1
|
Han J, Tang H, Zhao S, Foley SL. Salmonella enterica virulence databases and bioinformatic analysis tools development. Sci Rep 2024; 14:25228. [PMID: 39448688 PMCID: PMC11502889 DOI: 10.1038/s41598-024-74124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Salmonella enterica, a prominent foodborne pathogen, contributes significantly to global foodborne illnesses annually. This species exhibits significant genetic diversity, potentially impacting its infectivity, disease severity, and antimicrobial resistance. Whole genome sequencing (WGS) offers comprehensive genetic insights that can be utilized for virulence assessment. However, existing bioinformatic tools for studying Salmonella virulence have notable limitations. To address this gap, a Salmonella Virulence Database with a non-redundant, comprehensive list of putative virulence factors was constructed. Two bioinformatic analysis tools, Virulence Factor Profile Assessment and Virulence Factor Profile Comparison tools, were developed. The former provides data on similarity to the reference genes, e-value, and bite score, while the latter assesses the presence/absence of virulence genes in Salmonella isolates and facilitates comparison of virulence profiles across multiple sequences. To validate the database and associated bioinformatic tools, WGS data from 43,853 Salmonella isolates spanning 14 serovars was extracted from GenBank, and WGS data previously generated in our lab was used. Overall, the Salmonella Virulence database and our bioinformatic tools effectively facilitated virulence assessment, enhancing our understanding of virulence profiles among Salmonella isolates and serovars. The public availability of these resources will empower researchers to assess Salmonella virulence comprehensively, which could inform strategies for pathogen control and risk evaluations associated with human illnesses.
Collapse
Affiliation(s)
- Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
- Division of Microbiology, National Center of Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 7209, USA.
| | - Hailin Tang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Shaohua Zhao
- Office of Applied Science, Center for Veterinary Medicine, Food and Drug Administration, Laurel, MD, 20708, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA.
- Division of Microbiology, National Center of Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 7209, USA.
| |
Collapse
|
2
|
Marshall KE, Cui Z, Gleason BL, Hartley C, Wise ME, Bruce BB, Griffin PM. An Approach to Describe Salmonella Serotypes of Concern for Outbreaks: Using Burden and Trajectory of Outbreak-related Illnesses Associated with Meat and Poultry. J Food Prot 2024; 87:100331. [PMID: 39032785 PMCID: PMC11366486 DOI: 10.1016/j.jfp.2024.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Over 40% of all U.S. Salmonella illnesses are attributed to consumption of contaminated meat and poultry products each year. Determining which serotypes cause the most outbreak illnesses associated with specific meat and poultry types can inform prevention measures. We developed an approach to categorize serotypes using outbreak illness burden (high, moderate, low) and trajectory (increased, stable, decreased). We used data from 192 foodborne Salmonella outbreaks resulting in 7,077 illnesses, 1,330 hospitalizations, and 9 deaths associated with chicken, turkey, beef, or pork during 2012-2021. We linked each meat and poultry type to 1-3 serotypes that we categorized as high outbreak illness burden and increased trajectory during 2021. Calculation and public display of outbreak illness burden and trajectory annually could facilitate the prioritization of serotypes for prevention by federal and state health and regulatory agencies and by the meat and poultry industry.
Collapse
Affiliation(s)
- Katherine E Marshall
- Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H24-10, Atlanta, GA 30333, USA.
| | - Zhaohui Cui
- Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H24-10, Atlanta, GA 30333, USA
| | - Brigette L Gleason
- Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H24-10, Atlanta, GA 30333, USA
| | - Cassie Hartley
- Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H24-10, Atlanta, GA 30333, USA
| | - Matthew E Wise
- Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H24-10, Atlanta, GA 30333, USA
| | - Beau B Bruce
- Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H24-10, Atlanta, GA 30333, USA
| | - Patricia M Griffin
- Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop H24-10, Atlanta, GA 30333, USA
| |
Collapse
|
3
|
Sun RY, Fang LX, Dai JJ, Chen KC, Ke BX, Sun J, Ke CW, Wai Chi Chan E, Liu YH, Chen S, Liao XP. Antimicrobial resistance and population genomics of emerging multidrug-resistant Salmonella 4,[5],12:i:- in Guangdong, China. mSystems 2024; 9:e0116423. [PMID: 38747582 PMCID: PMC11237462 DOI: 10.1128/msystems.01164-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/09/2024] [Indexed: 06/19/2024] Open
Abstract
Salmonella 4,[5],12:i:-, a monophasic variant of Salmonella Typhimurium, has emerged as a global cause of multidrug-resistant salmonellosis and has become endemic in many developing and developed countries, especially in China. Here, we have sequenced 352 clinical isolates in Guangdong, China, during 2009-2019 and performed a large-scale collection of Salmonella 4,[5],12:i:- with whole genome sequencing (WGS) data across the globe, to better understand the population structure, antimicrobial resistance (AMR) genomic characterization, and transmission routes of Salmonella 4,[5],12:i:- across Guangdong. Salmonella 4,[5],12:i:- strains showed broad genetic diversity; Guangdong isolates were found to be widely distributed among the global lineages. Of note, we identified the formation of a novel Guangdong clade (Bayesian analysis of population structure lineage 1 [BAPS1]) genetically diversified from the global isolates and likely emerged around 1990s. BAPS1 exhibits unique genomic features, including large pan-genome, decreased ciprofloxacin susceptibility due to mutation in gyrA and carriage of plasmid-mediated quinolone resistance (PMQR) genes, and the multidrug-resistant IncHI2 plasmid. Furthermore, high genetic similarity was found between strains collected from Guangdong, Europe, and North America, indicating the association with multiple introductions from overseas. These results suggested that global dissemination and local clonal expansion simultaneously occurred in Guangdong, China, and horizontally acquired resistance to first-line and last-line antimicrobials at local level, underlying emergences of extensive drug and pan-drug resistance. Our findings have increased the knowledge of global and local epidemics of Salmonella 4,[5],12:i:- in Guangdong, China, and provided a comprehensive baseline data set essential for future molecular surveillance.IMPORTANCESalmonella 4,[5],12:i:- has been regarded as the predominant pandemic serotype causing diarrheal diseases globally, while multidrug resistance (MDR) constitutes great public health concerns. This study provided a detailed and comprehensive genome-scale analysis of this important Salmonella serovar in the past decade in Guangdong, China. Our results revealed the complexity of two distinct transmission modes, namely global transmission and local expansion, circulating in Guangdong over a decade. Using phylogeography models, the origin of Salmonella 4,[5],12:i:- was predicted from two aspects, year and country, that is, Salmonella 4,[5],12:i:- emerged in 1983, and was introduced from the UK, and subsequently differentiated into the local endemic lineage circa 1991. Additionally, based on the pan-genome analysis, it was found that the gene accumulation rate in local endemic BAPS 1 lineage was higher than in other lineages, and the horizontal transmission of MDR IncHI2 plasmid associated with high resistance played a major role, which showed the potential threat to public health.
Collapse
Affiliation(s)
- Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Jing-Jing Dai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
| | - Kai-Chao Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Bi-Xia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Chang-Wen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Edward Wai Chi Chan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Vázquez X, Fernández J, Heinisch JJ, Rodicio R, Rodicio MR. Insights into the Evolution of IncR Plasmids Found in the Southern European Clone of the Monophasic Variant of Salmonella enterica Serovar Typhimurium. Antibiotics (Basel) 2024; 13:314. [PMID: 38666990 PMCID: PMC11047700 DOI: 10.3390/antibiotics13040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
Salmonella enterica subspecies enterica serovar 4,[5],12:i:- is a monophasic variant of S. Typhimurium which has emerged as a world-wide distributed pathogen in the last decades. Several clones have been identified within this variant, the European clone, the Spanish clone, the Southern European clone and the U.S./American clone. The present study focused on isolates of the Southern European clone that were obtained from clinical samples at Spanish hospitals. The selected isolates were multidrug resistant, with most resistance genes residing on IncR plasmids that also carried virulence genes. These plasmids had a mosaic structure, comprising a highly reduced IncR backbone, which has acquired a large amount of exogenous DNA mostly derived from pSLT and IncI1-I(alfa) plasmids. Although composed of approximately the same elements, the investigated plasmids displayed a high diversity, consistent with active evolution driven by a wealth of mobile genetic elements. They comprise multiple intact or truncated insertion sequences, transposons, pseudo-compound transposons and integrons. Particularly relevant was the role of IS26 (with six to nine copies per plasmid) in generating insertions, deletions and inversions, with many of the rearrangements uncovered by tracking the patterns of eight bp target site duplications. Most of the resistance genes detected in the analyzed isolates have been previously associated with the Southern European clone. However, erm(B), lnu(G) and blaTEM-1B are novel, with the last two carried by a second resistance plasmid found in one of the IncR-positive isolates. Thus, evolution of resistance in the Southern European clone is not only mediated by diversification of the IncR plasmids, but also through acquisition of additional plasmids. All isolates investigated in the present study have the large deletion affecting the fljBA region previously found to justify the monophasic phenotype in the Southern European and U.S./American clones. An SNP-based phylogenetic analysis revealed the close relationship amongst our isolates, and support that those sharing the large fljBA deletion could be more heterogeneous than previously anticipated.
Collapse
Affiliation(s)
- Xenia Vázquez
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain; (X.V.); (J.F.)
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Javier Fernández
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain; (X.V.); (J.F.)
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, 30627 Madrid, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, 33001 Oviedo, Spain
| | - Jürgen J. Heinisch
- Department of Genetics, Faculty of Biology and Chemistry, University of Osnabrück, Barbarastrasse 11, D-49076 Osnabrück, Germany;
| | - Rosaura Rodicio
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo (UO), 33006 Oviedo, Spain
| | - M. Rosario Rodicio
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo (UO), 33006 Oviedo, Spain; (X.V.); (J.F.)
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
5
|
Wu X, Suksawat F, Phuektes P, Siriwong S, Liu H, Li W, Angkititrakul S. Flagella Phenotypic Variations of ST34 Type Salmonella Typhimurium and Variants. Foodborne Pathog Dis 2024. [PMID: 38466980 DOI: 10.1089/fpd.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Salmonella enterica serovar Typhimurium and its variants are the most common serotypes of human salmonellosis cases. Serotyping Salmonella Typhimurium and its variants has always been challenging. Our previous work found that among 14 Salmonella Typhimurium and variant strains, some different antigenic formulas had 100% pulsed-field gel electrophoresis (PFGE) similarity. The 14 strains were sorted into 3 groups; in each group, the different antigenic formulas had the same PFGE patterns. This phenomenon suggested that different antigenic formula identification might originate from a common ancestor subtyped by PFGE. To assess whether the serotyping method on Salmonella Typhimurium and variant strains reflected the genetic relationship, we improved the discrimination for the phylogenetic relationship among the 14 Salmonella Typhimurium and variant strains using Fourier-transform infrared spectroscopy (FTIR) and whole-genome multilocus sequence typing (wgMLST). We compared the wgMLST assay of 14 Salmonella Typhimurium and variant strains from this study with 50 public ST34 strain data of Salmonella Typhimurium and variant strains. We also compared flagella (H antigen)-related genes based on the whole genome of 14 strains and the other 293 ST34 public database for further understanding of this question. The phylogenetic results (PFGE) showed no regularity between the antigenic formulas and genotypes. The results of the higher discrimination power assays (FTIR and whole-genome multilocus sequence typing) also showed no regularity between the antigenic formulas and genotypes (or phenotypes). The 58 flagella encoding genes of different antigenic formulas were sorted into 13 patterns. However, a similar phenomenon was found: the same flagella encoding gene patterns could express different antigenic formulas. In conclusion, there is no consistency between the antigenic formulas and phylogenetic relationships among ST34 Salmonella Typhimurium and variant strains, even in flagella antigenic formula and flagella encoding genes.
Collapse
Affiliation(s)
- Xin Wu
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Fanan Suksawat
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Patchara Phuektes
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Hongmei Liu
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wengui Li
- Yunnan Joint International R&D Center of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | | |
Collapse
|
6
|
Soliani L, Rugna G, Prosperi A, Chiapponi C, Luppi A. Salmonella Infection in Pigs: Disease, Prevalence, and a Link between Swine and Human Health. Pathogens 2023; 12:1267. [PMID: 37887782 PMCID: PMC10610219 DOI: 10.3390/pathogens12101267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Salmonella is one of the most spread foodborne pathogens worldwide, and Salmonella infections in humans still represent a global health burden. The main source of Salmonella infections in humans is represented by contaminated animal-derived foodstuffs, with pork products being one of the most important players. Salmonella infection in swine is critical not only because it is one of the main causes of economic losses in the pork industry, but also because pigs can be infected by several Salmonella serovars, potentially contaminating the pig meat production chain and thus posing a significant threat to public health globally. As of now, in Europe and in the United States, swine-related Salmonella serovars, e.g., Salmonella Typhimurium and its monophasic variant Salmonella enterica subsp. enterica 1,4,[5],12:i:-, are also frequently associated with human salmonellosis cases. Moreover, multiple outbreaks have been reported in the last few decades which were triggered by the consumption of Salmonella-contaminated pig meat. Throughout the years, changes and evolution across the pork industry may have acted as triggers for new issues and obstacles hindering Salmonella control along the food chain. Gathered evidence reinforces the importance of coordinating control measures and harmonizing monitoring programs for the efficient control of Salmonella in swine. This is necessary in order to manage outbreaks of clinical disease in pigs and also to protect pork consumers by controlling Salmonella subclinical carriage and shedding. This review provides an update on Salmonella infection in pigs, with insights on Salmonella ecology, focusing mainly on Salmonella Choleraesuis, S. Typhimurium, and S. 1,4,[5],12:i:-, and their correlation to human salmonellosis cases. An update on surveillance methods for epidemiological purposes of Salmonella infection in pigs and humans, in a "One Health" approach, will also be reported.
Collapse
Affiliation(s)
- Laura Soliani
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna (IZSLER), 25124 Brescia, Italy; (G.R.); (A.P.); (C.C.); (A.L.)
| | | | | | | | | |
Collapse
|
7
|
Gomes-Neto JC, Pavlovikj N, Korth N, Naberhaus SA, Arruda B, Benson AK, Kreuder AJ. Salmonella enterica induces biogeography-specific changes in the gut microbiome of pigs. Front Vet Sci 2023; 10:1186554. [PMID: 37781286 PMCID: PMC10537282 DOI: 10.3389/fvets.2023.1186554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Swine are a major reservoir of an array of zoonotic Salmonella enterica subsp. enterica lineage I serovars including Derby, Typhimurium, and 4,[5],12:i:- (a.k.a. Monophasic Typhimurium). In this study, we assessed the gastrointestinal (GI) microbiome composition of pigs in different intestinal compartments and the feces following infection with specific zoonotic serovars of S. enterica (S. Derby, S. Monophasic, and S. Typhimurium). 16S rRNA based microbiome analysis was performed to assess for GI microbiome changes in terms of diversity (alpha and beta), community structure and volatility, and specific taxa alterations across GI biogeography (small and large intestine, feces) and days post-infection (DPI) 2, 4, and 28; these results were compared to disease phenotypes measured as histopathological changes. As previously reported, only S. Monophasic and S. Typhimurium induced morphological alterations that marked an inflammatory milieu restricted to the large intestine in this experimental model. S. Typhimurium alone induced significant changes at the alpha- (Simpson's and Shannon's indexes) and beta-diversity levels, specifically at the peak of inflammation in the large intestine and feces. Increased community dispersion and volatility in colonic apex and fecal microbiomes were also noted for S. Typhimurium. All three Salmonella serovars altered community structure as measured by co-occurrence networks; this was most prominent at DPI 2 and 4 in colonic apex samples. At the genus taxonomic level, a diverse array of putative short-chain fatty acid (SCFA) producing bacteria were altered and often decreased during the peak of inflammation at DPI 2 and 4 within colonic apex and fecal samples. Among all putative SCFA producing bacteria, Prevotella showed a broad pattern of negative correlation with disease scores at the peak of inflammation. In addition, Prevotella 9 was found to be significantly reduced in all Salmonella infected groups compared to the control at DPI 4 in the colonic apex. In conclusion, this work further elucidates that distinct swine-related zoonotic serovars of S. enterica can induce both shared (high resilience) and unique (altered resistance) alterations in gut microbiome biogeography, which helps inform future investigations of dietary modifications aimed at increasing colonization resistance against Salmonella through GI microbiome alterations.
Collapse
Affiliation(s)
- Joao Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Natasha Pavlovikj
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nate Korth
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Samantha A. Naberhaus
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bailey Arruda
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amanda J. Kreuder
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Pye HV, Thilliez G, Acton L, Kolenda R, Al-Khanaq H, Grove S, Kingsley RA. Strain and serovar variants of Salmonella enterica exhibit diverse tolerance to food chain-related stress. Food Microbiol 2023; 112:104237. [PMID: 36906307 DOI: 10.1016/j.fm.2023.104237] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Non-Typhoidal Salmonella (NTS) continues to be a leading cause of foodborne illness worldwide. Food manufacturers implement hurdle technology by combining more than one approach to control food safety and quality, including preservatives such as organic acids, refrigeration, and heating. We assessed the variation in survival in stresses of genotypically diverse isolates of Salmonella enterica to identify genotypes with potential elevated risk to sub-optimal processing or cooking. Sub-lethal heat treatment, survival in desiccated conditions and growth in the presence of NaCl or organic acids were investigated. S. Gallinarum strain 287/91 was most sensitive to all stress conditions. While none of the strains replicated in a food matrix at 4 °C, S. Infantis strain S1326/28 retained the greatest viability, and six strains exhibited a significantly reduced viability. A S. Kedougou strain exhibited the greatest resistance to incubation at 60 °C in a food matrix that was significantly greater than S. Typhimurium U288, S Heidelberg, S. Kentucky, S. Schwarzengrund and S. Gallinarum strains. Two isolates of monophasic S. Typhimurium, S04698-09 and B54Col9 exhibited the greatest tolerance to desiccation that was significantly more than for the S. Kentucky and S. Typhimurium U288 strains. In general, the presence of 12 mM acetic acid or 14 mM citric acid resulted in a similar pattern of decreased growth in broth, but this was not observed for S. Enteritidis, and S. Typhimurium strains ST4/74 and U288 S01960-05. Acetic acid had a moderately greater effect on growth despite the lower concentration tested. A similar pattern of decreased growth was observed in the presence of 6% NaCl, with the notable exception that S. Typhimurium strain U288 S01960-05 exhibited enhanced growth in elevated NaCl concentrations.
Collapse
Affiliation(s)
- Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK; University of East Anglia, Norwich Research Park, Norwich, UK
| | - Gaёtan Thilliez
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK
| | - Luke Acton
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK; University of East Anglia, Norwich Research Park, Norwich, UK
| | - Rafał Kolenda
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK
| | - Stephen Grove
- Nestlé Development Centre, Cannon Road, Solon, OH, USA; McCain Foods, 1 Tower Lane, Oakbrook Terrace, Illinois, USA
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich Research Park, James Watson Road, Norwich, UK; University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
9
|
Spread of blaCTX-M-9 and Other Clinically Relevant Resistance Genes, Such as mcr-9 and qnrA1, Driven by IncHI2-ST1 Plasmids in Clinical Isolates of Monophasic Salmonella enterica Serovar Typhimurium ST34. Antibiotics (Basel) 2023; 12:antibiotics12030547. [PMID: 36978414 PMCID: PMC10044134 DOI: 10.3390/antibiotics12030547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The monophasic 4,[5],12:i:-variant of Salmonella enterica serovar Typhimurium with sequence type ST34 has become one of the most prevalent non-typhoidal salmonellae worldwide. In the present study, we thoroughly characterized seven isolates of this variant detected in a Spanish hospital and selected based on cefotaxime resistance and cefoxitin susceptibility, mediated by blaCTX-M-9. For this, conventional microbiological techniques, together with whole genome sequencing performed with the Illumina platform, were applied. All selected isolates carried the resistance region RR or variants therein, and most also contained the SGI-4 genomic island. These chromosomal elements, typically associated with monophasic S. Typhimurium ST34, confer resistance to traditional antibiotics (ampicillin, streptomycin, sulfonamides, and tetracycline) and tolerance to heavy metals (mercury, silver, and copper). In addition, each isolate carried a large IncHI2-ST1 conjugative plasmid containing additional or redundant resistance genes. All harbored the blaCTX-M-9 gene responsible for cefotaxime resistance, whereas the qnrA1 gene mediating fluoroquinolone resistance was detected in two of the plasmids. These genes were embedded in ISCR1-bearing complex class 1 integrons, specifically In60-like and In36-like. The mcr-9 gene was present in all but one of the IncHI2-ST1 plasmids found in the analyzed isolates, which were nevertheless susceptible to colistin. Most of the resistance genes of plasmid origin clustered within a highly complex and variable region. The observed diversity results in a wide range of resistance phenotypes, enabling bacterial adaptation to selective pressure posed by the use of antimicrobials.
Collapse
|
10
|
Predicting the Next Superspreader. mSystems 2023; 8:e0119922. [PMID: 36815796 PMCID: PMC9948712 DOI: 10.1128/msystems.01199-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The spread of multidrug-resistant zoonotic pathogens, such as Salmonella, within livestock is of concern for food safety. The spread of Salmonella on the farm is escalated by superspreaders, which shed the pathogen at high numbers with their feces. However, there are currently no biomarkers to identify potential superspreaders. Kempf and coworkers determined that a potent early inflammatory response to Salmonella infection and changes in the microbiota composition are associated with the superspreader phenotype in pigs (F. Kempf, G. Cordoni, A.M. Chaussé, R. Drumo, et al., mSystems, in press, https://doi.org/10.1128/msystems.00852-22). Since these biomarkers only develop during Salmonella infection, additional work is needed to predict animals that have the potential to become superspreaders.
Collapse
|
11
|
Plumb ID, Brown AC, Stokes EK, Chen JC, Carleton H, Tolar B, Sundararaman P, Saupe A, Payne DC, Shah HJ, Folster JP, Friedman CR. Increased Multidrug-Resistant Salmonella enterica I Serotype 4,[5],12:i:- Infections Associated with Pork, United States, 2009-2018. Emerg Infect Dis 2023; 29. [PMID: 36692335 PMCID: PMC9881761 DOI: 10.3201/eid2902.220950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reports of Salmonella enterica I serotype 4,[5],12:i:- infections resistant to ampicillin, streptomycin, sulphamethoxazole, and tetracycline (ASSuT) have been increasing. We analyzed data from 5 national surveillance systems to describe the epidemiology, resistance traits, and genetics of infections with this Salmonella strain in the United States. We found ASSuT-resistant Salmonella 4,[5],12:i:- increased from 1.1% of Salmonella infections during 2009-2013 to 2.6% during 2014-2018; the proportion of Salmonella 4,[5],12:i:- isolates without this resistance pattern declined from 3.1% to 2.4% during the same timeframe. Among isolates sequenced during 2015-2018, a total of 69% were in the same phylogenetic clade. Within that clade, 77% of isolates had genetic determinants of ASSuT resistance, and 16% had genetic determinants of decreased susceptibility to ciprofloxacin, ceftriaxone, or azithromycin. Among outbreaks related to the multidrug-resistant clade, 63% were associated with pork consumption or contact with swine. Preventing Salmonella 4,[5],12:i:- carriage in swine would likely avert human infections with this strain.
Collapse
|
12
|
Souza SSR, Turcotte MR, Li J, Zhang X, Wolfe KL, Gao F, Benton CS, Andam CP. Population analysis of heavy metal and biocide resistance genes in Salmonella enterica from human clinical cases in New Hampshire, United States. Front Microbiol 2022; 13:983083. [PMID: 36338064 PMCID: PMC9626534 DOI: 10.3389/fmicb.2022.983083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Microbes frequently encounter heavy metals and other toxic compounds generated from natural biogeochemical processes and anthropogenic activities. Here, we analyzed the prevalence and association of genes conferring resistance to heavy metals, biocides, and antimicrobial compounds in 394 genome sequences of clinical human-derived S. enterica from New Hampshire, USA. The most prevalent was the gold operon (gesABC-golTSB), which was present in 99.2% of the genomes. In contrast, the other five heavy metal operons (arsenic, copper, mercury, silver, tellurite) were present in 0.76% (3/394)-5.58% (22/394) of the total population. The heavy metal operons and three biocide resistance genes were differentially distributed across 15 sequence types (STs) and 16 serotypes. The number of heavy metal operons and biocide resistance genes per genome was significantly associated with high number of antimicrobial resistance (AMR) genes per genome. Notable is the mercury operon which exhibited significant association with genes conferring resistance to aminoglycosides, cephalosporins, diaminopyrimidine, sulfonamide, and fosfomycin. The mercury operon was co-located with the AMR genes aac(3)-IV, ant(3")-IIa, aph(3')-Ia, and aph(4)-Ia, CTX-M-65, dfrA14, sul1, and fosA3 genes within the same plasmid types. Lastly, we found evidence for negative selection of individual genes of each heavy metal operon and the biocide resistance genes (dN/dS < 1). Our study highlights the need for continued surveillance of S. enterica serotypes that carry those genes that confer resistance to heavy metals and biocides that are often associated with mobile AMR genes. The selective pressures imposed by heavy metals and biocides on S. enterica may contribute to the co-selection and spread of AMR in human infections.
Collapse
Affiliation(s)
- Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Madison R. Turcotte
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Jinfeng Li
- New Hampshire Department of Health and Human Services, Concord, NH, United States
| | - Xinglu Zhang
- New Hampshire Department of Health and Human Services, Concord, NH, United States
| | - Kristin L. Wolfe
- New Hampshire Department of Health and Human Services, Concord, NH, United States
| | - Fengxiang Gao
- New Hampshire Department of Health and Human Services, Concord, NH, United States
| | | | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| |
Collapse
|
13
|
Qin X, Yang M, Cai H, Liu Y, Gorris L, Aslam MZ, Jia K, Sun T, Wang X, Dong Q. Antibiotic Resistance of Salmonella Typhimurium Monophasic Variant 1,4,[5],12:i:- in China: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11040532. [PMID: 35453283 PMCID: PMC9031511 DOI: 10.3390/antibiotics11040532] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Antibiotic resistance in Salmonella is a global public health problem. Salmonella enterica serovar 1,4,[5],12:i:- (S. 1,4,[5],12:i:-), a monophasic variant of Salmonella Typhmurium, is one of the leading Salmonella serovars in several countries. This study aimed to assess the prevalence of antibiotic resistance to this serovar in China through a systematic review and meta-analysis. Nineteen eligible studies during 2011–2021 were included. A total of 4514 isolates from humans, animals, foods, and the environment were reported, which mainly concerned isolates found in Guangdong, Guangxi, Jiangsu, and Shanghai. A random-effects model was used to estimate the pooled resistance rate of S. 1,4,[5],12:i:-. Rates were found to be very high (values ≥ 75%) for tetracycline, ampicillin, sulfisoxazole, and streptomycin; high (50–75%) for nalidixic acid, amoxicillin–clavulanic acid, and chloramphenicol; and moderate (25–50%) for trimethoprim–sulfamethoxazole, kanamycin, trimethoprim, and gentamicin. The rates of resistance to ciprofloxacin, cefotaxime, ceftriaxone, cefepime, ceftazidime, and colistin were low (values ≤ 25%), but of great concern in terms of their current clinical importance. Furthermore, a high multidrug resistance rate (86%, 95% CI: 78–92%) was present in S. 1,4,[5],12:i:-, with the ASSuT pattern largely dominating. Subgroup analysis results showed that the high heterogeneity of resistance rates was not entirely dependent on isolated sources. Taken together, the severity of antibiotic resistance in S. 1,4,[5],12:i:- urgently requires the rational use of antibiotics in future infection control and antibiotic stewardship programs.
Collapse
Affiliation(s)
- Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Mingzhe Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Leon Gorris
- Food Safety Futures, 6524 BS Nijmegen, The Netherlands;
| | - Muhammad Zohaib Aslam
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Kai Jia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Tianmei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.Q.); (M.Y.); (Y.L.); (M.Z.A.); (K.J.); (T.S.); (X.W.)
- Correspondence:
| |
Collapse
|
14
|
Harrison OL, Gebhardt JT, Paulk CB, Plattner BL, Woodworth JC, Rensing S, Jones CK, Trinetta V. Inoculation of Weaned Pigs by Feed, Water, and Airborne Transmission of Salmonella enterica Serotype 4,[5],12:i:. J Food Prot 2022; 85:693-700. [PMID: 35076710 DOI: 10.4315/jfp-21-418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella enterica serotype 4,[5],12:i:- (STM) has become an increasing problem for food safety and has been often detected in swine products. Weanling pigs were exposed to STM-contaminated feed, water, or air to determine possible STM transmission routes. A control group of pigs was included. STM was monitored daily in feces and rectal and nasal swabs. STM colonization was most prevalent in tissues from tonsil, lower intestine, and mesenteric lymph nodes. No differences in lesion severity were observed between inoculated and control pigs. Contaminated feed, water, and aerosolized particles caused infection in weaned pigs; however, no STM colonization was observed in skeletal muscle destined for human consumption. Based on the results from this study, STM contamination in pork products most likely results from cross-contamination of meat by digesta or lymph node tissue during processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Olivia L Harrison
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jordan T Gebhardt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Chad B Paulk
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Brandon L Plattner
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Susan Rensing
- Department of Gender, Women, and Sexuality Studies, Kansas State University, Manhattan, Kansas 66506, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Valentina Trinetta
- Food Science Institute, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
15
|
Harrison OL, Rensing S, Jones CK, Trinetta V. Salmonella enterica 4,[5],12:i:-, an Emerging Threat for the Swine Feed and Pork Production Industry. J Food Prot 2022; 85:660-663. [PMID: 34936694 DOI: 10.4315/jfp-21-400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/20/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella continues to be a significant cause of foodborne illnesses in human medicine. The Centers for Disease Control and Prevention reported Salmonella as the second leading cause of foodborne illness in the United States and the leading cause of both hospitalizations and deaths. Salmonella enterica 4,[5],12:i:- (STM) is a monophasic variant of Salmonella Typhimurium, and it is an emerging threat to both human and animal health. STM was first identified in the 1980s from poultry products and has become increasingly prevalent in meat products including pork. STM has also been identified in swine farms as well as in feed manufacturing environments and feed itself. Similar pulse-field gel electrophoresis profiles have been observed between human clinical cases and the STM samples originating from swine feed. These related profiles suggest a link between ingestion of contaminated feed by swine and the source of foodborne illness in human. The objective of this article was to better understand the history of STM and the possible pathway from swine feed to table. Continued research is necessary to better understand how STM can enter both the feed supply chain and the pork production chain to avoid contamination of pork products destined for human consumption. HIGHLIGHTS
Collapse
Affiliation(s)
- Olivia L Harrison
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Susan Rensing
- Department of Gender, Women, and Sexuality Studies, Kansas State University, Manhattan, Kansas 66506, USA
| | - Cassandra K Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Valentina Trinetta
- Food Science Institute, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
16
|
Shi Q, Ye Y, Lan P, Han X, Quan J, Zhou M, Yu Y, Jiang Y. Prevalence and Characteristics of Ceftriaxone-Resistant Salmonella in Children's Hospital in Hangzhou, China. Front Microbiol 2021; 12:764787. [PMID: 34880840 PMCID: PMC8645868 DOI: 10.3389/fmicb.2021.764787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
The non-Typhi Salmonella (NTS) infection is critical to children's health, and the ceftriaxone is the important empirical treatment choice. With the increase resistance rate of ceftriaxone in Salmonella, the molecular epidemiology and resistance mechanism of ceftriaxone-resistant Salmonella needs to be studied. From July 2019 to July 2020, a total of 205 NTS isolates were collected, 195 of which (95.1%) were cultured from stool, but 10 isolates were isolated from an extraintestinal site. Serogroup B accounted for the vast majority (137/205) among the isolates. Fifty-three isolates were resistant to ceftriaxone, and 50 were isolated from children younger than 4years of age. The resistance rates for ceftriaxone, ciprofloxacin, and levofloxacin were significantly higher in younger children than the older children. The resistance genes in the ceftriaxone-susceptible isolates were detected by PCR, and ceftriaxone-resistant Salmonella were selected for further whole-genome sequencing. Whole-genome analysis showed that serotype Typhimurium and its monophasic variant was the most prevalent in ceftriaxone-resistant isolates (37/53), which comprised ST34 (33/53), ST19 (2/53), and ST99 (2/53), and they were close related in the phylogenetic tree. However, the other isolates were diverse, which included one Enteritidis (ST11), one Indiana (ST17), one Derby (ST40), four Kentucky (ST198), two Goldcoast (ST2529, ST358), one Muenster (ST321), one Virchow (ST359), one Rissen (ST469), one Kedougou (ST1543), two Uganda (ST684), and one Kottbus (ST8839). Moreover, CTX-M-55 ESBLs production (33/53) was found to be mainly responsible for ceftriaxone resistance, followed by bla CTX-M-65 (12/53), bla CTX-M-14 (4/53), bla CTX-M-9 (2/53), bla CTX-M-64 (1/53), bla CTX-M-130 (1/53), and bla CMY-2 (1/53). ISEcp1, IS903B, IS Kpn26, IS1F, and IS26 were connected to antimicrobial resistance genes transfer. In conclusion, the dissemination of ESBL-producing Salmonella isolates resulted in an increased prevalence of ceftriaxone resistance in young children. The high rate of multidrug resistance should be given additional attention.
Collapse
Affiliation(s)
- Qiucheng Shi
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yihua Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Peng Lan
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhong Han
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingming Zhou
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.,Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Schwan CL, Lomonaco S, Bastos LM, Cook PW, Maher J, Trinetta V, Bhullar M, Phebus RK, Gragg S, Kastner J, Vipham JL. Genotypic and Phenotypic Characterization of Antimicrobial Resistance Profiles in Non-typhoidal Salmonella enterica Strains Isolated From Cambodian Informal Markets. Front Microbiol 2021; 12:711472. [PMID: 34603240 PMCID: PMC8481621 DOI: 10.3389/fmicb.2021.711472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
Non-typhoidal Salmonella enterica is a pathogen of global importance, particularly in low and middle-income countries (LMICs). The presence of antimicrobial resistant (AMR) strains in market environments poses a serious health threat to consumers. In this study we identified and characterized the genotypic and phenotypic AMR profiles of 81 environmental S. enterica strains isolated from samples from informal markets in Cambodia in 2018–2019. AMR genotypes were retrieved from the NCBI Pathogen Detection website (https://www.ncbi.nlm.nih.gov/pathogens/) and using ResFinder (https://cge.cbs.dtu.dk/services/) Salmonella pathogenicity islands (SPIs) were identified with SPIFinder (https://cge.cbs.dtu.dk/services/). Susceptibility testing was performed by broth microdilution according to the Clinical and Laboratory Standards Institute (CLSI) standard guidelines M100-S22 using the National Antimicrobial Resistance Monitoring System (NARMS) Sensititre Gram Negative plate. A total of 17 unique AMR genes were detected in 53% (43/81) of the isolates, including those encoding tetracycline, beta-lactam, sulfonamide, quinolone, aminoglycoside, phenicol, and trimethoprim resistance. A total of 10 SPIs (SPI-1, 3–5, 8, 9, 12–14, and centisome 63 [C63PI]) were detected in 59 isolates. C63PI, an iron transport system in SPI-1, was observed in 56% of the isolates (n = 46). SPI-1, SPI-4, and SPI-9 were present in 13, 2, and 5% of the isolates, respectively. The most common phenotypic resistances were observed to tetracycline (47%; n = 38), ampicillin (37%; n = 30), streptomycin (20%; n = 16), chloramphenicol (17%; n = 14), and trimethoprim-sulfamethoxazole (16%; n = 13). This study contributes to understanding the AMR genes present in S. enterica isolates from informal markets in Cambodia, as well as support domestic epidemiological investigations of multidrug resistance (MDR) profiles.
Collapse
Affiliation(s)
- Carla L Schwan
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Sara Lomonaco
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | - Leonardo M Bastos
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Peter W Cook
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Joshua Maher
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Valentina Trinetta
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Manreet Bhullar
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, KS, United States
| | - Randall K Phebus
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Sara Gragg
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| | - Justin Kastner
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jessie L Vipham
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
18
|
Zheng D, Ma K, Du J, Zhou Y, Wu G, Qiao X, Wang Y, Ni Y, Fu J, Huo X. Characterization of Human Origin Salmonella Serovar 1,4,[5],12:i:- in Eastern China, 2014 to 2018. Foodborne Pathog Dis 2021; 18:790-797. [PMID: 34287022 DOI: 10.1089/fpd.2021.0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The prevalence of Salmonella serovar 1,4,[5],12:i:- among diarrhea patients has increased considerably in many countries around the world, including China. However, the characterization of this serovar of human origin has been less reported from China. We characterized 76 isolates of Salmonella 1,4,[5],12:i:- gained from diarrhea patients from 2014 to 2018 in the Jiangsu Province of eastern China. These isolates fell into a single-sequence type (ST34) determined by multilocus sequence typing (MLST), and into 44 pulsed-field gel electrophoresis band patterns, with 1 pattern (JSSMM015) comprising 12 isolates (15.9%). By means of PCR-based assays, the seven prophage located virulence genes were detected in our Salmonella 1,4,[5],12:i:- isolates with a high rate of gipA, gtgB, sspH1, sspH2, sodC1, and gtgE (93.4-97.4%), and with a moderate rate of sopE (42.1%). In contrast, none of the five plasmid-borne virulence genes (spvC, pefA, mig5, rck, and srgA) was identified. We tested the isolates' susceptibility to 18 antibiotics of 9 categories using the VITEK 2 system. A high proportion (89.5%) of the isolates were multidrug resistant (MDR) strains with full resistance to cefazolin, cefotetan, amikacin, gentamycin, and tobramycin, followed by resistance to ampicillin (88.2%) and ampicillin/sulbactam (80.3%). The resistance to piperacillin/tazobactam, ceftazidime, cefepime, and levofloxacin was scarce (2.6-9.2%). Notably, an isolate from 2018 was resistant to carbapenems. blaTEM-1B and aac(6')-Ib-cr were the most common drug resistance genes presented in cephalosporin- and fluoroquinolone-resistant strains. All Salmonella 1,4,[5],12:i:- isolates were capable of forming biofilm, with 13.2% of them having strong ability. However, no association was indicated between the scale of biofilm formation ability and MDR. Our results indicate that the combination of these characteristics may together provide a selective and competitive advantage to those Salmonella 1,4,[5],12:i:- isolates, contributing to their increasing prevalence observed worldwide.
Collapse
Affiliation(s)
- Dongyu Zheng
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key laboratory of enteric pathogenic microorganisms of National Health Commission, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Kai Ma
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key laboratory of enteric pathogenic microorganisms of National Health Commission, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jialu Du
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key laboratory of enteric pathogenic microorganisms of National Health Commission, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yijing Zhou
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Gaolin Wu
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xin Qiao
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key laboratory of enteric pathogenic microorganisms of National Health Commission, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yanmei Wang
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key laboratory of enteric pathogenic microorganisms of National Health Commission, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yunlong Ni
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.,Key laboratory of enteric pathogenic microorganisms of National Health Commission, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Junjie Fu
- Nanjing Medical University, School of Public Health, Nanjing, China
| | - Xiang Huo
- Department of Food Safety and Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
19
|
Golden CE, Rothrock MJ, Mishra A. Mapping foodborne pathogen contamination throughout the conventional and alternative poultry supply chains. Poult Sci 2021; 100:101157. [PMID: 34089937 PMCID: PMC8182426 DOI: 10.1016/j.psj.2021.101157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Recently, there has been a consumer push for natural and organic food products. This has caused alternative poultry production, such as organic, pasture, and free-range systems, to grow in popularity. Due to the stricter rearing practices of alternative poultry production systems, different types of levels of microbiological risks might be present for these systems when compared to conventional production systems. Both conventional and alternative production systems have complex supply chains that present many different opportunities for flocks of birds or poultry meat to be contaminated with foodborne pathogens. As such, it is important to understand the risks involved during each step of production. The purpose of this review is to detail the potential routes of foodborne pathogen transmission throughout the conventional and alternative supply chains, with a special emphasis on the differences in risk between the two management systems, and to identify gaps in knowledge that could assist, if addressed, in poultry risk-based decision making.
Collapse
Affiliation(s)
- Chase E Golden
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Abhinav Mishra
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA, USA.
| |
Collapse
|
20
|
Vázquez X, García P, García V, de Toro M, Ladero V, Heinisch JJ, Fernández J, Rodicio R, Rodicio MR. Genomic analysis and phylogenetic position of the complex IncC plasmid found in the Spanish monophasic clone of Salmonella enterica serovar Typhimurium. Sci Rep 2021; 11:11482. [PMID: 34075064 PMCID: PMC8169936 DOI: 10.1038/s41598-021-90299-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 05/07/2021] [Indexed: 11/12/2022] Open
Abstract
pUO-STmRV1 is an IncC plasmid discovered in the Spanish clone of the emergent monophasic variant of Salmonella enterica serovar Typhimurium, which has probably contributed to its epidemiological success. The sequence of the entire plasmid determined herein revealed a largely degenerated backbone with accessory DNA incorporated at four different locations. The acquired DNA constitutes more than two-thirds of the pUO-STmRV1 genome and originates from plasmids of different incompatibility groups, including IncF (such as R100 and pSLT, the virulence plasmid specific of S. Typhimurium), IncN and IncI, from the integrative element GIsul2, or from yet unknown sources. In addition to pSLT virulence genes, the plasmid carries genes conferring resistance to widely-used antibiotics and heavy metals, together with a wealth of genetic elements involved in DNA mobility. The latter comprise class 1 integrons, transposons, pseudo-transposons, and insertion sequences, strikingly with 14 copies of IS26, which could have played a crucial role in the assembly of the complex plasmid. Typing of pUO-STmRV1 revealed backbone features characteristically associated with type 1 and type 2 IncC plasmids and could therefore be regarded as a hybrid plasmid. However, a rooted phylogenetic tree based on core genes indicates that it rather belongs to an ancient lineage which diverged at an early stage from the branch leading to most extant IncC plasmids detected so far. pUO-STmRV1 may have evolved at a time when uncontrolled use of antibiotics and biocides favored the accumulation of multiple resistance genes within an IncC backbone. The resulting plasmid thus allowed the Spanish clone to withstand a wide variety of adverse conditions, while simultaneously promoting its own propagation through vertical transmission.
Collapse
Affiliation(s)
- Xenia Vázquez
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006, Oviedo, Spain.,Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Patricia García
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006, Oviedo, Spain.,Department of Microbiology, University Hospital A Coruña (CHUAC)-Biomedical Research Institute A Coruña (INIBIC), 15006, A Coruña, Spain
| | - Vanesa García
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006, Oviedo, Spain.,Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), 27002, Lug, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006, Logroño, Spain
| | - Víctor Ladero
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300, Villaviciosa, Spain.,Grupo de Microbiología Molecular, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Jürgen J Heinisch
- Department of Genetics, Faculty of Biology and Chemistry, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Javier Fernández
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.,Servicio de Microbiología, Hospital Universitario Central de Asturias, 33011, Oviedo, Spain
| | - Rosaura Rodicio
- Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006, Oviedo, Spain
| | - M Rosario Rodicio
- Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006, Oviedo, Spain. .,Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain.
| |
Collapse
|
21
|
Cadel-Six S, Cherchame E, Douarre PE, Tang Y, Felten A, Barbet P, Litrup E, Banerji S, Simon S, Pasquali F, Gourmelon M, Mensah N, Borowiak M, Mistou MY, Petrovska L. The Spatiotemporal Dynamics and Microevolution Events That Favored the Success of the Highly Clonal Multidrug-Resistant Monophasic Salmonella Typhimurium Circulating in Europe. Front Microbiol 2021; 12:651124. [PMID: 34093465 PMCID: PMC8175864 DOI: 10.3389/fmicb.2021.651124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/16/2021] [Indexed: 01/23/2023] Open
Abstract
The European epidemic monophasic variant of Salmonella enterica serovar Typhimurium (S. 1,4,[5],12:i:-) characterized by the multi locus sequence type ST34 and the antimicrobial resistance ASSuT profile has become one of the most common serovars in Europe (EU) and the United States (US). In this study, we reconstructed the time-scaled phylogeny and evolution of this Salmonella in Europe. The epidemic S. 1,4,[5],12:i:- ST34 emerged in the 1980s by an acquisition of the Salmonella Genomic Island (SGI)-4 at the 3' end of the phenylalanine phe tRNA locus conferring resistance to copper and arsenic toxicity. Subsequent integration of the Tn21 transposon into the fljAB locus gave resistance to mercury toxicity and several classes of antibiotics used in food-producing animals (ASSuT profile). The second step of the evolution occurred in the 1990s, with the integration of mTmV and mTmV-like prophages carrying the perC and/or sopE genes involved in the ability to reduce nitrates in intestinal contents and facilitate the disruption of the junctions of the host intestinal epithelial cells. Heavy metals are largely used as food supplements or pesticide for cultivation of seeds intended for animal feed so the expansion of the epidemic S. 1,4,[5],12:i:- ST34 was strongly related to the multiple-heavy metal resistance acquired by transposons, integrative and conjugative elements and facilitated by the escape until 2011 from the regulatory actions applied in the control of S. Typhimurium in Europe. The genomic plasticity of the epidemic S. 1,4,[5],12:i:- was demonstrated in our study by the analysis of the plasmidome. We were able to identify plasmids harboring genes mediating resistance to phenicols, colistin, and fluoroquinolone and also describe for the first time in six of the analyzed genomes the presence of two plasmids (pERR1744967-1 and pERR2174855-2) previously described only in strains of enterotoxigenic Escherichia coli and E. fergusonii.
Collapse
Affiliation(s)
- Sabrina Cadel-Six
- Anses, Laboratory for Food Safety, Salmonella and Listeria Unit, Maisons-Alfort, France
| | - Emeline Cherchame
- Anses, Laboratory for Food Safety, Salmonella and Listeria Unit, Maisons-Alfort, France
| | | | - Yue Tang
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Arnaud Felten
- Anses, Laboratory for Food Safety, Salmonella and Listeria Unit, Maisons-Alfort, France
| | - Pauline Barbet
- Anses, Laboratory for Food Safety, Salmonella and Listeria Unit, Maisons-Alfort, France
| | - Eva Litrup
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sangeeta Banerji
- Robert Koch-Institute, Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Wernigerode, Germany
| | - Sandra Simon
- Robert Koch-Institute, Division of Enteropathogenic Bacteria and Legionella (FG11)/National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Wernigerode, Germany
| | - Federique Pasquali
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Michèle Gourmelon
- Ifremer, RBE, SGMM, Health, Environment and Microbiology Laboratory, Plouzané, France
| | - Nana Mensah
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Maria Borowiak
- Department for Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Michel-Yves Mistou
- Université Paris-Saclay, INRAE, Centre International de Ressource Microbienne (CIRM) MaIAGE, Jouy-en-Josas, France
| | - Liljana Petrovska
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
22
|
D'Incau M, Salogni C, Giovannini S, Ruggeri J, Scali F, Tonni M, Formenti N, Guarneri F, Pasquali P, Alborali GL. Occurrence of Salmonella Typhimurium and its monophasic variant (4, [5],12:i:-) in healthy and clinically ill pigs in northern Italy. Porcine Health Manag 2021; 7:34. [PMID: 33902758 PMCID: PMC8073912 DOI: 10.1186/s40813-021-00214-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The serovar Typhimurium (4, [5],12:i:1,2), is the most frequently isolated serovar in case of salmonellosis in pigs in Europe and its monophasic variant (4, [5],12:i:-) has been increasingly responsible for Salmonella outbreaks in humans. A total of 25,215 samples were collected, during the years 2002-2017, from 1359 pig farms located in Northern Italy. Samples were collected from different material sources including fecal samples, rectal swabs, gut content and different organs. RESULTS Salmonella was isolated in 15.80% of samples and, among the isolates, 733 were typed as Salmonella Typhimurium (ST) or its monophasic variant (MST). Over time, there was an increase of isolation of MST which outnumbered ST. Most of the strains were isolated in animals during the weaning stage and the growing - fattening period whereas the clinical cases were mainly present in young pigs after weaning. CONCLUSIONS This study confirms the presence of ST and MST in pig farms although, considering the total of isolated serotypes, with lower percentages than previously reported. In the last few years, ST has increasingly been replaced by MST suggesting that MST has a competitive advantage over ST, probably due to its different antigenicity and pathogenicity which renders the infection stealthier to recognize and control.
Collapse
Affiliation(s)
- Mario D'Incau
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", via Bianchi 9, 25124, Brescia, Italy.
| | - Cristian Salogni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", via Bianchi 9, 25124, Brescia, Italy
| | - Stefano Giovannini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", via Bianchi 9, 25124, Brescia, Italy
| | - Jessica Ruggeri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", via Bianchi 9, 25124, Brescia, Italy
| | - Federico Scali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", via Bianchi 9, 25124, Brescia, Italy
| | - Matteo Tonni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", via Bianchi 9, 25124, Brescia, Italy
| | - Nicoletta Formenti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", via Bianchi 9, 25124, Brescia, Italy
| | - Flavia Guarneri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", via Bianchi 9, 25124, Brescia, Italy
| | - Paolo Pasquali
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Roma, Italy
| | - Giovanni Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", via Bianchi 9, 25124, Brescia, Italy
| |
Collapse
|
23
|
Ecological niche adaptation of Salmonella Typhimurium U288 is associated with altered pathogenicity and reduced zoonotic potential. Commun Biol 2021; 4:498. [PMID: 33893390 PMCID: PMC8065163 DOI: 10.1038/s42003-021-02013-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/19/2021] [Indexed: 02/02/2023] Open
Abstract
The emergence of new bacterial pathogens is a continuing challenge for agriculture and food safety. Salmonella Typhimurium is a major cause of foodborne illness worldwide, with pigs a major zoonotic reservoir. Two phylogenetically distinct variants, U288 and ST34, emerged in UK pigs around the same time but present different risk to food safety. Here we show using genomic epidemiology that ST34 accounts for over half of all S. Typhimurium infections in people while U288 less than 2%. That the U288 clade evolved in the recent past by acquiring AMR genes, indels in the virulence plasmid pU288-1, and accumulation of loss-of-function polymorphisms in coding sequences. U288 replicates more slowly and is more sensitive to desiccation than ST34 isolates and exhibited distinct pathogenicity in the murine model of colitis and in pigs. U288 infection was more disseminated in the lymph nodes while ST34 were recovered in greater numbers in the intestinal contents. These data are consistent with the evolution of S. Typhimurium U288 adaptation to pigs that may determine their reduced zoonotic potential.
Collapse
|
24
|
Sudden death associated with bleeding into digestive system of finishing pigs – a review. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sudden deaths of finishing pigs in modern pig herds cause economic losses and therefore draw constant attention worldwide. In the case of peracute mortality associated with gastrointestinal bleeding, pigs usually die during a short period without clinical manifestations. Necropsy can detect bleeding into various parts of the digestive system. Determining the exact aetiology of the sudden death can be difficult in many cases. Diseases and conditions such as gastric ulcers, abdominal torsion, haemorrhagic bowel syndrome and infectious diseases should be taken into account in the differential diagnosis. Because some of these diseases still have an unclear aetiology and pathogenesis, the aim of our work was to provide a summary of existing knowledge as well as to describe related pathognomonic pathological changes.
Collapse
|
25
|
Clark CG, Kearney AK, Tschetter L, Robertson J, Pollari F, Parker S, Arya G, Ziebell K, Johnson R, Nash J, Nadon C. Population structure, case clusters, and genetic lesions associated with Canadian Salmonella 4,[5],12:i:- isolates. PLoS One 2021; 16:e0249079. [PMID: 33822792 PMCID: PMC8049487 DOI: 10.1371/journal.pone.0249079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/10/2021] [Indexed: 11/28/2022] Open
Abstract
Monophasic Salmonella 4,[5]:12:i:- are a major public health problem because they are one of the top five Salmonella serotypes isolated from clinical cases globally and because they can carry resistance to multiple antibiotics. A total of 811 Salmonella 4,[5]:12:i:- and S. Typhimurium whole genome sequences (WGS) were generated. The various genetic lesions causing the Salmonella 4,[5]:12:i:- genotype were identified and assessed with regards to their distribution in the population of 811 Salmonella 4,[5]:12:i:- and S. Typhimurium isolates, their geographical and temporal distribution, and their association with non-human sources. Several clades were identified in the population structure, and the largest two were associated almost exclusively with a short prophage insertion and insertion of a mobile element carrying loci encoding antibiotic and mercury resistance. IS26-mediated deletions and fljB point mutants appeared to spread clonally. 'Inconsistent' Salmonella 4,[5]:12:i:- isolates associated with specific, single amino acid changes in fljA and hin were found in a single clade composed of water, shellfish, and avian isolates. Inclusion of isolates from different case clusters identified previously by PFGE validated some of the clusters and invalidated others. Some wgMLST clusters of clinical isolates composed of very closely related isolates contained an isolate(s) with a different genetic lesion, suggesting continuing mobility of the implicated element responsible. Such cases may need to be left out of epidemiological investigations until sufficient numbers of isolates are included that statistical significance of association with sources is not impaired. Non-human sources were frequently found in or near clinical case clusters. Prospective surveillance and WGS of non-human sources and retrospective analysis by WGS of isolates from existing culture collections provides data critical for epidemiological investigations of food- and waterborne outbreaks.
Collapse
Affiliation(s)
- Clifford G. Clark
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ashley K. Kearney
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Lorelee Tschetter
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James Robertson
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Frank Pollari
- FoodNet Canada, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Stephen Parker
- FoodNet Canada, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Gitanjali Arya
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kim Ziebell
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Roger Johnson
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - John Nash
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Celine Nadon
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Caffrey N, Agunos A, Gow S, Liljebjelke K, Mainali C, Checkley SL. Salmonella spp. prevalence and antimicrobial resistance in broiler chicken and turkey flocks in Canada from 2013 to 2018. Zoonoses Public Health 2021; 68:719-736. [PMID: 33780135 DOI: 10.1111/zph.12769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 01/08/2023]
Abstract
Salmonella infections are a major human health concern. In the elderly and immunocompromised, infections can be life-threatening and may require antibiotic therapy. Where antibiotic therapy is required, antimicrobials of choice include fluoroquinolones and extended-spectrum cephalosporins (ESC). The aim of this study is to utilize data from the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) to compare the prevalence of Salmonella serovars between broiler chicken and turkey flocks across Canada, and to gain an understanding of the prevalence of resistance to antimicrobials categorized as important to human health. There were 1,596 Salmonella isolates obtained from 514 broiler chicken flocks, and 659 Salmonella isolates obtained from 217 turkey flocks (2013-2018). All isolates were obtained from pooled faecal samples. Among broiler chicken flocks, the top three serovars were Kentucky (n = 573, 36%), Enteritidis (n = 314, 20%) and Heidelberg (n = 127, 8%). Resistance to ceftriaxone among Salmonella ser. Kentucky decreased from 27% in 2013 to 22% in 2018. There was no resistance among Salmonella ser. Enteritidis reported until 2018 when one isolate from British Columbia was resistant to ampicillin, streptomycin, sulphisoxazole and tetracycline. Salmonella ser. Heidelberg resistance to ceftriaxone decreased from 19% in 2013 to 14% in 2018. Among turkey flocks the top three serovars were Uganda (n = 109, 16.5%), Hadar (n = 85, 12%) and Muenchen (n = 66, 10%). No isolates of Salmonella ser. Uganda or Salmonella ser. Muenchen were resistant to any β-lactams. Salmonella ser. Hadar (34/81, 42%) exhibited resistance to ampicillin. There was no resistance to quinolones among turkey isolates. Emerging resistance among Salmonella ser. Enteritidis, and resistance to β-lactams and fluoroquinolones among Salmonella ser. Kentucky from broilers are cause for concern as these classes of antimicrobials are important for treatment of salmonellosis.
Collapse
Affiliation(s)
- Niamh Caffrey
- Department Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Agnes Agunos
- Public Health Agency of Canada, Guelph, ON, Canada
| | - Sheryl Gow
- Public Health Agency of Canada, Western College of Veterinary Medicine, Saskatoon, SK, Canada
| | - Karen Liljebjelke
- Department Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Chunu Mainali
- Alberta Agriculture and Forestry, Epidemiology Unit, Edmonton, AB, Canada
| | - Sylvia L Checkley
- Department Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Daniels ME, Smith MH, Packham AE, Meehan CL, Bautois A, Byrne B, Smith WA. Associations between faecal pathogen detection, E. coli concentrations and youth exhibitor biosecurity practices at California county fairs. Zoonoses Public Health 2021; 68:737-746. [PMID: 33780154 DOI: 10.1111/zph.12815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/09/2020] [Accepted: 01/18/2021] [Indexed: 11/27/2022]
Abstract
Interactions with livestock in public settings such as county and state fairs can expose people and other livestock to faecal material capable of spreading zoonotic enteric pathogens. The goal of this study was to understand these risks by screening livestock faeces (n = 245) and livestock bedding (n = 155) for common zoonotic pathogens (Giardia, Cryptosporidium, Salmonella and Campylobacter spp.) and by measuring faecal indicator, Escherichia coli, concentrations in drinking water (n = 153), feed containers (n = 124) and bedding material (n = 157) in four livestock species (cattle, sheep, goats and swine) from county fairs in California, USA. Results indicated that sheep were most likely to have pathogens detected in faeces and that Giardia was the most frequently detected pathogen in both faeces (11%) and bedding (21%) across all livestock species. Additionally, increasing the number of animals in a holding pen at fairs, increasing the stocking density of animals in transport trailers to fairs, and having access to water in transport trailers significantly increased the odds of detecting pathogens in livestock faeces of any animal species. Observing solid material in water, stale feed and soiled bedding was associated with detecting higher E. coli concentrations. These findings provide evidence of faecal pathogens present at county fairs and suggest that site observations can aid in assessing levels of faecal exposure. The findings also indicate that the use of biosecurity measures such as (a) routine changing of livestock drinking water, feed and bedding, (b) not overstocking animals in holding pens and trailers and (c) keeping species in separate holding areas may reduce the risk of humans and livestock being exposed to faecal pathogens.
Collapse
Affiliation(s)
- Miles E Daniels
- School of Veterinary Medicine, University of California, Davis, CA, USA.,Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
| | - Martin H Smith
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Andrea E Packham
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Cheryl L Meehan
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Audrey Bautois
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Barbara Byrne
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Woutrina A Smith
- School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
28
|
Cohen E, Azriel S, Auster O, Gal A, Zitronblat C, Mikhlin S, Scharte F, Hensel M, Rahav G, Gal-Mor O. Pathoadaptation of the passerine-associated Salmonella enterica serovar Typhimurium lineage to the avian host. PLoS Pathog 2021; 17:e1009451. [PMID: 33739988 PMCID: PMC8011750 DOI: 10.1371/journal.ppat.1009451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/31/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Salmonella enterica is a diverse bacterial pathogen and a primary cause of human and animal infections. While many S. enterica serovars present a broad host-specificity, several specialized pathotypes have been adapted to colonize and cause disease in one or limited numbers of host species. The underlying mechanisms defining Salmonella host-specificity are far from understood. Here, we present genetic analysis, phenotypic characterization and virulence profiling of a monophasic S. enterica serovar Typhimurium strain that was isolated from several wild sparrows in Israel. Whole genome sequencing and complete assembly of its genome demonstrate a unique genetic signature that includes the integration of the BTP1 prophage, loss of the virulence plasmid, pSLT and pseudogene accumulation in multiple T3SS-2 effectors (sseJ, steC, gogB, sseK2, and sseK3), catalase (katE), tetrathionate respiration (ttrB) and several adhesion/ colonization factors (lpfD, fimH, bigA, ratB, siiC and siiE) encoded genes. Correspondingly, this strain demonstrates impaired biofilm formation, intolerance to oxidative stress and compromised intracellular replication within non-phagocytic host cells. Moreover, while this strain showed attenuated pathogenicity in the mouse, it was highly virulent and caused an inflammatory disease in an avian host. Overall, our findings demonstrate a unique phenotypic profile and genetic makeup of an overlooked S. Typhimurium sparrow-associated lineage and present distinct genetic signatures that are likely to contribute to its pathoadaptation to passerine birds. During Salmonella enterica evolution, many different ecological niches have been effectively occupied by this highly diverse bacterial pathogen. While many S. enterica serovars successfully maintained their ability to infect and colonize in a wide-array of host species, a few biotypes have evolved to colonize and cause a disease in only one or a small group of hosts. The evolutionary dynamic and the mechanisms shaping the host-specificity of Salmonella adapted strains are important to better understand Salmonella pathogenicity and its ecology, but still not fully understood. Here, we report genetic and phenotypic characterization of a S. Typhimurium strain that was isolated from several wild sparrows in Israel. This strain presented unique phenotypic profile that included impaired biofilm formation, high sensitivity to oxidative stress and reduced intracellular replication in non-phagocytic cells. In addition, while this strain was able to cause high inflammatory disease in an avian host, it was highly attenuated in the mouse model. Genome analysis identified that specific genetic signatures found in the sparrow strain are more frequently associated with poultry isolates than clinical isolates of S. Typhimurium. These genetic features are expected to accumulatively contribute toward the adaptation of this strain to birds.
Collapse
Affiliation(s)
- Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Shalevet Azriel
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Oren Auster
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Adiv Gal
- Faculty of Sciences, Kibbutzim College, Tel-Aviv Israel
| | | | | | - Felix Scharte
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
29
|
Mandilara G, Sideroglou T, Chrysostomou A, Rentifis I, Papadopoulos T, Polemis M, Tzani M, Tryfinopoulou K, Mellou K. The Rising Burden of Salmonellosis Caused by Monophasic Salmonella Typhimurium (1,4,[5],12:i:-) in Greece and New Food Vehicles. Antibiotics (Basel) 2021; 10:antibiotics10020185. [PMID: 33668483 PMCID: PMC7917691 DOI: 10.3390/antibiotics10020185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Monophasic Salmonella typhimurium is of increasing importance worldwide. Here we present the available data regarding monophasic S. typhimurium from 2007 to 2019 in Greece, in order to assess its public health impact. Surveillance data, data on antimicrobial resistance, molecular typing by pulsed-field gel electrophoresis (PFGE), and results of the investigation of monophasic S. typhimurium outbreaks were analyzed. Overall, 403 cases were identified; 329 (81.6%) sporadic and 74 (18.4%) related to two community outbreaks in 2017. A total of 305 isolates from sporadic cases tested for antimicrobial resistance revealed resistance to ampicillin, streptomycin, sulphamethoxazole, and tetracycline (41.3%). Some 23.3% were further resistant to trimethoprim and 5.2% were also resistant to chloramphenicol. Outbreak 1 in 2017 with 37 identified cases was attributed to the consumption of raw milk from a vending machine and isolates were resistant to ampicillin, streptomycin, sulphamethoxazole, tetracycline, and trimethoprim. Outbreak 2 also with 37 cases was attributed to the consumption of pork and isolates were resistant to the five above mentioned antibiotics plus chloramphenicol. The number of human monophasic S. typhimurium isolates is low; however, since 2009, it has been among the five most frequently identified serotypes in Greece. Investigation of the outbreaks revealed that other vehicles apart from pork may be implicated in the occurrence of outbreaks.
Collapse
Affiliation(s)
- Georgia Mandilara
- National Reference Centre for Salmonella, Faculty of Public Health Policies, School of Public Health, University of West Attica and Athens, 12243 Egaleo, Greece; (G.M.); (I.R.)
| | - Theologia Sideroglou
- Department of Foodborne and Waterborne Diseases, National Public Health Organization, 15123 Athens, Greece; (T.S.); (A.C.)
| | - Anthi Chrysostomou
- Department of Foodborne and Waterborne Diseases, National Public Health Organization, 15123 Athens, Greece; (T.S.); (A.C.)
| | - Iliodoros Rentifis
- National Reference Centre for Salmonella, Faculty of Public Health Policies, School of Public Health, University of West Attica and Athens, 12243 Egaleo, Greece; (G.M.); (I.R.)
| | - Theofilos Papadopoulos
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), 17165 Stockholm, Sweden; (T.P.); (M.T.)
- Department of Epidemiology and Public Health, Sciensano, 1050 Brussels, Belgium
| | - Michalis Polemis
- Central Laboratory of Public Health, National Public Health Organization, Vari, 16672 Attica, Greece; (M.P.); (K.T.)
| | - Myrsini Tzani
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), 17165 Stockholm, Sweden; (T.P.); (M.T.)
| | - Kyriaki Tryfinopoulou
- Central Laboratory of Public Health, National Public Health Organization, Vari, 16672 Attica, Greece; (M.P.); (K.T.)
| | - Kassiani Mellou
- Department of Foodborne and Waterborne Diseases, National Public Health Organization, 15123 Athens, Greece; (T.S.); (A.C.)
- Correspondence:
| |
Collapse
|
30
|
Shimojima Y, Nishino Y, Fukui R, Kuroda S, Suzuki J, Sadamasu K. [Salmonella Serovars Isolated from Retail Meats in Tokyo, Japan and Their Antimicrobial Susceptibility]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2021; 61:211-217. [PMID: 33390528 DOI: 10.3358/shokueishi.61.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To identify the risk of Salmonella in meat, we investigated the prevalence of Salmonella, serovars and their antimicrobial susceptibility patterns. Salmonella was found in 353 out of 849 (41.6%) chicken, 9 out of 657 (1.4%) pork, 1 out of 517 (0.2%) Beef, 6 out of 8 (75.0%) chicken offal, 43 out of 142 (30.3%) pork offal and 4 out of 198 (2.0) beef offal samples collected from retail meats in Tokyo, Japan between 2009 and 2017. Salmonella Infantis was the most common serovar, followed by S. Schwarzengrund in the isolates from domestic chicken meats. The prevalence rate of S. Infantis decreased while that of S. Schwarzengrund increased by the year. Apart from this, the most prevalent serovars were S. Heidelberg in the imported chicken meat isolates, S. Typhimurium and Salmonella O4:i:- in pork, and S. Derby in beef isolates. Antimicrobial testing revealed high resistance to tetracycline (TC) in all meat sample isolates; however, all the isolates were sensitive to carbapenem and fluoroquinolone. Fourteen cefotaxime (CTX) resistant strains, seven extended spectrum β-lactamase (ESBL) producing strains and twenty-three AmpC producing strains were isolated from chicken meat samples. These findings indicate that the serovar and antimicrobial susceptibility varied among meat samples.
Collapse
Affiliation(s)
| | | | - Rie Fukui
- Tokyo Metropolitan Institute of Public Health
| | | | - Jun Suzuki
- Tokyo Metropolitan Institute of Public Health
| | | |
Collapse
|
31
|
Hoard JC, Medus C, Schleiss MR. A 3-Year-Old With Fever and Abdominal Pain: Availability Bias in the Time of COVID-19. Clin Pediatr (Phila) 2021; 60:83-86. [PMID: 33047983 DOI: 10.1177/0009922820964455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Carlota Medus
- Foodborne Diseases Unit, Minnesota Department of Health, St. Paul, MN, USA
| | | |
Collapse
|
32
|
Genotyping Study of Salmonella 4,[5],12:i:- Monophasic Variant of Serovar Typhimurium and Characterization of the Second-Phase Flagellar Deletion by Whole Genome Sequencing. Microorganisms 2020; 8:microorganisms8122049. [PMID: 33371352 PMCID: PMC7767384 DOI: 10.3390/microorganisms8122049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
After Salmonella Enteritidis and S. Typhimurium, S. 4,[5],12:i:- is the most reported serovar in human clinical cases. During the past 20 years, many tools have been used for its typing and second-phase flagellar deletion characterization. Currently, whole genome sequencing (WGS) and different bioinformatic programs have shown the potential to be more accurate than earlier tools. To assess this potential, we analyzed by WGS and in silico typing a selection of 42 isolates of S. 4,[5],12:i:- and S. Typhimurium with different in vitro characteristics. Comparative analysis showed that SeqSero2 does not differentiate fljB-positive S. 4,[5],12:i:- strains from those of serovar Typhimurium. Our results proved that the strains selected for this work were non-clonal S. 4,[5],12:i:- strains circulating in Spain. Using WGS data, we identified 13 different deletion types of the second-phase flagellar genomic region. Most of the deletions were generated by IS26 insertions, showing orientation-dependent conserved deletion ends. In addition, we detected S. 4,[5],12:i:- strains of the American clonal line that would give rise to the Southern European clone in Spain. Our results suggest that new S. 4,[5],12:i:- strains are continuously emerging from different S. Typhimurium strains via different genetic events, at least in swine products.
Collapse
|
33
|
Kongsoi S, Chumsing S, Satorn D, Noourai P. Serotypes and antimicrobial resistance profiles of Salmonella enterica recovered from clinical swine samples. Vet World 2020; 13:2312-2318. [PMID: 33363320 PMCID: PMC7750222 DOI: 10.14202/vetworld.2020.2312-2318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Background and Aim: Salmonella enterica is an important foodborne pathogen and is recognized as a major public health issue. The emergence of multidrug-resistant (MDR) S. enterica represents a major challenge for national public health authorities. We investigated the distribution of serovars and antimicrobial resistance of S. enterica isolates from clinical swine samples stored at the Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Kasetsart University from 2016 to 2017. Materials and Methods: Clinical samples were collected and subjected to standard microbiological techniques outlined in the Manual of Clinical Microbiology to identify Salmonella serovars. Susceptibility to antimicrobials was tested by the Kirby–Bauer disk diffusion method using a panel of 14 antimicrobials. Results: A total of 144 Salmonella isolates were identified and the dominant serovar was Salmonella Choleraesuis (66.67%), followed by monophasic Salmonella Typhimurium (18.75%), S. Typhimurium (9.03%), and Rissen (5.56%). The isolates displayed high resistance rates to ampicillin (AMP [100%]), amoxicillin (AX [100%]), tetracycline (TE [100%]), cefotaxime (CTX [89.58%]), ceftriaxone (CRO [87.50%]), chloramphenicol (C [82.64%]), gentamicin (CN [79.17%]), nalidixic acid (NA [72.92%]), and ceftazidime (CAZ [71.53%]). All isolates were MDR, with 29 distinct resistance patterns. The dominant MDR pattern among serovars Choleraesuis and Rissen exhibited resistance to 9 antimicrobials: (R7-14 AMP-AX-CAZ-CRO-CTX-NA-C-CN-TE). However, all tested isolates were susceptible to AX/clavulanic acid and fosfomycin. Conclusion: High resistance levels to the third generation of cephalosporins such as CAZ, CRO, and CTX highlight the need for careful and reasonable usage of antimicrobials in animals and humans, especially for S. Choleraesuis infections.
Collapse
Affiliation(s)
- Siriporn Kongsoi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Suksun Chumsing
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Darunee Satorn
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Panisa Noourai
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
34
|
Bearson BL, Trachsel JM, Shippy DC, Sivasankaran SK, Kerr BJ, Loving CL, Brunelle BW, Curry SM, Gabler NK, Bearson SMD. The Role of Salmonella Genomic Island 4 in Metal Tolerance of Salmonella enterica Serovar I 4,[5],12:i:- Pork Outbreak Isolate USDA15WA-1. Genes (Basel) 2020; 11:genes11111291. [PMID: 33142960 PMCID: PMC7716197 DOI: 10.3390/genes11111291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug-resistant (MDR; resistance to >3 antimicrobial classes) Salmonella enterica serovar I 4,[5],12:i:- strains were linked to a 2015 foodborne outbreak from pork. Strain USDA15WA-1, associated with the outbreak, harbors an MDR module and the metal tolerance element Salmonella Genomic Island 4 (SGI-4). Characterization of SGI-4 revealed that conjugational transfer of SGI-4 resulted in the mobile genetic element (MGE) replicating as a plasmid or integrating into the chromosome. Tolerance to copper, arsenic, and antimony compounds was increased in Salmonella strains containing SGI-4 compared to strains lacking the MGE. Following Salmonella exposure to copper, RNA-seq transcriptional analysis demonstrated significant differential expression of diverse genes and pathways, including induction of at least 38 metal tolerance genes (copper, arsenic, silver, and mercury). Evaluation of swine administered elevated concentrations of zinc oxide (2000 mg/kg) and copper sulfate (200 mg/kg) as an antimicrobial feed additive (Zn+Cu) in their diet for four weeks prior to and three weeks post-inoculation with serovar I 4,[5],12:i:- indicated that Salmonella shedding levels declined at a slower rate in pigs receiving in-feed Zn+Cu compared to control pigs (no Zn+Cu). The presence of metal tolerance genes in MDR Salmonella serovar I 4,[5],12:i:- may provide benefits for environmental survival or swine colonization in metal-containing settings.
Collapse
Affiliation(s)
- Bradley L. Bearson
- USDA, ARS, National Laboratory for Agriculture and the Environment, Agroecosystems Management Research Unit, Ames, IA 50011, USA; (B.J.K.); (S.M.C.)
- Correspondence: ; Tel.: +1-515-294-0209
| | - Julian M. Trachsel
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
| | - Daniel C. Shippy
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
| | - Sathesh K. Sivasankaran
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, USA
| | - Brian J. Kerr
- USDA, ARS, National Laboratory for Agriculture and the Environment, Agroecosystems Management Research Unit, Ames, IA 50011, USA; (B.J.K.); (S.M.C.)
| | - Crystal L. Loving
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
| | - Brian W. Brunelle
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
| | - Shelby M. Curry
- USDA, ARS, National Laboratory for Agriculture and the Environment, Agroecosystems Management Research Unit, Ames, IA 50011, USA; (B.J.K.); (S.M.C.)
| | | | - Shawn M. D. Bearson
- USDA, ARS, National Animal Disease Center, Food Safety and Enteric Pathogens, Ames, IA 50010, USA; (J.M.T.); (D.C.S.); (S.K.S.); (C.L.L.); (B.W.B.); (S.M.D.B.)
| |
Collapse
|
35
|
Nationwide surveillance on serotype distribution and antimicrobial resistance profiles of non-typhoidal Salmonella serovars isolated from food-producing animals in South Korea. Int J Food Microbiol 2020; 335:108893. [PMID: 33007603 DOI: 10.1016/j.ijfoodmicro.2020.108893] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023]
Abstract
Food-producing animals are considered a leading source of human Salmonella infections in Korea. However, there is a lack of comprehensive and up-to-date data regarding the diversity and resistance profiles of Salmonella serotypes in these animals. Therefore, this study aimed to determine the distribution and antimicrobial resistance profiles of Salmonella serotypes isolated from cattle, pigs, and chickens in Korea between 2010 and 2018. A total of 3018 Salmonella isolates were obtained from 16 laboratories/centers participating in the Korean Veterinary Antimicrobial Resistance Monitoring System. Salmonella serotypes were identified from the following isolates: 179 cattle (17 serotypes), 959 pig (45 serotypes), and 1880 chicken (64 serotypes). The most frequent serotypes in cattle (Typhimurium, Salmonella 4,[5],12:i:-, and Schwarzengrund), pigs (Typhimurium, Rissen, and S. 4,[5],12:i:-), and chickens (Enteritidis, Albany, Virchow, and Montevideo) accounted for more than 50% of the total serotypes in the respective animal species. To the best of our knowledge, Salmonella 4,[5],12:i:- has not been identified in cattle in Korea to date. More than 80% of the isolates demonstrated resistance to at least one antimicrobial agent. Multidrug-resistance was found in almost half of the serotypes; the highest proportion in cattle (59.2%), followed by pigs (53.4%), and chickens (45.7%). Significant proportions of the serotypes were resistant to ampicillin, streptomycin, and tetracycline. Ceftiofur and ciprofloxacin resistance rates were the highest in Salmonella isolated from chickens (17.1% and 4.1%, respectively) and cattle (10.1% and 3.9%, respectively) compared to that in pigs. Among the frequent serotypes, Albany demonstrated the highest resistance rate (>90%) to five different antimicrobials. Alarmingly, some Salmonella serotypes that are frequently associated with human infections demonstrated a trend of increasing resistance to critically important antibiotics, including 3rd generation cephalosporins and quinolones. Collectively, the presence of antibiotic-resistant Salmonella in food-producing animals poses a potential risk to public health.
Collapse
|
36
|
Abstract
Global pork production has largely adopted on-farm biosecurity to minimize vectors of disease transmission and protect swine health. Feed and ingredients were not originally thought to be substantial vectors, but recent incidents have demonstrated their ability to harbor disease. The objective of this paper is to review the potential role of swine feed as a disease vector and describe biosecurity measures that have been evaluated as a way of maintaining swine health. Recent research has demonstrated that viruses such as porcine epidemic diarrhea virus and African Swine Fever Virus can survive conditions of transboundary shipment in soybean meal, lysine, and complete feed, and contaminated feed can cause animal illness. Recent research has focused on potential methods of preventing feed-based pathogens from infecting pigs, including prevention of entry to the feed system, mitigation by thermal processing, or decontamination by chemical additives. Strategies have been designed to understand the spread of pathogens throughout the feed manufacturing environment, including potential batch-to-batch carryover, thus reducing transmission risk. In summary, the focus on feed biosecurity in recent years is warranted, but additional research is needed to further understand the risk and identify cost-effective approaches to maintain feed biosecurity as a way of protecting swine health.
Collapse
|
37
|
Luo Y, Huang C, Ye J, Octavia S, Wang H, Dunbar SA, Jin D, Tang YW, Lan R. Comparison of xMAP Salmonella Serotyping Assay With Traditional Serotyping and Discordance Resolution by Whole Genome Sequencing. Front Cell Infect Microbiol 2020; 10:452. [PMID: 33014887 PMCID: PMC7504902 DOI: 10.3389/fcimb.2020.00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/23/2020] [Indexed: 11/14/2022] Open
Abstract
Salmonella spp. are a major cause of foodborne illness throughout the world. Traditional serotyping by antisera agglutination has been used as a standard identification method for many years but newer nucleic acid-based tests have become available that may provide advantages in workflow and test turnaround time. In this study, we evaluated the Luminex® xMAP® Salmonella Serotyping Assay (SSA), a multiplex nucleic acid test capable of identifying 85% of the most common Salmonella serotypes, in comparison to the traditional serum agglutination test (SAT) on 4 standard strains and 255 isolates from human (224), environmental, and food (31) samples. Of the total of 259 isolates, 256 could be typed by the SSA. Of these, 197 (77.0%) were fully typed and 59 (23.0%) were partially typed. By SAT, 246 of the 259 isolates (95%) were successfully typed. Sixty isolates had discrepant results between SAT and SSA and were resolved using whole genome sequencing (WGS). By SAT, 80.0% (48/60) of the isolates were consistent with WGS while by SSA 91.7% (55/60) were partially consistent with WGS. By serovar, all 30 serovars except one tested were fully or partially typable. The workflow comparison showed that SSA provided advantages over SAT with a hands-on time (HOT) of 3.5 min and total turnaround time (TAT) of 6 h, as compared to 1 h HOT and 2–6 days TAT for SAT. Overall, this study showed that molecular serotyping is promising as a rapid method for Salmonella serotyping with good accuracy for typing most common Salmonella serovars circulating in China.
Collapse
Affiliation(s)
- Yun Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chen Huang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Julian Ye
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Huanying Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | | | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, United States.,Cepheid, Danaher Diagnostic Platform, Shanghai, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
38
|
Clark CG, Landgraff C, Robertson J, Pollari F, Parker S, Nadon C, Gannon VPJ, Johnson R, Nash J. Distribution of heavy metal resistance elements in Canadian Salmonella 4,[5],12:i:- populations and association with the monophasic genotypes and phenotype. PLoS One 2020; 15:e0236436. [PMID: 32716946 PMCID: PMC7384650 DOI: 10.1371/journal.pone.0236436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/06/2020] [Indexed: 12/02/2022] Open
Abstract
Salmonella 4,[5],12:i:- are monophasic S. Typhimurium variants incapable of producing the second-phase flagellar antigen. They have emerged since the mid-1990s to become one of the most prevalent Salmonella serotypes causing human disease world-wide. Multiple genetic events associated with different genetic elements can result in the monophasic phenotype. Several jurisdictions have reported the emergence of a Salmonella 4,[5],12:i:- clone with SGI-4 and a genetic element (MREL) encoding a mercury resistance operon and antibiotic resistance loci that disrupts the second phase antigen region near the iroB locus in the Salmonella genome. We have sequenced 810 human and animal Canadian Salmonella 4,[5],12:i:- isolates and determined that isolates with SGI-4 and the mercury resistance element (MREL; also known as RR1&RR2) constitute several global clades containing various proportions of Canadian, US, and European isolates. Detailed analysis of the data provides a clearer picture of how these heavy metal elements interact with bacteria within the Salmonella population to produce the monophasic phenotype. Insertion of the MREL near iroB is associated with several deletions and rearrangements of the adjacent flaAB hin region, which may be useful for defining human case clusters that could represent outbreaks. Plasmids carrying genes encoding silver, copper, mercury, and antimicrobial resistance appear to be derived from IS26 mediated acquisition of these genes from genomes carrying SGI-4 and the MREL. Animal isolates with the mercury and As/Cu/Ag resistance elements are strongly associated with porcine sources in Canada as has been shown previously for other jurisdictions. The data acquired in these investigations, as well as from the extensive literature on the subject, may aid source attribution in outbreaks of the organism and interventions to decrease the prevalence of this clone and reduce its impact on human disease.
Collapse
Affiliation(s)
- Clifford G Clark
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Chrystal Landgraff
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James Robertson
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Frank Pollari
- FoodNet Canada, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Stephen Parker
- FoodNet Canada, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Celine Nadon
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- PulseNet Canada, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Victor P J Gannon
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Canada
| | - Roger Johnson
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - John Nash
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
39
|
He J, Sun F, Sun D, Wang Z, Jin S, Pan Z, Xu Z, Chen X, Jiao X. Multidrug resistance and prevalence of quinolone resistance genes of Salmonella enterica serotypes 4,[5],12:i:- in China. Int J Food Microbiol 2020; 330:108692. [PMID: 32521291 DOI: 10.1016/j.ijfoodmicro.2020.108692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/27/2022]
Abstract
Salmonella 4,[5],12:i:- is a monophasic variant of Salmonella Typhimurium, which is responsible for global foodborne disease outbreaks. Here, 255 S. 4,[5],12:i:- strains isolated from humans (11.0%) or food-borne animals (89.0%) between 2010 and 2018 were examined. Tests of susceptibility to 19 antimicrobial agents using the broth micro dilution method showed that 99.2% (n = 253) of the isolates were resistant to at least one compound. Antibiotic susceptibility analysis demonstrated that 91.8% of the isolates were multidrug-resistant (MDR) strains with predominant resistance to tetracycline (90.6%), followed by resistance to ampicillin (86.3%), streptomycin (63.5%), chloramphenicol (62.7%), and trimethoprim-sulfamethoxazole (55.3%). The 5 major distinct patterns of multi-resistance were identified as R-type AST, R-type ACTSxt, R-type ACSTSxt, R-type ACGSTSxt and R-type ASTSxt. Among the PMQR genes examined in this study, oqxAB and aac (6')-Ib-cr were the most prevalent resistance genes in the multi-resistant isolates. Our findings highlight the prevalence of the resistance of S. 4,[5],12:i:- in some regions of China, and several common types of multidrug resistance phenotypes, to provide valuable information for epidemiological studies, risk management, and public health strategies.
Collapse
Affiliation(s)
- Jingjing He
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Fan Sun
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Dewei Sun
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Shanshan Jin
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
40
|
Yang X, Huang J, Zhang Y, Liu S, Chen L, Xiao C, Zeng H, Wei X, Gu Q, Li Y, Wang J, Ding Y, Zhang J, Wu Q. Prevalence, abundance, serovars and antimicrobial resistance of Salmonella isolated from retail raw poultry meat in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136385. [PMID: 31955074 DOI: 10.1016/j.scitotenv.2019.136385] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the prevalence and levels of Salmonella contamination of retail raw poultry meat in China, and examined serovar distribution and antimicrobial susceptibility profiles of the recovered isolates. In total, 664 poultry meat samples were collected from retail markets in 39 cities across China. Salmonella was isolated from 249 (37.5%) samples, including 190 (36.7%) chicken, 48 (40.7%) duck and 11 (39.2%) pigeon samples. The most probable number (MPN) values of 36.1% of the positive samples ranged from 0.3 to 10 MPN/g, with three samples exceeding 110 MPN/g. Among the 667 Salmonella isolates, 35 serovars and 42 multilocus sequence typing patterns were identified. Predominant serovars included Salmonella enterica serovar Enteritidis (32.7%), Salmonella enterica serovar Indiana (14.2%) and Salmonella enterica serovar Typhimurium (11.9%), while two novel STs were identified (ST7352 and ST7612). Except for one unnamed strain (4,12:d:-), all of the identified serovars have previously been linked to human infections. Antimicrobial susceptibility testing of the 318 non-duplicate isolates revealed that only 5 (1.6%) were susceptible to all 22 tested antimicrobials, while 191 (60.1%) exhibited resistance to at least three classes of antimicrobials. The highest levels of resistance were observed for nalidixic acid (72.3%), followed by ampicillin (55.3%) and streptomycin (48.7%). Of particular concern was the detection of highly multidrug-resistant Salmonella enterica serovar Indiana isolates, most (84.1%) of which showed co-resistance to ciprofloxacin and ceftriaxone. Overall, our findings showed a high prevalence of Salmonella contamination of retail raw poultry meat, which could expose consumers to multidrug-resistant isolates. This study provides comprehensive data for evaluation of new control measures for Salmonella contamination of poultry.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Jiahui Huang
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Shengrong Liu
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Ling Chen
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Chun Xiao
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Haiyan Zeng
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Xianhu Wei
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Qihui Gu
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Ying Li
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Juan Wang
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Yu Ding
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Institute of Microbiology Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China.
| |
Collapse
|
41
|
Trinetta V, Magossi G, Allard MW, Tallent SM, Brown EW, Lomonaco S. Characterization of Salmonella enterica Isolates from Selected U.S. Swine Feed Mills by Whole-Genome Sequencing. Foodborne Pathog Dis 2019; 17:126-136. [PMID: 31702400 DOI: 10.1089/fpd.2019.2701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Every year salmonellosis is responsible for $2.3 billion in costs to the U.S. food industry, with nearly 6% of the reported cases associated with pork and/or pork products. Several studies have demonstrated the role of pigs as Salmonella reservoirs. Furthermore, this pathogen has been identified as a potential biological hazard in many livestock feeds. The overall objective of this research was to characterize Salmonella enterica isolates in selected U.S. swine feed mills by whole-genome sequencing (WGS) and evaluate isolates in association with the season and feed production stages. Salmonella isolates were collected from 11 facilities during a previous study. Samples were analyzed for Salmonella prevalence following the U.S. Department of Agriculture guidelines and confirmed by PCR. WGS was carried out on either the MiSeq or NextSeq sequencer. De novo genome assemblies were obtained with the Shovill pipeline, version 0.9. ResFinder and SPIFinder were used to identify antibiotic resistance genes and pathogenicity islands. Finally, their phylogenetic relationship and diversity were determined by core genome multilocus sequence typing. Overall, our analysis showed the presence of S. enterica in the feed mill environment. Isolates belonged to 16 different serotypes. Salmonella Agona, Salmonella Mbandaka, Salmonella Senfenberg, and Salmonella Scharzengrund were the most frequently found, and 18 single-nucleotide polymorphism clusters were identified. In silico analysis showed that 40% of the strains carried at least one antimicrobial resistance gene. All isolates in this study could be considered of public health concern and pathogenic potential. Our findings underscore the potential role of the feed mill environment as the pathogen entry route into the human food value chain.
Collapse
Affiliation(s)
| | - Gabriela Magossi
- Food Science Institute, Kansas State University, Manhattan, Kansas
| | - Marc W Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Sandra M Tallent
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Eric W Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Sara Lomonaco
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| |
Collapse
|
42
|
Naberhaus SA, Krull AC, Bradner LK, Harmon KM, Arruda P, Arruda BL, Sahin O, Burrough ER, Schwartz KJ, Kreuder AJ. Emergence of Salmonella enterica serovar 4,[5],12:i:- as the primary serovar identified from swine clinical samples and development of a multiplex real-time PCR for improved Salmonella serovar-level identification. J Vet Diagn Invest 2019; 31:818-827. [PMID: 31646949 DOI: 10.1177/1040638719883843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rapid identification of the infecting Salmonella serovar from porcine diagnostic samples is vital to allow implementation of appropriate on-farm treatment and management decisions. Although identification at the serogroup level can be rapidly achieved at most veterinary diagnostic laboratories, final Salmonella serovar identification often takes several weeks because of the limited number of reference laboratories performing the complex task of serotyping. Salmonella serogroup B, currently the dominant serogroup identified from swine clinical samples in the United States, contains serovars that vary from highly pathogenic to minimally pathogenic in swine. We determined the frequency of detection of individual group B serovars at the Iowa State Veterinary Diagnostic Laboratory from 2008 to 2017, and validated a multiplex real-time PCR (rtPCR) to distinguish pathogenic serogroup B serovars from those of lesser pathogenicity. Our results indicate that, since 2014, Salmonella enterica ssp. enterica serovar 4,[5],12:i:- has been the dominant serovar identified from swine clinical samples at the ISU-VDL, with S. Typhimurium now the second most common serovar identified. We developed a rtPCR to allow rapid differentiation of samples containing S. 4,[5],12:i:- and S. Typhimurium from samples containing serovars believed to be of less pathogenicity, such as S. Agona and S. Derby. When combined with enrichment culture, this rtPCR has the ability to significantly improve the time to final serovar identification of the 2 most commonly identified pathogenic Salmonella serovars in swine, and allows rapid implementation of serovar-specific intervention strategies.
Collapse
Affiliation(s)
- Samantha A Naberhaus
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Adam C Krull
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Laura K Bradner
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Karen M Harmon
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Paulo Arruda
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Bailey L Arruda
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Orhan Sahin
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Eric R Burrough
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Kent J Schwartz
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| | - Amanda J Kreuder
- Departments of Veterinary Diagnostic and Production Animal Medicine (Naberhaus, Krull, Bradner, Harmon, P. Arruda, B. Arruda, Sahin, Burrough, Schwartz, Kreuder), Iowa State University, Ames, IA.,Veterinary Microbiology and Preventive Medicine (Naberhaus, Kreuder), Iowa State University, Ames, IA
| |
Collapse
|
43
|
Elnekave E, Hong S, Mather AE, Boxrud D, Taylor AJ, Lappi V, Johnson TJ, Vannucci F, Davies P, Hedberg C, Perez A, Alvarez J. Salmonella enterica Serotype 4,[5],12:i:- in Swine in the United States Midwest: An Emerging Multidrug-Resistant Clade. Clin Infect Dis 2019; 66:877-885. [PMID: 29069323 DOI: 10.1093/cid/cix909] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/18/2017] [Indexed: 11/14/2022] Open
Abstract
Background Salmonella 4,[5],12:i:-, a worldwide emerging pathogen that causes many food-borne outbreaks mostly attributed to pig and pig products, is expanding in the United States. Methods Whole-genome sequencing was applied to conduct multiple comparisons of 659 S. 4,[5],12:i:- and 325 Salmonella Typhimurium from different sources and locations (ie, the United States and Europe) to assess their genetic heterogeneity, with a focus on strains recovered from swine in the US Midwest. In addition, the presence of resistance genes and other virulence factors was detected and the antimicrobial resistance phenotypes of 50 and 22 isolates of livestock and human origin, respectively, was determined. Results The S. 4,5,12:i:- strains formed two main clades regardless of their source and geographic origin. Most (84%) of the US isolates recovered in 2014-2016, including those (48 of 51) recovered from swine in the US Midwest, were part of an emerging clade. In this clade, multiple genotypic resistance determinants were predominant, including resistance against ampicillin, streptomycin, sulfonamides, and tetracyclines. Phenotypic resistance to enrofloxacin (11 of 50) and ceftiofur (9 of 50) was found in conjunction with the presence of plasmid-mediated resistance genes (qnrB19/qnrB2/qnrS1 and blaCMY-2/blaSHV-12, respectively). Higher similarity was also found between S. 4,[5],12:i:- from the emerging clade and S. Typhimurium from Europe than with S. Typhimurium from the United States. Conclusions Salmonella 4,[5],12:i:- currently circulating in swine in the US Midwest are likely to be part of an emerging multidrug-resistant clade first reported in Europe, and can carry plasmid-mediated resistance genes that may be transmitted horizontally to other bacteria, and thus may represent a public health concern.
Collapse
Affiliation(s)
- Ehud Elnekave
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul
| | - Samuel Hong
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul
| | - Alison E Mather
- Department of Veterinary Medicine, University of Cambridge, United Kingdom
| | | | | | | | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul
| | - Fabio Vannucci
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, Saint Paul
| | - Peter Davies
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul
| | - Craig Hedberg
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis
| | - Andres Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul
| | - Julio Alvarez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul
| |
Collapse
|
44
|
Instrument-Free and Visual Detection of Salmonella Based on Magnetic Nanoparticles and an Antibody Probe Immunosensor. Int J Mol Sci 2019; 20:ijms20184645. [PMID: 31546808 PMCID: PMC6769488 DOI: 10.3390/ijms20184645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 11/17/2022] Open
Abstract
Salmonella, a common foodborne pathogen, causes many cases of foodborne illness and poses a threat to public health worldwide. Immunological detection systems can be combined with nanoparticles to develop sensitive and portable detection technologies for timely screening of Salmonella infections. Here, we developed an antibody-probe-based immuno-N-hydroxysuccinimide (NHS) bead (AIB) system to detect Salmonella. After adding the antibody probe, Salmonella accumulated in the samples on the surfaces of the immuno-NHS beads (INBs), forming a sandwich structure (INB–Salmonella–probes). We demonstrated the utility of our AIB diagnostic system for detecting Salmonella in water, milk, and eggs, with a sensitivity of 9 CFU mL−1 in less than 50 min. The AIB diagnostic system exhibits highly specific detection and no cross-reaction with other similar microbial strains. With no specialized equipment or technical requirements, the AIB diagnostic method can be used for visual, rapid, and point-of-care detection of Salmonella.
Collapse
|
45
|
Sun H, Wan Y, Du P, Bai L. The Epidemiology of Monophasic Salmonella Typhimurium. Foodborne Pathog Dis 2019; 17:87-97. [PMID: 31532231 DOI: 10.1089/fpd.2019.2676] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica remains an important foodborne pathogen in all regions of the world, with Typhimurium as one of the most frequent serotypes causing foodborne disease. However, the past two decades have seen a rapid worldwide emergence of a new Salmonella serotype, namely monophasic variant of S. Typhimurium, whose antigenic formula is 1,4,[5],12:i:-. It has become one of the 2-5 most common Salmonella serotypes responsible for animal and human infections in different regions. The global epidemic of monophasic S. 1,4,[5],12:i:- has mainly been characterized by an increase in multidrug-resistant S. 1,4,[5],12:i:- isolated in Europe since 1997. The unexpected link to swine has escalated monophasic S. Typhimurium infections to the status of a global public health emergency. The large-scale application of whole genome sequencing (WGS) in the last 10 years has revealed the phylogenetic associations of the bacterium and its antimicrobial resistance (AMR) genes. Local and global transmission reconstructed by WGS have shown that different clones have emerged following multiple independent events worldwide, and have elucidated the role of this zoonotic pathogen in the spread of AMR. This article discusses our current knowledge of the global ecology, epidemiology, transmission, bacterial adaptation, and evolution of this emerging Salmonella serotype.
Collapse
Affiliation(s)
- Honghu Sun
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China.,Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Yuping Wan
- Chengdu Institute for Food and Drug Control, Chengdu, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
46
|
Kawakami V, Bottichio L, Lloyd J, Carleton H, Leeper M, Olson G, Li Z, Kissler B, Angelo KM, Whitlock L, Sinatra J, Defibaugh-Chavez S, Bicknese A, Kay M, Wise ME, Basler C, Duchin J. Multidrug-Resistant Salmonella I 4,[5],12:i:- and Salmonella Infantis Infections Linked to Whole Roasted Pigs from a Single Slaughter and Processing Facility. J Food Prot 2019; 82:1615-1624. [PMID: 31441688 PMCID: PMC6957080 DOI: 10.4315/0362-028x.jfp-19-048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe two outbreaks of multidrug-resistant (MDR) Salmonella I 4,[5],12:i:- infection, occurring in 2015 to 2016, linked to pork products, including whole roaster pigs sold raw from a single Washington slaughter and processing facility (establishment A). Food histories from 80 ill persons were compared with food histories reported in the FoodNet 2006 to 2007 survey of healthy persons from all 10 U.S. FoodNet sites who reported these exposures in the week before interview. Antimicrobial susceptibility testing and whole genome sequencing were conducted on selected clinical, food, and environmental isolates. During 2015, a total of 192 ill persons were identified from five states; among ill persons with available information, 30 (17%) of 180 were hospitalized, and none died. More ill persons than healthy survey respondents consumed pork (74 versus 43%, P < 0.001). Seventeen (23%) of 73 ill persons for which a response was available reported attending an event where whole roaster pig was served in the 7 days before illness onset. All 25 clinical isolates tested from the 2015 outbreak and a subsequent 2016 smaller outbreak (n = 15) linked to establishment A demonstrated MDR. Whole genome sequencing of clinical, environmental, and food isolates (n = 69) collected in both investigations revealed one clade of highly related isolates, supporting epidemiologic and traceback data that establishment A as the source of both outbreaks. These investigations highlight that whole roaster pigs, an uncommon food vehicle for MDR Salmonella I 4,[5],12:i:- outbreaks, will need further attention from food safety researchers and educators for developing science-based consumer guidelines, specifically with a focus on the preparation process.
Collapse
Affiliation(s)
- Vance Kawakami
- Epidemic Intelligence Service, Division of Scientific Education and Professional Development, CSELS.,Communicable Disease Epidemiology and Immunization Section, Public Health-Seattle & King County, 401 5th Avenue, Seattle, Washington 98104
| | - Lyndsay Bottichio
- Outbreak Response and Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, NCEZID
| | - Jennifer Lloyd
- Communicable Disease Epidemiology and Immunization Section, Public Health-Seattle & King County, 401 5th Avenue, Seattle, Washington 98104
| | - Heather Carleton
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, NCEZID, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333
| | - Molly Leeper
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, NCEZID, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333
| | - Gina Olson
- Public Health Laboratories, Washington State Department of Health, 1610 N.E. 150th Street, Shoreline, Washington 98155
| | - Zhi Li
- Public Health Laboratories, Washington State Department of Health, 1610 N.E. 150th Street, Shoreline, Washington 98155
| | - Bonnie Kissler
- Food Safety and Inspection Service, U.S. Department of Agriculture, 100 Alabama Street S.W., Atlanta, Georgia 30303
| | - Kristina M Angelo
- Outbreak Response and Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, NCEZID
| | - Laura Whitlock
- Outbreak Response and Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, NCEZID
| | - Jennifer Sinatra
- Food Safety and Inspection Service, U.S. Department of Agriculture, 100 Alabama Street S.W., Atlanta, Georgia 30303
| | - Stephanie Defibaugh-Chavez
- Food Safety and Inspection Service, U.S. Department of Agriculture, 1400 Independence Avenue S.W., Washington, DC 20250
| | - Amelia Bicknese
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne, and Environmental Diseases, NCEZID, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333
| | - Meagan Kay
- Communicable Disease Epidemiology and Immunization Section, Public Health-Seattle & King County, 401 5th Avenue, Seattle, Washington 98104
| | - Matthew E Wise
- Outbreak Response and Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, NCEZID
| | - Collin Basler
- Outbreak Response and Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, NCEZID
| | - Jeff Duchin
- Communicable Disease Epidemiology and Immunization Section, Public Health-Seattle & King County, 401 5th Avenue, Seattle, Washington 98104.,Department of Epidemiology, School of Public Health, University of Washington, 1959 N.E. Pacific Street, Seattle, Washington 98195, USA
| |
Collapse
|
47
|
Z/I1 Hybrid Virulence Plasmids Carrying Antimicrobial Resistance genes in S. Typhimurium from Australian Food Animal Production. Microorganisms 2019; 7:microorganisms7090299. [PMID: 31470501 PMCID: PMC6780720 DOI: 10.3390/microorganisms7090299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/29/2022] Open
Abstract
Knowledge of mobile genetic elements that capture and disseminate antimicrobial resistance genes between diverse environments, particularly across human-animal boundaries, is key to understanding the role anthropogenic activities have in the evolution of antimicrobial resistance. Plasmids that circulate within the Enterobacteriaceae and the Proteobacteria more broadly are well placed to acquire resistance genes sourced from separate niche environments and provide a platform for smaller mobile elements such as IS26 to assemble these genes into large, complex genomic structures. Here, we characterised two atypical Z/I1 hybrid plasmids, pSTM32-108 and pSTM37-118, hosting antimicrobial resistance and virulence associated genes within endemic pathogen Salmonella enterica serovar Typhimurium 1,4,[5],12:i:-, sourced from Australian swine production facilities during 2013. We showed that the plasmids found in S. Typhimurium 1,4,[5],12:i:- are close relatives of two plasmids identified from Escherichia coli of human and bovine origin in Australia circa 1998. The older plasmids, pO26-CRL125 and pO111-CRL115, encoded a putative serine protease autotransporter and were host to a complex resistance region composed of a hybrid Tn21-Tn1721 mercury resistance transposon and composite IS26 transposon Tn6026. This gave a broad antimicrobial resistance profile keyed towards first generation antimicrobials used in Australian agriculture but also included a class 1 integron hosting the trimethoprim resistance gene dfrA5. Genes encoding resistance to ampicillin, trimethoprim, sulphonamides, streptomycin, aminoglycosides, tetracyclines and mercury were a feature of these plasmids. Phylogenetic analyses showed very little genetic drift in the sequences of these plasmids over the past 15 years; however, some alterations within the complex resistance regions present on each plasmid have led to the loss of various resistance genes, presumably as a result of the activity of IS26. These alterations may reflect the specific selective pressures placed on the host strains over time. Our studies suggest that these plasmids and variants of them are endemic in Australian food production systems.
Collapse
|
48
|
Salmonella Genomic Island 3 Is an Integrative and Conjugative Element and Contributes to Copper and Arsenic Tolerance of Salmonella enterica. Antimicrob Agents Chemother 2019; 63:AAC.00429-19. [PMID: 31209002 DOI: 10.1128/aac.00429-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023] Open
Abstract
Salmonella genomic island 3 (SGI3) was first described as a chromosomal island in Salmonella 4,[5],12:i:-, a monophasic variant of Salmonella enterica subsp. enterica serovar Typhimurium. The SGI3 DNA sequence detected from Salmonella 4,[5],12:i:- isolated in Japan was identical to that of a previously reported one across entire length of 81 kb. SGI3 consists of 86 open reading frames, including a copper homeostasis and silver resistance island (CHASRI) and an arsenic tolerance operon, in addition to genes related to conjugative transfer and DNA replication or partitioning, suggesting that the island is a mobile genetic element. We successfully selected transconjugants that acquired SGI3 after filter-mating experiments using the S. enterica serovars Typhimurium, Heidelberg, Hadar, Newport, Cerro, and Thompson as recipients. Southern blot analysis using I-CeuI-digested genomic DNA demonstrated that SGI3 was integrated into a chromosomal fragment of the transconjugants. PCR and sequencing analysis demonstrated that SGI3 was inserted into the 3' end of the tRNA genes pheV or pheR The length of the target site was 52 or 55 bp, and a 55-bp attI sequence indicating generation of the circular form of SGI3 was also detected. The transconjugants had a higher MIC against CuSO4 compared to the recipient strains under anaerobic conditions. Tolerance was defined by the cus gene cluster in the CHASRI. The transconjugants also had distinctly higher MICs against Na2HAsO4 compared to recipient strains under aerobic conditions. These findings clearly demonstrate that SGI3 is an integrative and conjugative element and contributes to the copper and arsenic tolerance of S. enterica.
Collapse
|
49
|
Siira L, MacDonald E, Holmbakken GM, Sundar T, Meyer-Myklestad L, Lange H, Brandal LT, Naseer U, Johannessen GS, Bergsjø B, Espenhain L, Vold L, Nygård K. Increasing incubation periods during a prolonged monophasic Salmonella Typhimurium outbreak with environmental contamination of a commercial kitchen at Oslo Airport, Norway, 2017. Euro Surveill 2019; 24:1900207. [PMID: 31456559 PMCID: PMC6712930 DOI: 10.2807/1560-7917.es.2019.24.34.1900207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/13/2019] [Indexed: 11/20/2022] Open
Abstract
In September 2017, a cluster of monophasic Salmonella Typhimurium isolates was identified at the National Reference Laboratory for Enteropathogenic Bacteria in Norway. We investigated the cluster to identify the source and implement control measures. We defined a case as a person with laboratory-confirmed salmonellosis with the outbreak strain multiple locus variable-number tandem repeat analysis type. We conducted descriptive epidemiological and environmental investigations and performed whole genome sequencing (WGS) with core and accessory genome multilocus sequence typing of all isolates from cases or the environment connected with this outbreak. We identified 21 cases, residing in 10 geographically dispersed counties, all of whom had consumed food or drinks from a café at Oslo Airport. Case distribution by date of symptom onset suggested that a point source was introduced in mid-August followed by continued environmental contamination. The incubation periods ranged 0-16 days and increased as the outbreak progressed, likely due to increasingly low-dose exposure as control measures were implemented. WGS confirmed an identical cluster type-944 in all cases and six environmental specimens from the café. Control measures, including temporary closure and kitchen refurbishment, failed to eliminate the environmental source. We recommend strengthened hygiene measures for established environmental contamination during an outbreak.
Collapse
Affiliation(s)
- Lotta Siira
- Norwegian Institute of Public Health, Oslo, Norway
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
| | | | | | - Tom Sundar
- Municipality of Nannestad, Akershus, Norway
| | | | - Heidi Lange
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Umaer Naseer
- Norwegian Institute of Public Health, Oslo, Norway
| | | | | | - Laura Espenhain
- Norwegian Institute of Public Health, Oslo, Norway
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
| | - Line Vold
- Norwegian Institute of Public Health, Oslo, Norway
| | - Karin Nygård
- Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
50
|
Guyomard-Rabenirina S, Weill FX, Le Hello S, Bastian S, Berger F, Ferdinand S, Legreneur P, Loraux C, Malpote E, Muanza B, Richard V, Talarmin A, Breurec S. Reptiles in Guadeloupe (French West Indies) are a reservoir of major human Salmonella enterica serovars. PLoS One 2019; 14:e0220145. [PMID: 31323053 PMCID: PMC6641201 DOI: 10.1371/journal.pone.0220145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022] Open
Abstract
The epidemiology of human Salmonella enterica infections in Guadeloupe (French West Indies) appears to be specific, with a higher prevalence of the subspecies enterica serovars Panama and Arechavaleta (Panama and Arechavaleta) than in other regions. A study was performed in Guadeloupe to identify the reservoir of Salmonella serovars by comparing their distribution in warm- and cold-blooded animals and in humans living in Guadeloupe and mainland France. Furthermore, a case-control study was conducted in 2012-2013 to identify the main epidemiologic risk factors for S. enterica infection among children under 15 years of age. Between June 2011 and December 2014, feces from 426 reptiles (322 anoles, 69 iguanas and 35 geckos) and 50 frogs distributed throughout Guadeloupe and nearby islands were investigated. The frequency of S. enterica carriage was 15.0% (n = 64) in reptiles but varied by species. The only significant risk factor for S. enterica infection was a more frequent presence of frogs in the houses of cases than in those of controls (P = 0.042); however, isolates were not collected. Panama and Arechavaleta were the two serovars most often recovered between 2005 and 2014 from humans living in Guadeloupe (24.5% (n = 174) and 11.5% (n = 82), respectively), which is in contrast to the low prevalence in mainland France (0.4%). Their presence at low frequencies in wild reptiles (4.6% (n = 3) and 3.1% (n = 2), respectively) and pigs (7.5% (n = 5) and 1.5% (n = 1), respectively) suggests a broad host range, and humans may be infected by indirect or direct contact with animals. These serovars are probably poorly adapted to humans and therefore cause more severe infections. The unusual subspecies houtenae serovar 43:z4,z32:- was a major subspecies in wild reptiles (24.6%, n = 16) and humans (9.4%, n = 67) but was not recovered from warm-blooded animals, suggesting that reptiles plays a key role in human infection.
Collapse
Affiliation(s)
| | - François-Xavier Weill
- Unité des Bactéries pathogènes entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | - Simon Le Hello
- Unité des Bactéries pathogènes entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| | - Sylvaine Bastian
- Laboratoire de Microbiologie clinique et environnementale, Centre Hospitalier Universitaire de Pointe-à-Pitre/les Abymes, Pointe-à-Pitre, France
| | - Franck Berger
- Service de Santé des Armées, Centre d’épidémiologie et de santé publique des armées, Marseille, France
- INSERM, IRD, Sciences Economiques et Sociales de la Santé et Traitement de l’Information Médicale, Université d’Aix Marseille, Marseille, France
| | - Séverine Ferdinand
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, France
| | | | - Cécile Loraux
- Laboratoire de Microbiologie clinique et environnementale, Centre Hospitalier Universitaire de Pointe-à-Pitre/les Abymes, Pointe-à-Pitre, France
| | - Edith Malpote
- Laboratoire de Microbiologie clinique et environnementale, Centre Hospitalier Universitaire de Pointe-à-Pitre/les Abymes, Pointe-à-Pitre, France
| | - Blandine Muanza
- Service de Pédiatrie, Centre Hospitalier Universitaire de Pointe-à-Pitre/les Abymes, Pointe-à-Pitre, France
| | - Vincent Richard
- Institut Pasteur de Nouvelle-Calédonie, Nouméa, Nouvelle-Calédonie
| | - Antoine Talarmin
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, France
| | - Sébastien Breurec
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, France
- Laboratoire de Microbiologie clinique et environnementale, Centre Hospitalier Universitaire de Pointe-à-Pitre/les Abymes, Pointe-à-Pitre, France
- Faculté de Médecine Hyacinthe Bastaraud, Université des Antilles, Pointe-à-Pitre, France
| |
Collapse
|