1
|
Whelan L, Dockery A, Stephenson KAJ, Zhu J, Kopčić E, Post IJM, Khan M, Corradi Z, Wynne N, O' Byrne JJ, Duignan E, Silvestri G, Roosing S, Cremers FPM, Keegan DJ, Kenna PF, Farrar GJ. Detailed analysis of an enriched deep intronic ABCA4 variant in Irish Stargardt disease patients. Sci Rep 2023; 13:9380. [PMID: 37296172 PMCID: PMC10256698 DOI: 10.1038/s41598-023-35889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Over 15% of probands in a large cohort of more than 1500 inherited retinal degeneration patients present with a clinical diagnosis of Stargardt disease (STGD1), a recessive form of macular dystrophy caused by biallelic variants in the ABCA4 gene. Participants were clinically examined and underwent either target capture sequencing of the exons and some pathogenic intronic regions of ABCA4, sequencing of the entire ABCA4 gene or whole genome sequencing. ABCA4 c.4539 + 2028C > T, p.[= ,Arg1514Leufs*36] is a pathogenic deep intronic variant that results in a retina-specific 345-nucleotide pseudoexon inclusion. Through analysis of the Irish STGD1 cohort, 25 individuals across 18 pedigrees harbour ABCA4 c.4539 + 2028C > T and another pathogenic variant. This includes, to the best of our knowledge, the only two homozygous patients identified to date. This provides important evidence of variant pathogenicity for this deep intronic variant, highlighting the value of homozygotes for variant interpretation. 15 other heterozygous incidents of this variant in patients have been reported globally, indicating significant enrichment in the Irish population. We provide detailed genetic and clinical characterization of these patients, illustrating that ABCA4 c.4539 + 2028C > T is a variant of mild to intermediate severity. These results have important implications for unresolved STGD1 patients globally with approximately 10% of the population in some western countries claiming Irish heritage. This study exemplifies that detection and characterization of founder variants is a diagnostic imperative.
Collapse
Affiliation(s)
- Laura Whelan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Adrian Dockery
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
- Next Generation Sequencing Laboratory, Pathology Department, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Kirk A J Stephenson
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Ella Kopčić
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Iris J M Post
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Niamh Wynne
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - James J O' Byrne
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin 7, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Emma Duignan
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Giuliana Silvestri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Ophthalmology, The Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David J Keegan
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - G Jane Farrar
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Bouzidi A, Charoute H, Charif M, Amalou G, Kandil M, Barakat A, Lenaers G. Clinical and genetic spectrums of 413 North African families with inherited retinal dystrophies and optic neuropathies. Orphanet J Rare Dis 2022; 17:197. [PMID: 35551639 PMCID: PMC9097391 DOI: 10.1186/s13023-022-02340-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly heterogeneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and mutations encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants. Main body We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, represented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respectively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many founder mutations in small endogamous communities. Short conclusion As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, together with the scarcity of tools for the molecular diagnosis represent major political, economic and health challenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02340-7.
Collapse
Affiliation(s)
- Aymane Bouzidi
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Majida Charif
- Genetics, and Immuno-Cell Therapy Team, Mohamed First University, Oujda, Morocco
| | - Ghita Amalou
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France.,Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.,Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Mostafa Kandil
- Team of Anthropogenetics and Biotechnologies, Faculty of Sciences, Chouaïb Doukkali University, Eljadida, Morocco
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, CHU d'Angers, CNRS 6015, Université d'Angers, 49933, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
3
|
Biswas P, Villanueva AL, Soto-Hermida A, Duncan JL, Matsui H, Borooah S, Kurmanov B, Richard G, Khan SY, Branham K, Huang B, Suk J, Bakall B, Goldberg JL, Gabriel L, Khan NW, Raghavendra PB, Zhou J, Devalaraja S, Huynh A, Alapati A, Zawaydeh Q, Weleber RG, Heckenlively JR, Hejtmancik JF, Riazuddin S, Sieving PA, Riazuddin SA, Frazer KA, Ayyagari R. Deciphering the genetic architecture and ethnographic distribution of IRD in three ethnic populations by whole genome sequence analysis. PLoS Genet 2021; 17:e1009848. [PMID: 34662339 PMCID: PMC8589175 DOI: 10.1371/journal.pgen.1009848] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/12/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with inherited retinal dystrophies (IRDs) were recruited from two understudied populations: Mexico and Pakistan as well as a third well-studied population of European Americans to define the genetic architecture of IRD by performing whole-genome sequencing (WGS). Whole-genome analysis was performed on 409 individuals from 108 unrelated pedigrees with IRDs. All patients underwent an ophthalmic evaluation to establish the retinal phenotype. Although the 108 pedigrees in this study had previously been examined for mutations in known IRD genes using a wide range of methodologies including targeted gene(s) or mutation(s) screening, linkage analysis and exome sequencing, the gene mutations responsible for IRD in these 108 pedigrees were not determined. WGS was performed on these pedigrees using Illumina X10 at a minimum of 30X depth. The sequence reads were mapped against hg19 followed by variant calling using GATK. The genome variants were annotated using SnpEff, PolyPhen2, and CADD score; the structural variants (SVs) were called using GenomeSTRiP and LUMPY. We identified potential causative sequence alterations in 61 pedigrees (57%), including 39 novel and 54 reported variants in IRD genes. For 57 of these pedigrees the observed genotype was consistent with the initial clinical diagnosis, the remaining 4 had the clinical diagnosis reclassified based on our findings. In seven pedigrees (12%) we observed atypical causal variants, i.e. unexpected genotype(s), including 4 pedigrees with causal variants in more than one IRD gene within all affected family members, one pedigree with intrafamilial genetic heterogeneity (different affected family members carrying causal variants in different IRD genes), one pedigree carrying a dominant causative variant present in pseudo-recessive form due to consanguinity and one pedigree with a de-novo variant in the affected family member. Combined atypical and large structural variants contributed to about 20% of cases. Among the novel mutations, 75% were detected in Mexican and 50% found in European American pedigrees and have not been reported in any other population while only 20% were detected in Pakistani pedigrees and were not previously reported. The remaining novel IRD causative variants were listed in gnomAD but were found to be very rare and population specific. Mutations in known IRD associated genes contributed to pathology in 63% Mexican, 60% Pakistani and 45% European American pedigrees analyzed. Overall, contribution of known IRD gene variants to disease pathology in these three populations was similar to that observed in other populations worldwide. This study revealed a spectrum of mutations contributing to IRD in three populations, identified a large proportion of novel potentially causative variants that are specific to the corresponding population or not reported in gnomAD and shed light on the genetic architecture of IRD in these diverse global populations.
Collapse
Affiliation(s)
- Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Adda L. Villanueva
- Retina and Genomics Institute, Yucatán, México
- Laboratoire de Diagnostic Moleculaire, Hôpital Maisonneuve Rosemont, Montreal, Quebec, Canada
| | - Angel Soto-Hermida
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Jacque L. Duncan
- Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Berzhan Kurmanov
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | | | - Shahid Y. Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kari Branham
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Bonnie Huang
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - John Suk
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Benjamin Bakall
- Ophthalmology, University of Arizona College of Medicine Phoenix, Phoenix, Arizona, United States of America
| | - Jeffrey L. Goldberg
- Byers Eye Institute, Stanford, Palo Alto, California, United States of America
| | - Luis Gabriel
- Genetics and Ophthalmology, Genelabor, Goiânia, Brazil
| | - Naheed W. Khan
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - Pongali B. Raghavendra
- School of Biotechnology, REVA University, Bengaluru, Karnataka, India
- School of Regenerative Medicine, Manipal University, Bengaluru, Karnataka, India
| | - Jason Zhou
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Sindhu Devalaraja
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Andrew Huynh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Akhila Alapati
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Qais Zawaydeh
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| | - Richard G. Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - John R. Heckenlively
- Ophthalmology & Visual Science, University of Michigan Kellogg Eye Center, Ann Arbor, Michigan, United States of America
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - Paul A. Sieving
- National Eye Institute, Bethesda, Maryland, United States of America
- Ophthalmology & Vision Science, UC Davis Medical Center, California, United States of America
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kelly A. Frazer
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, California, United States of America
- Department of Pediatrics, Rady Children’s Hospital, Division of Genome Information Sciences, San Diego, California, United States of America
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
4
|
Duzkale N, Arslan U. Investigation of genotype-phenotype relationship in Turkish patients with inherited retinal disease by next generation sequencing. Ophthalmic Genet 2021; 42:674-684. [PMID: 34315337 DOI: 10.1080/13816810.2021.1952616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Inherited retinal dystrophies (IRDs) are a group of retinal diseases genetically and clinically highly heterogeneous and associated with more than 300 genes. This study aims to investigate the genetic basis of Turkish patients with IRDs. MATERIALS AND METHODS In the study, genes related to retinal diseases in 86 IRDs patients were analyzed using the Next Generations Sequencing method (NGS). RESULTS The mean age of 86 patients was 35 and the mean age at diagnosis was 18. There was consanguinity between the parents of 62% of these patients. Fifty-six retinal disease-associated genes of 46 patients and 230 retinal disease-associated genes of 40 patients were examined. Genetic analysis provides a molecular diagnosis in a total of 53 (61.6%) patients. The genes responsible for the IRDs phenotype were frequently identified as ABCA4 (25%), EYS (11%), and RDH12 (9%). There was no significant difference between those with and without a molecular diagnosis in terms of demographic characteristics and family history. CONCLUSIONS Determination of genetic cause by NGS method in IRDs subgroups that are difficult to define by ophthalmic examination ensures that patients receive accurate diagnosis, treatment and counseling. This study contributed to the understanding of the genotype-phenotype relationship of Turkish patients with IRDs.
Collapse
Affiliation(s)
- Neslihan Duzkale
- Department of Medical Genetic, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Umut Arslan
- Department of Bioretina, Ankara University Technopolis, Ankara, Turkey
| |
Collapse
|
5
|
Unraveling the genetic complexities of combined retinal dystrophy and hearing impairment. Hum Genet 2021; 141:785-803. [PMID: 34148116 PMCID: PMC9035000 DOI: 10.1007/s00439-021-02303-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Usher syndrome, the most prevalent cause of combined hereditary vision and hearing impairment, is clinically and genetically heterogeneous. Moreover, several conditions with phenotypes overlapping Usher syndrome have been described. This makes the molecular diagnosis of hereditary deaf–blindness challenging. Here, we performed exome sequencing and analysis on 7 Mexican and 52 Iranian probands with combined retinal degeneration and hearing impairment (without intellectual disability). Clinical assessment involved ophthalmological examination and hearing loss questionnaire. Usher syndrome, most frequently due to biallelic variants in MYO7A (USH1B in 16 probands), USH2A (17 probands), and ADGRV1 (USH2C in 7 probands), was diagnosed in 44 of 59 (75%) unrelated probands. Almost half of the identified variants were novel. Nine of 59 (15%) probands displayed other genetic entities with dual sensory impairment, including Alström syndrome (3 patients), cone-rod dystrophy and hearing loss 1 (2 probands), and Heimler syndrome (1 patient). Unexpected findings included one proband each with Scheie syndrome, coenzyme Q10 deficiency, and pseudoxanthoma elasticum. In four probands, including three Usher cases, dual sensory impairment was either modified/aggravated or caused by variants in distinct genes associated with retinal degeneration and/or hearing loss. The overall diagnostic yield of whole exome analysis in our deaf–blind cohort was 92%. Two (3%) probands were partially solved and only 3 (5%) remained without any molecular diagnosis. In many cases, the molecular diagnosis is important to guide genetic counseling, to support prognostic outcomes and decisions with currently available and evolving treatment modalities.
Collapse
|
6
|
Ahmed AN, Tahir R, Khan N, Ahmad M, Dawood M, Basit A, Yasin M, Nowshid M, Marwan M, Sultan K, Saleha S. USH2A gene variants cause Keratoconus and Usher syndrome phenotypes in Pakistani families. BMC Ophthalmol 2021; 21:191. [PMID: 33926394 PMCID: PMC8086330 DOI: 10.1186/s12886-021-01957-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/21/2021] [Indexed: 01/07/2023] Open
Abstract
Background Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy, affecting approximately 1 in 4000 individuals worldwide. The most common form of syndromic RP is Usher syndrome (USH) accounting for approximately 20–30 % of RP cases. Mutations in the USH2A gene cause a significant proportion of recessive non-syndromic RP and USH type II (USH2). This study aimed to determine the causative role of the USH2A gene in autosomal recessive inherited ocular diseases and to establish genotype-phenotype correlation associated with USH2A variants. Methods We performed direct Sanger sequencing and co-segregation analysis of the USH2A gene to identify disease causing variants in a non-syndromic RP family, two USH2 families and two Keratoconus (KC) families. Results Disease causing variants in the USH2A gene were identified in two families displayed KC and USH2 phenotypes. A novel variant c.4029T > G, p.Asn1343Lys in the USH2A gene was detected in a Pakistani family with KC phenotype. In addition, a missense variant (c.7334 C > T, p. Ser2445Phe) in the USH2A gene was found segregating in another Pakistani family with USH2 phenotype. Homozygosity of identified missense USH2A variants was found associated with autosomal recessive inherited KC and USH2 phenotypes in investigated families. These variants were not detected in ethnically matched healthy controls. Moreover, the USH2A variants were predicted to be deleterious or potentially disease causing by PolyPhen-2, PROVEAN and SIFT. Conclusions This study provided first evidence for association of a novel USH2A variant with KC phenotype in a Pakistani family as well as established the phenotype-genotype correlation of a USH2A variant (c.7334 C > T, p. Ser2445Phe) with USH2 phenotype in another Pakistani family. The phenotype-genotype correlations established in present study may improve clinical diagnosis of affected individuals for better management and counseling.
Collapse
Affiliation(s)
- Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Raheel Tahir
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Mushtaq Ahmad
- Medical Teaching Institution, Hayatabad Medical Complex, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Dawood
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Basit
- Medical Teaching Institution, Hayatabad Medical Complex, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Maha Nowshid
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Marwan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Komal Sultan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
7
|
Brownstein Z, Gulsuner S, Walsh T, Martins FTA, Taiber S, Isakov O, Lee MK, Bordeynik-Cohen M, Birkan M, Chang W, Casadei S, Danial-Farran N, Abu-Rayyan A, Carlson R, Kamal L, Arnþórsson ÁÖ, Sokolov M, Gilony D, Lipschitz N, Frydman M, Davidov B, Macarov M, Sagi M, Vinkler C, Poran H, Sharony R, Samara N, Zvi N, Baris-Feldman H, Singer A, Handzel O, Hertzano R, Ali-Naffaa D, Ruhrman-Shahar N, Madgar O, Sofrin E, Peleg A, Khayat M, Shohat M, Basel-Salmon L, Pras E, Lev D, Wolf M, Steingrimsson E, Shomron N, Kelley MW, Kanaan M, Allon-Shalev S, King MC, Avraham KB. Spectrum of genes for inherited hearing loss in the Israeli Jewish population, including the novel human deafness gene ATOH1. Clin Genet 2020; 98:353-364. [PMID: 33111345 PMCID: PMC8045518 DOI: 10.1111/cge.13817] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022]
Abstract
Mutations in more than 150 genes are responsible for inherited hearing loss, with thousands of different, severe causal alleles that vary among populations. The Israeli Jewish population includes communities of diverse geographic origins, revealing a wide range of deafness-associated variants and enabling clinical characterization of the associated phenotypes. Our goal was to identify the genetic causes of inherited hearing loss in this population, and to determine relationships among genotype, phenotype, and ethnicity. Genomic DNA samples from informative relatives of 88 multiplex families, all of self-identified Jewish ancestry, with either non-syndromic or syndromic hearing loss, were sequenced for known and candidate deafness genes using the HEar-Seq gene panel. The genetic causes of hearing loss were identified for 60% of the families. One gene was encountered for the first time in human hearing loss: ATOH1 (Atonal), a basic helix-loop-helix transcription factor responsible for autosomal dominant progressive hearing loss in a five-generation family. Our results show that genomic sequencing with a gene panel dedicated to hearing loss is effective for genetic diagnoses in a diverse population. Comprehensive sequencing enables well-informed genetic counseling and clinical management by medical geneticists, otolaryngologists, audiologists, and speech therapists and can be integrated into newborn screening for deafness.
Collapse
Affiliation(s)
- Zippora Brownstein
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Suleyman Gulsuner
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Tom Walsh
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Fábio Tadeu Arrojo Martins
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Isakov
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ming K. Lee
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Mor Bordeynik-Cohen
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Maria Birkan
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Weise Chang
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD, USA
| | - Silvia Casadei
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Nada Danial-Farran
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Genetics Institute, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Amal Abu-Rayyan
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Ryan Carlson
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Lara Kamal
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Ásgeir Örn Arnþórsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Meirav Sokolov
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Otolaryngology - Head and Neck Surgery, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Dror Gilony
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Otolaryngology - Head and Neck Surgery, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Noga Lipschitz
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Otolaryngology - Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Moshe Frydman
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Bella Davidov
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Michal Macarov
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Michal Sagi
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Chana Vinkler
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Hana Poran
- Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Reuven Sharony
- Genetics Institute, Meir Medical Center, Kfar Saba and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Na’ama Zvi
- Department of Human Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Amihood Singer
- Community Genetics Department, Public Health Services, Ministry of Health, Ramat Gan, Israel
| | - Ophir Handzel
- Department of Otolaryngology Head and Neck Surgery and Maxillofacial Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Doaa Ali-Naffaa
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Human Genetics Institute, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Noa Ruhrman-Shahar
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Ory Madgar
- Department of Otolaryngology - Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Efrat Sofrin
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Amir Peleg
- Human Genetics Institute, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Morad Khayat
- Genetics Institute, Ha'Emek Medical Center, Afula, Israel
| | - Mordechai Shohat
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
- Institute of Medical Genetics, Maccabi HMO, Rehovot, Israel
| | - Lina Basel-Salmon
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Raphael Recanati Genetic Institute, Rabin Medical Center–Beilinson Hospital, Tel Aviv University Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Elon Pras
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Dorit Lev
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Michael Wolf
- Department of Otolaryngology - Head and Neck Surgery, Sheba Medical Center, Tel Hashomer, Israel
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD, USA
| | - Moien Kanaan
- Department of Biological Sciences, Bethlehem University, Bethlehem, Palestine
| | - Stavit Allon-Shalev
- Genetics Institute, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mary-Claire King
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA, USA
| | - Karen B. Avraham
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Yu D, Zou J, Chen Q, Zhu T, Sui R, Yang J. Structural modeling, mutation analysis, and in vitro expression of usherin, a major protein in inherited retinal degeneration and hearing loss. Comput Struct Biotechnol J 2020; 18:1363-1382. [PMID: 32637036 PMCID: PMC7317166 DOI: 10.1016/j.csbj.2020.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/15/2022] Open
Abstract
Usherin is the most common causative protein associated with autosomal recessive retinitis pigmentosa (RP) and Usher syndrome (USH), which are characterized by retinal degeneration alone and in combination with hearing loss, respectively. Usherin is essential for photoreceptor survival and hair cell bundle integrity. However, the molecular mechanism underlying usherin function in normal and disease conditions is unclear. In this study, we investigated structural models of usherin domains and localization of usherin pathogenic small in-frame mutations, mainly homozygous missense mutations. We found that usherin fibronectin III (FN3) domains and most laminin-related domains have a β-sandwich structure. Some FN3 domains are predicted to interact with each other and with laminin-related domains. The usherin protein may bend at some FN3 linker regions. RP- and USH-associated small in-frame mutations are differentially located in usherin domains. Most of them are located at the periphery of β-sandwiches, with some at the interface between interacting domains. The usherin laminin epidermal growth factor repeats adopt a rod-shaped structure, which is maintained by disulfide bonds. Most missense mutations and deletion of exon 13 in this region disrupt the disulfide bonds and may affect local protein folding. Despite low expression of the recombinant entire protein and protein fragments in mammalian cell culture, usherin FN3 fragments are more robustly expressed and secreted than its laminin-related fragments. Our findings provide new insights into the usherin structure and the disease mechanisms caused by pathogenic small in-frame mutations, which will help inform future experimental research on diagnosis, disease mechanisms, and therapeutic approaches.
Collapse
Key Words
- Cell adhesion
- DCC, deleted in colorectal cancer
- FN3, fibronectin III
- GMQE, global quality estimation score
- HGMD, Human Gene Mutation Database
- Hair cell
- I-TASSER, Iterative Threading ASSEmbly Refinement
- LE, laminin EGF
- LG, laminin globular
- LGL, laminin globular-like
- LN, laminin N-terminal
- Membrane protein
- NCBI, National Center for Biotechnology Information
- Photoreceptor
- Protein folding
- QMEAN, qualitative model energy analysis score
- QSQE, Quaternary Structure Quality Estimation
- RMSD, root mean square deviation
- RP, retinitis pigmentosa
- Recombinant protein expression
- Retinitis pigmentosa
- SMTL, SWISS-MODEL template library
- Structural model
- TM-score, template modeling score
- USH, Usher syndrome
- Usher syndrome
- hFc, human Fc fragment
- mFc, mouse Fc fragment
Collapse
Affiliation(s)
- Dongmei Yu
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Junhuang Zou
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Qian Chen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Division of Otolaryngology, Department of Surgery, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
9
|
Sharon D, Ben-Yosef T, Goldenberg-Cohen N, Pras E, Gradstein L, Soudry S, Mezer E, Zur D, Abbasi AH, Zeitz C, Cremers FPM, Khan MI, Levy J, Rotenstreich Y, Birk OS, Ehrenberg M, Leibu R, Newman H, Shomron N, Banin E, Perlman I. A nationwide genetic analysis of inherited retinal diseases in Israel as assessed by the Israeli inherited retinal disease consortium (IIRDC). Hum Mutat 2019; 41:140-149. [PMID: 31456290 DOI: 10.1002/humu.23903] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/13/2023]
Abstract
Inherited retinal diseases (IRDs) cause visual loss due to dysfunction or progressive degeneration of photoreceptors. These diseases show marked phenotypic and genetic heterogeneity. The Israeli IRD consortium (IIRDC) was established in 2013 with the goal of performing clinical and genetic mapping of the majority of Israeli IRD patients. To date, we recruited 2,420 families including 3,413 individuals with IRDs. On the basis of our estimation, these patients represent approximately 40% of Israeli IRD patients. To the best of our knowledge, this is, by far, the largest reported IRD cohort, and one of the first studies addressing the genetic analysis of IRD patients on a nationwide scale. The most common inheritance pattern in our cohort is autosomal recessive (60% of families). The most common retinal phenotype is retinitis pigmentosa (43%), followed by Stargardt disease and cone/cone-rod dystrophy. We identified the cause of disease in 56% of the families. Overall, 605 distinct mutations were identified, of which 12% represent prevalent founder mutations. The most frequently mutated genes were ABCA4, USH2A, FAM161A, CNGA3, and EYS. The results of this study have important implications for molecular diagnosis, genetic screening, and counseling, as well as for the development of new therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nitza Goldenberg-Cohen
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel.,The Krieger Eye Research Laboratory, Felsenstein Medical Research Center (FMRC), Petach Tikva, Israel
| | - Eran Pras
- Department of Ophthalmology, Assaf-Harofeh Medical Center, Zerifin, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Libe Gradstein
- Department of Ophthalmology, Soroka Medical Center and Clalit Health Services, Faculty of Health Sciences, Ben-Gurion University, Beer Sheva, Israel
| | - Shiri Soudry
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Ophthalmology, Rambam Healthcare Campus, Haifa, Israel
| | - Eedy Mezer
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Ophthalmology, Rambam Healthcare Campus, Haifa, Israel
| | - Dinah Zur
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Ophthalmology Division, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Anan H Abbasi
- Ziv Medical Center, Safed, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Christina Zeitz
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Muhammad I Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaime Levy
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ygal Rotenstreich
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva, Israel.,Genetics Institute, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University, Beer Sheva, Israel
| | - Miriam Ehrenberg
- Ophthalmology Unit, Schneider Children's Medical Center in Israel, Petach Tikva, Israel
| | - Rina Leibu
- Department of Ophthalmology, Rambam Healthcare Campus, Haifa, Israel
| | - Hadas Newman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Ophthalmology Division, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ido Perlman
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Ophthalmology Division, Tel Aviv Medical Center, Tel Aviv, Israel
| |
Collapse
|
10
|
Neuhaus C, Eisenberger T, Decker C, Nagl S, Blank C, Pfister M, Kennerknecht I, Müller-Hofstede C, Charbel Issa P, Heller R, Beck B, Rüther K, Mitter D, Rohrschneider K, Steinhauer U, Korbmacher HM, Huhle D, Elsayed SM, Taha HM, Baig SM, Stöhr H, Preising M, Markus S, Moeller F, Lorenz B, Nagel-Wolfrum K, Khan AO, Bolz HJ. Next-generation sequencing reveals the mutational landscape of clinically diagnosed Usher syndrome: copy number variations, phenocopies, a predominant target for translational read-through, and PEX26 mutated in Heimler syndrome. Mol Genet Genomic Med 2017; 5:531-552. [PMID: 28944237 PMCID: PMC5606877 DOI: 10.1002/mgg3.312] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 12/23/2022] Open
Abstract
Background Combined retinal degeneration and sensorineural hearing impairment is mostly due to autosomal recessive Usher syndrome (USH1: congenital deafness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment, RP). Methods Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic deafness, overlapping conditions), MLPA, and array‐CGH were conducted in 138 patients clinically diagnosed with Usher syndrome. Results A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients, with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quantitative readout reliably detected CNVs (confirmed by MLPA or array‐CGH), qualifying targeted NGS as one tool for detecting point mutations and CNVs. CNVs accounted for 10% of identified USH2A alleles, often in trans to seemingly monoallelic point mutations. We demonstrate PTC124‐induced read‐through of the common p.Trp3955* nonsense mutation (13% of detected USH2A alleles), a potential therapy target. Usher gene mutations were found in most patients with atypical Usher syndrome, but the diagnosis was adjusted in case of double homozygosity for mutations in OTOA and NR2E3, genes implicated in isolated deafness and RP. Two patients with additional enamel dysplasia had biallelic PEX26 mutations, for the first time linking this gene to Heimler syndrome. Conclusion Targeted NGS not restricted to Usher genes proved beneficial in uncovering conditions mimicking Usher syndrome.
Collapse
Affiliation(s)
| | | | | | - Sandra Nagl
- Bioscientia Center for Human GeneticsIngelheimGermany
| | | | - Markus Pfister
- HNO-Praxis SarnenSarnenSwitzerland.,Molecular Genetics, THRCDepartment of OtolaryngologyUniversity of TübingenTübingenGermany
| | - Ingo Kennerknecht
- Institute of Human GeneticsWestfälische Wilhelms-UniversitätMünsterGermany
| | | | - Peter Charbel Issa
- Department of OphthalmologyUniversity of BonnBonnGermany.,Center for Rare Diseases Bonn (ZSEB)University of BonnBonnGermany.,Oxford Eye HospitalUniversity of OxfordOxfordUK
| | - Raoul Heller
- Institute of Human GeneticsUniversity Hospital of CologneCologneGermany
| | - Bodo Beck
- Institute of Human GeneticsUniversity Hospital of CologneCologneGermany
| | | | - Diana Mitter
- Institute of Human GeneticsUniversity of Leipzig Hospitals and ClinicsLeipzigGermany
| | | | | | - Heike M Korbmacher
- Department of OrthodonticsGiessen and Marburg University Hospital, Marburg CampusMarburgGermany
| | | | - Solaf M Elsayed
- Medical Genetics CenterCairoEgypt.,Children's HospitalAin Shams UniversityCairoEgypt
| | | | - Shahid M Baig
- Human Molecular Genetics LaboratoryHealth Biotechnology DivisionNational Institute for Biotechnology and Genetic Engineering (NIBGE)FaisalabadPakistan
| | - Heidi Stöhr
- Department of Human GeneticsUniversity Medical Center RegensburgRegensburgGermany
| | - Markus Preising
- Department of OphthalmologyJustus-Liebig-University GiessenGiessenGermany
| | | | - Fabian Moeller
- Department of Cell and Matrix BiologyInstitute of Zoology, Johannes GutenbergUniversity of MainzMainzGermany
| | - Birgit Lorenz
- Department of OphthalmologyJustus-Liebig-University GiessenGiessenGermany
| | - Kerstin Nagel-Wolfrum
- Department of Cell and Matrix BiologyInstitute of Zoology, Johannes GutenbergUniversity of MainzMainzGermany
| | - Arif O Khan
- Division of Pediatric OphthalmologyKing Khaled Eye Specialist HospitalRiyadhSaudi Arabia.,Eye InstituteCleveland ClinicAbu DhabiUAE
| | - Hanno J Bolz
- Bioscientia Center for Human GeneticsIngelheimGermany.,Institute of Human GeneticsUniversity Hospital of CologneCologneGermany
| |
Collapse
|
11
|
Improving the management of Inherited Retinal Dystrophies by targeted sequencing of a population-specific gene panel. Sci Rep 2016; 6:23910. [PMID: 27032803 PMCID: PMC4817143 DOI: 10.1038/srep23910] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/10/2016] [Indexed: 11/08/2022] Open
Abstract
Next-generation sequencing (NGS) has overcome important limitations to the molecular diagnosis of Inherited Retinal Dystrophies (IRD) such as the high clinical and genetic heterogeneity and the overlapping phenotypes. The purpose of this study was the identification of the genetic defect in 32 Spanish families with different forms of IRD. With that aim, we implemented a custom NGS panel comprising 64 IRD-associated genes in our population, and three disease-associated intronic regions. A total of 37 pathogenic mutations (14 novels) were found in 73% of IRD patients ranging from 50% for autosomal dominant cases, 75% for syndromic cases, 83% for autosomal recessive cases, and 100% for X-linked cases. Additionally, unexpected phenotype-genotype correlations were found in 6 probands, which led to the refinement of their clinical diagnoses. Furthermore, intra- and interfamilial phenotypic variability was observed in two cases. Moreover, two cases unsuccessfully analysed by exome sequencing were resolved by applying this panel. Our results demonstrate that this hypothesis-free approach based on frequently mutated, population-specific loci is highly cost-efficient for the routine diagnosis of this heterogeneous condition and allows the unbiased analysis of a miscellaneous cohort. The molecular information found here has aid clinical diagnosis and has improved genetic counselling and patient management.
Collapse
|
12
|
Chiang J(PW, Gorin MB. Challenges confronting precision medicine in the context of inherited retinal disorders. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1152159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Burghoff S, Willberg W, Schrader J. Identification of extracellularly phosphorylated membrane proteins. Proteomics 2015; 15:3310-4. [DOI: 10.1002/pmic.201400595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/11/2015] [Accepted: 07/01/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Sandra Burghoff
- Department of Molecular Cardiology; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Wibke Willberg
- Department of Molecular Cardiology; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| |
Collapse
|
14
|
Behar DM, Davidov B, Brownstein Z, Ben-Yosef T, Avraham KB, Shohat M. The many faces of sensorineural hearing loss: one founder and two novel mutations affecting one family of mixed Jewish ancestry. Genet Test Mol Biomarkers 2013; 18:123-6. [PMID: 24367894 DOI: 10.1089/gtmb.2013.0328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dramatic progress has been made in our understanding of the highly heterogeneous molecular bases of sensorineural hearing loss (SNHL), demonstrating the involvement of all known forms of inheritance and a plethora of genes tangled in various molecular pathways. This progress permits the provision of prognostic information and genetic counseling for affected families, which might, nevertheless, be exceedingly challenging. Here, we describe an intricate genetic investigation that included Sanger-type sequencing, BeadArray technology, and next-generation sequencing to resolve a complex case involving one family presenting syndromic and nonsyndromic SNHL phenotypes in two consecutive generations. We demonstrate and conclude that such an effort can be completed during pregnancy.
Collapse
Affiliation(s)
- Doron M Behar
- 1 Raphael Recanati Genetics Institute , Rabin Medical Center, Petah Tikva, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Garcia-Garcia G, Aparisi MJ, Jaijo T, Rodrigo R, Leon AM, Avila-Fernandez A, Blanco-Kelly F, Bernal S, Navarro R, Diaz-Llopis M, Baiget M, Ayuso C, Millan JM, Aller E. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations. Orphanet J Rare Dis 2011; 6:65. [PMID: 22004887 PMCID: PMC3207874 DOI: 10.1186/1750-1172-6-65] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 10/17/2011] [Indexed: 11/10/2022] Open
Abstract
Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin.
Collapse
Affiliation(s)
- Gema Garcia-Garcia
- Grupo de Investigación en Enfermedades Neurosensoriales, Instituto de Investigación Sanitaria IIS-La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nakanishi H, Ohtsubo M, Iwasaki S, Hotta Y, Usami SI, Mizuta K, Mineta H, Minoshima S. Novel USH2A mutations in Japanese Usher syndrome type 2 patients: marked differences in the mutation spectrum between the Japanese and other populations. J Hum Genet 2011; 56:484-90. [PMID: 21593743 DOI: 10.1038/jhg.2011.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 2 (USH2) is the most common type of USH and is frequently caused by mutations in USH2A. In a recent mutation screening of USH2A in Japanese USH2 patients, we identified 11 novel mutations in 10 patients and found the possible frequent mutation c.8559-2A>G in 4 of 10 patients. To obtain a more precise mutation spectrum, we analyzed further nine Japanese patients in this study. We identified nine mutations, of which eight were novel. This result indicates that the mutation spectrum for USH2A among Japanese patients largely differs from Caucasian, Jewish and Palestinian patients. Meanwhile, we did not find the c.8559-2A>G in this study. Haplotype analysis of the c.8559-2G (mutated) alleles using 23 single nucleotide polymorphisms surrounding the mutation revealed an identical haplotype pattern of at least 635 kb in length, strongly suggesting that the mutation originated from a common ancestor. The fact that all patients carrying c.8559-2A>G came from western Japan suggests that the mutation is mainly distributed in that area; indeed, most of the patients involved in this study came from eastern Japan, which contributed to the absence of c.8559-2A>G.
Collapse
Affiliation(s)
- Hiroshi Nakanishi
- Department of Otolaryngology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
McGee TL, Seyedahmadi BJ, Sweeney MO, Dryja TP, Berson EL. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa. J Med Genet 2010; 47:499-506. [PMID: 20507924 DOI: 10.1136/jmg.2009.075143] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Usher syndrome type II (USH2) is an autosomal recessive disorder characterised by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie, non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. METHODS The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. RESULTS In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of four different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as 'likely deleterious' and 9 as 'possibly deleterious'. CONCLUSION At least one mutation was identified in 57-63% of USH2 cases and 19-23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the USA.
Collapse
Affiliation(s)
- Terri L McGee
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
18
|
Aller E, Larrieu L, Jaijo T, Baux D, Espinós C, González-Candelas F, Nájera C, Palau F, Claustres M, Roux AF, Millán JM. The USH2A c.2299delG mutation: dating its common origin in a Southern European population. Eur J Hum Genet 2010; 18:788-93. [PMID: 20145675 DOI: 10.1038/ejhg.2010.14] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Usher syndrome type II is the most common form of Usher syndrome. USH2A is the main responsible gene of the three known to be disease causing. It encodes two isoforms of the protein usherin. This protein is part of an interactome that has an essential role in the development and function of inner ear hair cells and photoreceptors. The gene contains 72 exons spanning over a region of 800 kb. Although numerous mutations have been described, the c.2299delG mutation is the most prevalent in several populations. Its ancestral origin was previously suggested after the identification of a common core haplotype restricted to 250 kb in the 5' region that encodes the short usherin isoform. By extending the haplotype analysis over the 800 kb region of the USH2A gene with a total of 14 intragenic single nucleotide polymorphisms, we have been able to define 10 different c.2299delG haplotypes, showing high variability but preserving the previously described core haplotype. An exhaustive c.2299delG/control haplotype study suggests that the major source of variability in the USH2A gene is recombination. Furthermore, we have evidenced twice the amount of recombination hotspots located in the 500 kb region that covers the 3' end of the gene, explaining the higher variability observed in this region when compared with the 250 kb of the 5' region. Our data confirm the common ancestral origin of the c.2299delG mutation.
Collapse
Affiliation(s)
- Elena Aller
- Unidad de Genética, Hospital Universitario La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nakanishi H, Ohtsubo M, Iwasaki S, Hotta Y, Mizuta K, Mineta H, Minoshima S. Identification of 11 novel mutations in USH2A among Japanese patients with Usher syndrome type 2. Clin Genet 2009; 76:383-91. [PMID: 19737284 DOI: 10.1111/j.1399-0004.2009.01257.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Usher syndrome (USH) is an autosomal recessive disorder characterized by retinitis pigmentosa and hearing loss. USH type 2 (USH2) is the most common type of USH and is frequently caused by mutations in USH2A, which accounts for 74-90% of USH2 cases. This is the first study reporting the results of scanning for USH2A mutations in Japanese patients with USH2. In 8 of 10 unrelated patients, we identified 14 different mutations. Of these mutations, 11 were novel. Although the mutation spectrum that we identified differed from that for Caucasians, the incidence of mutations in USH2A was 80% for all patients tested, which is consistent with previous findings. Further, c.8559-2A>G was identified in four patients and accounted for 26.7% of mutated alleles; it is thus a frequent mutation in Japanese patients. Hence, mutation screening for c.8559-2A>G in USH2A may prove very effective for the early diagnosis of USH2.
Collapse
Affiliation(s)
- H Nakanishi
- Department of Otolaryngology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Bibliography. Current world literature. Curr Opin Ophthalmol 2009; 20:417-22. [PMID: 19684489 DOI: 10.1097/icu.0b013e32833079c5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Abstract
PURPOSE OF REVIEW The present review addresses the mechanisms, genetics and pathogenesis of Usher syndrome. RECENT FINDINGS Recent molecular findings have provided more information regarding the pathogenesis of this disorder and the wide phenotypic variation in both audiovestibular and/or visual systems. Evidence has begun to emerge supporting a theory of a protein interactome involving the Usher proteins in both the inner ear and the retina. This interactome appears to be important for hair cell development in the ear but its role in the retina remains unclear. SUMMARY Understanding clinical disease progression and molecular pathways is important in the progress towards developing gene therapy to prevent blindness due to Usher syndrome as well as delivering prognostic information to affected individuals.
Collapse
|