed to affect CH4 reduction. However, both CT and HT reduced (p < 0.001) cumulative and flux rates of N2O emissions. The decrease in CH4 flux with CT was associated with a reduction in the abundance of Bacteroidetes and Proteobacteria.
Collapse
|
16
|
Yin L, Huang G, Khan I, Su L, Xia W, Law BYK, Wong VKW, Wu Q, Wang J, Leong WK, Hsiao WLW. Poria cocos polysaccharides exert prebiotic function to attenuate the adverse effects and improve the therapeutic outcome of 5-FU in Apc Min/+ mice. Chin Med 2022; 17:116. [PMID: 36192796 PMCID: PMC9531437 DOI: 10.1186/s13020-022-00667-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a first-line chemotherapeutic agent, 5-fluorouracil (5-FU) exhibits many side effects, weakening its efficacy in cancer treatment. In this study, we hypothesize that Poria cocos polysaccharides (PCP), a traditional Chinese herbal medicine with various bioactivities and prebiotic effects, might improve the therapeutic effect of 5-FU by restoring the homeostasis of the gut microenvironment and the commensal gut microflora. METHODS ApcMin/+ mice were employed to evaluate the anti-cancer effect of 5-FU in conjunction with PCP treatment. Body weight and food consumption were monitored weekly. Polyp count was used to assess the anti-cancer effect of PCP and 5-FU. Expressions of mucosal cytokines and gut epithelial junction molecules were measured using qRT-PCR. 16S rRNA gene sequencing of fecal DNAs was used to evaluate the compositional changes of gut microbiota (GM). Transplantation of Lactobacillus johnsonii and Bifidobacterium animalis were performed to verify the prebiotic effects of PCP in improving the efficacy of 5-FU. RESULTS The results showed that PCP treatment alleviated the weight loss caused by 5-FU treatment and reduced the polyp burden in ApcMin/+ mice. Additionally, PCP treatment eased the cytotoxic effects of 5-FU by reducing the expressions of pro-inflammatory cytokines, increasing the anti-inflammatory cytokines; and significantly improving the gut barriers by enhancing the tight junction proteins and associated adhesion molecules. Furthermore, 16S rRNA gene sequencing data showed that PCP alone or with 5-FU could stimulate the growth of probiotic bacteria (Bacteroides acidifaciens, Bacteroides intestinihominis, Butyricicoccus pullicaecorum, and the genera Lactobacillus, Bifidobacterium, Eubacterium). At the same time, it inhibited the growth of potential pathogens (e.g., Alistipes finegoldii, Alistipes massiliensis, Alistipes putredinis., Citrobacter spp., Desulfovibrio spp., and Desulfovibrio desulfuricans). Moreover, the results showed that transplantation of L.johnsonii and B.animalis effectively reduced the polyp burden in ApcMin/+ mice being treated with 5-FU. CONCLUSION Our study showed that PCP could effectively improve the anti-cancer effect of 5-FU by attenuating its side effects, modulating intestinal inflammation, improving the gut epithelial barrier, and modulating the gut microbiota of ApcMin/+ mice.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China.,Clinical Research Center, Shantou Central Hospital, Shantou, China.,Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Lu Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Jingyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, China. .,Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China.
| |
Collapse
|
17
|
Dahmer PL, Harrison OL, Jones CK. Effects of formic acid and glycerol monolaurate on weanling pig growth performance, fecal consistency, fecal microbiota, and serum immunity. Transl Anim Sci 2022; 6:txac145. [PMID: 36425847 PMCID: PMC9682209 DOI: 10.1093/tas/txac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/21/2022] [Indexed: 03/05/2024] Open
Abstract
A total of 350 weanling pigs (DNA 400 × 200; initially, 5.67 ± 0.06 kg BW) were used in a 42-day study with 5 pigs per pen and 14 replicate pens per treatment. At weaning, pigs were allotted to pens in a completely randomized design and pens of pigs were randomly assigned to one of five dietary treatments: 1) negative control (CON; standard nursery diet containing only 150 ppm Zn from trace mineral premix and no acidifier); 2) control diet with 3,000 ppm added zinc from ZnO included in phase 1 and 2,000 ppm added zinc from ZnO included in phase 2 (ZnO); 3) control diet with 0.70% formic acid (FA; Amasil NA; BASF, Florham, NJ); 4) control diet with 0.18% glycerol monolaurate (GML; Natural Biologics GML, Natural Biologics, Newfield, NY); and 5) control diet with a 1.0% blend of formic acid and glycerol monolaurate (FORMI; FORMI 3G, ADDCON GmbH, Bitterfeld-Wolfen, Germany). Pigs were fed treatment diets from d 0 to d 28 and were then fed a common diet from d 28 to d 42. From days 0 to 7, pigs fed ZnO or FORMI had increased (P = 0.03) ADG compared to pigs fed CON, with no difference in feed intake (P > 0.05). Overall, pigs fed GML had reduced (P < 0.0001) ADG compared with those fed the CON, ZnO, or FORMI diets. Fecal DM was evaluated from days 7 to 28 and there was a treatment × day interaction (P = 0.04). Pigs fed GML had a lower fecal DM % on day 7, but a higher fecal DM % on days 14 and 21; however, no differences in fecal DM were observed on day 28. Fresh fecal samples were collected from the same randomly selected pig on days 0 and 14 (70 pigs total;14 pigs per treatment) for analysis of fecal microbial populations using 16S rDNA sequencing. Dietary treatment did not significantly impact fecal microbiota at the phyla level, but pigs fed ZnO had an increased relative abundance (P < 0.01) of the family Clostridiaceae. A blood sample was also collected from one pig per pen on days 0 and 14 for analysis of serum IgA, IgG, and TNF-α. There was no evidence that dietary treatment effected IgA, IgG, or TNF-α concentrations. The effect of sampling day was significant (P < 0.05), where circulating IgA and TNF-α was increased and IgG was decreased from days 0 to 14. In summary, there is potential for a blend of formic acid and GML to improve growth performance immediately post-weaning without negatively impacting fecal consistency. Formic acid and GML alone or in combination did not impact fecal microbial populations or serum immune parameters.
Collapse
Affiliation(s)
- Payton L Dahmer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Olivia L Harrison
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
18
|
Huang G, Su L, Zhang N, Han R, Leong WK, Li X, Ren X, Hsiao WLW. The prebiotic and anti-fatigue effects of hyaluronan. Front Nutr 2022; 9:977556. [PMID: 36003835 PMCID: PMC9393540 DOI: 10.3389/fnut.2022.977556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Hyaluronan (HA) is a mucopolysaccharide that naturally exists in all living organisms as the main component of the extracellular matrix. Over the last 30 years, HA has been used as the main ingredient in cosmetic products, eye drops, and medicinal products. It is also taken orally as a health supplement. However, the physiological effect of the ingested HA is not clear. In the current study, the interaction between HA and gut microbiota, and the potential prebiotic effects were investigated. HA was used to treat the C57BL/6 mice for 15 consecutive days, then fecal genomic DNA was extracted from fecal samples for 16S rRNA amplicon sequencing. The results showed that HA could significantly change the composition of gut microbiota (GM), e.g., increased the relative abundance of beneficial bacteria, including short-chain fatty acids (SCFAs)-producing bacteria and xylan/cellulose-degrading bacteria, whereas decreased the relative abundance of potential pathogens including sulfate-reducing bacteria (SRB), inflammation and cancer-related bacteria. The rotarod test was used to evaluate the anti-fatigue effects of HA in C57BL/6 mice. The results showed that HA could lengthen the mice's retention time on the accelerating rotarod. HA increased the concentration of glycogen and superoxide dismutase (SOD) in mice's muscle and liver, whereas decreased the serum concentration of malondialdehyde (MDA). Moreover, the metabolic products of Desulfovibrio vulgaris (MPDV), the model SRB bacteria, showed cytotoxic effects on H9c2 cardiomyocytes in a dosage-dependent manner. MPDV also caused mitochondrial damage by inducing mitochondrial fragmentation, depolarization, and powerless ATP production. Taken together, we show that HA possesses significant prebiotic and anti-fatigue effects in C57BL/6 mice.
Collapse
Affiliation(s)
- Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Clinical Research Center, Shantou Central Hospital, Shantou, China.,Zhuhai MUST Science and Technology Research Institute, Zhuhai, China
| | - Lu Su
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ni Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Medical Center, Hangzhou, China
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xuecong Ren
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Foshan Women and Children Hospital Affiliated With Southern Medical University, Foshan, China
| |
Collapse
|
19
|
Mohammadi-Aragh MK, Linhoss JE, Evans JD. Effects of various disinfectants on the bacterial load and microbiome of broiler hatching eggs using electrostatic spray. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
20
|
Naro-Maciel E, Ingala MR, Werner IE, Reid BN, Fitzgerald AM. COI amplicon sequence data of environmental DNA collected from the Bronx River Estuary, New York City. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.80139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this data paper, we describe environmental DNA (eDNA) cytochrome c oxidase (COI) amplicon sequence data from New York City’s Bronx River Estuary. As urban systems continue to expand, describing and monitoring their biodiversity is increasingly important for sustainability. Once polluted and overexploited, New York City’s Bronx River Estuary is undergoing revitalization and restoration. To investigate and characterize the area’s diversity, we collected and sequenced river sediment and surface water samples from Hunts Point Riverside and Soundview Parks (ntotal = 48; nsediment = 25; nwater = 23). COI analysis using universal primers mlCOIintF and jgHCO2198 detected 27,328 Amplicon Sequence Variants (ASVs) from 7,653,541 sequences, and rarefaction curves reached asymptotes indicating sufficient sampling depth. Of these, eukaryotes represented 9,841ASVs from 3,562,254 sequences. At the study sites over the sampling period, community composition varied by substrate (river sediment versus surface water) and with water temperature, but not pH. The three most common phyla were Bacillariophyta (diatoms), Annelida (segmented worms), and Ochrophyta (e.g. brown and golden algae). Of the eukaryotic ASVs, we identified 614 (6.2%) to species level, including several dinoflagellates linked to Harmful Algal Blooms such as Heterocapsa spp., as well as the invasive amphipod Grandidierella japonica. The analysis detected common bivalves including blue (Mytilus edulis) and ribbed (Geukensia demissa) mussels, as well as soft-shell clams (Mya arenaria), in addition to Eastern oysters (Crassostrea virginica) that are being reintroduced to the area. Fish species undergoing restoration such as river herring (Alosa pseudoharengus, A. aestivalis) failed to be identified, although relatively common fish including Atlantic silversides (Menidia menidia), menhaden (Brevoortia tyrannus), striped bass (Morone saxatilis), and mummichogs (Fundulus heteroclitus) were found. The data highlight the utility of eDNA metabarcoding for analyzing urban estuarine biodiversity and provide a baseline for future work in the area.
Collapse
|
21
|
Yaparatne S, Doherty ZE, Magdaleno AL, Matula EE, MacRae JD, Garcia-Segura S, Apul OG. Effect of air nanobubbles on oxygen transfer, oxygen uptake, and diversity of aerobic microbial consortium in activated sludge reactors. BIORESOURCE TECHNOLOGY 2022; 351:127090. [PMID: 35358670 DOI: 10.1016/j.biortech.2022.127090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Nanobubbles have the potential to curtail the loss of oxygen during activated sludge aeration due to their extensive surface areas and lack of buoyance in solution. In this study, nanobubble aeration was explored as a novel approach to enhance aerobic activated sludge treatment and benchmarked against coarse bubble aeration at the lab scale. Nanobubble aerated activated sludge reactors achieved greater dissolved oxygen levels at faster rates. Higher soluble chemical oxygen demand removal by 10% was observed when compared to coarse bubble aeration with the same amount of air. The activated sludge produced compact sludge yielding easier waste sludge for subsequent sludge handling. The samples showed fewer filamentous bacteria with a lower relative abundance of floc forming Corynebacterium, Pseudomonas, and Zoogloea in the sludge. The microbiome of the nanobubble-treated activated sludge showed significant shifts in the abundance of community members at the genus level and significantly lower alpha and beta diversities.
Collapse
Affiliation(s)
- Sudheera Yaparatne
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Zachary E Doherty
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Andre L Magdaleno
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Emily E Matula
- NASA Johnson Space Center, Houston TX 77058, United States
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
22
|
Reid BN, Servis JA, Timmers M, Rohwer F, Naro-Maciel E. 18S rDNA amplicon sequence data (V1–V3) of the Palmyra Atoll National Wildlife Refuge, Central Pacific. METABARCODING AND METAGENOMICS 2022. [DOI: 10.3897/mbmg.6.78762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To address the global biodiversity crisis, standardized data that are rapidly obtainable through minimally invasive means are needed for documenting change and informing conservation within threatened and diverse systems, such as coral reefs. In this data paper, we describe 18S rRNA gene amplicon data (V1–V3 region) generated from samples collected to begin characterizing coral reef eukaryotic community composition at the Palmyra Atoll National Wildlife Refuge in the Central Pacific Ocean. Sixteen samples were obtained across four sample types: sediments from two sieved fractions (100–500 μm, n = 3; 500 μm-2 mm, n = 3) and sessile material scrapings (n = 3) from Autonomous Reef Monitoring Structures (ARMS) sampled in 2015, as well as seawater from 2012 (n = 7). After filtering and contaminant removal, 3,861 Amplicon Sequence Variants (ASVs) were produced from 1,062,238 reads. The rarefaction curves demonstrated adequate sampling depth, and communities grouped by sample type. The dominant orders across samples were polychaete worms (Eunicida), demosponges (Poecilosclerida), and bryozoans (Cheilostomatida). The ten most common orders in terms of relative abundance comprised ~60% of all sequences and 23% of ASVs, and included reef-building crustose coralline algae (CCA; Corallinophycidae) and stony corals (Scleractinia), two taxa associated with healthy reefs. Highlighting the need for further study, ~21% of the ASVs were identified as uncultured, incertae sedis, or not assigned to phylum or order. This data paper presents the first 18S rDNA survey at Palmyra Atoll and serves as a baseline for biodiversity assessment, monitoring, and conservation of this remote and pristine ecosystem.
Collapse
|
23
|
Oliver JAW, Kelbrick M, Ramkissoon NK, Dugdale A, Stephens BP, Kucukkilic-Stephens E, Fox-Powell MG, Schwenzer SP, Antunes A, Macey MC. Sulfur Cycling as a Viable Metabolism under Simulated Noachian/Hesperian Chemistries. Life (Basel) 2022; 12:life12040523. [PMID: 35455014 PMCID: PMC9024814 DOI: 10.3390/life12040523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
Water present on the surface of early Mars (>3.0 Ga) may have been habitable. Characterising analogue environments and investigating the aspects of their microbiome best suited for growth under simulated martian chemical conditions is key to understanding potential habitability. Experiments were conducted to investigate the viability of microbes from a Mars analogue environment, Colour Peak Springs (Axel Heiberg Island, Canadian High Arctic), under simulated martian chemistries. The fluid was designed to emulate waters thought to be typical of the late Noachian, in combination with regolith simulant material based on two distinct martian geologies. These experiments were performed with a microbial community from Colour Peak Springs sediment. The impact on the microbes was assessed by cell counting and 16S rRNA gene amplicon sequencing. Changes in fluid chemistries were tested using ICP-OES. Both chemistries were shown to be habitable, with growth in both chemistries. Microbial communities exhibited distinct growth dynamics and taxonomic composition, comprised of sulfur-cycling bacteria, represented by either sulfate-reducing or sulfur-oxidising bacteria, and additional heterotrophic halophiles. Our data support the identification of Colour Peak Springs as an analogue for former martian environments, with a specific subsection of the biota able to survive under more accurate proxies for martian chemistries.
Collapse
Affiliation(s)
- James A. W. Oliver
- Biology Department, Edge Hill University, Ormskirk L39 4QP, UK; (J.A.W.O.); (M.K.)
| | - Matthew Kelbrick
- Biology Department, Edge Hill University, Ormskirk L39 4QP, UK; (J.A.W.O.); (M.K.)
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GJ, UK
| | - Nisha K. Ramkissoon
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (M.G.F.-P.); (S.P.S.)
| | - Amy Dugdale
- AstrobiologyOU, School of Physical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK;
- Biology Department, Maynooth University, Maynooth, W23 F2H6 Kildare, Ireland
| | - Ben P. Stephens
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (M.G.F.-P.); (S.P.S.)
| | - Ezgi Kucukkilic-Stephens
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (M.G.F.-P.); (S.P.S.)
| | - Mark G. Fox-Powell
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (M.G.F.-P.); (S.P.S.)
- School of Earth & Environmental Sciences, University of St Andrews, Fife KY16 9AJ, UK
| | - Susanne P. Schwenzer
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (M.G.F.-P.); (S.P.S.)
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Macau, China;
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, China
| | - Michael C. Macey
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (M.G.F.-P.); (S.P.S.)
- Correspondence:
| |
Collapse
|
24
|
Jiang X, Van Horn DJ, Okie JG, Buelow HN, Schwartz E, Colman DR, Feeser KL, Takacs-Vesbach CD. Limits to the three domains of life: lessons from community assembly along an Antarctic salinity gradient. Extremophiles 2022; 26:15. [PMID: 35296937 DOI: 10.1007/s00792-022-01262-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 02/01/2023]
Abstract
Extremophiles exist among all three domains of life; however, physiological mechanisms for surviving harsh environmental conditions differ among Bacteria, Archaea and Eukarya. Consequently, we expect that domain-specific variation of diversity and community assembly patterns exist along environmental gradients in extreme environments. We investigated inter-domain community compositional differences along a high-elevation salinity gradient in the McMurdo Dry Valleys, Antarctica. Conductivity for 24 soil samples collected along the gradient ranged widely from 50 to 8355 µS cm-1. Taxonomic richness varied among domains, with a total of 359 bacterial, 2 archaeal, 56 fungal, and 69 non-fungal eukaryotic operational taxonomic units (OTUs). Richness for bacteria, archaea, fungi, and non-fungal eukaryotes declined with increasing conductivity (all P < 0.05). Principal coordinate ordination analysis (PCoA) revealed significant (ANOSIM R = 0.97) groupings of low/high salinity bacterial OTUs, while OTUs from other domains were not significantly clustered. Bacterial beta diversity was unimodally distributed along the gradient and had a nested structure driven by species losses, whereas in fungi and non-fungal eukaryotes beta diversity declined monotonically without strong evidence of nestedness. Thus, while increased salinity acts as a stressor in all domains, the mechanisms driving community assembly along the gradient differ substantially between the domains.
Collapse
Affiliation(s)
- Xiaoben Jiang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - David J Van Horn
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jordan G Okie
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Heather N Buelow
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Egbert Schwartz
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Daniel R Colman
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kelli L Feeser
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | |
Collapse
|
25
|
Intestinal Exposure to Ceftiofur and Cefquinome after Intramuscular Treatment and the Impact of Ceftiofur on the Pig Fecal Microbiome and Resistome. Antibiotics (Basel) 2022; 11:antibiotics11030342. [PMID: 35326805 PMCID: PMC8944603 DOI: 10.3390/antibiotics11030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Optimization of antimicrobial treatment during a bacterial infection in livestock requires in-depth knowledge of the impact of antimicrobial therapy on the pathogen and commensal microbiota. Once administered antimicrobials and/or their metabolites are excreted either by the kidneys through urine and/or by the intestinal tract through feces, causing antimicrobial pressure and possibly the emergence of resistance in the gastro-intestinal tract. So far, the excretion of ceftiofur and cefquinome in the intestinal tract of pigs has not been described. The objective of this study was to investigate the excretion of ceftiofur and cefquinome in the different segments of the gut and feces after intramuscular administration. Therefore, 16 pigs were treated either with ceftiofur (n = 8) or cefquinome (n = 8), and feces were collected during the entire treatment period. The presence of ceftiofur and desfuroylceftiofuracetamide or cefquinome were quantified via liquid chromatography−tandem mass spectrometry. At the end of the treatment, pigs were euthanized, and samples from the duodenum, jejunum, ileum and cecum were analyzed. In feces, no active antimicrobial residues could be measured, except for one ceftiofur-treated pig. In the gut segments, the concentration of both antimicrobials increased from duodenum toward the ileum, with a maximum in the ileum (187.8 ± 101.7 ng·g−1 ceftiofur-related residues, 57.8 ± 37.5 ng·g−1 cefquinome) and sharply decreased in the cecum (below the limit of quantification for ceftiofur-related residues, 6.4 ± 4.2 ng·g−1 cefquinome). Additionally, long-read Nanopore sequencing and targeted quantitative polymerase chain reaction (qPCR) were performed in an attempt to clarify the discrepancy in fecal excretion of ceftiofur-related residues between pigs. In general, there was an increase in Prevotella, Bacteroides and Faecalibacterium and a decrease in Escherichia and Clostridium after ceftiofur administration (q-value < 0.05). The sequencing and qPCR could not provide an explanation for the unexpected excretion of ceftiofur-related residues in one pig out of eight. Overall, this study provides valuable information on the gut excretion of parenteral administered ceftiofur and cefquinome.
Collapse
|
26
|
Wilmeth DT, Myers KD, Lalonde SV, Mänd K, Konhauser KO, Grandin P, van Zuilen MA. Evaporative silicification in floating microbial mats: patterns of oxygen production and preservation potential in silica-undersaturated streams, El Tatio, Chile. GEOBIOLOGY 2022; 20:310-330. [PMID: 34676677 PMCID: PMC9298402 DOI: 10.1111/gbi.12476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 05/26/2023]
Abstract
Microbial mats floating within multiple hydrothermally sourced streams in El Tatio, Chile, frequently exhibit brittle siliceous crusts (~1 mm thick) above the air-water interface. The partially silicified mats contain a diverse assemblage of microbial clades and metabolisms, including cyanobacteria performing oxygenic photosynthesis. Surficial crusts are composed of several amorphous silica layers containing well-preserved filaments (most likely cyanobacteria) and other cellular textures overlying EPS-rich unsilicified mats. Environmental logs, silica crust distribution, and microbial preservation patterns provide evidence for crust formation via repeated cycles of evaporation and silica precipitation. Within the mats, in situ microelectrode profiling reveals that daytime oxygen concentrations and pH values are diminished beneath silica crusts compared with adjacent unencrusted communities, indicating localized inhibition of oxygenic photosynthesis due to light attenuation. As a result, aqueous conditions under encrusted mats have a higher saturation state with regard to amorphous silica compared with adjacent, more active mats where high pH increases silica solubility, likely forming a modest feedback loop between diminished photosynthesis and crust precipitation. However, no fully lithified sinters are associated with floating encrusted mats in El Tatio streams, as both subaqueous and subaerial silica precipitation are limited by undersaturated, low-SiO2 (<150 ppm) stream waters. By contrast, well-cemented sinters can form by evaporation in silica-undersaturated solutions above 200 ppm SiO2 . Floating mats in El Tatio therefore represent a specific sinter preservation window, where evaporation in silica-undersaturated microbial mats produces crusts, which preserve cells and affect mat chemistry, but low-silica concentrations prevent the formation of lasting sinter deposits. Patterns of silica precipitation in El Tatio microbial communities show that the preservation potential of silicifying mats in the rock record is strongly dependent on aqueous silica concentrations.
Collapse
Affiliation(s)
- Dylan T. Wilmeth
- Université de ParisInstitut de Physique du Globe de Paris, CNRSParisFrance
- CNRS‐UMR6538European Institute for Marine StudiesPlouzanéFrance
| | - Kimberly D. Myers
- Université de ParisInstitut de Physique du Globe de Paris, CNRSParisFrance
| | | | - Kaarel Mänd
- Department of GeologyUniversity of TartuTartuEstonia
- Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kurt O. Konhauser
- Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Prisca Grandin
- CNRS‐UMR6538European Institute for Marine StudiesPlouzanéFrance
| | - Mark A. van Zuilen
- Université de ParisInstitut de Physique du Globe de Paris, CNRSParisFrance
| |
Collapse
|
27
|
Falduto M, Smedile F, Zhang M, Zheng T, Zhu J, Huang Q, Weeks R, Ermakov AM, Chikindas ML. Anti-obesity effects of Chenpi: an artificial gastrointestinal system study. Microb Biotechnol 2022; 15:874-885. [PMID: 35170866 PMCID: PMC8913872 DOI: 10.1111/1751-7915.14005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 01/19/2023] Open
Abstract
The gut microbiota plays a significant role in human health; however, the complex relationship between gut microbial communities and host health is still to be thoroughly studied and understood. Microbes in the distal gut contribute to host health through the biosynthesis of vitamins and essential amino acids and the generation of important metabolic by-products from dietary components that are left undigested by the small intestine. Aged citrus peel (Chenpi) is used in traditional Chinese medicine to lower cholesterol, promote weight loss and treat various gastrointestinal symptoms. This study investigated how the microbial community changes during treatment with Chenpi using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Two preparations of Chenpi extract were tested: Chenpi suspended in oil only and Chenpi in a viscoelastic emulsion. Short-chain fatty acids (SCFAs) were measured during treatment to monitor changes in the microbial community of the colon presenting a decrease in production for acetic, propionic and butyric acid (ANOVA (P < 0.001) during the 15 days of treatment. 16S rRNA sequencing of microbial samples showed a clear difference between the two treatments at the different sampling times (ANOSIM P < 0.003; ADOSIM P < 0.002 [R2 = 69%]). Beta diversity analysis by PcoA showed differences between the two Chenpi formulations for treatment day 6. These differences were no longer detectable as soon as the Chenpi treatment was stopped, showing a reversible effect of Chenpi on the human microbiome. 16S rRNA sequencing of microbial samples from the descending colon showed an increase in Firmicutes for the treatment with the viscoelastic emulsion. At the genus level, Roseburia, Blautia, Subdoligranulum and Eubacterium increased in numbers during the viscoelastic emulsion treatment. This study sheds light on the anti-obesity effect of a polymethoxyflavone (PMFs)-enriched Chenpi extract and creates a foundation for the identification of 'obesity-prevention' biomarkers in the gut microbiota.
Collapse
Affiliation(s)
- Maria Falduto
- New Jersey Institute for Food, Nutrition and Health, Rutgers State University, New Brunswick, NJ, USA
| | - Francesco Smedile
- Department of Marine and Coastal Sciences, Rutgers State University, New Brunswick, NJ, USA.,Institute of Polar Science, Italian National Research Council, Messina, Italy
| | - Man Zhang
- Department of Food Science, Rutgers State University, New Brunswick, NJ, USA
| | - Ting Zheng
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Jieyu Zhu
- Department of Food Science, Rutgers State University, New Brunswick, NJ, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers State University, New Brunswick, NJ, USA
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Alexey M Ermakov
- Agrobiotechnology Center, Don State Technical University, Rostov-on-Don, Russia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Agrobiotechnology Center, Don State Technical University, Rostov-on-Don, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
28
|
Li X, Khan I, Huang G, Lu Y, Wang L, Liu Y, Lu L, Hsiao WW, Liu Z. Kaempferol acts on bile acid signaling and gut microbiota to attenuate the tumor burden in ApcMin/+ mice. Eur J Pharmacol 2022; 918:174773. [DOI: 10.1016/j.ejphar.2022.174773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
|
29
|
Aswathanarayan JB, Rao P, HM S, GS S, Rai RV. Biofilm-Associated Infections in Chronic Wounds and Their Management. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022. [DOI: 10.1007/5584_2022_738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Syropoulou F, Parlapani FF, Anagnostopoulos DA, Stamatiou A, Mallouchos A, Boziaris IS. Spoilage Investigation of Chill Stored Meagre ( Argyrosomus regius) Using Modern Microbiological and Analytical Techniques. Foods 2021; 10:3109. [PMID: 34945660 PMCID: PMC8702202 DOI: 10.3390/foods10123109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022] Open
Abstract
Spoilage status of whole and filleted chill-stored meagre caught in January and July was evaluated using sensory, microbiological, 16S metabarcoding and Volatile Organic Compounds (VOCs) analysis. Based on the sensory analysis, shelf-life was 15 and 12 days for the whole fish taken in January and July, respectively, while 7 days for fish fillets of both months. For the whole fish, Total Viable Counts (TVC) at the beginning of storage was 2.90 and 4.73 log cfu/g for fish caught in January and July respectively, while it was found about 3 log cfu/g in fish fillets of both months. The 16S metabarcoding analysis showed different profiles between the two seasons throughout the storage. Pseudomonas (47%) and Psychrobacter (42.5%) dominated in whole meagre of January, while Pseudomonas (66.6%) and Shewanella (10.5%) dominated in fish of July, at the end of shelf-life. Regarding the fillets, Pseudomonas clearly dominated at the end of shelf-life for both months. The volatile profile of meagre was predominated by alcohols and carbonyl compounds. After univariate and multivariate testing, we observed one group of compounds (trimethylamine, 3-methylbutanoic acid, 3-methyl-1-butanol) positively correlating with time of storage and another group with a declining trend (such as heptanal and octanal). Furthermore, the volatile profile seemed to be affected by the fish culturing season. Our findings provide insights into the spoilage mechanism and give information that helps stakeholders to supply meagre products of a high-quality level in national and international commerce.
Collapse
Affiliation(s)
- Faidra Syropoulou
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| | - Foteini F. Parlapani
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| | - Dimitrios A. Anagnostopoulos
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| | - Anastasios Stamatiou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Athanasios Mallouchos
- Laboratory of Food Chemistry and Analysis, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Ioannis S. Boziaris
- Laboratory of Marketing and Technology of Aquatic Products and Foods, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytokou Street, 38446 Volos, Greece; (F.S.); (F.F.P.); (D.A.A.)
| |
Collapse
|
31
|
High-throughput amplicon sequencing of fungi and microbial eukaryotes associated with the seagrass Halophila stipulacea (Forssk.) Asch. from Al-Leith mangroves, Saudi Arabia. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Ingala MR, Werner IE, Fitzgerald AM, Naro-Maciel E. 18S rRNA amplicon sequence data (V1–V3) of the Bronx river estuary, New York. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.69691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Characterising and monitoring biological diversity to foster sustainable ecosystems is highly recommended as urban centres rapidly expand. However, much of New York City’s biodiversity remains undescribed, including in the historically degraded, but recovering Bronx River Estuary. In a pilot study to identify organisms and characterise biodiversity patterns there, 18S rRNA gene amplicons (V1–V3 region), obtained from river sediments and surface waters of Hunts Point Riverside and Soundview Parks, were sequenced. Across 48 environmental samples collected over three seasons in 2015 and 2016, following quality control and contaminant removal, 2,763 Amplicon Sequence Variants (ASVs) were identified from 1,918,463 sequences. Rarefaction analysis showed sufficient sampling depth, and community composition varied over time and by substrate at the study sites over the sampling period. Protists, plants, fungi and animals, including organisms of management concern, such as Eastern oysters (Crassostrea virginica), wildlife pathogens and groups related to Harmful Algal Blooms, were detected. The most common taxa identified in river sediments were annelid worms, nematodes and diatoms. In the water column, the most commonly observed organisms were diatoms, algae of the phylum Cryptophyceae, ciliates and dinoflagellates. The presented dataset demonstrates the reach of 18S rRNA metabarcoding for characterising biodiversity in an urban estuary.
Collapse
|
33
|
Prados MB, Lescano M, Porzionato N, Curutchet G. Wiring Up Along Electrodes for Biofilm Formation. Front Microbiol 2021; 12:726251. [PMID: 34526980 PMCID: PMC8435748 DOI: 10.3389/fmicb.2021.726251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Millimeter-length cables of bacteria were discovered growing along a graphite-rod electrode serving as an anode of a microbial electrolysis cell (MEC). The MEC had been inoculated with a culture of Fe-reducing microorganisms enriched from a polluted river sediment (Reconquista river, Argentina) and was operated at laboratory controlled conditions for 18 days at an anode poised potential of 240 mV (vs. Ag/AgCl), followed by 23 days at 480 mV (vs. Ag/AgCl). Anode samples were collected for scanning electron microscopy, phylogenetic and electrochemical analyses. The cables were composed of a succession of bacteria covered by a membranous sheath and were distinct from the known "cable-bacteria" (family Desulfobulbaceae). Apparently, the formation of the cables began with the interaction of the cells via nanotubes mostly located at the cell poles. The cables seemed to be further widened by the fusion between them. 16S rRNA gene sequence analysis confirmed the presence of a microbial community composed of six genera, including Shewanella, a well-characterized electrogenic bacteria. The formation of the cables might be a way of colonizing a polarized surface, as determined by the observation of electrodes extracted at different times of MEC operation. Since the cables of bacteria were distinct from any previously described, the results suggest that bacteria capable of forming cables are more diverse in nature than already thought. This diversity might render different electrical properties that could be exploited for various applications.
Collapse
Affiliation(s)
- María Belén Prados
- Instituto de Energía y Desarrollo Sustentable, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Mariela Lescano
- Instituto de Energía y Desarrollo Sustentable, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Natalia Porzionato
- Instituto de Investigaciones e Ingeniería Ambiental y Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Gustavo Curutchet
- Instituto de Investigaciones e Ingeniería Ambiental y Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina
| |
Collapse
|
34
|
Pollock J, Glendinning L, Smith LA, Mohsin H, Gally DL, Hutchings MR, Houdijk JGM. Temporal and nutritional effects on the weaner pig ileal microbiota. Anim Microbiome 2021; 3:58. [PMID: 34454628 PMCID: PMC8403407 DOI: 10.1186/s42523-021-00119-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The porcine gastrointestinal microbiota has been linked to both host health and performance. Most pig gut microbiota studies target faecal material, which is not representative of microbiota dynamics in other discrete gut sections. The weaning transition period in pigs is a key development stage, with gastrointestinal problems being prominent after often sudden introduction to a solid diet. A better understanding of both temporal and nutritional effects on the small intestinal microbiota is required. Here, the development of the porcine ileal microbiota under differing levels of dietary protein was observed over the immediate post-weaning period. RESULTS Ileal digesta samples were obtained at post-mortem prior to weaning day (day - 1) for baseline measurements. The remaining pigs were introduced to either an 18% (low) or 23% (high) protein diet on weaning day (day 0) and further ileal digesta sampling was carried out at days 5, 9 and 13 post-weaning. We identified significant changes in microbiome structure (P = 0.01), a reduction in microbiome richness (P = 0.02) and changes in the abundance of specific bacterial taxa from baseline until 13 days post-weaning. The ileal microbiota became less stable after the introduction to a solid diet at weaning (P = 0.036), was highly variable between pigs and no relationship was observed between average daily weight gain and microbiota composition. The ileal microbiota was less stable in pigs fed the high protein diet (P = 0.05), with several pathogenic bacterial genera being significantly higher in abundance in this group. Samples from the low protein and high protein groups did not cluster separately by their CAZyme (carbohydrate-active enzyme) composition, but GH33 exosialidases were found to be significantly more abundant in the HP group (P = 0.006). CONCLUSIONS The weaner pig ileal microbiota changed rapidly and was initially destabilised by the sudden introduction to feed. Nutritional composition influenced ileal microbiota development, with the high protein diet being associated with an increased abundance of significant porcine pathogens and the upregulation of GH33 exosialidases-which can influence host-microbe interactions and pathogenicity. These findings contribute to our understanding of a lesser studied gut compartment that is not only a key site of digestion, but also a target for the development of nutritional interventions to improve gut health and host growth performance during the critical weaning transition period.
Collapse
Affiliation(s)
- Jolinda Pollock
- Animal and Veterinary Sciences, Scotland’s Rural College (SRUC), Edinburgh, UK
- SRUC Veterinary Services, Scotland’s Rural College, Edinburgh, UK
| | - Laura Glendinning
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Lesley A. Smith
- Animal and Veterinary Sciences, Scotland’s Rural College (SRUC), Edinburgh, UK
| | - Hamna Mohsin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - David L. Gally
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Jos G. M. Houdijk
- Animal and Veterinary Sciences, Scotland’s Rural College (SRUC), Edinburgh, UK
| |
Collapse
|
35
|
Efficacy of corn dried distillers grains with solubles as a replacement for soybean meal in Boer-cross goat finishing diets. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Zeng W, Wu AG, Zhou XG, Khan I, Zhang RL, Lo HH, Qu LQ, Song LL, Yun XY, Wang HM, Chen J, Ng JPL, Ren F, Yuan SY, Yu L, Tang Y, Huang GX, Wong VKW, Chung SK, Mok SWF, Qin DL, Sun HL, Liu L, Hsiao WLW, Law BYK. Saponins isolated from Radix polygalae extent lifespan by modulating complement C3 and gut microbiota. Pharmacol Res 2021; 170:105697. [PMID: 34062240 DOI: 10.1016/j.phrs.2021.105697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
With the increase in human lifespan, population aging is one of the major problems worldwide. Aging is an irreversible progressive process that affects humans via multiple factors including genetic, immunity, cellular oxidation and inflammation. Progressive neuroinflammation contributes to aging, cognitive malfunction, and neurodegenerative diseases. However, precise mechanisms or drugs targeting age-related neuroinflammation and cognitive impairment remain un-elucidated. Traditional herbal plants have been prescribed in many Asian countries for anti-aging and the modulation of aging-related symptoms. In general, herbal plants' efficacy is attributed to their safety and polypharmacological potency via the systemic manipulation of the body system. Radix polygalae (RP) is a herbal plant prescribed for anti-aging and the relief of age-related symptoms; however, its active components and biological functions remained un-elucidated. In this study, an active methanol fraction of RP containing 17 RP saponins (RPS), was identified. RPS attenuates the elevated C3 complement protein in aged mice to a level comparable to the young control mice. The active RPS also restates the aging gut microbiota by enhancing beneficial bacteria and suppressing harmful bacteria. In addition, RPS treatment improve spatial reference memory in aged mice, with the attenuation of multiple molecular markers related to neuroinflammation and aging. Finally, the RPS improves the behavior and extends the lifespan of C. elegans, confirming the herbal plant's anti-aging ability. In conclusion, through the mouse and C. elegas models, we have identified the beneficial RPS that can modulate the aging process, gut microbiota diversity and rectify several aging-related phenotypes.
Collapse
Affiliation(s)
- Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Department of Center for Neuro-metabolism and Regeneration Research, Bioland Laboratory, Guangzhou, China
| | - An Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Rui Long Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Li Qun Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Lin Lin Song
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Xiao Yun Yun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hui Miao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jerome P L Ng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Si Yu Yuan
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Guo Xin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Sookja Kim Chung
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Simon Wing Fai Mok
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Da Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hua Lin Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
37
|
Pavlovska M, Prekrasna I, Parnikoza I, Dykyi E. Soil Sample Preservation Strategy Affects the Microbial Community Structure. Microbes Environ 2021; 36. [PMID: 33563868 PMCID: PMC7966943 DOI: 10.1264/jsme2.me20134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sample preservation is a critical procedure in any research that relies on molecular tools and is conducted in remote areas. Sample preservation options include low and room temperature storage, which require freezing equipment and specific buffering solutions, respectively. The aim of the present study was to investigate whether DNA/RNA Shield 1x from Zymo Research and DESS (Dimethyl sulfoxide, Ethylenediamine tetraacetic acid, Saturated Salt) solution performed similarly to snap freezing in liquid nitrogen. Soil samples were stored for 1 month in each of the buffers and without any solution at a range of temperatures: –20, +4, and +23°C. All treatments were compared to the “optimal treatment”, namely, snap freezing in liquid nitrogen. The quality and quantity of DNA were analyzed, and the microbial community structure was investigated in all samples. The results obtained indicated that the quantity and integrity of DNA was preserved well in all samples; however, the taxonomic distribution was skewed in samples stored without any solution at ambient temperatures, particularly when analyses were performed at lower taxonomic levels. Although both solutions performed equally well, sequencing output and OTU numbers in DESS-treated samples were closer to those snap frozen with liquid nitrogen. Furthermore, DNA/RNA Shield-stored samples performed better for the preservation of rare taxa.
Collapse
Affiliation(s)
- Mariia Pavlovska
- State Institution National Antarctic Scientific Center.,National University of Life and Environmental Sciences of Ukraine
| | | | | | - Evgen Dykyi
- State Institution National Antarctic Scientific Center
| |
Collapse
|
38
|
Duarte ME, Sparks C, Kim SW. Modulation of jejunal mucosa-associated microbiota in relation to intestinal health and nutrient digestibility in pigs by supplementation of β-glucanase to corn-soybean meal-based diets with xylanase. J Anim Sci 2021; 99:skab190. [PMID: 34125212 PMCID: PMC8292963 DOI: 10.1093/jas/skab190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
This study aimed to evaluate the effects of increasing levels of β-glucanase on the modulation of jejunal mucosa-associated microbiota in relation to nutrient digestibility and intestinal health of pigs fed diets with 30% corn distiller's dried grains with solubles and xylanase. Forty pigs at 12.4 ± 0.5 kg body weight (BW) were allotted in a randomized complete block design with initial BW and sex as blocks. Dietary treatments consisted of a basal diet with xylanase (1,500 endo-pentosanase units [EPU]/kg) and increasing levels of β-glucanase (0, 200, 400, and 600 U/kg) meeting nutrient requirements and fed to pigs for 21 d. Blood samples were collected on day 19. On day 21, all pigs were euthanized to collect intestinal tissues and digesta. Tumor necrosis factor-alpha, interleukin (IL)-6, and malondialdehyde were measured in the plasma and mid-jejunal mucosa. Viscosity was determined using digesta from the distal jejunum. Ileal and rectal digesta were evaluated to determine apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients. Mucosa samples from the mid-jejunum were utilized for microbiota sequencing. Data were analyzed using the MIXED procedure on SAS 9.4. Overall, increasing dietary β-glucanase tended to increase (linear; P = 0.077) the average daily gain of pigs. Increasing dietary β-glucanase affected (quadratic; P < 0.05) the relative abundance of Bacteroidetes, reduced (linear; P < 0.05) Helicobacter rappini, and increased (linear, P < 0.05) Faecalibacterium prausnitzii. β-Glucanase supplementation (0 vs. others) tended to increase (P = 0.096) the AID of crude protein in the diet, whereas increasing dietary β-glucanase tended to increase (linear; P = 0.097) the ATTD of gross energy in the diet and increased (linear; P < 0.05) the concentration of IL-6 in the plasma of pigs. In conclusion, increasing β-glucanase up to 600 U/kg feed in a diet containing xylanase (1,500 EPU/kg) modulated mucosa-associated microbiota by increasing the relative abundance of beneficial bacteria and reducing potentially harmful bacteria. Furthermore, increasing β-glucanase up to 600 U/kg feed in a diet containing xylanase (1,500 EPU/kg feed) enhanced the status of the intestinal environment and nutrient utilization, as well as reduced systemic inflammation of pigs, collectively resulting in moderate improvement of growth performance. Supplementing β-glucanase at a range of 312 to 410 U/kg with xylanase at 1,500 EPU/kg feed showed the most benefit on jejunal mucosa-associated microbiota and reduced systemic inflammation of pigs.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Chris Sparks
- Huvepharma, Inc., Peachtree City, GA, 30269, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
39
|
Rubino CV, Katz BG, Langlois K, Wang HH, Carrion JA, Walker SG, Collier JL, Iacono VJ, Myneni SR. Evaluation of different materials used for sealing of implant abutment access channel and the peri-implant sulcus microbiota: A 6-month, randomized controlled trial. Clin Oral Implants Res 2021; 32:941-950. [PMID: 34129715 DOI: 10.1111/clr.13787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Peri-implantitis has been attributed to a myriad of factors, including microleakage at the abutment-implant interface. Implant abutment access channel sealing materials (IACSM) are readily used in implant dentistry, with little evidence on their effect on microleakage. This study aims to evaluate the effect of IACSM on the microbial composition in the implant access channel and the peri-implant sulcus. METHODS A total of n = 8 patients (64 implants) were included in this single-blinded, randomized controlled trial, whereas four different materials (cotton, polytetrafluoroethylene [PTFE], synthetic foam, or polyvinyl siloxane [PVS]) were randomly placed as an IACSM. Following 6 months, microbial analysis was completed on the IACSM and samples from the peri-implant sulci via PCR and high-throughput sequencing. Bacterial samples on the IACSM and in the peri-implant sulci were classified according to Socransky's microbial complexes. RESULTS There was a preponderance of early colonizing bacteria within the IACSM, while the peri-implant sulci were dominated by Orange complex bacteria. The proportion of Red and Orange complex members on the IACSM was significantly less than in the peri-implant sulci. The proportion of Green, Yellow, and Blue complex members found on the IACSM was significantly greater than in the peri-implant sulci. Atopobium, a diverse species not included in the microbial complexes, was frequently detected in the peri-implant sulcus samples. CONCLUSIONS No detectable effects of IACSM on the microbial community in the peri-implant sulcus or on the IACSM were identified. Variation of bacterial species was most dependent on the individual patient. No significant differences were found in the periodontal parameters between the different treatment groups.
Collapse
Affiliation(s)
- Caroline V Rubino
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Brandon G Katz
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Kylie Langlois
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Howard H Wang
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Julio A Carrion
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Stephen G Walker
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Vincent J Iacono
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Srinivas R Myneni
- Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
40
|
Pavlovska M, Prekrasna I, Dykyi E, Zotov A, Dzhulai A, Frolova A, Slobodnik J, Stoica E. Niche partitioning of bacterial communities along the stratified water column in the Black Sea. Microbiologyopen 2021; 10:e1195. [PMID: 34180601 PMCID: PMC8217838 DOI: 10.1002/mbo3.1195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
The Black Sea is the largest semi‐closed permanently anoxic basin on our planet with long‐term stratification. The study aimed at describing the Black Sea microbial community taxonomic and functional composition within the range of depths spanning across oxic/anoxic interface, and to uncover the factors behind both their vertical and regional differentiation. 16S rRNA gene MiSeq sequencing was applied to get the data on microbial community taxonomy, and the PICRUSt pipeline was used to infer their functional profile. The normoxic zone was mainly inhabited by primary producers and heterotrophic prokaryotes (e.g., Flavobacteriaceae, Rhodobacteraceae, Synechococcaceae) whereas the euxinic zone—by heterotrophic and chemoautotrophic taxa (e.g., MSBL2, Piscirickettsiaceae, and Desulfarculaceae). Assimilatory sulfate reduction and oxygenic photosynthesis were prevailing within the normoxic zone, while the role of nitrification, dissimilatory sulfate reduction, and anoxygenic photosynthesis increased in the oxygen‐depleted water column part. Regional differentiation of microbial communities between the Ukrainian shelf and offshore zone was detected as well, yet it was significantly less pronounced than the vertical one. It is suggested that regional differentiation within a well‐oxygenated zone is driven by the difference in phytoplankton communities providing various substrates for the prokaryotes, whereas redox stratification is the main driving force behind microbial community vertical structure.
Collapse
Affiliation(s)
- Mariia Pavlovska
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine.,Ukrainian Scientific Center of Ecology of the Sea, Odesa, Ukraine.,National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | | | - Evgen Dykyi
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine.,Ukrainian Scientific Center of Ecology of the Sea, Odesa, Ukraine
| | - Andrii Zotov
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine.,State Institution Institute of Marine Biology of the NAS of Ukraine, Odesa, Ukraine
| | - Artem Dzhulai
- State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Alina Frolova
- Institute of Molecular Biology and Genetics of NASU, Kyiv, Ukraine
| | | | - Elena Stoica
- National Institute for Marine Research and Development "Grigore Antipa", Constanta, Romania
| |
Collapse
|
41
|
Rahmeh R, Akbar A, Kumar V, Al-Mansour H, Kishk M, Ahmed N, Al-Shamali M, Boota A, Al-Ballam Z, Shajan A, Al-Okla N. Insights into Bacterial Community Involved in Bioremediation of Aged Oil-Contaminated Soil in Arid Environment. Evol Bioinform Online 2021; 17:11769343211016887. [PMID: 34163126 PMCID: PMC8191072 DOI: 10.1177/11769343211016887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
Soil contamination by hydrocarbons due to oil spills has become a global concern and it has more implications in oil producing regions. Biostimulation is considered as one of the promising remediation techniques that can be adopted to enhance the rate of degradation of crude oil. The soil microbial consortia play a critical role in governing the biodegradation of total petroleum hydrocarbons (TPHs), in particular polycyclic aromatic hydrocarbons (PAHs). In this study, the degradation pattern of TPHs and PAHs of Kuwait soil biopiles was measured at three-month intervals. Then, the microbial consortium associated with oil degradation at each interval was revealed through 16S rRNA based next generation sequencing. Rapid degradation of TPHs and most of the PAHs was noticed at the first 3 months of biostimulation with a degradation rate of pyrene significantly higher compared to other PAHs counterparts. The taxonomic profiling of individual stages of remediation revealed that, biostimulation of the investigated soil favored the growth of Proteobacteria, Alphaprotobacteria, Chloroflexi, Chlorobi, and Acidobacteria groups. These findings provide a key step towards the restoration of oil-contaminated lands in the arid environment.
Collapse
Affiliation(s)
- Rita Rahmeh
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Abrar Akbar
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Vinod Kumar
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Hamad Al-Mansour
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Mohamed Kishk
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Nisar Ahmed
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Mustafa Al-Shamali
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Anwar Boota
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Zainab Al-Ballam
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Anisha Shajan
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Naser Al-Okla
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
42
|
Mangalea MR, Paez-Espino D, Kieft K, Chatterjee A, Chriswell ME, Seifert JA, Feser ML, Demoruelle MK, Sakatos A, Anantharaman K, Deane KD, Kuhn KA, Holers VM, Duerkop BA. Individuals at risk for rheumatoid arthritis harbor differential intestinal bacteriophage communities with distinct metabolic potential. Cell Host Microbe 2021; 29:726-739.e5. [PMID: 33957082 PMCID: PMC8186507 DOI: 10.1016/j.chom.2021.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized in seropositive individuals by the presence of anti-cyclic citrullinated protein (CCP) antibodies. RA is linked to the intestinal microbiota, yet the association of microbes with CCP serology and their contribution to RA is unclear. We describe intestinal phage communities of individuals at risk for developing RA, with or without anti-CCP antibodies, whose first-degree relatives have been diagnosed with RA. We show that at-risk individuals harbor intestinal phage compositions that diverge based on CCP serology, are dominated by Streptococcaceae, Bacteroidaceae, and Lachnospiraceae phages, and may originate from disparate ecosystems. These phages encode unique repertoires of auxiliary metabolic genes, which associate with anti-CCP status, suggesting that these phages directly influence the metabolic and immunomodulatory capability of the microbiota. This work sets the stage for the use of phages as preclinical biomarkers and provides insight into a possible microbial-based causation of RA disease development.
Collapse
Affiliation(s)
- Mihnea R Mangalea
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Meagan E Chriswell
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer A Seifert
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marie L Feser
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - M Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristine A Kuhn
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
43
|
Majumdar R, Kandel SL, Cary JW, Rajasekaran K. Changes in Bacterial Endophyte Community Following Aspergillus flavus Infection in Resistant and Susceptible Maize Kernels. Int J Mol Sci 2021; 22:ijms22073747. [PMID: 33916873 PMCID: PMC8038446 DOI: 10.3390/ijms22073747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/10/2023] Open
Abstract
Aspergillus flavus (A. flavus)-mediated aflatoxin contamination in maize is a major global economic and health concern. As A. flavus is an opportunistic seed pathogen, the identification of factors contributing to kernel resistance will be of great importance in the development of novel mitigation strategies. Using V3–V4 bacterial rRNA sequencing and seeds of A. flavus-resistant maize breeding lines TZAR102 and MI82 and a susceptible line, SC212, we investigated kernel-specific changes in bacterial endophytes during infection. A total of 81 bacterial genera belonging to 10 phyla were detected. Bacteria belonging to the phylum Tenericutes comprised 86–99% of the detected phyla, followed by Proteobacteria (14%) and others (<5%) that changed with treatments and/or genotypes. Higher basal levels (without infection) of Streptomyces and Microbacterium in TZAR102 and increases in the abundance of Stenotrophomonas and Sphingomonas in MI82 following infection may suggest their role in resistance. Functional profiling of bacteria using 16S rRNA sequencing data revealed the presence of bacteria associated with the production of putative type II polyketides and sesquiterpenoids in the resistant vs. susceptible lines. Future characterization of endophytes predicted to possess antifungal/ anti-aflatoxigenic properties will aid in their development as effective biocontrol agents or microbiome markers for maize aflatoxin resistance.
Collapse
|
44
|
Li X, Khan I, Xia W, Huang G, Liu L, Law BYK, Yin L, Liao W, Leong W, Han R, Wong VKW, Xia C, Guo X, Hsiao WLW. Icariin enhances youth-like features by attenuating the declined gut microbiota in the aged mice. Pharmacol Res 2021; 168:105587. [PMID: 33798737 DOI: 10.1016/j.phrs.2021.105587] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
We previously reported the neuroprotective effects of icariin in rat cortical neurons. Here, we present a study on icariin's anti-aging effect in 24-month aged mice by treating them with a single daily dose of 100 mg/kg of icariin for 15 consecutive days. Icariin treatment improved motor coordination and learning skills while lowered oxidative stress biomarkers in the serum, brain, kidney, and liver of the aged mice. In addition, icariin improved the intestinal integrity of the aged mice by upregulating tight junction adhesion molecules and the Paneth and goblet cells, along with the reduction of iNOS and pro-inflammatory cytokines (IL-1β, TNF-α, IL-2 and IL-6, and IL-12). Icariin treatments also significantly upregulated aging-related signaling molecules, Sirt 1, 3 & 6, Pot1α, BUB1b, FOXO1, Ep300, ANXA3, Calb1, SNAP25, and BDNF in old mice. Through gut microbiota (GM) analysis, we observed icariin-associated improvements in GM composition of aged mice by reinstating bacteria found in the young mice, while suppressing some bacteria found in the untreated old mice. To clarify whether icariin's anti-aging effect is rooted in the GM, we performed fecal microbiota transfer (FMT) from icariin-treated old mice to the old mice. FMT-recipients exhibited similar improvements in the rotarod score and age-related biomarkers as observed in the icariin-treated old mice. Equal or better improvement on the youth-like features was noticed when aged mice were FMT with feces from young mice. Our study shows that both direct treatments with icariin and fecal transplant from the icariin-treated aged mice produce similar anti-aging phenotypes in the aged mice. We prove that GM plays a pivotal role in the healing abilities of icariin. Icariin has the potentials to be developed as a medicine for the wellness of the aged adults.
Collapse
Affiliation(s)
- Xiaoang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Lin Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Weilin Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Waikit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chenglai Xia
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan 528000, China.
| | - Xiaoling Guo
- Foshan Maternal and Child Health Research Institute, Foshan Women and Children's Hospital Affiliated to Southern Medical University, Foshan 528000, China.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
45
|
Abdulrahman AO, Alzubaidi MY, Nadeem MS, Khan JA, Rather IA, Khan MI. Effects of urolithins on obesity-associated gut dysbiosis in rats fed on a high-fat diet. Int J Food Sci Nutr 2021; 72:923-934. [PMID: 33618593 DOI: 10.1080/09637486.2021.1886255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity is a global health concern associated with the dysbiosis of intestinal microbial composition. In this study, we investigated the potentials of urolithin A (Uro-A) and urolithin B (Uro-B), two gut microbiota-derived metabolites of ellagitannins, in reducing body weight gain through the modulation of the gut microbiota. We established a high-fat diet (HFD)-induced obesity model in rats that were later administered with either 2.5 mg/kg of Uro-A or Uro-B. Serum biochemical parameters were quantified, and changes in the composition of the gut microbial community were analysed using 16S rDNA gene sequencing. Our results showed that the urolithins significantly decreased the body weight in HFD-fed rats and restored serum lipid profile. The taxonomic analysis showed that both Uro-A and Uro-modulated gut microbes related to body weight, dysfunctional lipid metabolism and inflammation. Overall, our results suggest that Uro-A and Uro-B possess anti-obesity properties, which may be related to the modulation of the gut microbial composition.
Collapse
Affiliation(s)
| | | | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jalaluddin Awlia Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Irfan A Rather
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
46
|
El Mouzan MI, Winter HS, Al Sarkhy AA, Korolev K, Menon R, Assiri AA. Bacterial dysbiosis predicts the diagnosis of Crohn's disease in Saudi children. Saudi J Gastroenterol 2021; 27:144-148. [PMID: 33642351 PMCID: PMC8265402 DOI: 10.4103/sjg.sjg_409_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Studies have reached different conclusions regarding the accuracy of dysbiosis in predicting the diagnosis of Crohn's disease (CD). The aim of this report is to assess the utility of mucosal and fecal microbial dysbiosis as predictors in the diagnosis of this condition in Saudi children. METHODS Tissue and fecal samples were collected prospectively from children with final diagnosis of CD and from controls. Bacterial DNA was extracted and sequenced using Illumina MiSeq chemistry. The abundance and diversity of bacteria in tissue and fecal samples were determined in relation to controls. Sparse logistic regression was calculated to predict the diagnosis of CD based on subject's microbiota profile. RESULTS There were 17 children with CD and 18 controls. All children were Saudis. The median age was 13.9 and 16.3 years for children with CD and controls respectively. Sex distribution showed that 11/17 (65%) of the CD and 12/18 (67%) of the control subjects were boys. The mean area under the curve (AUC) was significantly higher in stool (AUC = 0.97 ± 0.029) than in tissue samples (AUC = 0.83 ±0.055) (P < 0.001). CONCLUSIONS We found high AUC in mucosal and fecal samples. The higher AUC for fecal samples suggests higher accuracy in predicting the diagnosis of CD.
Collapse
Affiliation(s)
- Mohammad I. El Mouzan
- Department of Pediatrics, Gastroenterology Division, King Saud University, Riyadh, Kingdom of Saudi Arabia,Address for correspondence: Prof. Mohammad I. El Mouzan, Department of Pediatrics, King Saud University, P O Box 2925, Riyadh 11461, Kingdom of Saudi Arabia. E-mail:
| | | | - Ahmed A. Al Sarkhy
- Department of Pediatrics, Gastroenterology Division, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Kirill Korolev
- Department of Physics, Bioinformatics Program, Boston University, MA, USA
| | - Rajita Menon
- Department of Physics, Boston University, Boston, MA, Boston, USA
| | - Asaad A. Assiri
- Department of Pediatrics, Gastroenterology Division, Supervisor, Prince Abdullah Bin Khalid Celiac Disease Research Chair, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Corrigendum to " Lycium Berry Polysaccharides Strengthen Gut Microenvironment and Modulate Gut Microbiota of the Mice". EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020. [PMID: 33301546 DOI: 10.1155/2020/8097021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[This corrects the article DOI: 10.1155/2020/8097021.].
Collapse
|
48
|
Lo Verso L, Talbot G, Morissette B, Guay F, Matte JJ, Farmer C, Gong J, Wang Q, Bissonnette N, Beaulieu C, Lessard M. The combination of nutraceuticals and functional feeds as additives modulates gut microbiota and blood markers associated with immune response and health in weanling piglets. J Anim Sci 2020; 98:5889921. [PMID: 32783055 PMCID: PMC7419736 DOI: 10.1093/jas/skaa208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the effects of a combination of feed additives with complementary functional properties on the intestinal microbiota, homocysteine, and vitamins E and B status as well as systemic immune response of weanling piglets. At weaning, 32 litters were assigned to one of the following dietary treatments (DT): 1) conventional diet (CTRL); 2) CTRL diet supplemented with antibiotics (ATB); 3) a cocktail of feed additives containing cranberry extract, encapsulated carvacrol, yeast-derived products, and extra vitamins A, D, E, and B complex (CKTL); or 4) CKTL diet with bovine colostrum in replacement of plasma proteins (CKTL + COL). Within each litter, the piglets with lowest and highest birth weights (LBW and HBW, respectively) and two piglets of medium birth weight (MBW) were identified. The MBW piglets were euthanized at 42 d of age in order to characterize the ileal and colonic microbiota. Blood samples were also collected at weaning and at 42 d of age from LBW and HBW piglets to measure insulin-like growth factor-1 (IGF-1), cysteine, homocysteine, and vitamins E, B6, and B12, and to characterize the leukocyte populations. At 42 d of age, cytokine production by stimulated peripheral blood mononuclear cells was also measured. In a second experiment, piglets were reared under commercial conditions to evaluate the effects of the DT on the growth performance. At the indicator species analysis, the highest indicator value (IV) for Succinivibrio dextrinosolvens was found in the CKTL group, whereas the highest IV for Lactobacillus reuteri and Faecalibacterium prausnitzii was evidenced in the CKTL + COL group (P < 0.05). Compared with the other DT, CTRL piglets had higher concentrations of homocysteine, whereas the CKTL and CKTL + COL supplementations increased the concentrations of vitamins E and B12 (P < 0.05). DT had no effect on IGF-1 concentration and on blood leukocytes populations; however, compared with HBW piglets, LBW animals had lower values of IGF-1, whereas the percentages of γδ T lymphocytes and T helper were decreased and increased, respectively (P < 0.05). CKTL + COL also improved the growth performance of piglets reared under commercial conditions (P < 0.05). This study highlights the impact of birth weight on piglet systemic immune defenses and the potential of weaning diet supplemented with feed additives and bovine colostrum to modulate the homocysteine metabolism and the intestinal microbiota.
Collapse
Affiliation(s)
- Luca Lo Verso
- Département des Sciences Animales, Université Laval, Québec, QC, Canada.,Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Bruno Morissette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Département de Biologie, Université de Sherbrooke, Sherbrooke, QC , Canada
| | - Frédéric Guay
- Département des Sciences Animales, Université Laval, Québec, QC, Canada.,Département de Biologie, Université de Sherbrooke, Sherbrooke, QC , Canada
| | - J Jacques Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Chantal Farmer
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Qi Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Carole Beaulieu
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC , Canada
| | - Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
49
|
Khanal P, Maltecca C, Schwab C, Fix J, Bergamaschi M, Tiezzi F. Modeling host-microbiome interactions for the prediction of meat quality and carcass composition traits in swine. Genet Sel Evol 2020; 52:41. [PMID: 32727371 PMCID: PMC7388461 DOI: 10.1186/s12711-020-00561-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/17/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The objectives of this study were to evaluate genomic and microbial predictions of phenotypes for meat quality and carcass traits in swine, and to evaluate the contribution of host-microbiome interactions to the prediction. Data were collected from Duroc-sired three-way crossbred individuals (n = 1123) that were genotyped with a 60 k SNP chip. Phenotypic information and fecal 16S rRNA microbial sequences at three stages of growth (Wean, Mid-test, and Off-test) were available for all these individuals. We used fourfold cross-validation with animals grouped based on sire relatedness. Five models with three sets of predictors (full, informatively reduced, and randomly reduced) were evaluated. 'Full' included information from all genetic markers and all operational taxonomic units (OTU), while 'informatively reduced' and 'randomly reduced' represented a reduced number of markers and OTU based on significance preselection and random sampling, respectively. The baseline model included the fixed effects of dam line, sex and contemporary group and the random effect of pen. The other four models were constructed by including only genomic information, only microbiome information, both genomic and microbiome information, and microbiome and genomic information and their interaction. RESULTS Inclusion of microbiome information increased predictive ability of phenotype for most traits, in particular when microbiome information collected at a later growth stage was used. Inclusion of microbiome information resulted in higher accuracies and lower mean squared errors for fat-related traits (fat depth, belly weight, intramuscular fat and subjective marbling), objective color measures (Minolta a*, Minolta b* and Minolta L*) and carcass daily gain. Informative selection of markers increased predictive ability but decreasing the number of informatively reduced OTU did not improve model performance. The proportion of variation explained by the host-genome-by-microbiome interaction was highest for fat depth (~ 20% at Mid-test and Off-test) and shearing force (~ 20% consistently at Wean, Mid-test and Off-test), although the inclusion of the interaction term did not increase the accuracy of predictions significantly. CONCLUSIONS This study provides novel insight on the use of microbiome information for the phenotypic prediction of meat quality and carcass traits in swine. Inclusion of microbiome information in the model improved predictive ability of phenotypes for fat deposition and color traits whereas including a genome-by-microbiome term did not improve prediction accuracy significantly.
Collapse
Affiliation(s)
- Piush Khanal
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | | | - Justin Fix
- The Maschhoffs LLC, Carlyle, IL 62231 USA
| | - Matteo Bergamaschi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
50
|
Jovanne Rivera-Rivera M, Cuevas E. First Insights into the Resilience of the Soil Microbiome of a Tropical Dry Forest in Puerto Rico. Microorganisms 2020. [DOI: 10.5772/intechopen.90395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|