1
|
Brown SRB, Bland R, McIntyre L, Shyng S, Weisberg AJ, Riutta ER, Chang JH, Kovacevic J. Genomic characterization of Listeria monocytogenes recovered from dairy facilities in British Columbia, Canada from 2007 to 2017. Front Microbiol 2024; 15:1304734. [PMID: 38585707 PMCID: PMC10995413 DOI: 10.3389/fmicb.2024.1304734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen of concern in dairy processing facilities, with the potential to cause human illness and trigger regulatory actions if found in the product. Monitoring for Listeria spp. through environmental sampling is recommended to prevent establishment of these microorganisms in dairy processing environments, thereby reducing the risk of product contamination. To inform on L. monocytogenes diversity and transmission, we analyzed genome sequences of L. monocytogenes strains (n = 88) obtained through the British Columbia Dairy Inspection Program. Strains were recovered from five different dairy processing facilities over a 10 year period (2007-2017). Analysis of whole genome sequences (WGS) grouped the isolates into nine sequence types and 11 cgMLST types (CT). The majority of isolates (93%) belonged to lineage II. Within each CT, single nucleotide polymorphism (SNP) differences ranged from 0 to 237 between isolates. A highly similar (0-16 SNPs) cluster of over 60 isolates, collected over 9 years within one facility (#71), was identified suggesting a possible persistent population. Analyses of genome content revealed a low frequency of genes associated with stress tolerance, with the exception of widely disseminated cadmium resistance genes cadA1 and cadA2. The distribution of virulence genes and mutations within internalin genes varied across the isolates and facilities. Further studies are needed to elucidate their phenotypic effect on pathogenicity and stress response. These findings demonstrate the diversity of L. monocytogenes isolates across dairy facilities in the same region. Findings also showed the utility of using WGS to discern potential persistence events within a single facility over time.
Collapse
Affiliation(s)
| | - Rebecca Bland
- Food Innovation Center, Oregon State University, Portland, OR, United States
| | | | - Sion Shyng
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Elizabeth R. Riutta
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Jovana Kovacevic
- Food Innovation Center, Oregon State University, Portland, OR, United States
| |
Collapse
|
2
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Fox E, Gosling R(B, Gil BM, Møretrø T, Stessl B, da Silva Felício MT, Messens W, Simon AC, Alvarez‐Ordóñez A. Persistence of microbiological hazards in food and feed production and processing environments. EFSA J 2024; 22:e8521. [PMID: 38250499 PMCID: PMC10797485 DOI: 10.2903/j.efsa.2024.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.
Collapse
|
3
|
Chowdhury B, Anand S. Environmental persistence of Listeria monocytogenes and its implications in dairy processing plants. Compr Rev Food Sci Food Saf 2023; 22:4573-4599. [PMID: 37680027 DOI: 10.1111/1541-4337.13234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Listeriosis, an invasive illness with a fatality rate between 20% and 30%, is caused by the ubiquitous bacterium Listeria monocytogenes. Human listeriosis has long been associated with foods. This is because the ubiquitous nature of the bacteria renders it a common food contaminant, posing a significant risk to the food processing sector. Although several sophisticated stress coping mechanisms have been identified as significant contributing factors toward the pathogen's persistence, a complete understanding of the mechanisms underlying persistence across various strains remains limited. Moreover, aside from genetic aspects that promote the ability to cope with stress, various environmental factors that exist in food manufacturing plants could also contribute to the persistence of the pathogen. The objective of this review is to provide insight into the challenges faced by the dairy industry because of the pathogens' environmental persistence. Additionally, it also aims to emphasize the diverse adaptation and response mechanisms utilized by L. monocytogenes in food manufacturing plants to evade environmental stressors. The persistence of L. monocytogenes in the food processing environment poses a serious threat to food safety and public health. The emergence of areas with high levels of L. monocytogenes contamination could facilitate Listeria transmission through aerosols, potentially leading to the recontamination of food, particularly from floors and drains, when sanitation is implemented alongside product manufacturing. Hence, to produce safe dairy products and reduce the frequency of outbreaks of listeriosis, it is crucial to understand the factors that contribute to the persistence of this pathogen and to implement efficient control strategies.
Collapse
Affiliation(s)
- Bhaswati Chowdhury
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Department of Dairy and Food Science, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
4
|
Characterization and Antibiotic Resistance of Listeria monocytogenes Strains Isolated from Greek Myzithra Soft Whey Cheese and Related Food Processing Surfaces over Two-and-a-Half Years of Safety Monitoring in a Cheese Processing Facility. Foods 2023; 12:foods12061200. [PMID: 36981126 PMCID: PMC10048787 DOI: 10.3390/foods12061200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Listeriosis is a serious infectious disease with one of the highest case fatality rates (ca. 20%) among the diseases manifested from bacterial foodborne pathogens in humans, while dairy products are often implicated as sources of human infection with Listeria monocytogenes. In this study, we characterized phenotypically and genetically by whole-genome sequencing (WGS) 54 L. monocytogenes strains isolated from Myzithra, a traditional Greek soft whey cheese (48 isolates), and swabs collected from surfaces of a cheese processing plant (six isolates) in the Epirus region of Greece. All but one strain of L. monocytogenes belonged to the polymerase chain reaction (PCR) serogroups IIa (16.7%) and IIb (81.5%), corresponding to serotypes 1/2a, 3a and 1/2b, 3b, 7, respectively. The latter was identified as a PCR-serogroup IVb strain (1.8%) of serotypes 4b, 4d, 4e. Bioinformatics analysis revealed the presence of five sequence types (STs) and clonal complexes (CCs); ST1, ST3, ST121, ST 155, ST398 and CC1, CC3, CC121, CC155, CC398 were thus detected in 1.9, 83.3, 11.0, 1.9, and 1.9% of the L. monocytogenes isolates, respectively. Antibiograms of the pathogen against a panel of seven selected antibiotics (erythromycin, tetracycline, benzylpenicillin, trimethoprim-sulfamethoxazole, ampicillin, ciprofloxacin, and meropenem) showed that 50 strains (92.6%), the six surface isolates also included, were intermediately resistant to ciprofloxacin and susceptible to the rest of the six antimicrobial agents tested, whereas strong resistance against the use of a single from three implicated antibiotics was recorded to four strains (7.4%) of the pathogen isolated from Myzithra cheese samples. Thence, the minimum inhibitory concentrations (MICs) were determined for erythromycin (MIC = 0.19 μg/mL), ciprofloxacin (MIC ≥ 0.19 μg/mL), and meropenem (MIC = 0.64 μg/mL), and finally, just one strain was deemed resistant to the latter antibiotic. The phylogenetic positions of the L. monocytogenes strains and their genetic variability were determined through WGS, whilst also stress response and virulence gene analysis for the isolates was conducted. Findings of this work should be useful as they could be utilized for epidemiological investigations of L. monocytogenes in the food processing environment, revealing possible contamination scenarios, and acquired antimicrobial resistance along the food production chain.
Collapse
|
5
|
Listeria Species Occurrence and Associated Risk Factors and Antibiogram of Listeria Monocytogenes in Milk and Milk Products in Ambo, Holeta, and Bako Towns, Oromia Regional State, Ethiopia. Vet Med Int 2022; 2022:5643478. [PMID: 35465403 PMCID: PMC9023178 DOI: 10.1155/2022/5643478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
A cross-sectional study was conducted to estimate the prevalence and associated risk factors of Listeria species and assess the antibiogram of Listeria monocytogenes (L. monocytogenes) isolated from milk and milk products from Holeta, Ambo, and Bako towns, Ethiopia. A total of 482 samples (384 milk, 35 cottage cheeses, 30 bulk tank milk, and 33 curdle milk) were collected using a systematic random sampling method and isolation and identification of Listeria species were done using standard microbiological techniques. An antimicrobial susceptibility test for L. monocytogenes was performed using the Kirby–Bauer disk diffusion technique. Descriptive statistics were used to summarize the prevalence of Listeria, while the Chi-square test and logistic regression were used to determine the association between the prevalence of Listeria and the risk factors and the magnitude of association, respectively. The overall isolation rate of Listeria species from milk and milk products was 7.67% (37/482; 95% confidence interval (CI): 5.46, 10.42). The highest prevalence of Listeria species (15.15%; 95% CI: 5.11–31.90) was detected in bulk tank milk and the lowest prevalence of Listeria species (6.67%; 95% CI: 0.82–22.07) and L. monocytogenes (0.00; 95% CI: 0.00–1.15) was found in curdled milk. The other species isolated were Listeria welshimeri 0.62% (3/482; 95% CI: 0.13–1.81), Listeria seeligeri 1.04% (5/482; 95% CI: 0.33–2.40), Listeria ivanovi 1.24%, (6/482; 95% CI: 0.45–2.68), and Listeria grayi 2.49% (12/482; 95% CI: 5.46–10.42). Univariable logistic regression showed that study town, herd size, farm size, number of lactating cows, and management system were the factors significantly associated with the isolation of Listeria species at farm level, while the intensive management system was the independent predictor at cow level in the multivariable model (adjusted odds ratio = 3.38, P=0.046). L. monocytogenes isolates showed the highest resistance against oxacillin (100%), amoxicillin (90.91%), and vancomycine (81.82%). L. monocytogenes showed a very high multidrug resistance (MDR) [81.82%]. In conclusion, the current study showed the widespread type of Listeria species MDR L. monocytogenes isolates in cow raw milk and milk products from Ambo, Holeta, and Bako towns, Oromia Regional State, Ethiopia.
Collapse
|
6
|
Monitoring by a Sensitive Liquid-Based Sampling Strategy Reveals a Considerable Reduction of Listeria monocytogenes in Smeared Cheese Production over 10 Years of Testing in Austria. Foods 2021; 10:foods10091977. [PMID: 34574086 PMCID: PMC8471813 DOI: 10.3390/foods10091977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Most Austrian dairies and cheese manufacturers participated in a Listeria monitoring program, which was established after the first reports of dairy product-associated listeriosis outbreaks more than thirty years ago. Within the Listeria monitoring program, up to 800 mL of product-associated liquids such as cheese smear or brine are processed in a semi-quantitative approach to increase epidemiological sensitivity. A sampling strategy within cheese production, which detects environmental contamination before it results in problematic food contamination, has benefits for food safety management. The liquid-based sampling strategy was implemented by both industrial cheese makers and small-scale dairies located in the mountainous region of Western Austria. This report considers more than 12,000 Listeria spp. examinations of liquid-based samples in the 2009 to 2018 timeframe. Overall, the occurrence of L. monocytogenes in smear liquid samples was 1.29% and 1.55% (n = 5043 and n = 7194 tested samples) for small and industrial cheese enterprises, respectively. The liquid-based sampling strategy for Listeria monitoring at the plant level appears to be superior to solid surface monitoring. Cheese smear liquids seem to have good utility as an index of the contamination of cheese up to that point in production. A modelling or validation process should be performed for the new semi-quantitative approach to estimate the true impact of the method in terms of reducing Listeria contamination at the cheese plant level.
Collapse
|
7
|
Matle I, Mafuna T, Madoroba E, Mbatha KR, Magwedere K, Pierneef R. Population Structure of Non-ST6 Listeria monocytogenes Isolated in the Red Meat and Poultry Value Chain in South Africa. Microorganisms 2020; 8:microorganisms8081152. [PMID: 32751410 PMCID: PMC7464360 DOI: 10.3390/microorganisms8081152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Meat products have been implicated in many listeriosis outbreaks globally, however there is a dearth of information on the diversity of L. monocytogenes isolates circulating in food products in South Africa. The aim of this study was to investigate the population structure of L. monocytogenes isolated in the meat value chain within the South African market. Based on whole-genome sequence analysis, a total of 217 isolates were classified into two main lineage groupings namely lineages I (n = 97; 44.7%) and II (n = 120; 55.3%). The lineage groups were further differentiated into IIa (n = 95, 43.8%), IVb (n = 69, 31.8%), IIb (n = 28, 12.9%), and IIc (n = 25, 11.5%) sero-groups. The most abundant sequence types (STs) were ST204 (n = 32, 14.7%), ST2 (n = 30, 13.8%), ST1 (n = 25, 11.5%), ST9 (n = 24, 11.1%), and ST321 (n = 21, 9.7%). In addition, 14 clonal complex (CCs) were identified with over-representation of CC1, CC3, and CC121 in "Processed Meat-Beef", "RTE-Poultry", and "Raw-Lamb" meat categories, respectively. Listeria pathogenic islands were present in 7.4% (LIPI-1), 21.7% (LIPI-3), and 1.8% (LIPI-4) of the isolates. Mutation leading to premature stop codons was detected in inlA virulence genes across isolates identified as ST121 and ST321. The findings of this study demonstrated a high-level of genomic diversity among L. monocytogenes isolates recovered across the meat value chain control points in South Africa.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa;
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida 1709, South Africa;
| | - Thendo Mafuna
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa;
- Biotechnology Platform, Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X 05, Onderstepoort 0110, Pretoria, South Africa
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - Khanyisile R. Mbatha
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida 1709, South Africa;
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria 0001, South Africa;
| | - Rian Pierneef
- Biotechnology Platform, Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X 05, Onderstepoort 0110, Pretoria, South Africa
- Correspondence: ; Tel.: +27-12-5299-356
| |
Collapse
|
8
|
Chen M, Cheng J, Pang R, Zhang J, Chen Y, Zeng H, Lei T, Ye Q, Wu S, Zhang S, Wu H, Wang J, Wu Q. Rapid detection of Listeria monocytogenes sequence type 121 strains using a novel multiplex PCR assay. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Temporal analysis of the Listeria monocytogenes population structure in floor drains during reconstruction and expansion of a meat processing plant. Int J Food Microbiol 2019; 314:108360. [PMID: 31678600 DOI: 10.1016/j.ijfoodmicro.2019.108360] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 10/25/2022]
Abstract
Due to a higher probability for violation of hygiene measures, reconstruction work is a substantial food safety challenge for food business operators (FBOs). Here, we monitored a Listeria monocytogenes contamination scenario during a timely enduring reconstruction period that aimed at an expansion of the main building of a leading meat processing facility. Reconstruction took place while food production was ongoing. We used a longitudinal sampling scheme targeting 40 floor water drains distributed over the food processing environment (FPE) over a five year period. The population structure of L. monocytogenes was determined by PCR-serogrouping, pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). While the first sampling deciphered a baseline of contamination (45%), intensified sanitation measures decreased L. monocytogenes prevalence before commencement of work (5%). The reconstruction activities increased the prevalence of L. monocytogenes in the FPE (20.5%) and changed the population structure to a higher proportion of disease-associated genotypes (61%). During the first sampling ST121 was prevalent throughout the FPE, even in the packaging area. After the second and third sampling, following increased application of hypochlorite during sanitation, ST121 was only present in the raw material preparation area. A resilient flora was detected during three sampling events (ST8, ST9 and ST37) which might have not been exposed to daily cleaning in the floor drains. After the accomplishment of reconstruction work, the L. monocytogenes population structure shifted to the condition initially found (45% and 20.5% during the first and sixth sampling event). This paper indicates that reconstruction phases are high risk episodes for food safety in FPEs. Special precautions must be taken to avoid cross-contamination of products since reconstruction is usually ongoing for extended periods of time.
Collapse
|
10
|
Melero B, Manso B, Stessl B, Hernández M, Wagner M, Rovira J, Rodríguez-Lázaro D. Distribution and Persistence of Listeria monocytogenes in a Heavily Contaminated Poultry Processing Facility. J Food Prot 2019; 82:1524-1531. [PMID: 31414898 DOI: 10.4315/0362-028x.jfp-19-087] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We studied the colonization and distribution of Listeria monocytogenes in a heavily contaminated poultry processing plant over a 1-year period. A total of 180 nonfood contact surfaces, 70 food contact surfaces, 29 personnel, and 40 food samples were analyzed. L. monocytogenes isolates were subtyped by PCR serotyping, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing. L. monocytogenes was detected in samples collected at every visit to the plant, and 43.8% (visit 4) to 65.6% (visit 7) of samples were positive, for an overall prevalence of 55.2%. The deboning area had the highest prevalence of positive samples (83.3%), and the processing area had the highest diversity of PFGE types. Ninety percent of the final products were positive for L. monocytogenes. Most of the isolates belonged to well-known persistent L. monocytogenes sequence types (ST9 and ST121). This study illustrates a well-established L. monocytogenes contamination problem in a poultry processing plant associated with a generalized failure of the food safety system as a whole. These findings reflect the potential for L. monocytogenes contamination when the food safety and quality management system is unsatisfactory, as described in the present study. It is essential to revise food safety and quality management systems to eliminate L. monocytogenes from food processing facilities, to control the entrance of sporadic sequence types, and to prevent L. monocytogenes spread within such facilities, especially in those premises with higher L. monocytogenes prevalence in the environment and final food products.
Collapse
Affiliation(s)
- Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Beatriz Manso
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Marta Hernández
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.]).,Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| | - David Rodríguez-Lázaro
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain (ORCID: https://orcid.org/0000-0002-8795-854X [D.R.-L.])
| |
Collapse
|
11
|
Gelbíčová T, Florianová M, Tomáštíková Z, Pospíšilová L, Koláčková I, Karpíšková R. Prediction of Persistence of Listeria monocytogenes ST451 in a Rabbit Meat Processing Plant in the Czech Republic. J Food Prot 2019; 82:1350-1356. [PMID: 31313961 DOI: 10.4315/0362-028x.jfp-19-030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study was focused on characterization of the genetic diversity of Listeria monocytogenes isolated from packed fresh rabbit meat obtained from one producer via retail outlets. The partial aim was to compare the characteristics of a suspect persistent strain with strains from human cases. The occurrence of L. monocytogenes in vacuum-packed rabbit meat was monitored during 2013 to 2016. All strains were characterized by serotyping, pulsed-field gel electrophoresis, and multilocus sequence typing (MLST). Selected strains, which represented each year, were analyzed using the whole genome sequencing method. L. monocytogenes was detected in 21 (38%) of 56 originally packed rabbit meat samples from one food producer during the whole monitored period. All strains showed the identical serotype (1/2a), AscI/ApaI pulsotype (735/2), and sequence type (ST451). The clonal similarity of strains from rabbit meat was also confirmed on the basis of core genome MLST (on 1,701 loci). This fact suggests the occurrence of a suspect persistent strain in the meat processing plant. Results of core genome MLST enabled us to unambiguously exclude rabbit meat as a source of listeriosis in humans caused by the indistinguishable AscI/ApaI pulsotype and sequence type, although all strains carried all genes important for the virulence of L. monocytogenes. No specific genes that may be associated with its persistence in the food processing environment were detected among the tested strains of ST451.
Collapse
Affiliation(s)
- Tereza Gelbíčová
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Martina Florianová
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Zuzana Tomáštíková
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Lucie Pospíšilová
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Ivana Koláčková
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Renáta Karpíšková
- Department of Bacteriology, Veterinary Research Institute, Brno, 621 00, Czech Republic
| |
Collapse
|
12
|
Modelling the fate and serogroup variability of persistent Listeria monocytogenes strains on grated cheese at different storage temperatures. Int J Food Microbiol 2018; 286:48-54. [DOI: 10.1016/j.ijfoodmicro.2018.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 01/19/2023]
|
13
|
Novais Â, Freitas AR, Rodrigues C, Peixe L. Fourier transform infrared spectroscopy: unlocking fundamentals and prospects for bacterial strain typing. Eur J Clin Microbiol Infect Dis 2018; 38:427-448. [DOI: 10.1007/s10096-018-3431-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/11/2018] [Indexed: 01/25/2023]
|
14
|
Melero B, Stessl B, Manso B, Wagner M, Esteban-Carbonero ÓJ, Hernández M, Rovira J, Rodriguez-Lázaro D. Listeria monocytogenes colonization in a newly established dairy processing facility. Int J Food Microbiol 2018; 289:64-71. [PMID: 30199737 DOI: 10.1016/j.ijfoodmicro.2018.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 11/25/2022]
Abstract
The presence and colonization of Listeria monocytogenes were investigated in a newly established dairy processing plant during a one-year period. A total of 250 non-food contact surfaces, 163 food contact surfaces, 46 personnel and 77 food samples were analyzed in two different buildings according to the cheese production chain. Initial steps, including salting, are performed in building I (old facility), while the final steps, including ripening, cutting and packaging, are performed in building II (new facility). Overall, 218 samples were collected from building I and 318 from building II. L. monocytogenes isolates were subtyped by PFGE and MLST, and a questionnaire about quality measures was completed. The overall prevalence of L. monocytogenes was 8.40%, and while the presence of the pathogen was observed just during the first sampling in building I, L. monocytogenes was found in building II at the third sampling event. The salting area in building I had the highest proportion of positive samples with the highest diversity of PFGE types. Moreover, L. monocytogenes PFGE type 3 (sequence type -ST- 204) was first detected in building II in the third visit, and spread through this building until the end of the study. The answers to the questionnaire implied that lack of hygienic barriers in specific parts of the facilities and uncontrolled personnel flow were the critical factors for the spread of L. monocytogenes within and between buildings. Knowledge of the patterns of L. monocytogenes colonization can help a more rational design of new cheesemaking facilities, and improve the food safety within current facilities.
Collapse
Affiliation(s)
- Beatriz Melero
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Beatriz Manso
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Vienna, Austria
| | | | - Marta Hernández
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain; Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Jordi Rovira
- Department of Biotechnology and Food Science, University of Burgos, Burgos, Spain
| | | |
Collapse
|
15
|
Prevalence and persistence of Listeria monocytogenes in premises and products of small food business operators in Northern Ireland. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Muhterem-Uyar M, Ciolacu L, Wagner KH, Wagner M, Schmitz-Esser S, Stessl B. New Aspects on Listeria monocytogenes ST5-ECVI Predominance in a Heavily Contaminated Cheese Processing Environment. Front Microbiol 2018; 9:64. [PMID: 29472901 PMCID: PMC5810274 DOI: 10.3389/fmicb.2018.00064] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/10/2018] [Indexed: 01/25/2023] Open
Abstract
The eradication of Listeria monocytogenes from food chains is still a great challenge for the food industry and control authorities since some clonal complexes (CCs) are either better adapted to food processing environments (FPEs) or are globally widespread. In this work, we focus on the in-house evolution of L. monocytogenes genotypes collected from a heavily contaminated FPE whose contamination pattern underwent a massive and yet unexplained change. At the beginning of the sampling in 2010, a high variety of most likely transient L. monocytogenes genotypes was detected belonging to sequence type (ST) 1, ST7, ST21, ST37. After several efforts to intensify the hygiene measures, the variability was reduced to L. monocytogenes ST5 that was dominant in the following years 2011 and 2012. We aimed to elucidate possible genetic mechanisms responsible for the high abundance and persistence of ST5 strains in this FPE. Therefore, we compared the genomes of six L. monocytogenes ST5 strains to the less frequently occurring transient L. monocytogenes ST37 and ST204 from the same FPE as well as the highly abundant ST1 and ST21 isolated in 2010. Whole genome analysis indicated a high degree of conservation among ST5 strains [average nucleotide identity (ANI) 99.93-99.99%; tetranucleotide correlation 0.99998-0.99999]. Slight differences in pulsed field gel electrophoresis (PFGE) patterns of two ST5 isolates could be explained by genetic changes in the tRNA-Arg-TCT prophages. ST5 and ST204 strains harbored virtually identical 91 kbp plasmids related to plasmid group 2 (pLM80 and pLMUCDL175). Interestingly, highly abundant genotypes present in the FPE in 2010 did not harbor any plasmids. The ST5 plasmids harbored an efflux pump system (bcrABC cassette) and heavy metal resistance genes possibly providing a higher tolerance to disinfectants. The pLM80 prototype plasmids most likely provide important genetic determinants for a better survival of L. monocytogenes in the FPE. We reveal short-term evolution of L. monocytogenes strains within the same FPE over a 3 year period and our results suggest that plasmids are important for the persistence of ST5 strains in this FPE.
Collapse
Affiliation(s)
- Meryem Muhterem-Uyar
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Luminita Ciolacu
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Martin Wagner
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| | - Stephan Schmitz-Esser
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria.,Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Beatrix Stessl
- Department for Farm Animals and Veterinary Public Health, Institute of Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
17
|
Harter E, Wagner EM, Zaiser A, Halecker S, Wagner M, Rychli K. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses. Appl Environ Microbiol 2017; 83:e00827-17. [PMID: 28625982 PMCID: PMC5541211 DOI: 10.1128/aem.00827-17] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes is able to survive a variety of stress conditions leading to the colonization of different niches like the food processing environment. This study focuses on the hypervariable genetic hot spot lmo0443 to lmo0449 haboring three inserts: the stress survival islet 1 (SSI-1), the single-gene insert LMOf2365_0481, and two homologous genes of the nonpathogenic species Listeria innocua: lin0464, coding for a putative transcriptional regulator, and lin0465, encoding an intracellular PfpI protease. Our prevalence study revealed a different distribution of the inserts between human and food-associated isolates. The lin0464-lin0465 insert was predominantly found in food-associated strains of sequence type 121 (ST121). Functional characterization of this insert showed that the putative PfpI protease Lin0465 is involved in alkaline and oxidative stress responses but not in acidic, gastric, heat, cold, osmotic, and antibiotic stresses. In parallel, deletion of lin0464 decreased survival under alkaline and oxidative stresses. The expression of both genes increased significantly under oxidative stress conditions independently of the alternative sigma factor σB Furthermore, we showed that the expression of the protease gene lin0465 is regulated by the transcription factor lin0464 under stress conditions, suggesting that lin0464 and lin0465 form a functional unit. In conclusion, we identified a novel stress survival islet 2 (SSI-2), predominantly present in L. monocytogenes ST121 strains, beneficial for survival under alkaline and oxidative stresses, potentially supporting adaptation and persistence of L. monocytogenes in food processing environments.IMPORTANCEListeria monocytogenes strains of ST121 are known to persist for months and even years in food processing environments, thereby increasing the risk of food contamination and listeriosis. However, the molecular mechanism underlying this remarkable niche-specific adaptation is still unknown. Here, we demonstrate that the genomic islet SSI-2, predominantly present in L. monocytogenes ST121 strains, is beneficial for survival under alkaline and oxidative stress conditions, which are routinely encountered in food processing environments. Our findings suggest that SSI-2 is part of a diverse set of molecular determinants contributing to niche-specific adaptation and persistence of L. monocytogenes ST121 strains in food processing environments.
Collapse
Affiliation(s)
- Eva Harter
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Zaiser
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabrina Halecker
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Wagner
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kathrin Rychli
- Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
18
|
Knudsen GM, Nielsen JB, Marvig RL, Ng Y, Worning P, Westh H, Gram L. Genome-wide-analyses of Listeria monocytogenes from food-processing plants reveal clonal diversity and date the emergence of persisting sequence types. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:428-440. [PMID: 28574206 DOI: 10.1111/1758-2229.12552] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 05/27/2017] [Indexed: 06/07/2023]
Abstract
Whole genome sequencing is increasing used in epidemiology, e.g. for tracing outbreaks of food-borne diseases. This requires in-depth understanding of pathogen emergence, persistence and genomic diversity along the food production chain including in food processing plants. We sequenced the genomes of 80 isolates of Listeria monocytogenes sampled from Danish food processing plants over a time-period of 20 years, and analysed the sequences together with 10 public available reference genomes to advance our understanding of interplant and intraplant genomic diversity of L. monocytogenes. Except for three persisting sequence types (ST) based on Multi Locus Sequence Typing being ST7, ST8 and ST121, long-term persistence of clonal groups was limited, and new clones were introduced continuously, potentially from raw materials. No particular gene could be linked to the persistence phenotype. Using time-based phylogenetic analyses of the persistent STs, we estimate the L. monocytogenes evolutionary rate to be 0.18-0.35 single nucleotide polymorphisms/year, suggesting that the persistent STs emerged approximately 100 years ago, which correlates with the onset of industrialization and globalization of the food market.
Collapse
Affiliation(s)
- Gitte M Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jesper Boye Nielsen
- Department of Clinical Microbiology, Hvidovre Hospital, MRSA KnowledgeCenter, Hvidovre, Denmark
| | - Rasmus L Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Yin Ng
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peder Worning
- Department of Clinical Microbiology, Hvidovre Hospital, MRSA KnowledgeCenter, Hvidovre, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre Hospital, MRSA KnowledgeCenter, Hvidovre, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Comandatore F, Corbella M, Andreoli G, Scaltriti E, Aguzzi M, Gaiarsa S, Mariani B, Morganti M, Bandi C, Fabbi M, Marone P, Pongolini S, Sassera D. Genomic Characterization Helps Dissecting an Outbreak of Listeriosis in Northern Italy. PLOS CURRENTS 2017; 9. [PMID: 28856063 PMCID: PMC5510990 DOI: 10.1371/currents.outbreaks.633fd8994e9f06f31b3494567c7e504c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction Listeria monocytogenes (Lm) is a bacterium widely distributed in nature and able to contaminate food processing environments, including those of dairy products. Lm is a primary public health issue, due to the very low infectious dose and the ability to produce severe outcomes, in particular in elderly, newborns, pregnant women and immunocompromised patients. Methods In the period between April and July 2015, an increased number of cases of listeriosis was observed in the area of Pavia, Northern Italy. An epidemiological investigation identified a cheesemaking small organic farm as the possible origin of the outbreak. In this work we present the results of the retrospective epidemiological study that we performed using molecular biology and genomic epidemiology methods. The strains sampled from patients and those from the target farm's cheese were analyzed using PFGE and whole genome sequencing (WGS) based methods. The performed WGS based analyses included: a) in-silico MLST typing; b) SNPs calling and genetic distance evaluation; c) determination of the resistance and virulence genes profiles; d) SNPs based phylogenetic reconstruction. Results Three of the patient strains and all the cheese strains resulted to belong to the same phylogenetic cluster, in Sequence Type 29. A further accurate SNPs analysis revealed that two of the three patient strains and all the cheese strains were highly similar (0.8 SNPs of average distance) and exhibited a higer distance from the third patient isolate (9.4 SNPs of average distance). Discussion Despite the global agreement among the results of the PFGE and WGS epidemiological studies, the latter approach agree with epidemiological data in indicating that one the patient strains could have originated from a different source. This result highlights that WGS methods can allow to better
Collapse
Affiliation(s)
| | - Marta Corbella
- S.C. Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italia
| | - Giuseppina Andreoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Erika Scaltriti
- Servizio di Analisi del Rischio, Direzione Sanitaria, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Massimo Aguzzi
- Dipartimento di Prevenzione Veterinaria, Agenzia della Salute di Pavia, Pavia, Italy
| | - Stefano Gaiarsa
- SC di Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Bianca Mariani
- S.C. Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italia
| | - Marina Morganti
- Servizio di Analisi del Rischio, Direzione Sanitaria, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma, Italy
| | - Claudio Bandi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Massimo Fabbi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Piero Marone
- SC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Pongolini
- Direzione Sanitaria, Servizio di Analisi del Rischio, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Parma Italy
| | | |
Collapse
|
20
|
Oxaran V, Lee SHI, Chaul LT, Corassin CH, Barancelli GV, Alves VF, de Oliveira CAF, Gram L, De Martinis ECP. Listeria monocytogenes incidence changes and diversity in some Brazilian dairy industries and retail products. Food Microbiol 2017; 68:16-23. [PMID: 28800821 DOI: 10.1016/j.fm.2017.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022]
Abstract
Listeria monocytogenes can cause listeriosis, a severe foodborne disease. In Brazil, despite very few reported cases of listeriosis, the pathogen has been repeatedly isolated from dairies. This has led the government to implement specific legislation to reduce the hazard. Here, we determined the incidence of L. monocytogenes in five dairies and retail products in the Southeast and Midwest regions of Brazil over eight months. Of 437 samples, three samples (0.7%) from retail and only one sample (0.2%) from the dairies were positive for L. monocytogenes. Thus, the contamination rate was significantly reduced as compared to previous studies. MultiLocus Sequence Typing (MLST) was used to determine if contamination was caused by new or persistent clones leading to the first MLST profile of L. monocytogenes from the Brazilian dairy industry. The processing environment isolate is of concern being a sequence-type (ST) 2, belonging to the lineage I responsible for the majority of listeriosis outbreaks. Also, ST3 and ST8 found in commercialized cheese have previously been reported in outbreaks. Despite the lower incidence, dairy products still pose a potential health risk and the occurrence of L. monocytogenes in dairies and retail products emphasize the need for continuous surveillance of this pathogen in the Brazilian dairy industry.
Collapse
Affiliation(s)
- Virginie Oxaran
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sarah Hwa In Lee
- FZEA/USP, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Luíza Toubas Chaul
- FF/UFG, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Carlos Humberto Corassin
- FZEA/USP, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | | | | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| | | |
Collapse
|
21
|
Jennison AV, Masson JJ, Fang NX, Graham RM, Bradbury MI, Fegan N, Gobius KS, Graham TM, Guglielmino CJ, Brown JL, Fox EM. Analysis of the Listeria monocytogenes Population Structure among Isolates from 1931 to 2015 in Australia. Front Microbiol 2017; 8:603. [PMID: 28428781 PMCID: PMC5382192 DOI: 10.3389/fmicb.2017.00603] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
Listeriosis remains among the most important bacterial illnesses, with a high associated mortality rate. Efforts to control listeriosis require detailed knowledge of the epidemiology of the disease itself, and its etiological bacterium, Listeria monocytogenes. In this study we provide an in-depth analysis of the epidemiology of 224 L. monocytogenes isolates from Australian clinical and non-clinical sources. Non-human sources included meat, dairy, seafood, fruit, and vegetables, along with animal and environmental isolates. Serotyping, Multi-Locus Sequence Typing, and analysis of inlA gene sequence were performed. Serogroups IIA, IIB, and IVB comprised 94% of all isolates, with IVB over-represented among clinical isolates. Serogroup IIA was the most common among dairy and meat isolates. Lineage I isolates were most common among clinical isolates, and 52% of clinical isolates belonged to ST1. Overall 39 STs were identified in this study, with ST1 and ST3 containing the largest numbers of L. monocytogenes isolates. These STs comprised 40% of the total isolates (n = 90), and both harbored isolates from clinical and non-clinical sources. ST204 was the third most common ST. The high prevalence of this group among L. monocytogenes populations has not been reported outside Australia. Twenty-seven percent of the STs in this study contained exclusively clinical isolates. Analysis of the virulence protein InlA among isolates in this study identified a truncated form of the protein among isolates from ST121 and ST325. The ST325 group contained a previously unreported novel mutation leading to production of a 93 amino acid protein. This study provides insights in the population structure of L. monocytogenes isolated in Australia, which will contribute to public health knowledge relating to this important human pathogen.
Collapse
Affiliation(s)
- Amy V Jennison
- Public Health Microbiology, Public and Environmental Health, Queensland Health, Forensic and Scientific Services, BrisbaneQLD, Australia
| | - Jesse J Masson
- Commonwealth Scientific and Industrial Research Organisation - Agriculture and Food, WerribeeVIC, Australia
| | - Ning-Xia Fang
- Public Health Microbiology, Public and Environmental Health, Queensland Health, Forensic and Scientific Services, BrisbaneQLD, Australia
| | - Rikki M Graham
- Public Health Microbiology, Public and Environmental Health, Queensland Health, Forensic and Scientific Services, BrisbaneQLD, Australia
| | - Mark I Bradbury
- Commonwealth Scientific and Industrial Research Organisation - Agriculture and Food, SydneyNSW, Australia
| | - Narelle Fegan
- Commonwealth Scientific and Industrial Research Organisation - Agriculture and Food, WerribeeVIC, Australia
| | - Kari S Gobius
- Commonwealth Scientific and Industrial Research Organisation - Agriculture and Food, WerribeeVIC, Australia
| | - Trudy M Graham
- Public Health Microbiology, Public and Environmental Health, Queensland Health, Forensic and Scientific Services, BrisbaneQLD, Australia
| | - Christine J Guglielmino
- Public Health Microbiology, Public and Environmental Health, Queensland Health, Forensic and Scientific Services, BrisbaneQLD, Australia
| | - Janelle L Brown
- Commonwealth Scientific and Industrial Research Organisation - Agriculture and Food, SydneyNSW, Australia
| | - Edward M Fox
- Commonwealth Scientific and Industrial Research Organisation - Agriculture and Food, WerribeeVIC, Australia
| |
Collapse
|
22
|
Sharma S, Sharma V, Dahiya DK, Khan A, Mathur M, Sharma A. Prevalence, Virulence Potential, and Antibiotic Susceptibility Profile of Listeria monocytogenes Isolated From Bovine Raw Milk Samples Obtained From Rajasthan, India. Foodborne Pathog Dis 2017; 14:132-140. [PMID: 28085487 DOI: 10.1089/fpd.2016.2118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Listeriosis is a serious foodborne disease of a global concern, and can effectively be controlled by a continuous surveillance of the virulent and multidrug-resistant strains of Listeria monocytogenes. This study was planned to investigate prevalence of L. monocytogenes in bovine raw milk samples. A total of 457 raw milk samples collected from 15 major cities in Rajasthan, India, were analyzed for the presence of L. monocytogenes by using standard microbiological and molecular methods. Five of the 457 samples screen tested positive for L. monocytogenes. Multiplex serotyping showed that 3/5 strains belonged to serotype 4b followed by one strain each to 1/2a and to 1/2c. Further virulence potential assessment indicated that all strains possessed inlA and inlC internalins, and, in addition, two strains also possessed the gene for inlB. All strains were positive for Listeriolysin O (LLO) and showed phosphatidylinositol-specific phospholipase C (PI-PLC) activity on an in vitro agar medium with variations in production levels among the strains. A good correlation between the in vitro pathogenicity test and the chick embryo test was observed, as the strains showing higher LLO and PI-PLC activity were found to be lethal to fertilized chick embryos. All strains were resistant to the majority of antibiotics and were designated as multidrug-resistant strains. However, these strains were susceptible to 9 of the 22 tested antibiotics. The maximum zone of inhibition (mm) and acceptable minimum inhibitory concentration were observed with azithromycin, and thus it could be the first choice of a treatment. Overall, the presence of multidrug-resistant L. monocytogenes strains in the raw milk of Rajasthan region is an indicator of public health hazard and highlighting the need of consumer awareness in place and implementation of stricter food safety regulations at all levels of milk production.
Collapse
Affiliation(s)
- Sanjita Sharma
- Advanced Milk Testing Research Laboratory, Post Graduate Institute of Veterinary Education and Research , Mansarovar, Jaipur, Rajasthan, India
| | - Vishnu Sharma
- Advanced Milk Testing Research Laboratory, Post Graduate Institute of Veterinary Education and Research , Mansarovar, Jaipur, Rajasthan, India
| | - Dinesh Kumar Dahiya
- Advanced Milk Testing Research Laboratory, Post Graduate Institute of Veterinary Education and Research , Mansarovar, Jaipur, Rajasthan, India
| | - Aarif Khan
- Advanced Milk Testing Research Laboratory, Post Graduate Institute of Veterinary Education and Research , Mansarovar, Jaipur, Rajasthan, India
| | - Manisha Mathur
- Advanced Milk Testing Research Laboratory, Post Graduate Institute of Veterinary Education and Research , Mansarovar, Jaipur, Rajasthan, India
| | - Amit Sharma
- Advanced Milk Testing Research Laboratory, Post Graduate Institute of Veterinary Education and Research , Mansarovar, Jaipur, Rajasthan, India
| |
Collapse
|
23
|
Beno SM, Stasiewicz MJ, Andrus AD, Ralyea RD, Kent DJ, Martin NH, Wiedmann M, Boor KJ. Development and Validation of Pathogen Environmental Monitoring Programs for Small Cheese Processing Facilities. J Food Prot 2016; 79:2095-2106. [PMID: 28221969 DOI: 10.4315/0362-028x.jfp-16-241] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pathogen environmental monitoring programs (EMPs) are essential for food processing facilities of all sizes that produce ready-to-eat food products exposed to the processing environment. We developed, implemented, and evaluated EMPs targeting Listeria spp. and Salmonella in nine small cheese processing facilities, including seven farmstead facilities. Individual EMPs with monthly sample collection protocols were designed specifically for each facility. Salmonella was detected in only one facility, with likely introduction from the adjacent farm indicated by pulsed-field gel electrophoresis data. Listeria spp. were isolated from all nine facilities during routine sampling. The overall Listeria spp. (other than Listeria monocytogenes ) and L. monocytogenes prevalences in the 4,430 environmental samples collected were 6.03 and 1.35%, respectively. Molecular characterization and subtyping data suggested persistence of a given Listeria spp. strain in seven facilities and persistence of L. monocytogenes in four facilities. To assess routine sampling plans, validation sampling for Listeria spp. was performed in seven facilities after at least 6 months of routine sampling. This validation sampling was performed by independent individuals and included collection of 50 to 150 samples per facility, based on statistical sample size calculations. Two of the facilities had a significantly higher frequency of detection of Listeria spp. during the validation sampling than during routine sampling, whereas two other facilities had significantly lower frequencies of detection. This study provides a model for a science- and statistics-based approach to developing and validating pathogen EMPs.
Collapse
Affiliation(s)
- Sarah M Beno
- Department of Food Science, Cornell University, 358 Stocking Hall, Ithaca, New York 14853, USA
| | - Matthew J Stasiewicz
- Department of Food Science, Cornell University, 358 Stocking Hall, Ithaca, New York 14853, USA
| | - Alexis D Andrus
- Department of Food Science, Cornell University, 358 Stocking Hall, Ithaca, New York 14853, USA
| | - Robert D Ralyea
- Department of Food Science, Cornell University, 358 Stocking Hall, Ithaca, New York 14853, USA
| | - David J Kent
- Department of Food Science, Cornell University, 358 Stocking Hall, Ithaca, New York 14853, USA
| | - Nicole H Martin
- Department of Food Science, Cornell University, 358 Stocking Hall, Ithaca, New York 14853, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, 358 Stocking Hall, Ithaca, New York 14853, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, 358 Stocking Hall, Ithaca, New York 14853, USA
| |
Collapse
|
24
|
Characterization of a plasmid carrying cat, ermB and tetS genes in a foodborne Listeria monocytogenes strain and uptake of the plasmid by cariogenic Streptococcus mutans. Int J Food Microbiol 2016; 238:68-71. [PMID: 27592072 DOI: 10.1016/j.ijfoodmicro.2016.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/21/2016] [Accepted: 08/28/2016] [Indexed: 01/09/2023]
Abstract
A multi-drug resistant (MDR) Listeria monocytogenes isolate (serotype 1/2c) was recovered from a quick-frozen rice flour product collected from Langfang city in northern China. PCR screening identified the presence of cat, ermB and tetS genes. The plasmid profile of the strain showed the presence of an approximately 22.4-kb plasmid. Curing of this plasmid resulted in the loss of cat, ermB and tetS genes and increased susceptibility to several antibiotics, suggesting the involvement of the plasmid in multiple antibiotic resistances. Moreover, the plasmid was able to be uptaken by human oral pathogen Streptococcus mutans by natural transformation and resulted in the acquiring of multiple resistances in the transconjugants. This study contributes to our knowledge on acquired multi-drug resistance in foodborne pathogenic L.monocytogenes, which will add to a better understanding of effective clinical management of listeriosis.
Collapse
|
25
|
Sandoval LN, López M, Montes-Díaz E, Espadín A, Tecante A, Gimeno M, Shirai K. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging. Molecules 2016; 21:469. [PMID: 27070568 PMCID: PMC6273688 DOI: 10.3390/molecules21040469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 11/16/2022] Open
Abstract
A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.
Collapse
Affiliation(s)
- Laura N Sandoval
- Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No. 186. Col. Vicentina, C.P., 09340 Mexico City, Mexico.
| | - Monserrat López
- Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No. 186. Col. Vicentina, C.P., 09340 Mexico City, Mexico.
| | - Elizabeth Montes-Díaz
- Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No. 186. Col. Vicentina, C.P., 09340 Mexico City, Mexico.
| | - Andres Espadín
- Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No. 186. Col. Vicentina, C.P., 09340 Mexico City, Mexico.
| | - Alberto Tecante
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Miquel Gimeno
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| | - Keiko Shirai
- Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Biotechnology Department, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No. 186. Col. Vicentina, C.P., 09340 Mexico City, Mexico.
| |
Collapse
|
26
|
|
27
|
Abee T, Koomen J, Metselaar K, Zwietering M, den Besten H. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety. Annu Rev Food Sci Technol 2016; 7:439-56. [DOI: 10.1146/annurev-food-041715-033128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T. Abee
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - J. Koomen
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - K.I. Metselaar
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - M.H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - H.M.W. den Besten
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
28
|
Dzieciol M, Schornsteiner E, Muhterem-Uyar M, Stessl B, Wagner M, Schmitz-Esser S. Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment. Int J Food Microbiol 2016; 223:33-40. [PMID: 26881738 DOI: 10.1016/j.ijfoodmicro.2016.02.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 02/01/2023]
Abstract
Sanitation protocols are applied on a daily basis in food processing facilities to prevent the risk of cross-contamination with spoilage organisms. Floor drain water serves along with product-associated samples (slicer dust, brine or cheese smear) as an important hygiene indicator in monitoring Listeria monocytogenes in food processing facilities. Microbial communities of floor drains are representative for each processing area and are influenced to a large degree by food residues, liquid effluents and washing water. The microbial communities of drain water are steadily changing, whereas drain biofilms provide more stable niches. Bacterial communities of four floor drains were characterized using 16S rRNA gene pyrosequencing to better understand the composition and exchange of drain water and drain biofilm communities. Furthermore, the L. monocytogenes contamination status of each floor drain was determined by applying cultivation-independent real-time PCR quantification and cultivation-dependent detection according to ISO11290-1. Pyrosequencing of 16S rRNA genes of drain water and drain biofilm bacterial communities yielded 50,611 reads, which were clustered into 641 operational taxonomic units (OTUs), affiliated to 16 phyla dominated by Proteobacteria, Firmicutes and Bacteroidetes. The most abundant OTUs represented either product- (Lactococcus lactis) or fermentation- and food spoilage-associated phylotypes (Pseudomonas mucidolens, Pseudomonas fragi, Leuconostoc citreum, and Acetobacter tropicalis). The microbial communities in DW and DB samples were distinct in each sample type and throughout the whole processing plant, indicating the presence of indigenous specific microbial communities in each processing compartment. The microbiota of drain biofilms was largely different from the microbiota of the drain water. A sampling approach based on drain water alone may thus only provide reliable information on planktonic bacterial cells but might not allow conclusions on the bacterial composition of the microbiota in biofilms.
Collapse
Affiliation(s)
- Monika Dzieciol
- Institute for Milk Hygiene, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Elisa Schornsteiner
- Institute for Milk Hygiene, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Meryem Muhterem-Uyar
- Institute for Milk Hygiene, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Beatrix Stessl
- Institute for Milk Hygiene, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Martin Wagner
- Institute for Milk Hygiene, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|
29
|
Piet J, Kieran J, Dara L, Avelino AOONE. Listeria monocytogenes in food: Control by monitoring the food processing environment. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajmr2015.7832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Rychli K, Grunert T, Ciolacu L, Zaiser A, Razzazi-Fazeli E, Schmitz-Esser S, Ehling-Schulz M, Wagner M. Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains. Int J Food Microbiol 2015; 218:17-26. [PMID: 26594790 DOI: 10.1016/j.ijfoodmicro.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 01/24/2023]
Abstract
The foodborne pathogen Listeria monocytogenes, responsible for listeriosis a rare but severe infection disease, can survive in the food processing environment for month or even years. So-called persistent L. monocytogenes strains greatly increase the risk of (re)contamination of food products, and are therefore a great challenge for food safety. However, our understanding of the mechanism underlying persistence is still fragmented. In this study we compared the exoproteome of three persistent strains with the reference strain EGDe under mild stress conditions using 2D differential gel electrophoresis. Principal component analysis including all differentially abundant protein spots showed that the exoproteome of strain EGDe (sequence type (ST) 35) is distinct from that of the persistent strain R479a (ST8) and the two closely related ST121 strains 4423 and 6179. Phylogenetic analyses based on multilocus ST genes showed similar grouping of the strains. Comparing the exoproteome of strain EGDe and the three persistent strains resulted in identification of 22 differentially expressed protein spots corresponding to 16 proteins. Six proteins were significantly increased in the persistent L. monocytogenes exoproteomes, among them proteins involved in alkaline stress response (e.g. the membrane anchored lipoprotein Lmo2637 and the NADPH dehydrogenase NamA). In parallel the persistent strains showed increased survival under alkaline stress, which is often provided during cleaning and disinfection in the food processing environments. In addition, gene expression of the proteins linked to stress response (Lmo2637, NamA, Fhs and QoxA) was higher in the persistent strain not only at 37 °C but also at 10 °C. Invasion efficiency of EGDe was higher in intestinal epithelial Caco2 and macrophage-like THP1 cells compared to the persistent strains. Concurrently we found higher expression of proteins involved in virulence in EGDe e.g. the actin-assembly-inducing protein ActA and the surface virulence associated protein SvpA. Furthermore proteins involved in cell wall modification, such as the lipoteichonic acid primase LtaP and the N-acetylmuramoyl-l-alanine amidase (Lmo2591) are more abundant in EGDe than in the persistent strains and could indirectly contribute to virulence. In conclusion this study provides information about a set of proteins that could potentially support survival of L. monocytogenes in abiotic niches in food processing environments. Based on these data, a more detailed analysis of the role of the identified proteins under stresses mimicking conditions in food producing environment is essential for further elucidate the mechanism of the phenomenon of persistence of L. monocytogenes.
Collapse
Affiliation(s)
- Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Tom Grunert
- Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Luminita Ciolacu
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; "Dunarea de Jos" University of Galaţi, 47 Domneasca St., 800008 Galaţi, Romania.
| | - Andreas Zaiser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Ebrahim Razzazi-Fazeli
- VetCORE facility for research, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Stephan Schmitz-Esser
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
31
|
Ariza-Miguel J, Fernández-Natal MI, Soriano F, Hernández M, Stessl B, Rodríguez-Lázaro D. Molecular Epidemiology of Invasive Listeriosis due to Listeria monocytogenes in a Spanish Hospital over a Nine-Year Study Period, 2006-2014. BIOMED RESEARCH INTERNATIONAL 2015; 2015:191409. [PMID: 26539467 PMCID: PMC4619764 DOI: 10.1155/2015/191409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 02/04/2023]
Abstract
We investigated the pathogenicity, invasiveness, and genetic relatedness of 17 clinical Listeria monocytogenes stains isolated over a period of nine years (2006-2014). All isolates were phenotypically characterised and growth patterns were determined. The antimicrobial susceptibility of L. monocytogenes isolates was determined in E-tests. Invasion assays were performed with epithelial HeLa cells. Finally, L. monocytogenes isolates were subtyped by PFGE and MLST. All isolates had similar phenotypic characteristics (β-haemolysis and lecithinase activity), and three types of growth curve were observed. Bacterial recovery rates after invasion assays ranged from 0.09% to 7.26% (1.62 ± 0.46). MLST identified 11 sequence types (STs), and 14 PFGE profiles were obtained, indicating a high degree of genetic diversity. Genetic studies unequivocally revealed the occurrence of one outbreak of listeriosis in humans that had not previously been reported. This outbreak occurred in October 2009 and affected three patients from neighbouring towns. In conclusion, the molecular epidemiological analysis clearly revealed a cluster (three human cases, all ST1) of not previously reported listeriosis cases in northwestern Spain. Our findings indicate that molecular subtyping, in combination with epidemiological case analysis, is essential and should be implemented in routine diagnosis, to improve the tracing of the sources of outbreaks.
Collapse
Affiliation(s)
| | - María Isabel Fernández-Natal
- Department of Clinical Microbiology, Complejo Asistencial Universitario de León, León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - Marta Hernández
- Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - David Rodríguez-Lázaro
- Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
- Microbiology Section, Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
32
|
Mazza R, Mazzette R, McAuliffe O, Jordan K, Fox EM. Differential Gene Expression of Three Gene Targets among Persistent and Nonpersistent Listeria monocytogenes Strains in the Presence or Absence of Benzethonium Chloride. J Food Prot 2015; 78:1569-73. [PMID: 26219372 DOI: 10.4315/0362-028x.jfp-14-510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Persistence of Listeria monocytogenes strains in food processing environments remains relatively common but is difficult to control. Understanding the basis for such persistence represents an important step in the potential control or eradication of this pathogen from these environments. In this study, reverse transcription PCR was used to determine the relative and absolute expression of selected gene targets (pocR, eutJ, and qacH) among five persistent and four presumed nonpersistent L. monocytogenes strains. The quantification of these genes as markers for the persistent phenotype and the effect of benzethonium chloride (BZT) on their expression was investigated. Although no markers correlated with the ability of strains to persist in food processing facilities were found, expression of pocR was upregulated in three of the five persistent strains, in contrast to the four presumed nonpersistent strains, which showed down-regulation of this gene. These results provide further knowledge of the differential expression of genes of persistent and presumed nonpersistent strains of L. monocytogenes grown in the presence or absence of BZT and identifies upregulation of pocR as a potential response of persistent strains of L. monocytogenes to exposure to BZT.
Collapse
Affiliation(s)
| | | | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland.
| | - Edward M Fox
- CSIRO Food and Nutrition, Werribee, Victoria, Australia
| |
Collapse
|
33
|
Muhterem-Uyar M, Dalmasso M, Bolocan AS, Hernandez M, Kapetanakou AE, Kuchta T, Manios SG, Melero B, Minarovičová J, Nicolau AI, Rovira J, Skandamis PN, Jordan K, Rodríguez-Lázaro D, Stessl B, Wagner M. Environmental sampling for Listeria monocytogenes control in food processing facilities reveals three contamination scenarios. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.10.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
34
|
Schmitz-Esser S, Müller A, Stessl B, Wagner M. Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages. Front Microbiol 2015; 6:380. [PMID: 25972859 PMCID: PMC4412001 DOI: 10.3389/fmicb.2015.00380] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/13/2015] [Indexed: 11/22/2022] Open
Abstract
The food-borne pathogen Listeria (L.) monocytogenes is often found in food production environments. Thus, controlling the occurrence of L. monocytogenes in food production is a great challenge for food safety. Among a great diversity of L. monocytogenes strains from food production, particularly strains belonging to sequence type (ST)121 are prevalent. The molecular reasons for the abundance of ST121 strains are however currently unknown. We therefore determined the genome sequences of three L. monocytogenes ST121 strains: 6179 and 4423, which persisted for up to 8 years in food production plants in Ireland and Austria, and of the strain 3253 and compared them with available L. monocytogenes ST121 genomes. Our results show that the ST121 genomes are highly similar to each other and show a tremendously high degree of conservation among some of their prophages and particularly among their plasmids. This remarkably high level of conservation among prophages and plasmids suggests that strong selective pressure is acting on them. We thus hypothesize that plasmids and prophages are providing important adaptations for survival in food production environments. In addition, the ST121 genomes share common adaptations which might be related to their persistence in food production environments such as the presence of Tn6188, a transposon responsible for increased tolerance against quaternary ammonium compounds, a yet undescribed insertion harboring recombination hotspot (RHS) repeat proteins, which are most likely involved in competition against other bacteria, and presence of homologs of the L. innocua genes lin0464 and lin0465.
Collapse
Affiliation(s)
- Stephan Schmitz-Esser
- Department for Farm Animals and Veterinary Public Health, Institute for Milk Hygiene, University of Veterinary Medicine Vienna Vienna, Austria
| | - Anneliese Müller
- Department for Farm Animals and Veterinary Public Health, Institute for Milk Hygiene, University of Veterinary Medicine Vienna Vienna, Austria
| | - Beatrix Stessl
- Department for Farm Animals and Veterinary Public Health, Institute for Milk Hygiene, University of Veterinary Medicine Vienna Vienna, Austria
| | - Martin Wagner
- Department for Farm Animals and Veterinary Public Health, Institute for Milk Hygiene, University of Veterinary Medicine Vienna Vienna, Austria
| |
Collapse
|
35
|
Abstract
Pulsed-Field Gel Electrophoresis (PFGE) subtyping has been used extensively to characterize various bacterial species and to facilitate comparative analysis of geographically diverse populations. To this end, standardized protocols for many different genera and species have been developed, particularly through the PulseNet platform. The Bacillus cereus group of bacteria includes a diverse species set, which are of particular importance in food safety as both human pathogens and spoilage organisms. The application of techniques to differentiate strains of B. cereus can be utilized to assist in both disease outbreak investigations, and also in strategies to monitor and control the organism in food production environments. This chapter describes a PFGE method, which may be applied to differentiate B. cereus strains.
Collapse
Affiliation(s)
- Paul Drean
- CSIRO Food and Nutrition, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | | |
Collapse
|
36
|
Melo J, Andrew P, Faleiro M. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Larsen MH, Dalmasso M, Ingmer H, Langsrud S, Malakauskas M, Mader A, Møretrø T, Smole Možina S, Rychli K, Wagner M, John Wallace R, Zentek J, Jordan K. Persistence of foodborne pathogens and their control in primary and secondary food production chains. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Koreňová J, Rešková Z, Véghová A, Kuchta T. Tracing Staphylococcus aureus in small and medium-sized food-processing factories on the basis of molecular sub-species typing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:384-392. [PMID: 25229709 DOI: 10.1080/09603123.2014.958135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Contamination by Staphylococcus aureus of the production environment of three small or medium-sized food-processing factories in Slovakia was investigated on the basis of sub-species molecular identification by multiple locus variable number of tandem repeats analysis (MLVA). On the basis of MLVA profiling, bacterial isolates were assigned to 31 groups. Data from repeated samplings over a period of 3 years facilitated to draw spatial and temporal maps of the contamination routes for individual factories, as well as identification of potential persistent strains. Information obtained by MLVA typing allowed to identify sources and routes of contamination and, subsequently, will allow to optimize the technical and sanitation measures to ensure hygiene.
Collapse
Affiliation(s)
- Janka Koreňová
- a Department of Microbiology, Molecular Biology and Biotechnology , Food Research Institute , Bratislava , Slovakia
| | | | | | | |
Collapse
|
39
|
Linke K, Rückerl I, Brugger K, Karpiskova R, Walland J, Muri-Klinger S, Tichy A, Wagner M, Stessl B. Reservoirs of listeria species in three environmental ecosystems. Appl Environ Microbiol 2014; 80:5583-92. [PMID: 25002422 PMCID: PMC4178586 DOI: 10.1128/aem.01018-14] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/25/2014] [Indexed: 11/20/2022] Open
Abstract
Soil and water are suggested to represent pivotal niches for the transmission of Listeria monocytogenes to plant material, animals, and the food chain. In the present study, 467 soil and 68 water samples were collected in 12 distinct geological and ecological sites in Austria from 2007 to 2009. Listeria was present in 30% and 26% of the investigated soil and water samples, respectively. Generally, the most dominant species in soil and water samples were Listeria seeligeri, L. innocua, and L. ivanovii. The human- and animal-pathogenic L. monocytogenes was isolated exclusively from 6% soil samples in regions A (mountainous region) and B (meadow). Distinct ecological preferences were observed for L. seeligeri and L. ivanovii, which were more often isolated from wildlife reserve region C (Lake Neusiedl) and from sites in proximity to wild and domestic ruminants (region A). The higher L. monocytogenes detection and antibiotic resistance rates in regions A and B could be explained by the proximity to agricultural land and urban environment. L. monocytogenes multilocus sequence typing corroborated this evidence since sequence type 37 (ST37), ST91, ST101, and ST517 were repeatedly isolated from regions A and B over several months. A higher L. monocytogenes detection and strain variability was observed during flooding of the river Schwarza (region A) and Danube (region B) in September 2007, indicating dispersion via watercourses.
Collapse
Affiliation(s)
- Kristina Linke
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Irene Rückerl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Katharina Brugger
- Institute for Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | | | - Julia Walland
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sonja Muri-Klinger
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Tichy
- Platform Bioinformatics and Biostatistics, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria Christian Doppler Laboratory for Molecular Food Analytics, University of Veterinary Medicine, Vienna, Austria
| | - Beatrix Stessl
- Institute of Milk Hygiene, Milk Technology and Food Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
40
|
Analysis of the baseline survey on the prevalence ofListeria monocytogenesin certain ready-to-eat foods in the EU, 2010-2011 Part B: analysis of factors related to prevalence and exploring compliance. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
41
|
Hurley D, Luque-Sastre L, DeLappe N, Moore JE, Cormican M, Jordan KN, Fanning S, Fox EM. Comparison of Listeria monocytogenes isolates across the island of Ireland. J Food Prot 2014; 77:1402-6. [PMID: 25198604 DOI: 10.4315/0362-028x.jfp-14-026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Building a comprehensive knowledge base of the association of Listeria monocytogenes isolates across national food chains, clinical cases, and environments can play a key role in helping control the incidence of listeriosis. Today, many food chains cross national borders and are often shared by neighboring countries. This study characterized L. monocytogenes isolated from food samples in Northern Ireland and investigated whether similarities in the population and associations of L. monocytogenes strains exist in the neighboring countries of Northern Ireland and the Republic of Ireland, which together constitute the island of Ireland. Listeria monocytogenes isolates were characterized using serotyping and pulsed-field gel electrophoresis subtyping. This data was then interrogated against existing data for the Republic of Ireland, to identify any shared trends in the ecology and contamination patterns of L. monocytogenes strains. The results of this study indicated that contaminated food products often shared L. monocytogenes strains with other products. A total of six different strain subtypes were identified among 18 contaminated products. Overall strain diversity in positive samples was low, with no sample yielding more than one L. monocytogenes strain, as determined by pulsed-field gel electrophoresis subtyping. When comparisons against an Irish strain database were performed, many related strain subtypes were also shared by a variety of sources in the Republic of Ireland. This study highlights the potential benefits that a whole-island surveillance approach may present to food safety and public health in both Northern Ireland and the Republic of Ireland.
Collapse
Affiliation(s)
- Daniel Hurley
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Republic of Ireland
| | - Laura Luque-Sastre
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Republic of Ireland
| | - Niall DeLappe
- Department of Bacteriology, National University of Ireland, Galway, Republic of Ireland
| | - John E Moore
- Northern Ireland Public Health Laboratory, Department of Bacteriology, Belfast City Hospital, Belfast BT9 AD, Northern Ireland, UK
| | - Martin Cormican
- Department of Bacteriology, National University of Ireland, Galway, Republic of Ireland
| | - Kieran N Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Republic of Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Republic of Ireland
| | - Edward M Fox
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Republic of Ireland; CSIRO Animal, Food and Health Sciences, Werribee, Victoria 3030, Australia.
| |
Collapse
|
42
|
Rešková Z, Koreňová J, Kuchta T. Effective application of multiple locus variable number of tandem repeats analysis to tracing Staphylococcus aureus in food-processing environment. Lett Appl Microbiol 2013; 58:376-83. [PMID: 24283534 DOI: 10.1111/lam.12200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/12/2013] [Accepted: 11/22/2013] [Indexed: 11/27/2022]
Abstract
UNLABELLED A total of 256 isolates of Staphylococcus aureus were isolated from 98 samples (34 swabs and 64 food samples) obtained from small or medium meat- and cheese-processing plants in Slovakia. The strains were genotypically characterized by multiple locus variable number of tandem repeats analysis (MLVA), involving multiplex polymerase chain reaction (PCR) with subsequent separation of the amplified DNA fragments by an automated flow-through gel electrophoresis. With the panel of isolates, MLVA produced 31 profile types, which was a sufficient discrimination to facilitate the description of spatial and temporal aspects of contamination. Further data on MLVA discrimination were obtained by typing a subpanel of strains by multiple locus sequence typing (MLST). MLVA coupled to automated electrophoresis proved to be an effective, comparatively fast and inexpensive method for tracing S. aureus contamination of food-processing factories. SIGNIFICANCE AND IMPACT OF THE STUDY Subspecies genotyping of microbial contaminants in food-processing factories may facilitate identification of spatial and temporal aspects of the contamination. This may help to properly manage the process hygiene. With S. aureus, multiple locus variable number of tandem repeats analysis (MLVA) proved to be an effective method for the purpose, being sufficiently discriminative, yet comparatively fast and inexpensive. The application of automated flow-through gel electrophoresis to separation of DNA fragments produced by multiplex PCR helped to improve the accuracy and speed of the method.
Collapse
Affiliation(s)
- Z Rešková
- Department of Microbiology and Molecular Biology, Food Research Institute, Bratislava, Slovakia
| | | | | |
Collapse
|