1
|
Battaglia E, Compalati E, Mapelli L, Lax A, Pierucci P, Solidoro P, Banfi P. Pulmonary hypertension in patients affected by sleep-related breathing disorders: up to date from the literature. Minerva Med 2024; 115:671-688. [PMID: 39016524 DOI: 10.23736/s0026-4806.24.09112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Sleep-related breathing disorders (SBD) are conditions of abnormal and difficult respiration during sleep, including chronic snoring, obstructive sleep apnea (OSA), central sleep apnea (CSA), sleep-related hypoventilation disorders and sleep-related hypoxemia. Some of them have a limited impact on health, but others (e.g., OSA) can have serious consequences, because of their dangerous effects on sleep and the hematic balance of oxygen and carbon dioxide. According to several population-based studies, prevalence of OSA is relatively high, approximately 3-7% for adult males and 2-5% for adult females in the general population. However, methodological differences and difficulties in characterizing this syndrome yielded to variability in estimates. Moreover, it is estimated that only about 40% of patients with OSA are diagnosed, which can lead to underestimation of disease prevalence. OSA is directly correlated with age and male sex and to risk factors such as obesity. Several studies found that OSA is associated with an increased risk of diabetes, some cancer types, cardiovascular and cerebrovascular diseases, such as hypertension, coronary artery disease and stroke. Pulmonary hypertension (PH), a noted cardiovascular disease, is significantly associated with sleep-related breathing disorders and lot of scientific studies published in the literature demonstrated a strong link between these conditions and the development of pulmonary hypertension PH. PH is relatively less common than sleep-related breathing disorders. The purpose of this systematic review is to analyze both the current knowledge around the consequences that SBD may have on pulmonary hemodynamics and the effects resulting from pharmacological and non-pharmacological treatments of SDB on PH.
Collapse
Affiliation(s)
| | | | - Luca Mapelli
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Agata Lax
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Paola Pierucci
- Department of Cardiothoracic Surgery, Bari Polyclinic Hospital, Bari, Italy
| | | | - Paolo Banfi
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| |
Collapse
|
2
|
周 志, 孙 凡, 江 秉. [Research Progress in the Role of Hypoxia-Inducible Factor 1 in Altitude Sickness and the Mechanisms Involved]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1424-1435. [PMID: 39990820 PMCID: PMC11839359 DOI: 10.12182/20241160303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Indexed: 02/25/2025]
Abstract
Individuals who reside at high altitudes for extended periods or those who visit these regions briefly frequently experience high-altitude response, which triggers a series of physiological and pathological changes in the body, ultimately causing altitude sickness. One of the most critical features of high-altitude environments is hypoxia. Recent studies have demonstrated that hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating the body's response to hypoxic conditions at high altitudes. HIF-1, a heterodimeric transcription factor composed of an oxygen-sensitive subunit α (HIF-1α) and a constitutively expressed subunit β (HIF-1β), directly regulates the expression of multiple target genes, thereby modulating various physiological processes essential for cellular adaptation to hypoxia. According to a substantial body of research, aberrant expression of HIF-1 is implicated in the pathogenesis and progression of various diseases, including altitude sickness, cardiovascular disorders, neurological conditions, inflammatory diseases, cognitive impairment, immune dysregulation, and cancer. In this review, we provided an in-depth examination of the structural characteristics and regulatory mechanisms governing HIF-1 expression, discussed its downstream target genes, and highlighted the inhibitors currently under development. Additionally, we summarized the pivotal role and underlying mechanisms of HIF-1 in the development of altitude sickness, particularly its regulatory role in the pathophysiological processes of high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE), and high-altitude pulmonary hypertension (HAPH). Through a thorough examination of the role of HIF-1, we aim to provide a theoretical foundation and potential therapeutic targets for the prevention and treatment of altitude sickness.
Collapse
Affiliation(s)
- 志豪 周
- 天健先进生物医学实验室 郑州大学医学科学院(河南 450000)Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - 凡丽 孙
- 天健先进生物医学实验室 郑州大学医学科学院(河南 450000)Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - 秉华 江
- 天健先进生物医学实验室 郑州大学医学科学院(河南 450000)Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
3
|
Peng W, Li H, Xia C, Guo Y, Xu X, Zeng W, Liu K, Che Q, Jiang Y, Xiang K, Zhou X, Li G, Li Z. Cardiovascular indicators associated with ventricular remodeling in chronic high-altitude disease: a cardiovascular MRI study. Eur Radiol 2023; 33:6267-6277. [PMID: 37036481 DOI: 10.1007/s00330-023-09574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE This study aimed to assess biventricular function and mechanics in patients with the chronic high-altitude disease (CHAD) using cardiovascular MRI and explore the possible risk factors associated with ventricular remodeling. METHODS In this prospective study, consecutive CHAD patients and healthy controls at high-altitude (HA) and at sea level (SL) underwent cardiovascular MRI. Right ventricular (RV) and left ventricular (LV) function and global strain parameters were compared. To identify risk factors associated with ventricular remodeling, multiple linear regression analyses were used. RESULTS A total of 33 patients with CHAD (42.97 years ± 11.80; 23 men), 33 HA (41.18 years ± 8.58; 21 men), and 33 SL healthy controls (43.48 years ± 13.40; 21 men) were included. A Significantly decreased biventricular ejection fraction was observed in patients (all p < 0.05). Additionally, the HA group displayed lower magnitudes of biventricular longitudinal peak strain (PS) (RV, - 13.67% ± 4.05 vs. - 16.22% ± 3.03; LV, - 14.68% ± 2.20 vs. - 16.19% ± 2.51; both p < 0.05), but a higher LV circumferential PS (- 20.74% ± 2.02 vs. - 19.17% ± 2.34, p < 0.05) than the SL group. Moreover, multiple linear regression analyses revealed that HGB (β = 0.548) was related to the LV remodeling index, whereas BUN (β = 0.570) was associated with the RV remodeling index. CONCLUSIONS With the deterioration of RV function in patients with CHAD, LV function was also impaired concomitantly. Hypoxia-induced erythrocytosis may contribute to LV impairment, while BUN was considered an independent risk factor for RV remodeling. KEY POINTS • A significantly lower biventricular ejection fraction was observed in patients, with a decreased magnitude of left ventricular (LV) peak systolic strain rate (radial and circumferential) and peak diastolic strain rate (all p < 0.05). • High-altitude healthy natives showed a lower biventricular longitudinal peak strain (all p < 0.05). • Hemoglobin was related to LV remodeling (β = 0.548), while BUN (β = 0.570) was independently associated with RV remodeling in CHAD patients.
Collapse
Affiliation(s)
- Wanlin Peng
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hongwei Li
- Department of Cardiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South ren Min Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Ren Min Road, Chengdu, 610041, Sichuan, China
| | - Xu Xu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Wen Zeng
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Keling Liu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Qianqiu Che
- Department of Cardiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Yuexin Jiang
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Kejin Xiang
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, 200126, China
| | - Gang Li
- Department of Radiology, The People's Hospital of Ningnan County Sichuan Province, Ningnan, 615400, Sichuan, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Schmitz J, Kolaparambil Varghese LJ, Liebold F, Meyer M, Nerlich L, Starck C, Thierry S, Jansen S, Hinkelbein J. Influence of 30 and 60 Min of Hypobaric Hypoxia in Simulated Altitude of 15,000 ft on Human Proteome Profile. Int J Mol Sci 2022; 23:ijms23073909. [PMID: 35409267 PMCID: PMC8999033 DOI: 10.3390/ijms23073909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The human body reacts to hypobaric hypoxia, e.g., during a stay at high altitude, with several mechanisms of adaption. Even short-time exposition to hypobaric hypoxia leads to complex adaptions. Proteomics facilitates the possibility to detect changes in metabolism due to changes in proteins. The present study aims to identify time-dependent changes in protein expression due to hypobaric hypoxia for 30 and 60 min at a simulated altitude of 15,000 ft. N = 80 male subjects were randomized and assigned into four different groups: 40 subjects to ground control for 30 (GC30) and 60 min (GC60) and 40 subjects to 15,000 ft for 30 (HH30) and 60 min (HH60). Subjects in HH30 and HH60 were exposed to hypobaric hypoxia in a pressure chamber (total pressure: 572 hPa) equivalent to 15,000 ft for 30 vs. 60 min, respectively. Drawn blood was centrifuged and plasma frozen (−80 °C) until proteomic analysis. After separation of high abundant proteins, protein expression was analyzed by 2-DIGE and MALDI-TOF. To visualize the connected signaling cascade, a bio-informatical network analysis was performed. The present study was approved by the ethical committee of the University of Cologne, Germany. The study registry number is NCT03823677. In comparing HH30 to GC30, a total of seven protein spots had a doubled expression, and 22 spots had decreased gene expression. In a comparison of HH60 to GC60, a total of 27 protein spots were significantly higher expressed. HH60, as compared to GC30, revealed that a total of 37 spots had doubled expression. Vice versa, 12 spots were detected, which were higher expressed in GC30 vs. HH60. In comparison to GC, HH60 had distinct differences in the number of differential protein spots (noticeably more proteins due to longer exposure to hypoxia). There are indicators that changes in proteins are dependent on the length of hypobaric hypoxia. Some proteins associated with hemostasis were differentially expressed in the 60 min comparison.
Collapse
Affiliation(s)
- Jan Schmitz
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.L.); (J.H.)
- German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany;
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), 51149 Cologne, Germany;
- Department of Sleep and Human Factors Research, German Aerospace Center, Institute of Aerospace Medicine, 51147 Cologne, Germany
- Correspondence:
| | - Lydia J. Kolaparambil Varghese
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), 51149 Cologne, Germany;
- Faculty of Medicine and Surgery, Università degli Studi di Perugia (Terni), 01500 Perugia, Italy
| | - Felix Liebold
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.L.); (J.H.)
- German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany;
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), 51149 Cologne, Germany;
| | - Moritz Meyer
- Department of Otorhinolaryngology, Faculty of Medicine and University Hospital Essen, University of Essen, 45147 Essen, Germany;
| | - Lukas Nerlich
- German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany;
| | - Clement Starck
- Anesthesiology and Intensive Care Department, University Hospital of Brest, 29200 Brest, France;
| | - Seamus Thierry
- Anesthesiology Department, South Brittany General Hospital, 56322 Lorient, France;
| | - Stefanie Jansen
- Head and Neck Surgery, Department of Otorhinolaryngology, Medical Faculty, University of Cologne, 50937 Cologne, Germany;
| | - Jochen Hinkelbein
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.L.); (J.H.)
- German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany;
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), 51149 Cologne, Germany;
| |
Collapse
|
6
|
Caputo V, Pacilli MG, Arisi I, Mazza T, Brandi R, Traversa A, Casasanta G, Pisa E, Sonnessa M, Healey B, Moggio L, D’Onofrio M, Alleva E, Macrì S. Genomic and physiological resilience in extreme environments are associated with a secure attachment style. Transl Psychiatry 2020; 10:185. [PMID: 32518224 PMCID: PMC7283351 DOI: 10.1038/s41398-020-00869-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding individual capability to adjust to protracted confinement and isolation may inform adaptive plasticity and disease vulnerability/resilience, and may have long-term implications for operations requiring prolonged presence in distant and restricted environments. Individual coping depends on many different factors encompassing psychological dispositional traits, endocrine reactivity and their underlying molecular mechanisms (e.g. gene expression). A positive view of self and others (secure attachment style) has been proposed to promote individual resilience under extreme environmental conditions. Here, we tested this hypothesis and investigated the underlying molecular mechanisms in 13 healthy volunteers confined and isolated for 12 months in a research station located 1670 km away from the south geographic pole on the Antarctic Plateau at 3233 m above sea level. Study participants, stratified for attachment style, were characterised longitudinally (before, during and after confinement) for their psychological appraisal of the stressful nature of the expedition, diurnal fluctuations in endocrine stress reactivity, and gene expression profiling (transcriptomics). Predictably, a secure attachment style was associated with reduced psychological distress and endocrine vulnerability to stress. In addition, while prolonged confinement and isolation remarkably altered overall patterns of gene expression, such alteration was largely reduced in individuals characterised by a secure attachment style. Furthermore, increased resilience was associated with a reduced expression of genes involved in energy metabolism (mitochondrial function and oxidative phosphorylation). Ultimately, our data indicate that a secure attachment style may favour individual resilience in extreme environments and that such resilience can be mapped onto identifiable molecular substrates.
Collapse
Affiliation(s)
- Viviana Caputo
- grid.7841.aDepartment of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Giuseppina Pacilli
- grid.9027.c0000 0004 1757 3630Department of Political Sciences, University of Perugia, Perugia, Italy
| | - Ivan Arisi
- grid.418911.4Bioinformatics, European Brain Research Institute (EBRI) Fondazione Rita Levi-Montalcini, Rome, Italy ,grid.428504.f0000 0004 1781 0034Institute of Translational Pharmacology (IFT) – CNR, Rome, Italy
| | - Tommaso Mazza
- grid.413503.00000 0004 1757 9135Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Rossella Brandi
- grid.418911.4Genomics - European Brain Research Institute (EBRI) Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Alice Traversa
- grid.413503.00000 0004 1757 9135Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Giampietro Casasanta
- grid.5326.20000 0001 1940 4177Institute of Atmospheric Sciences and Climate, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Edoardo Pisa
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Sonnessa
- grid.418911.4Genomics - European Brain Research Institute (EBRI) Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Beth Healey
- Biomedical Research, European Space Agency, Concordia, Antarctica
| | - Lorenzo Moggio
- grid.5326.20000 0001 1940 4177Institute of Atmospheric Sciences and Climate, Consiglio Nazionale delle Ricerche, Rome, Italy ,grid.11696.390000 0004 1937 0351Department of Physics, University of Trento, Trento, Italy
| | - Mara D’Onofrio
- grid.428504.f0000 0004 1781 0034Institute of Translational Pharmacology (IFT) – CNR, Rome, Italy ,grid.418911.4Genomics - European Brain Research Institute (EBRI) Fondazione Rita Levi-Montalcini, Rome, Italy
| | - Enrico Alleva
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
7
|
Zhang S, Liu D, Gesang DZ, Lv M. Characteristics of Cerebral Stroke in the Tibet Autonomous Region of China. Med Sci Monit 2020; 26:e919221. [PMID: 31917778 PMCID: PMC6977622 DOI: 10.12659/msm.919221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
It is well known that cerebrovascular disease has become an important cause of adult death and disability. Strikingly, the Tibet Autonomous Region (TAR) ranks on the top in China for the incidence of stroke. To help explain this phenomenon, we have searched for and analyzed stroke-related literature for the TAR in the past 2 decades and have referenced reports from other regions at similar altitudes. This article focuses on epidemiology features, risk factors, and pathogenesis of stroke in the TAR in an effort to generate a better understanding of the characteristics of stroke in this region. The special plateau-related factors such as its high elevation, limited oxygen, the high incidence of hypertension, smoking, and the unique dietary habits of the region are correlated with the high incidence of stroke. In addition to these factors, the pathogenesis of stroke in this high-altitude area is also unique. However, there is no established explanation for the unique occurrence and high incidence of stroke in the TAR. Our study provides an important rationale not only for the clinic to prevent and treat this disease, but also for the government to develop appropriate health policies for the prevention of stroke in the TAR.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, Beijing Aerospace General Hospital, Beijing, P.R. China
| | - Dong Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, P.R. China
| | - Dun Zhu Gesang
- Department of Neurosurgery, Second People’s Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region, P.R. China
| | - Ming Lv
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
8
|
Du X, Zhang R, Ye S, Liu F, Jiang P, Yu X, Xu J, Ma L, Cao H, Shen Y, Lin F, Wang Z, Li C. Alterations of Human Plasma Proteome Profile on Adaptation to High-Altitude Hypobaric Hypoxia. J Proteome Res 2019; 18:2021-2031. [PMID: 30908922 DOI: 10.1021/acs.jproteome.8b00911] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
For individuals migrating to or residing permanently in high-altitude regions, environmental hypobaric hypoxia is a primary challenge that induces several physiological or pathological responses. It is well documented that human beings adapt to hypobaric hypoxia via some protective mechanisms, such as erythropoiesis and overproduction of hemoglobin; however, little is known on the alterations of plasma proteome profiles in accommodation to high-altitude hypobaric hypoxia. In the present study, we investigated differential plasma proteomes of high altitude natives and lowland normal controls by a TMT-based proteomic approach. A total of 818 proteins were identified, of which 137 were differentially altered. Bioinformatics (including GO, KEGG, protein-protein interactions, etc.) analysis showed that the differentially altered proteins were basically involved in complement and coagulation cascades, antioxidative stress, and glycolysis. Validation results demonstrated that CCL18, C9, PF4, MPO, and S100A9 were notably up-regulated, and HRG and F11 were down-regulated in high altitude natives, which were consistent with TMT-based proteomic results. Our findings highlight the contributions of complement and coagulation cascades, antioxidative stress, and glycolysis in acclimatization to hypobaric hypoxia and provide a foundation for developing potential diagnostic or/and therapeutic biomarkers for high altitude hypobaric hypoxia-induced diseases.
Collapse
Affiliation(s)
- Xi Du
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Rong Zhang
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Shengliang Ye
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Fengjuan Liu
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Peng Jiang
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Xiaochuan Yu
- Department of Transfusion , Aba Prefecture People's Hospital , Ngawa Tibetan and Qiang Autonomous Prefecture 510530 , China
| | - Jin Xu
- Department of Chemistry , University of Massachusetts , Lowell , Massachusetts 01854 , United States
| | - Li Ma
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Haijun Cao
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Yuanzhen Shen
- Department of Transfusion , Aba Prefecture People's Hospital , Ngawa Tibetan and Qiang Autonomous Prefecture 510530 , China
| | - Fangzhao Lin
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China
| | - Zongkui Wang
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base , Chengdu 610052 , China
| | - Changqing Li
- Institute of Blood Transfusion , Chinese Academy of Medical Sciences & Peking Union Medical College , Chengdu 610052 , China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base , Chengdu 610052 , China
| |
Collapse
|
9
|
Genome-wide profiling of gene expression and DNA methylation provides insight into low-altitude acclimation in Tibetan pigs. Gene 2018; 642:522-532. [DOI: 10.1016/j.gene.2017.11.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
|
10
|
High-altitude adaptation in humans: from genomics to integrative physiology. J Mol Med (Berl) 2017; 95:1269-1282. [PMID: 28951950 DOI: 10.1007/s00109-017-1584-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/07/2017] [Accepted: 08/20/2017] [Indexed: 12/19/2022]
Abstract
About 1.2 to 33% of high-altitude populations suffer from Monge's disease or chronic mountain sickness (CMS). Number of factors such as age, sex, and population of origin (older, male, Andean) contribute to the percentage reported from a variety of samples. It is estimated that there are around 83 million people who live at altitudes > 2500 m worldwide and are at risk for CMS. In this review, we focus on a human "experiment in nature" in various high-altitude locations in the world-namely, Andean, Tibetan, and Ethiopian populations that have lived under chronic hypoxia conditions for thousands of years. We discuss the adaptive as well as mal-adaptive changes at the genomic and physiological levels. Although different genes seem to be involved in adaptation in the three populations, we can observe convergence at genetic and signaling, as well as physiological levels. What is important is that we and others have shown that lessons learned from the genes mined at high altitude can be helpful in better understanding and treating diseases that occur at sea level. We discuss two such examples: EDNRB and SENP1 and their role in cardiac tolerance and in the polycythemic response, respectively.
Collapse
|
11
|
Hinkelbein J, Jansen S, Iovino I, Kruse S, Meyer M, Cirillo F, Drinhaus H, Hohn A, Klein C, Robertis ED, Beutner D. Thirty Minutes of Hypobaric Hypoxia Provokes Alterations of Immune Response, Haemostasis, and Metabolism Proteins in Human Serum. Int J Mol Sci 2017; 18:E1882. [PMID: 28858246 PMCID: PMC5618531 DOI: 10.3390/ijms18091882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/21/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Hypobaric hypoxia (HH) during airline travel induces several (patho-) physiological reactions in the human body. Whereas severe hypoxia is investigated thoroughly, very little is known about effects of moderate or short-term hypoxia, e.g. during airline flights. The aim of the present study was to analyse changes in serum protein expression and activation of signalling cascades in human volunteers staying for 30 min in a simulated altitude equivalent to airline travel. After approval of the local ethics committee, 10 participants were exposed to moderate hypoxia (simulation of 2400 m or 8000 ft for 30 min) in a hypobaric pressure chamber. Before and after hypobaric hypoxia, serum was drawn, centrifuged, and analysed by two-dimensional gel electrophoresis (2-DIGE) and matrix-assisted laser desorption/ionization followed by time-of-flight mass spectrometry (MALDI-TOF). Biological functions of regulated proteins were identified using functional network analysis (GeneMania®, STRING®, and Perseus® software). In participants, oxygen saturation decreased from 98.1 ± 1.3% to 89.2 ± 1.8% during HH. Expression of 14 spots (i.e., 10 proteins: ALB, PGK1, APOE, GAPDH, C1QA, C1QB, CAT, CA1, F2, and CLU) was significantly altered. Bioinformatic analysis revealed an association of the altered proteins with the signalling cascades "regulation of haemostasis" (four proteins), "metabolism" (five proteins), and "leukocyte mediated immune response" (five proteins). Even though hypobaric hypoxia was short and moderate (comparable to an airliner flight), analysis of protein expression in human subjects revealed an association to immune response, protein metabolism, and haemostasis.
Collapse
Affiliation(s)
- Jochen Hinkelbein
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937 Cologne, Germany.
| | - Stefanie Jansen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, 50937 Cologne, Germany.
| | - Ivan Iovino
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Via S. Pansini, 5-80131 Napoli, Italy.
| | - Silvia Kruse
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937 Cologne, Germany.
| | - Moritz Meyer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, 50937 Cologne, Germany.
| | - Fabrizio Cirillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Via S. Pansini, 5-80131 Napoli, Italy.
| | - Hendrik Drinhaus
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937 Cologne, Germany.
| | - Andreas Hohn
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937 Cologne, Germany.
| | - Corinna Klein
- CECAD Lipidomics & Proteomics Facilities, CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.
| | - Edoardo De Robertis
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Via S. Pansini, 5-80131 Napoli, Italy.
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
12
|
Latshang TD, Furian M, Aeschbacher SS, Ulrich S, Osmonov B, Mirrakhimov EM, Isakova J, Aldashev AA, Sooronbaev TM, Bloch KE. Association between sleep apnoea and pulmonary hypertension in Kyrgyz highlanders. Eur Respir J 2017; 49:13993003.01530-2016. [PMID: 28007792 DOI: 10.1183/13993003.01530-2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/21/2016] [Indexed: 02/03/2023]
Abstract
This case-control study evaluates a possible association between high altitude pulmonary hypertension (HAPH) and sleep apnoea in people living at high altitude.Ninety highlanders living at altitudes >2500 m without excessive erythrocytosis and with normal spirometry were studied at 3250 m (Aksay, Kyrgyzstan); 34 healthy lowlanders living below 800 m were studied at 760 m (Bishkek, Kyrgyzstan). Echocardiography, polysomnography and other outcomes were assessed. Thirty-six highlanders with elevated mean pulmonary artery pressure (mPAP) >30 mmHg (31-42 mmHg by echocardiography) were designated as HAPH+. Their data were compared to that of 54 healthy highlanders (HH, mPAP 13-28 mmHg) and 34 healthy lowlanders (LL, mPAP 8-24 mmHg).The HAPH+ group (median age 52 years (interquartile range 47-59) had a higher apnoea-hypopnoea index (AHI) of 33.8 events·h-1 (26.9-54.6) and spent a greater percentage of the night-time with an oxygen saturation <90% (T<90; 78% (61-89)) than the HH group (median age 39 years (32-48), AHI 9.0 events·h-1 (3.6-16), T<90 33% (10-69)) and the LL group (median age 40 years (30-47), AHI 4.3 events·h-1 (1.4-12.6), T<90 0% (0-0)); p<0.007 for AHI and T<90, respectively, in HAPH+ versus others. In highlanders, multivariable regression analysis confirmed an independent association between mPAP and both AHI and T<90, when controlled for age, gender and body mass index.Pulmonary hypertension in highlanders is associated with sleep apnoea and hypoxaemia even when adjusted for age, gender and body mass index, suggesting pathophysiologic interactions between pulmonary haemodynamics and sleep apnoea.
Collapse
Affiliation(s)
- Tsogyal D Latshang
- Clinic of Pneumology and Sleep Disorders Center, University Hospital Zurich, Zurich, Switzerland
| | - Michael Furian
- Clinic of Pneumology and Sleep Disorders Center, University Hospital Zurich, Zurich, Switzerland
| | - Sayaka S Aeschbacher
- Clinic of Pneumology and Sleep Disorders Center, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Ulrich
- Clinic of Pneumology and Sleep Disorders Center, University Hospital Zurich, Zurich, Switzerland
| | - Batyr Osmonov
- Dept of Respiratory, Critical Care and Sleep Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyz Republic
| | - Erkin M Mirrakhimov
- Dept of Respiratory, Critical Care and Sleep Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyz Republic.,Kyrgyz State Medical Academy, Bishkek, Kyrgyz Republic
| | - Jainagul Isakova
- Research Institute for Molecular Biology and Medicine, Bishkek, Kyrgyz Republic
| | - Almaz A Aldashev
- Research Institute for Molecular Biology and Medicine, Bishkek, Kyrgyz Republic
| | - Talant M Sooronbaev
- Dept of Respiratory, Critical Care and Sleep Medicine, National Center for Cardiology and Internal Medicine, Bishkek, Kyrgyz Republic
| | - Konrad E Bloch
- Clinic of Pneumology and Sleep Disorders Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Azad P, Zhao HW, Cabrales PJ, Ronen R, Zhou D, Poulsen O, Appenzeller O, Hsiao YH, Bafna V, Haddad GG. Senp1 drives hypoxia-induced polycythemia via GATA1 and Bcl-xL in subjects with Monge's disease. J Exp Med 2016; 213:2729-2744. [PMID: 27821551 PMCID: PMC5110013 DOI: 10.1084/jem.20151920] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/02/2016] [Accepted: 10/06/2016] [Indexed: 01/17/2023] Open
Abstract
Azad and collaborators propose that Senp1 drives excessive erythropoiesis in high-altitude Andean dwellers suffering from chronic mountain sickness. In this study, because excessive polycythemia is a predominant trait in some high-altitude dwellers (chronic mountain sickness [CMS] or Monge’s disease) but not others living at the same altitude in the Andes, we took advantage of this human experiment of nature and used a combination of induced pluripotent stem cell technology, genomics, and molecular biology in this unique population to understand the molecular basis for hypoxia-induced excessive polycythemia. As compared with sea-level controls and non-CMS subjects who responded to hypoxia by increasing their RBCs modestly or not at all, respectively, CMS cells increased theirs remarkably (up to 60-fold). Although there was a switch from fetal to adult HgbA0 in all populations and a concomitant shift in oxygen binding, we found that CMS cells matured faster and had a higher efficiency and proliferative potential than non-CMS cells. We also established that SENP1 plays a critical role in the differential erythropoietic response of CMS and non-CMS subjects: we can convert the CMS phenotype into that of non-CMS and vice versa by altering SENP1 levels. We also demonstrated that GATA1 is an essential downstream target of SENP1 and that the differential expression and response of GATA1 and Bcl-xL are a key mechanism underlying CMS pathology.
Collapse
Affiliation(s)
- Priti Azad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Huiwen W Zhao
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Pedro J Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| | - Roy Ronen
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Orit Poulsen
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Otto Appenzeller
- Department of Neurology, New Mexico Health Enhancement and Marathon Clinics Research Foundation, Albuquerque, NM 87122
| | - Yu Hsin Hsiao
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093 .,Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093.,Rady Children's Hospital, San Diego, CA 92123
| |
Collapse
|
14
|
SENP1, but not fetal hemoglobin, differentiates Andean highlanders with chronic mountain sickness from healthy individuals among Andean highlanders. Exp Hematol 2016; 44:483-490.e2. [PMID: 26952840 DOI: 10.1016/j.exphem.2016.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/25/2023]
Abstract
Chronic mountain sickness (CMS) results from chronic hypoxia. It is unclear why certain highlanders develop CMS. We hypothesized that modest increases in fetal hemoglobin (HbF) are associated with lower CMS severity. In this cross-sectional study, we found that HbF levels were normal (median = 0.4%) in all 153 adult Andean natives in Cerro de Pasco, Peru. Compared with healthy adults, the borderline elevated hemoglobin group frequently had symptoms (headaches, tinnitus, cyanosis, dilatation of veins) of CMS. Although the mean hemoglobin level differed between the healthy (17.1 g/dL) and CMS (22.3 g/dL) groups, mean plasma erythropoietin (EPO) levels were similar (healthy, 17.7 mIU/mL; CMS, 12.02 mIU/mL). Sanger sequencing determined that single-nucleotide polymorphisms in endothelial PAS domain 1 (EPAS1) and egl nine homolog 1 (EGLN1), associated with lower hemoglobin in Tibetans, were not identified in Andeans. Sanger sequencing of sentrin-specific protease 1 (SENP1) and acidic nuclear phosphoprotein 32 family, member D (ANP32D), in healthy and CMS individuals revealed that non-G/G genotypes were associated with higher CMS scores. No JAK2 V617F mutation was detected in CMS individuals. Thus, HbF and other classic erythropoietic parameters did not differ between healthy and CMS individuals. However, the non-G/G genotypes of SENP1 appeared to differentiate individuals with CMS from healthy Andean highlanders.
Collapse
|
15
|
Interaction of CARD14, SENP1 and VEGFA polymorphisms on susceptibility to high altitude polycythemia in the Han Chinese population at the Qinghai–Tibetan Plateau. Blood Cells Mol Dis 2016; 57:13-22. [DOI: 10.1016/j.bcmd.2015.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
|
16
|
Mirrakhimov AE, Strohl KP. High-altitude Pulmonary Hypertension: an Update on Disease Pathogenesis and Management. Open Cardiovasc Med J 2016; 10:19-27. [PMID: 27014374 PMCID: PMC4780514 DOI: 10.2174/1874192401610010019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/20/2015] [Accepted: 10/22/2015] [Indexed: 12/18/2022] Open
Abstract
High-altitude pulmonary hypertension (HAPH) affects individuals residing at altitudes of 2,500 meters and higher. Numerous pathogenic variables play a role in disease inception and progression and include low oxygen concentration in inspired air, vasculopathy, and metabolic abnormalities. Since HAPH affects only some people living at high altitude genetic factors play a significant role in its pathogenesis. The clinical presentation of HAPH is nonspecific and includes fatigue, shortness of breath, cognitive deficits, cough, and in advanced cases hepatosplenomegaly and overt right-sided heart failure. A thorough history is important and should include a search for additional risk factors for lung disease and pulmonary hypertension (PH) such as smoking, indoor air pollution, left-sided cardiac disease and sleep disordered breathing. Twelve-lead electrocardiogram, chest X-ray and echocardiography can be used as screening tools. A definitive diagnosis should be made with right-sided heart catheterization using a modified mean pulmonary artery pressure of at least 30 mm Hg, differing from the 25 mm Hg used for other types of PH. Treatment of HAPH includes descent to a lower altitude whenever possible, oxygen therapy and the use of medications such as endothelin receptor antagonists, phosphodiesterase 5 blockers, fasudil and acetazolamide. Some recent evidence suggests that iron supplementation may also be beneficial. However, it is important to note that the scientific literature lacks long-term randomized controlled data on the pharmacologic treatment of HAPH. Thus, an individualized approach to treatment and informing the patients regarding the benefits and risks of the selected treatment regimen are essential.
Collapse
Affiliation(s)
- Aibek E Mirrakhimov
- University of Kentucky College of Medicine, Department of Medicine, Lexington, Kentucky, 40508, USA
| | - Kingman P Strohl
- Case Western Reserve University, Division of Pulmonary, Critical Care and Sleep Medicine, 11100 Euclid Ave, Cleve-land, Ohio 44106, USA
| |
Collapse
|
17
|
Villafuerte FC. New genetic and physiological factors for excessive erythrocytosis and Chronic Mountain Sickness. J Appl Physiol (1985) 2015; 119:1481-6. [PMID: 26272318 PMCID: PMC4683346 DOI: 10.1152/japplphysiol.00271.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/07/2015] [Indexed: 01/03/2023] Open
Abstract
In the last few years, genetic and functional studies have provided important insight on the pathophysiology of excessive erythrocytosis (EE), the main sign of Chronic Mountain Sickness (CMS). The recent finding of the association of the CMS phenotype with a single-nucleotide polymorphism (SNP) in the Sentrin-specific Protease 1 (SENP1) gene, and its differential expression pattern in Andean highlanders with and without CMS, has triggered large interest in high-altitude studies because of the potential role of its gene product in the control of erythropoiesis. The SENP1 gene encodes for a protease that regulates the function of hypoxia-relevant transcription factors such as Hypoxia-Inducible Factor (HIF) and GATA, and thus might have an erythropoietic regulatory role in CMS through the modulation of the expression of erythropoietin (Epo) or Epo receptors. The different physiological patterns in the Epo-EpoR system found among Andeans, even among highlanders with CMS, together with their different degrees of erythropoietic response, might indicate specific underlying genetic backgrounds, which in turn might reflect different levels of adaptation to lifelong high-altitude hypoxia. This minireview discusses recent genetic findings potentially underlying EE and CMS, and their possible physiological mechanisms in Andean highlanders.
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Laboratorio de Fisiología Comparada, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
18
|
Endogenous Asymmetric Dimethylarginine Pathway in High Altitude Adapted Yaks. BIOMED RESEARCH INTERNATIONAL 2015; 2015:196904. [PMID: 26380264 PMCID: PMC4563057 DOI: 10.1155/2015/196904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/13/2015] [Indexed: 01/09/2023]
Abstract
Hypoxia-induced and high altitude pulmonary hypertension are a major problem in the mountain areas of the world. The asymmetric methylarginines (ADMA) inhibit nitric oxide (NO) synthesis by competing with L-arginine, and high levels of plasma ADMA predict adverse outcomes in pulmonary hypertension. However, little is known about the regulation of the ADMA-NO pathway in animals adapted to high altitudes. We measured the plasma ADMA concentration, endothelial NO synthase (eNOS), dimethylarginine dimethylaminohydrolases (DDAH) protein expression, and DDAH activities in the lungs from yaks. Although the yaks are hypoxemic, cardiac function and pulmonary arterial pressures are almost normal, and we found decreased DDAH expression and activity in association with reduced plasma ADMA concentrations. The eNOS expression was significantly higher in yaks. These results indicate that augmented endogenous NO activity in yaks through the ADMA-DDAH pathway and eNOS upregulation account for the low pulmonary vascular tone observed in high altitude adapted yaks.
Collapse
|
19
|
Painschab MS, Malpartida GE, Dávila-Roman VG, Gilman RH, Kolb TM, León-Velarde F, Miranda JJ, Checkley W. Association between serum concentrations of hypoxia inducible factor responsive proteins and excessive erythrocytosis in high altitude Peru. High Alt Med Biol 2015; 16:26-33. [PMID: 25760230 DOI: 10.1089/ham.2014.1086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Painschab, Matthew S., Gary E. Malpartida, Victor G. Davila-Roman, Robert H. Gilman, Todd M. Kolb, Fabiola Leon-Velarde, J. Jaime Miranda, and William Checkley. Association between serum concentrations of hypoxia inducible factor responsive proteins and excessive erythrocytosis in high altitude Peru. High Alt Med Biol 16:26-33, 2015.-Long-term residence at high altitude is associated with the development of chronic mountain sickness (CMS), which is characterized by excessive erythrocytosis (EE). EE occurs under chronic hypoxia, and a strongly selected mutation in hypoxia-inducible factor 2α (HIF2A) has been found in native Tibetans that correlates with having a normal hemoglobin at high altitude. We sought to evaluate differences in plasma levels of four HIF-responsive proteins in 20 participants with EE (hemoglobin >21 g/dL in men and >19 in women) and in 20 healthy, age- and sex-matched participants without EE living at high altitude in Puno, Peru. We performed ELISA to measure plasma levels of the four HIF-responsive proteins: vascular endothelial growth factor (VEGF), soluble VEGF receptor 1 (sVEGF-R1), endothelin-1, and erythropoietin. As a secondary aim, we evaluated the association between HIF-responsive proteins and echocardiography-estimated pulmonary artery systolic pressure (PASP) in a subset of 26 participants. sVEGF-R1 was higher in participants with vs. without EE (mean 107 pg/mL vs. 90 pg/mL; p=0.007). Although plasma concentrations of endothelin-1, VEGF, and erythropoietin were higher in participants with vs. without EE, they did not achieve statistical significance (all p>0.25). Both sVEGF-R1 (p=0.04) and erythropoietin (p=0.04) were positively associated with PASP after adjustment for age, sex, and BMI. HIF-responsive proteins may play a pathophysiological role in altitude-related, chronic diseases but our results did not show consistent changes in all measured HIF-responsive proteins. Larger studies are needed to evaluate for additional genetic and environmental risk factors.
Collapse
Affiliation(s)
- Matthew S Painschab
- 1 Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University , Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Espinoza JR, Alvarez G, León-Velarde F, Preciado HFJ, Macarlupu JL, Rivera-Ch M, Rodriguez J, Favier J, Gimenez-Roqueplo AP, Richalet JP. Vascular endothelial growth factor-A is associated with chronic mountain sickness in the Andean population. High Alt Med Biol 2015; 15:146-54. [PMID: 24971768 DOI: 10.1089/ham.2013.1121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A study of chronic mountain sickness (CMS) with a candidate gene--vascular endothelial growth factor A (VEGFA)--was carried out in a Peruvian population living at high altitude in Cerro de Pasco (4380 m). The study was performed by genotyping of 11 tag SNPs encompassing 2.2 kb of region of VEGFA gene in patients with a diagnosis of CMS (n = 131; 49.1 ± 12.7 years old) and unrelated healthy controls (n = 84; 47.2 ± 13.4 years old). The VEGFA tag SNP rs3025033 was found associated with CMS (p < 0.05), individuals with AG genotype have 2.5 more risk of CMS compared to those with GG genotype (p < 0.02; OR, 2.54; 95% CI: 1.10-5.88). Pairwise Fst and Nei's distance indicate genetic differentiation between Cerro de Pasco population and HapMap3 population (Fst > 0.36, p < 0.01), suggesting selection is operating on the VEGF gene. Our results suggest that VEGFA is associated with CMS in long-term residents at high altitude in the Peruvian Andes.
Collapse
Affiliation(s)
- Jose R Espinoza
- 1 Molecular Biotechnology Unit, Laboratories for Research and Development (LID), Universidad Peruana Cayetano Heredia , Peru
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wilkins MR, Ghofrani HA, Weissmann N, Aldashev A, Zhao L. Pathophysiology and Treatment of High-Altitude Pulmonary Vascular Disease. Circulation 2015; 131:582-90. [DOI: 10.1161/circulationaha.114.006977] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Martin R. Wilkins
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Hossein-Ardeschir Ghofrani
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Norbert Weissmann
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Almaz Aldashev
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Lan Zhao
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| |
Collapse
|
22
|
Villafuerte FC, Macarlupú JL, Anza-Ramírez C, Corrales-Melgar D, Vizcardo-Galindo G, Corante N, León-Velarde F. Decreased plasma soluble erythropoietin receptor in high-altitude excessive erythrocytosis and Chronic Mountain Sickness. J Appl Physiol (1985) 2014; 117:1356-62. [PMID: 25324511 PMCID: PMC4254844 DOI: 10.1152/japplphysiol.00619.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/13/2014] [Indexed: 11/22/2022] Open
Abstract
Excessive erythrocytosis (EE) is the hallmark of chronic mountain sickness (CMS), a prevalent syndrome in high-altitude Andean populations. Although hypoxemia represents its underlying stimulus, why some individuals develop EE despite having altitude-normal blood erythropoietin (Epo) concentration is still unclear. A soluble form of the Epo receptor (sEpoR) has been identified in human blood and competes directly for Epo with its membrane counterpart (mEpoR). Thus, reduced levels of circulating sEpoR could lead to higher Epo availability and ultimately to EE. We characterized the relationship between Epo and sEpoR, with hematocrit and hemoglobin concentration in healthy highlanders and CMS patients at 4,340 m in Cerro de Pasco, Peru. Our results show that EE patients show decreased plasma sEpoR levels and can be subdivided into two subgroups of normal and high plasma Epo concentration for the altitude of residence, with hemoglobin concentration rising exponentially with an increasing Epo-to-sEpoR ratio (Epo/sEpoR). Also, we showed that the latter varies as an inverse exponential function of arterial pulse O2 saturation. Our findings suggests that EE is strongly associated with higher Epo/sEpoR values, leading to elevated plasma Epo availability to bind mEpoR, and thereby a stronger stimulus for augmented erythropoiesis. Differences in the altitude normal and high Epo CMS patients with a progressively higher Epo/sEpoR supports the hypothesis of the existence of two genetically different subgroups suffering from EE and possibly different degrees of adaptation to chronic high-altitude hypoxia.
Collapse
Affiliation(s)
- Francisco C Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - José Luis Macarlupú
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cecilia Anza-Ramírez
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Daniela Corrales-Melgar
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Noemí Corante
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Fabiola León-Velarde
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
23
|
Gonzales GF, Chaupis D. Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean Highlanders: a review. Andrologia 2014; 47:729-43. [PMID: 25277225 DOI: 10.1111/and.12359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 01/12/2023] Open
Abstract
Populations living at high altitudes (HA), particularly in the Peruvian Central Andes, are characterised by presenting subjects with erythrocytosis and others with excessive erythrocytosis (EE)(Hb>21 g dl(-1) ). EE is associated with chronic mountain sickness (CMS), or lack of adaptation to HA. Testosterone is an erythropoietic hormone and it may play a role on EE at HA. The objective of the present review was to summarise findings on role of serum T levels on adaptation at HA and genes acting on this process. Men at HA without EE have higher androstenedione levels and low ratio androstenedione/testosterone than men with EE, suggesting low activity of 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and this could be a mechanism of adaptation to HA. Higher conversion of dehydroepiandrosterone to testosterone in men with EE suggests nigher 17beta-HSD activity. Men with CMS at Peruvian Central Andes have two genes SENP1, and ANP32D with higher transcriptional response to hypoxia relative to those without. SUMO-specific protease 1 (SENP1) is an erythropoiesis regulator, which is essential for the stability and activity of hypoxia-inducible factor 1 (HIF-1α) under hypoxia. SENP1 reverses the hormone-augmented SUMOylation of androgen receptor (AR) increasing the transcription activity of AR.In conclusion, increased androgen activity is related with CMS.
Collapse
Affiliation(s)
- G F Gonzales
- Laboratory of Endocrinology and Reproduction, High Altitude Research Institute and Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - D Chaupis
- Laboratory of Endocrinology and Reproduction, High Altitude Research Institute and Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
24
|
Chen Y, Jiang C, Luo Y, Liu F, Gao Y. An EPAS1 haplotype is associated with high altitude polycythemia in male Han Chinese at the Qinghai-Tibetan plateau. Wilderness Environ Med 2014; 25:392-400. [PMID: 25239027 DOI: 10.1016/j.wem.2014.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 05/24/2014] [Accepted: 06/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hemoglobin concentration at high altitude is considered an important marker of high altitude adaptation, and native Tibetans in the Qinghai-Tibetan plateau show lower hemoglobin concentrations than Han people who have emigrated from plains areas. Genetic studies revealed that EPAS1 plays a key role in high altitude adaptation and is associated with the low hemoglobin concentration in Tibetans. Three single nucleotide polymorphisms (rs13419896, rs4953354, rs1868092) of noncoding regions in EPAS1 exhibited significantly different allele frequencies in the Tibetan and Han populations and were associated with low hemoglobin concentrations in Tibetans. METHODS To explore the hereditary basis of high altitude polycythemia (HAPC) and investigate the association between EPAS1 and HAPC in the Han population, these 3 single nucleotide polymorphisms were assessed in 318 male Han Chinese HAPC patients and 316 control subjects. Genotyping was performed by high resolution melting curve analysis. RESULTS The G-G-G haplotype of rs13419896, rs4953354, and rs1868092 was significantly more frequent in HAPC patients than in control subjects, whereas no differences in the allele or genotype frequencies of the 3 single nucleotide polymorphisms were found between HAPC patients and control subjects. Moreover, genotypes of rs1868092 (AA) and rs4953354 (GG) that were not observed in the Chinese Han in the Beijing population were found at frequencies of 1.6% and 0.9%, respectively, in our study population of HAPC patients and control subjects. CONCLUSIONS Carriers of this EPAS1 haplotype (G-G-G, rs13419896, rs4953354, and rs1868092) may have a higher risk for HAPC. These results may contribute to a better understanding of the pathogenesis of HAPC in the Han population.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pathophysiology and High Altitude Physiology (Drs Chen, Jiang, Liu, and Gao); Key Laboratory of High Altitude Medicine, People's Liberation Army (Drs Chen, Jiang, Luo, Liu, and Gao), Chongqing, China
| | - Chunhua Jiang
- Department of Pathophysiology and High Altitude Physiology (Drs Chen, Jiang, Liu, and Gao); Key Laboratory of High Altitude Medicine, People's Liberation Army (Drs Chen, Jiang, Luo, Liu, and Gao), Chongqing, China
| | - Yongjun Luo
- Department of High Altitude Disease (Dr Luo), College of High Altitude Military Medicine, and Key Laboratory of High Altitude Medicine, Third Military Medical University, Ministry of Education; Key Laboratory of High Altitude Medicine, People's Liberation Army (Drs Chen, Jiang, Luo, Liu, and Gao), Chongqing, China
| | - Fuyu Liu
- Department of Pathophysiology and High Altitude Physiology (Drs Chen, Jiang, Liu, and Gao); Key Laboratory of High Altitude Medicine, People's Liberation Army (Drs Chen, Jiang, Luo, Liu, and Gao), Chongqing, China
| | - Yuqi Gao
- Department of Pathophysiology and High Altitude Physiology (Drs Chen, Jiang, Liu, and Gao); Key Laboratory of High Altitude Medicine, People's Liberation Army (Drs Chen, Jiang, Luo, Liu, and Gao), Chongqing, China.
| |
Collapse
|
25
|
Adaptations to local environments in modern human populations. Curr Opin Genet Dev 2014; 29:1-8. [PMID: 25129844 DOI: 10.1016/j.gde.2014.06.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/30/2014] [Indexed: 12/11/2022]
Abstract
After leaving sub-Saharan Africa around 50000-100000 years ago, anatomically modern humans have quickly occupied extremely diverse environments. Human populations were exposed to further environmental changes resulting from cultural innovations, such as the spread of farming, which gave rise to new selective pressures related to pathogen exposures and dietary shifts. In addition to changing the frequency of individual adaptive alleles, natural selection may also shape the overall genetic architecture of adaptive traits. Here, we review recent advances in understanding the genetic architecture of adaptive human phenotypes based on insights from the studies of lactase persistence, skin pigmentation and high-altitude adaptation. These adaptations evolved in parallel in multiple human populations, providing a chance to investigate independent realizations of the evolutionary process. We suggest that the outcome of adaptive evolution is often highly variable even under similar selective pressures. Finally, we highlight a growing need for detecting adaptations that did not follow the classical sweep model and for incorporating new sources of genetic evidence such as information from ancient DNA.
Collapse
|
26
|
Höhenkrankheit. Internist (Berl) 2014; 55:268-73. [DOI: 10.1007/s00108-013-3368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Abstract
Hypoxic pulmonary vasoconstriction (HPV) continues to fascinate cardiopulmonary physiologists and clinicians since its definitive description in 1946. Hypoxic vasoconstriction exists in all vertebrate gas exchanging organs. This fundamental response of the pulmonary vasculature in air breathing animals has relevance to successful fetal transition to air breathing at birth and as a mechanism of ventilation-perfusion matching in health and disease. It is a complex process intrinsic to the vascular smooth muscle, but with in vivo modulation by a host of factors including the vascular endothelium, erythrocytes, pulmonary innervation, circulating hormones and acid-base status to name only a few. This review will provide a broad overview of HPV and its mechansms and discuss the advantages and disadvantages of HPV in normal physiology, disease and high altitude.
Collapse
Affiliation(s)
- Erik R Swenson
- Department of Medicine, University of Washington, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
28
|
Abstract
Altitude physiology began with Paul Bert in 1878. Chronic mountain sickness (CMS) was defined by Carlos Monge in the 1940s in the Peruvian Andes as consisting of excess polycythemia. Hurtado et al performed studies in the Peruvian Andes in the 1950s to 1960s which defined acclimatization in healthy altitude natives, including polycythemia, moderate pulmonary hypertension, and low systemic blood pressure (BP). Electrocardiographic changes of right ventricular hypertrophy (RVH) were noted. Acclimatization of newcomers to altitude involves hyperventilation stimulated by hypoxia and is usually benign. Acute mountain sickness (AMS) in travelers to altitude is characterized by hypoxia-induced anorexia, dyspnea, headache, insomnia, and nausea. The extremes of AMS are high-altitude cerebral edema and high-altitude pulmonary edema. The susceptible high-altitude resident can lose their tolerance to altitude and develop CMS, also referred to as Monge disease. The CMS includes extreme polycythemia, severe RVH, excess pulmonary hypertension, low systemic BP, arterial oxygen desaturation, and hypoventilation.
Collapse
Affiliation(s)
- Thomas F Whayne
- Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
29
|
Tian GX, Zeng XT, Wang XB, Zhang L, Zhang W, Wei WL. Association between the endothelial nitric oxide synthase gene Glu298Asp polymorphism and coronary heart disease: a meta‑analysis of 39 case‑control studies. Mol Med Rep 2013; 7:1310-8. [PMID: 23443250 DOI: 10.3892/mmr.2013.1301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/23/2013] [Indexed: 11/05/2022] Open
Abstract
Numerous studies have indicated that the human endothelial nitric oxide synthase (eNOS) gene Glu298Asp polymorphism is associated with coronary heart disease (CHD) susceptibility, however, their conclusions are inconsistent. The present meta‑analysis aimed to evaluate the precise result by searching the PubMed database and using 39 case‑control studies comprising 7489 cases and 7051 controls.Each study tested the association between the eNOS Glu298Asp polymorphism and CHD. A meta‑analysis was then conducted using the Comprehensive Meta Analysis 2.2 software to calculate the pooled odds ratios (ORs) of five genetic models with 95% confidence intervals (CIs). Publication bias was also explored. The meta‑analysis showed a significant association between the eNOS Glu298Asp polymorphism and CHD susceptibility for all the genetic models [Asp vs. Glu, OR 1.26, 95% CI 1.14‑1.40, P<0.001; Asp/Asp vs. Glu/Glu, OR 1.58, 95% CI 1.23‑2.02, P<0.001; Glu/Asp vs. Glu/Glu, OR 1.12, 95% CI 1.03‑1.22, P=0.001; (Glu/Asp+Asp/Asp) vs. Glu/Glu, OR 1.17, 95% CI 1.07‑1.27, P<0.001; Asp/Asp vs. (Glu/Glu+Glu/Asp), OR 1.59, 95% CI 1.25‑2.03, P<0.001]. Subgroup and sensitivity analyses indicated that the result was robust. A weak publication bias was detected. The results indicated that the eNOS Glu298Asp polymorphism is a risk factor for developing CHD, particularly in the Asian population.
Collapse
Affiliation(s)
- Guo-Xiang Tian
- Department of Cardiology, General Hospital of Beijing Military Command, Beijing 100125, P.R. China
| | | | | | | | | | | |
Collapse
|
30
|
The hypoxic testicle: physiology and pathophysiology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:929285. [PMID: 23056665 PMCID: PMC3465913 DOI: 10.1155/2012/929285] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 08/07/2012] [Accepted: 08/09/2012] [Indexed: 12/15/2022]
Abstract
Mammalian spermatogenesis is a complex biological process occurring in the seminiferous tubules in the testis. This process represents a delicate balance between cell proliferation, differentiation, and apoptosis. In most mammals, the testicles are kept in the scrotum 2 to 7°C below body core temperature, and the spermatogenic process proceeds with a blood and oxygen supply that is fairly independent of changes in other vascular beds in the body. Despite this apparently well-controlled local environment, pathologies such as varicocele or testicular torsion and environmental exposure to low oxygen (hypoxia) can result in changes in blood flow, nutrients, and oxygen supply along with an increased local temperature that may induce adverse effects on Leydig cell function and spermatogenesis. These conditions may lead to male subfertility or infertility. Our literature analyses and our own results suggest that conditions such as germ cell apoptosis and DNA damage are common features in hypoxia and varicocele and testicular torsion. Furthermore, oxidative damage seems to be present in these conditions during the initiation stages of germ cell damage and apoptosis. Other mechanisms like membrane-bound metalloproteinases and phospholipase A2 activation could also be part of the pathophysiological consequences of testicular hypoxia.
Collapse
|
31
|
Abstract
Chronic Mountain Sickness (CMS) is an important high-altitude (HA) pathology in most mountainous regions of the world. Although its most characteristic sign is excessive erytrocytosis (EE), in the more severe stages of the disease, high-altitude pulmonary hypertension (HAPH), with remodeling of pulmonary arterioles and right ventricular enlargement is commonly found. The degree of ventricular hypertrophy depends on the vasoconstrictor pulmonary response, the intensity of vascular resistance and the level of altitude, and therefore on the degree of hypoxemia. This chapter briefly summarizes the existing data regarding the clinical and pathophysiological features of the cardiopulmonary system in CMS, with emphasis in findings from research in the Andes. The literature shows variability in cardiac output values in CMS, which might be related to the degree of EE. Recent findings have shown that cardiac output (l/min) is lower in CMS when compared with sea-level (SL) dwellers. Mean pulmonary acceleration time (ms) is significantly lower in CMS subjects than in SL and HA natives, and pulmonary vascular resistance index (Wood units) is higher in CMS and HA natives when compared with SL dwellers. Systemic blood pressure has similar values in CMS patients and healthy HA natives, but some differences arise in its control mechanisms. Although CMS individuals have a less effective vasoconstrictor reflex, their tolerance to orthostatic stress is similar to that of healthy HA natives which might be explained in terms of the larger blood volume present in CMS subjects. At present research is directed to design strategies on pharmacological intervention for CMS treatment. Recently, a clinical trial with acetazolamide, in patients with CMS has proven to be effective in increasing mean pulmonary acceleration time and decreasing pulmonary vascular resistance index, which might be indirectly due the reduction of hematocrit.
Collapse
|
32
|
Liver Transplantation in a Patient with Pulmonary Hypertension at High Altitude. Wilderness Environ Med 2010; 21:50-3. [DOI: 10.1016/j.wem.2009.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
A role for succinate dehydrogenase genes in low chemoresponsiveness to hypoxia? Clin Auton Res 2010; 19:335-42. [PMID: 19768395 DOI: 10.1007/s10286-009-0028-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
The detection of hypoxia by the carotid bodies elicits a ventilatory response of utmost importance for tolerance to high altitude. Germline mutations in three genes encoding subunit B, C and D of succinate dehydrogenase (SDHB, SDHC and SDHD) have been associated with paragangliomas of the carotid body. We hypothesized that SDH dysfunction within the carotid body could result in low chemoresponsiveness and intolerance to high altitude. The frequency of polymorphisms of SDHs, hypoxia-inducible factor type 1 (HIF1alpha) and angiotensin converting enzyme (ACE) genes was compared between 40 subjects with intolerance to high altitude and a low hypoxic ventilatory response at exercise (HVRe < or = 0.5 ml min(-1) kg(-1); HVR- group) and 41 subjects without intolerance to high altitude and a high HVRe (> or = 0.80 ml min(-1) kg(-1); HVR+). We found no significant association between low or high HVRe and (1) the allele frequencies for nine single nucleotide polymorphisms (SNPs) in the SDHD and SDHB genes, (2) the ACE insertion/deletion polymorphism and (3) four SNPs in the HIF1alpha gene. However, a marginal significant association was found between the synonymous polymorphism c.18A>C of the SDHB gene and chemoresponsiveness: 8/40 (20%) in the HVR- group and 3/41 (7%) in the HVR+ group (p = 0.12). A principal component analysis showed that no subject carrying the 18C allele had both high ventilatory and cardiac response to hypoxia. In conclusion, no clear association was found between gene variants involved in oxygen sensing and chemoresponsiveness, although some mutations in the SDHB and SDHD genes deserve further investigations in a larger population.
Collapse
|
34
|
Tissot van Patot MC, Serkova NJ, Haschke M, Kominsky DJ, Roach RC, Christians U, Henthorn TK, Honigman B. Enhanced leukocyte HIF-1alpha and HIF-1 DNA binding in humans after rapid ascent to 4300 m. Free Radic Biol Med 2009; 46:1551-7. [PMID: 19303436 DOI: 10.1016/j.freeradbiomed.2009.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/02/2009] [Accepted: 03/11/2009] [Indexed: 01/19/2023]
Abstract
Hypoxia plays a crucial role in the pathogenesis of a multitude of diseases and clinical conditions such as cancer, diabetes, cardiovascular disease, stroke, pulmonary disease, inflammation, organ transplant, and wound healing. Investigations into the role of hypoxia-inducible transcription factor (HIF) in disease development have been conducted with the basic premise that HIF is activated in vivo during hypoxia in humans, yet this basic physiologic premise has never verified. Thus, we hypothesized that HIF-1 DNA binding would be enhanced in vivo in humans in response to acute global hypoxia. Fourteen human subjects were exposed to normoxia (1600 m) and hypoxia (4300 m, approximately 12% O(2)) in a hypobaric hypoxic chamber (8 h). HIF-1 DNA binding and HIF-1alpha protein were evaluated in circulating leukocytes. Oxidative markers were evaluated by plasma metabolomics using nuclear magnetic resonance and by urinary 15-F(2t)-isoprostane concentrations. Leukocyte HIF-1 DNA binding was increased (p=0.007) and HIF-1alpha was greater during hypoxia compared to normoxia. Circulating total glutathione was reduced by 35% (p=0.001), and lactate and succinate were increased by 29 and 158%, respectively (p=0.007 and 0.001), as were urinary 15-F(2t)-isoprostanes (p=0.037). HIF-1 DNA binding and HIF-1alpha were elevated in vivo in leukocytes of healthy human subjects exposed to 12% oxygen, in association with plasma and urinary markers of hypoxic stress.
Collapse
Affiliation(s)
- Martha C Tissot van Patot
- Department of Anesthesiology, University of Colorado at Denver School of Medicine, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|