1
|
Cooney A, Loza L, Najdawi K, Brommel C, McCray P, Sinn P. High ionic strength vector formulations enhance gene transfer to airway epithelia. Nucleic Acids Res 2024; 52:9369-9383. [PMID: 39077931 PMCID: PMC11381324 DOI: 10.1093/nar/gkae640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
A fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated. Here, we asked if increasing the concentration of NaCl enhances the transduction efficiency of three gene therapy vectors: adenovirus, AAV, and lentiviral vectors. Vectors formulated with 3-7% NaCl exhibited markedly increased transduction for all three platforms, leading to anion channel correction in primary cultures of human CF epithelial cells and enhanced gene transfer in mouse and pig airways in vivo. The mechanism of transduction enhancement involved tonicity but not osmolarity or pH. Formulating vectors with a high ionic strength solution is a simple strategy to greatly enhance efficacy and immediately improve preclinical or clinical applications.
Collapse
Affiliation(s)
- Ashley L Cooney
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
| | - Laura Marquez Loza
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
| | - Kenan Najdawi
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
| | - Christian M Brommel
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
| | - Paul B McCray
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
- University of Iowa, Center for Gene Therapy; Iowa City, IA 52242, USA
| | - Patrick L Sinn
- University of Iowa, Stead Family Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Pappajohn Biomedical Institute; Iowa City, IA 52242, USA
- University of Iowa, Center for Gene Therapy; Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Sripada SA, Barbieri E, Shastry S, Wuestenhagen E, Aldinger A, Rammo O, Schulte MM, Daniele M, Menegatti S. Multiangle Light Scattering as a Lentivirus Purification Process Analytical Technology. Anal Chem 2024; 96:9593-9600. [PMID: 38804040 DOI: 10.1021/acs.analchem.4c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The limited biomolecular and functional stability of lentiviral vectors (LVVs) for cell therapy poses the need for analytical tools that can monitor their titers and activity throughout the various steps of expression and purification. In this study, we describe a rapid (25 min) and reproducible (coefficient of variance ∼0.5-2%) method that leverages size exclusion chromatography coupled with multiangle light scattering detection (SEC-MALS) to determine size, purity, and particle count of LVVs purified from bioreactor harvests. The SEC-MALS data were corroborated by orthogonal methods, namely, dynamic light scattering (DLS) and transmission electron microscopy. The method was also evaluated for robustness in the range of 2.78 × 105-2.67 × 107 particles per sample. Notably, MALS-based particle counts correlated with the titer of infectious LVVs measured via transduction assays (R2 = 0.77). Using a combination of SEC-MALS and DLS, we discerned the effects of purification parameters on LVV quality, such as the separation between heterogeneous LV, which can facilitate critical decision-making in the biomanufacturing of gene and cell therapies.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, NC State University, 911 Partners Way, Raleigh, North Carolina 27606, United States
- NC-VVIRAL, NC State University, 1840 Entrepreneur Dr, Raleigh, North Carolina 27606, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, NC State University, 911 Partners Way, Raleigh, North Carolina 27606, United States
- LigaTrap Technologies LLC, 1791 Varsity Drive, Suite #150, Raleigh, North Carolina 27606, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, NC State University, 911 Partners Way, Raleigh, North Carolina 27606, United States
- Biomanufacturing Training and Education Center, NC State University, 850 Oval Dr, Raleigh, North Carolina 27606, United States
- NC-VVIRAL, NC State University, 1840 Entrepreneur Dr, Raleigh, North Carolina 27606, United States
| | | | | | | | | | - Michael Daniele
- Department of Electrical and Computer Engineering, NC State University, 890 Oval Dr, Raleigh, North Carolina 27606, United States
- Joint Department of Biomedical Engineering, NC State University and UNC Chapel Hill, 1840 Entrepreneur Dr, Raleigh, North Carolina 27606, United States
- NC-VVIRAL, NC State University, 1840 Entrepreneur Dr, Raleigh, North Carolina 27606, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, NC State University, 911 Partners Way, Raleigh, North Carolina 27606, United States
- LigaTrap Technologies LLC, 1791 Varsity Drive, Suite #150, Raleigh, North Carolina 27606, United States
- Biomanufacturing Training and Education Center, NC State University, 850 Oval Dr, Raleigh, North Carolina 27606, United States
- NC-VVIRAL, NC State University, 1840 Entrepreneur Dr, Raleigh, North Carolina 27606, United States
| |
Collapse
|
3
|
Phuphanitcharoenkun S, Bhukhai K, Phanthong P, Prasongtanakij S, Linn AK, Sutjarit N, Anurathapan U, Leboulch P, Payen E, Hongeng S, Borwornpinyo S. Droplet digital polymerase chain reaction-based quantitation of therapeutic lentiviral vector copies in transduced hematopoietic stem cells. Cytotherapy 2024; 26:586-591. [PMID: 38551525 DOI: 10.1016/j.jcyt.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND AIMS Gene therapy using lentiviral vectors (LVs) that harbor a functional β-globin gene provides a curative treatment for hemoglobinopathies including beta-thalassemia and sickle cell disease. Accurate quantification of the vector copy number (VCN) and/or the proportion of transduced cells is critical to evaluate the efficacy of transduction and stability of the transgene during treatment. Moreover, commonly used techniques for LV quantification, including real-time quantitative polymerase chain reaction (PCR) or fluorescence-activated cell sorting, require either a standard curve or expression of a reporter protein for the detection of transduced cells. In the present study, we describe a digital droplet PCR (ddPCR) technique to measure the lentiviral VCN in transduced hematopoietic stem and progenitor cells (HSPCs). METHODS After HSPCs were transduced with an LV encoding the therapeutic β-globin (βA-T87Q) gene, the integrated lentiviral sequence in the host genome was amplified with primers that targeted a sequence within the vector and the human RPP30 gene. The dynamic range of ddPCR was between 5 × 10-3 ng and 5 × 10-6 ng of target copy per reaction. RESULTS We found that the ddPCR-based approach was able to estimate VCN with high sensitivity and a low standard deviation. Furthermore, ddPCR-mediated quantitation of lentiviral copy numbers in differentiated erythroblasts correlated with the level of βA-T87Q protein detected by reverse-phase high-performance liquid chromatography. CONCLUSIONS Taken together, the ddPCR technique has the potential to precisely detect LV copy numbers in the host genome, which can be used for VCN estimation, calculation of infectious titer and multiplicity of infection for HSPC transduction in a clinical setting.
Collapse
Affiliation(s)
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phetcharat Phanthong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somsak Prasongtanakij
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Aung Khine Linn
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nareerat Sutjarit
- Graduate Program in Nutrition, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Philippe Leboulch
- Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts, USA
| | - Emmanuel Payen
- Paris-Saclay University, CEA, INSERM, Center for Immunology of Viral, Auto - immune, Hematological and Bacterial Diseases, Fontenay aux Roses, France
| | - Suradej Hongeng
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Suparerk Borwornpinyo
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Howe G, Wasmuth M, Emanuelle P, Massaro G, Rahim AA, Ali S, Rivera M, Ward J, Keshavarz-Moore E, Mason C, Nesbeth DN. Engineering an Autonucleolytic Mammalian Suspension Host Cell Line to Reduce DNA Impurity Levels in Serum-Free Lentiviral Process Streams. ACS Synth Biol 2024; 13:466-473. [PMID: 38266181 PMCID: PMC10877604 DOI: 10.1021/acssynbio.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
We engineered HEK293T cells with a transgene encoding tetracycline-inducible expression of a Staphylococcus aureus nuclease incorporating a translocation signal. We adapted the unmodified and nuclease-engineered cell lines to grow in suspension in serum-free media, generating the HEK293TS and NuPro-2S cell lines, respectively. Transient transfection yielded 1.19 × 106 lentiviral transducing units per milliliter (TU/mL) from NuPro-2S cells and 1.45 × 106 TU/mL from HEK293TS cells. DNA ladder disappearance revealed medium-resident nuclease activity arising from NuPro-2S cells in a tetracycline-inducible manner. DNA impurity levels in lentiviral material arising from NuPro-2S and HEK293TS cells were undetectable by SYBR Safe agarose gel staining. Direct measurement by PicoGreen reagent revealed DNA to be present at 636 ng/mL in lentiviral material from HEK293TS cells, an impurity level reduced by 89% to 70 ng/mL in lentiviral material from NuPro-2S cells. This reduction was comparable to the 23 ng/mL achieved by treating HEK293TS-derived lentiviral material with 50 units/mL Benzonase.
Collapse
Affiliation(s)
- Geoffrey Howe
- Department
of Biochemical Engineering, University College
London, Bernard Katz
Building, London WC1E 6BT, United Kingdom
| | - Matthew Wasmuth
- Department
of Biochemical Engineering, University College
London, Bernard Katz
Building, London WC1E 6BT, United Kingdom
| | - Pamela Emanuelle
- Department
of Biochemical Engineering, University College
London, Bernard Katz
Building, London WC1E 6BT, United Kingdom
| | - Giulia Massaro
- UCL
School of Pharmacy, University College London, London WC1N 1AX, U.K.
| | - Ahad A. Rahim
- UCL
School of Pharmacy, University College London, London WC1N 1AX, U.K.
| | - Sadfer Ali
- Department
of Biochemical Engineering, University College
London, Bernard Katz
Building, London WC1E 6BT, United Kingdom
| | - Milena Rivera
- Department
of Biochemical Engineering, University College
London, Bernard Katz
Building, London WC1E 6BT, United Kingdom
| | - John Ward
- Department
of Biochemical Engineering, University College
London, Bernard Katz
Building, London WC1E 6BT, United Kingdom
| | - Eli Keshavarz-Moore
- Department
of Biochemical Engineering, University College
London, Bernard Katz
Building, London WC1E 6BT, United Kingdom
| | - Chris Mason
- Department
of Biochemical Engineering, University College
London, Bernard Katz
Building, London WC1E 6BT, United Kingdom
| | - Darren N. Nesbeth
- Department
of Biochemical Engineering, University College
London, Bernard Katz
Building, London WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Cooney AL, Loza LM, Najdawi K, Brommel CM, McCray PB, Sinn PL. High ionic strength vector formulations enhance gene transfer to airway epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576687. [PMID: 38328187 PMCID: PMC10849541 DOI: 10.1101/2024.01.22.576687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A fundamental challenge for cystic fibrosis (CF) gene therapy is ensuring sufficient transduction of airway epithelia to achieve therapeutic correction. Hypertonic saline (HTS) is frequently administered to people with CF to enhance mucus clearance. HTS transiently disrupts epithelial cell tight junctions, but its ability to improve gene transfer has not been investigated. Here we asked if increasing the concentration of NaCl enhances the transduction efficiency of three gene therapy vectors: adenovirus, AAV, and lentiviral vectors. Vectors formulated with 3-7% NaCl exhibited markedly increased transduction for all three platforms, leading to anion channel correction in primary cultures of human CF epithelial cells and enhanced gene transfer in mouse and pig airways in vivo. The mechanism of transduction enhancement involved tonicity but not osmolarity or pH. Formulating vectors with a high ionic strength solution is a simple strategy to greatly enhance efficacy and immediately improve preclinical or clinical applications.
Collapse
Affiliation(s)
- Ashley L. Cooney
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
| | - Laura Marquez Loza
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
| | - Kenan Najdawi
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
| | - Christian M. Brommel
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
| | - Paul B. McCray
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
- University of Iowa, Department of Microbiology and Immunology, Iowa City, IA 52242, USA
| | - Patrick L. Sinn
- University of Iowa, Department of Pediatrics; Iowa City, IA 52242, USA
- University of Iowa, Center for Cystic Fibrosis Gene Therapy; Iowa City, IA 52242, USA
- University of Iowa, Department of Microbiology and Immunology, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Kandell J, Milian S, Snyder R, Lakshmipathy U. Universal ddPCR-based assay for the determination of lentivirus infectious titer and lenti-modified cell vector copy number. Mol Ther Methods Clin Dev 2023; 31:101120. [PMID: 37841416 PMCID: PMC10568280 DOI: 10.1016/j.omtm.2023.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
The translation of cell-based therapies from research to clinical setting requires robust analytical methods that successfully adhere to current good manufacturing practices and regulatory guidelines. Lentiviral vectors are commonly used for gene delivery to generate genetically modified therapeutic cell products. For some cell therapy products, standardized characterization assays for potency and safety have gained momentum. Translational applications benefit from assays that can be deployed broadly, such as for lentiviral vectors with various transgenes of interest. Development of a universal method to determine lentivirus infectious titer and vector copy number (VCN) of lenti-modified cells was performed using droplet digital PCR (ddPCR). Established methods relied on a ubiquitous lenti-specific target and a housekeeping gene that demonstrated comparability among flow cytometry-based methods. A linearized plasmid control was used to determine assay linearity/range, sensitivity, accuracy, and limits of quantification. Implementing this assay, infectious titer was assessed for various production runs that demonstrated comparability to the flow cytometry titer. The ddPCR assay described here also indicates suitability in the determination of VCN for genetically modified CAR-T cell products. Overall, the development of these universal assays supports the implementation of standardized characterization methods for quality control.
Collapse
Affiliation(s)
- Jennifer Kandell
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, San Diego, CA 92121, USA
| | - Steven Milian
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, Alachua, FL 32615, USA
| | - Richard Snyder
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, Alachua, FL 32615, USA
| | - Uma Lakshmipathy
- Science and Technology, Pharma Services Group, Thermo Fisher Scientific, San Diego, CA 92121, USA
| |
Collapse
|
7
|
He Z, Kwee EJ, Cleveland MH, Cole KD, Lin-Gibson S, He HJ. Quantitation and integrity evaluation of RNA genome in lentiviral vectors by direct reverse transcription-droplet digital PCR (direct RT-ddPCR). Sci Rep 2023; 13:14470. [PMID: 37660227 PMCID: PMC10475045 DOI: 10.1038/s41598-023-41644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
Lentiviral vectors (LV) have proven to be powerful tools for stable gene delivery in both dividing and non-dividing cells. Approval of these LVs for use in clinical applications has been achieved by improvements in LV design. Critically important characteristics concerning quality control are LV titer quantification and the detection of impurities. However, increasing evidence concerning high variability in titration assays indicates poor harmonization of the methods undertaken to date. In this study, we developed a direct reverse transcription droplet digital PCR (Direct RT-ddPCR) approach without RNA extraction and purification for estimation of LV titer and RNA genome integrity. The RNA genome integrity was assessed by RT-ddPCR assays targeted to four distant regions of the LV genome. Results of the analyses showed that direct RT-ddPCR without RNA extraction and purification performs similarly to RT-ddPCR on purified RNA from 3 different LV samples, in terms of robustness and assay variance. Interestingly, these RNA titer results were comparable to physical titers by p24 antigen ELISA (enzyme-linked immunosorbent assay). Moreover, we confirmed the partial degradation or the incomplete RNA genomes in the prepared 3 LV samples. These results may partially explain the discrepancy of the LV particle titers to functional titers. This work not only demonstrates the feasibility of direct RT-ddPCR in determining LV titers, but also provides a method that can be easily adapted for RNA integrity assessment.
Collapse
Affiliation(s)
- Zhiyong He
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA.
| | - Edward J Kwee
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA
| | - Megan H Cleveland
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA
| | - Kenneth D Cole
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA
| | - Sheng Lin-Gibson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA
| | - Hua-Jun He
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
8
|
Corre G, Galy A. Evaluation of diversity indices to estimate clonal dominance in gene therapy studies. Mol Ther Methods Clin Dev 2023; 29:418-425. [PMID: 37251980 PMCID: PMC10220254 DOI: 10.1016/j.omtm.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
In cell and gene therapy, achieving the stable engraftment of an abundant and highly polyclonal population of gene-corrected cells is one of the key factors to ensure the successful and safe treatment of patients. Because integrative vectors have been associated with possible risks of insertional mutagenesis leading to clonal dominance, monitoring the relative abundance of individual vector insertion sites in patients' blood cells has become an important safety assessment, particularly in hematopoietic stem cell-based therapies. Clinical studies often express clonal diversity using various metrics. One of the most commonly used is the Shannon index of entropy. However, this index aggregates two distinct aspects of diversity, the number of unique species and their relative abundance. This property hampers the comparison of samples with different richness. This prompted us to reanalyze published datasets and to model the properties of various indices as applied to the evaluation of clonal diversity in gene therapy. A normalized version of the Shannon index, such as Pielou's index, or Simpson's probability index is robust and useful to compare sample evenness between patients and trials. Clinically meaningful standard values for clonal diversity are herein proposed to facilitate the use of vector insertion site analyses in genomic medicine practice.
Collapse
Affiliation(s)
- Guillaume Corre
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Anne Galy
- Genethon, 91000 Evry, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
9
|
Lothert K, Bagrin E, Wolff MW. Evaluating Novel Quantification Methods for Infectious Baculoviruses. Viruses 2023; 15:v15040998. [PMID: 37112978 PMCID: PMC10141099 DOI: 10.3390/v15040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Accurate and rapid quantification of (infectious) virus titers is of paramount importance in the manufacture of viral vectors and vaccines. Reliable quantification data allow efficient process development at a laboratory scale and thorough process monitoring in later production. However, current gold standard applications, such as endpoint dilution assays, are cumbersome and do not provide true process analytical monitoring. Accordingly, flow cytometry and quantitative polymerase chain reaction have attracted increasing interest in recent years, offering various advantages for rapid quantification. Here, we compared different approaches for the assessment of infectious viruses, using a model baculovirus. Firstly, infectivity was estimated by the quantification of viral nucleic acids in infected cells, and secondly, different flow cytometric approaches were investigated regarding analysis times and calibration ranges. The flow cytometry technique included a quantification based on post-infection fluorophore expression and labeling of a viral surface protein using fluorescent antibodies. Additionally, the possibility of viral (m)RNA labeling in infected cells was investigated as a proof of concept. The results confirmed that infectivity assessment based on qPCR is not trivial and requires sophisticated method optimization, whereas staining of viral surface proteins is a fast and feasible approach for enveloped viruses. Finally, labeling of viral (m)RNA in infected cells appears to be a promising opportunity but will require further research.
Collapse
Affiliation(s)
- Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| | - Elena Bagrin
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Department Life Science Engineering, University of Applied Sciences Mittelhessen (THM), 35390 Giessen, Germany
| |
Collapse
|
10
|
Bagchi A, Devaraju N, Chambayil K, Rajendiran V, Venkatesan V, Sayed N, Pai AA, Nath A, David E, Nakamura Y, Balasubramanian P, Srivastava A, Thangavel S, Mohankumar KM, Velayudhan SR. Erythroid lineage-specific lentiviral RNAi vectors suitable for molecular functional studies and therapeutic applications. Sci Rep 2022; 12:14033. [PMID: 35982069 PMCID: PMC9388678 DOI: 10.1038/s41598-022-13783-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous genes exert multifaceted roles in hematopoiesis. Therefore, we generated novel lineage-specific RNA interference (RNAi) lentiviral vectors, H23B-Ery-Lin-shRNA and H234B-Ery-Lin-shRNA, to probe the functions of these genes in erythroid cells without affecting other hematopoietic lineages. The lineage specificity of these vectors was confirmed by transducing multiple hematopoietic cells to express a fluorescent protein. Unlike the previously reported erythroid lineage RNAi vector, our vectors were designed for cloning the short hairpin RNAs (shRNAs) for any gene, and they also provide superior knockdown of the target gene expression with a single shRNA integration per cell. High-level lineage-specific downregulation of BCL11A and ZBTB7A, two well-characterized transcriptional repressors of HBG in adult erythroid cells, was achieved with substantial induction of fetal hemoglobin with a single-copy lentiviral vector integration. Transduction of primary healthy donor CD34+ cells with these vectors resulted in >80% reduction in the target protein levels and up to 40% elevation in the γ-chain levels in the differentiated erythroid cells. Xenotransplantation of the human CD34+ cells transduced with H23B-Ery-Lin-shBCL11A LV in immunocompromised mice showed ~ 60% reduction in BCL11A protein expression with ~ 40% elevation of γ-chain levels in the erythroid cells derived from the transduced CD34+ cells. Overall, the novel erythroid lineage-specific lentiviral RNAi vectors described in this study provide a high-level knockdown of target gene expression in the erythroid cells, making them suitable for their use in gene therapy for hemoglobinopathies. Additionally, the design of these vectors also makes them ideal for high-throughput RNAi screening for studying normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Nivedhitha Devaraju
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Nilofer Sayed
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, 3050074, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Kumarasamypet M Mohankumar
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India.
| | - Shaji R Velayudhan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India.
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
11
|
Lothert K, Eilts F, Wolff MW. Quantification methods for viruses and virus-like particles applied in biopharmaceutical production processes. Expert Rev Vaccines 2022; 21:1029-1044. [PMID: 35483057 DOI: 10.1080/14760584.2022.2072302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Effective cell-based production processes of virus particles are the foundation for the global availability of classical vaccines, gene therapeutic vectors, and viral oncolytic treatments. Their production is subject to regulatory standards ensuring the safety and efficacy of the pharmaceutical product. Process analytics must be fast and reliable to provide an efficient process development and a robust process control during production. Additionally, for the product release, the drug compound and the contaminants must be quantified by assays specified by regulatory authorities. AREAS COVERED This review summarizes analytical methods suitable for the quantification of viruses or virus-like particles. The different techniques are grouped by the analytical question that may be addressed. Accordingly, methods focus on the infectivity of the drug component on the one hand, and on particle counting and the quantification of viral elements on the other hand. The different techniques are compared regarding their advantages, drawbacks, required assay time, and sample throughput. EXPERT OPINION Among the technologies summarized, a tendency toward fast methods, allowing a high throughput and a wide applicability, can be foreseen. Driving forces for this progress are miniaturization and automation, and the continuous enhancement of process-relevant databases for a successful future process control.
Collapse
Affiliation(s)
- Keven Lothert
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Friederike Eilts
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Michael W Wolff
- Department of Life Science Engineering, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany.,Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| |
Collapse
|
12
|
Zhu I, Liu R, Garcia JM, Hyrenius-Wittsten A, Piraner DI, Alavi J, Israni DV, Liu B, Khalil AS, Roybal KT. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell 2022; 185:1431-1443.e16. [PMID: 35427499 PMCID: PMC9108009 DOI: 10.1016/j.cell.2022.03.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 01/01/2023]
Abstract
Synthetic biology has established powerful tools to precisely control cell function. Engineering these systems to meet clinical requirements has enormous medical implications. Here, we adopted a clinically driven design process to build receptors for the autonomous control of therapeutic cells. We examined the function of key domains involved in regulated intramembrane proteolysis and showed that systematic modular engineering can generate a class of receptors that we call synthetic intramembrane proteolysis receptors (SNIPRs) that have tunable sensing and transcriptional response abilities. We demonstrate the therapeutic potential of the receptor platform by engineering human primary T cells for multi-antigen recognition and production of dosed, bioactive payloads relevant to the treatment of disease. Our design framework enables the development of fully humanized and customizable transcriptional receptors for the programming of therapeutic cells suitable for clinical translation.
Collapse
Affiliation(s)
- Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Raymond Liu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Julie M Garcia
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Axel Hyrenius-Wittsten
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund 221 84, Sweden
| | - Dan I Piraner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Josef Alavi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
| | - Divya V Israni
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Bin Liu
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Department of Anesthesia, University of California, San Francisco, San Francisco, CA 94110, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Kole T Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Gladstone UCSF Institute for Genetic Immunology, San Francisco, CA 94107, USA; UCSF Cell Design Institute, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Corre G, Seye A, Frin S, Ferrand M, Winkler K, Luc C, Dorange F, Rocca CJ, Galy A. Lentiviral standards to determine the sensitivity of assays that quantify lentiviral vector copy numbers and genomic insertion sites in cells. Gene Ther 2022; 29:536-543. [PMID: 35194185 PMCID: PMC9482878 DOI: 10.1038/s41434-022-00315-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
With an increasing number of gene therapy clinical trials and drugs reaching the market, it becomes important to standardize the methods that evaluate the efficacy and safety of gene therapy. We herein report the generation of lentiviral standards which are stable, cloned human cells prepared from the diploid HCT116 cell line and which carry a known number of lentiviral vector copies in their genome. These clones can be used as reference cellular materials for the calibration or qualification of analytical methods that quantify vector copy numbers in cells (VCN) or lentiviral vector genomic integration sites (IS). Cellular standards were used to show the superior precision of digital droplet PCR (ddPCR) over quantitative PCR (qPCR) for VCN determination. This enabled us to develop a new sensitive and specific VCN ddPCR method specific for the integrated provirus and not recognizing the transfer plasmid. The cellular standards, were also useful to assess the sensitivity and limits of a ligation-mediated PCR (LM-PCR) method to measure IS showing that at least 1% abundance of a single IS can be detected in a polyclonal population but that not all IS can be amplified with similar efficiency. Thus, lentiviral standards should be systematically used in all assays that assess lentiviral gene therapy efficacy and safety.
Collapse
Affiliation(s)
- Guillaume Corre
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Ababacar Seye
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Sophie Frin
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Maxime Ferrand
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | | | | | | | - Céline J Rocca
- Genethon, Evry, France.,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France. .,Integrare Research Unit UMR_S951, Université Paris-Saclay, Univ Evry, Inserm, Genethon, Evry, France. .,ART-TG, Inserm US35, Inserm, Corbeil-Essonnes, France.
| |
Collapse
|
14
|
Cooney AL, Thurman AL, McCray PB, Pezzulo AA, Sinn PL. Lentiviral vectors transduce lung stem cells without disrupting plasticity. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:293-301. [PMID: 34458011 PMCID: PMC8379527 DOI: 10.1016/j.omtn.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
Life-long expression of a gene therapy agent likely requires targeting stem cells. Here we ask the question: does viral vector transduction or ectopic expression of a therapeutic transgene preclude airway stem cell function? We used a lentiviral vector containing a GFP or cystic fibrosis transmembrane conductance regulator (CFTR) transgene to transduce primary airway basal cells from human cystic fibrosis (CF) or non-CF lung donors and monitored expression and function after differentiation. Ussing chamber measurements confirmed CFTR-dependent chloride channel activity in CF donor cells. Immunostaining, quantitative real-time PCR, and single-cell sequencing analysis of cell-type markers indicated that vector transduction or CFTR expression does not alter the formation of pseudostratified, fully differentiated epithelial cell cultures or cell type distribution. These results have important implications for use of gene addition or gene editing strategies as life-long curative approaches for lung genetic diseases.
Collapse
Affiliation(s)
- Ashley L. Cooney
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Andrew L. Thurman
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| | - Alejandro A. Pezzulo
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics, The University of Iowa, Department of Pediatrics, 169 Newton RD, 6320 PBDB, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Do Minh A, Kamen AA. Critical Assessment of Purification and Analytical Technologies for Enveloped Viral Vector and Vaccine Processing and Their Current Limitations in Resolving Co-Expressed Extracellular Vesicles. Vaccines (Basel) 2021; 9:vaccines9080823. [PMID: 34451948 PMCID: PMC8402407 DOI: 10.3390/vaccines9080823] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Viral vectors and viral vaccines are invaluable tools in prevention and treatment of diseases. Many infectious diseases are controlled using vaccines designed from subunits or whole viral structures, whereas other genetic diseases and cancers are being treated by viruses used as vehicles for delivering genetic material in gene therapy or as therapeutic agents in virotherapy protocols. Viral vectors and vaccines are produced in different platforms, from traditional embryonated chicken eggs to more advanced cell cultures. All these expression systems, like most cells and cellular tissues, are known to spontaneously release extracellular vesicles (EVs). EVs share similar sizes, biophysical characteristics and even biogenesis pathways with enveloped viruses, which are currently used as key ingredients in a number of viral vectors and licensed vaccine products. Herein, we review distinctive features and similarities between EVs and enveloped viruses as we revisit the downstream processing steps and analytical technologies currently implemented to produce and document viral vector and vaccine products. Within a context of well-established viral vector and vaccine safety profiles, this review provides insights on the likely presence of EVs in the final formulation of enveloped virus products and discusses the potential to further resolve and document these components.
Collapse
|
16
|
Kojabad AA, Farzanehpour M, Galeh HEG, Dorostkar R, Jafarpour A, Bolandian M, Nodooshan MM. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol 2021; 93:4182-4197. [PMID: 33538349 PMCID: PMC8013307 DOI: 10.1002/jmv.26846] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
High-throughput droplet-based digital PCR (ddPCR) is a refinement of the conventional polymerase chain reaction (PCR) methods. In ddPCR, DNA/RNA is encapsulated stochastically inside the microdroplets as reaction chambers. A small percentage of the reaction chamber contains one or fewer copies of the DNA or RNA. After PCR amplification, concentrations are determined based on the proportion of nonfluorescent partitions through the Poisson distribution. Some of the main features of ddPCR include high sensitivity and specificity, absolute quantification without a standard curve, high reproducibility, good tolerance to PCR inhibitor, and high efficacy compared to conventional molecular methods. These advantages make ddPCR a valuable addition to the virologist's toolbox. The following review outlines the recent technological advances in ddPCR methods and their applications in viral identification.
Collapse
Affiliation(s)
- Amir Asri Kojabad
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mahdieh Farzanehpour
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | | - Ruhollah Dorostkar
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Jafarpour
- Research Center for Clinical VirologyTehran University of Medical SciencesTehranIran
| | - Masoumeh Bolandian
- Applied Virology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | |
Collapse
|
17
|
Experimental Evaluation of an Interferometric Light Microscopy Particle Counter for Titering and Characterization of Virus Preparations. Viruses 2021; 13:v13050939. [PMID: 34069520 PMCID: PMC8160961 DOI: 10.3390/v13050939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Virus particle concentration is a critical piece of information for virology, viral vaccines and gene therapy research. We tested a novel nanoparticle counting device, “Videodrop”, for its efficacy in titering and characterization of virus particles. The Videodrop nanoparticle counter is based on interferometric light microscopy (ILM). The method allows the detection of particles under the diffraction limit capabilities of conventional light microscopy. We analyzed lenti-, adeno-, and baculovirus samples in different concentrations and compared the readings against traditional titering and characterization methods. The tested Videodrop particle counter is especially useful when measuring high-concentration purified virus preparations. Certain non-purified sample types or small viruses may be impossible to characterize or may require the use of standard curve or background subtraction methods, which increases the duration of the analysis. Together, our testing shows that Videodrop is a reasonable option for virus particle counting in situations where a moderate number of samples need to be analyzed quickly.
Collapse
|
18
|
Perry C, Rayat ACME. Lentiviral Vector Bioprocessing. Viruses 2021; 13:268. [PMID: 33572347 PMCID: PMC7916122 DOI: 10.3390/v13020268] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.
Collapse
Affiliation(s)
- Christopher Perry
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Andrea C. M. E. Rayat
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
| |
Collapse
|
19
|
Transfiguracion J, Tran MY, Lanthier S, Tremblay S, Coulombe N, Acchione M, Kamen AA. Rapid In-Process Monitoring of Lentiviral Vector Particles by High-Performance Liquid Chromatography. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:803-810. [PMID: 32953931 PMCID: PMC7479275 DOI: 10.1016/j.omtm.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022]
Abstract
Lentiviral vectors (LVs) are a popular gene delivery tool in cell and gene therapy and they are a primary tool for ex vivo transduction of T cells for expression of chimeric antigen receptor (CAR) in CAR-T cell therapies. Extensive process and product characterization are required in manufacturing virus-based gene vectors to better control batch-to-batch variability. However, it has been an ongoing challenge to make quantitative assessments of LV product because current analytical tools often are low throughput and lack robustness and standardization is still required. This paper presents a high-throughput and robust physico-chemical characterization method that directly assesses total LV particles. With simple sample preparation and fast elution time (6.24 min) of the LV peak in 440 mM NaCl (in 20 mM Tris-HCl [pH 7.5]), this ion exchange high-performance liquid chromatography (IEX-HPLC) method is ideal for routine in-process monitoring to facilitate the development of scalable and robust LV manufacturing processes. Furthermore, this HPLC method is suitable for the analysis of all in-process samples, from crude samples such as LV supernatants to final purified products. The linearity range of the standard curve is 3.13 × 108 to 1.0 × 1010 total particles/mL, and both the intra- and inter-assay variabilities are less than 5%.
Collapse
Affiliation(s)
- Julia Transfiguracion
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Michelle Yen Tran
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, 817 Sherbrooke West #270, Montreal, QC H3A 0C3, Canada
| | - Stéphane Lanthier
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Sonia Tremblay
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Nathalie Coulombe
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Mauro Acchione
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Amine A Kamen
- National Research Council, Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada.,Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, 817 Sherbrooke West #270, Montreal, QC H3A 0C3, Canada
| |
Collapse
|
20
|
Wouters Y, Dalloyaux D, Christenhusz A, Roelofs HMJ, Wertheim HF, Bleeker‐Rovers CP, te Morsche RH, Wanten GJA. Droplet digital polymerase chain reaction for rapid broad-spectrum detection of bloodstream infections. Microb Biotechnol 2020; 13:657-668. [PMID: 31605465 PMCID: PMC7111091 DOI: 10.1111/1751-7915.13491] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022] Open
Abstract
The droplet digital polymerase chain reaction (ddPCR) is a novel molecular technique that allows rapid quantification of rare target DNA sequences. Aim of this study was to explore the feasibility of the ddPCR technique to detect pathogen DNA in whole blood and to assess the diagnostic accuracy of ddPCR to detect bloodstream infections (BSIs), benchmarked against blood cultures. Broad-range primers and probes were designed to detect bacterial 16S rRNA (and Gram stain for differentiation) and fungal 28S rRNA. To determine the detection limit of ddPCR, 10-fold serial dilutions of E. coli and C. albicans were spiked in both PBS and whole blood. The diagnostic accuracy of ddPCR was tested in historically collected frozen blood samples from adult patients suspected of a BSI and compared with blood cultures. Analyses were independently performed by two research analysts. Outcomes included sensitivity and specificity of ddPCR. Within 4 h, blood samples were drawn, and DNA was isolated and analysed. The ddPCR detection limit was approximately 1-2 bacteria or fungi per ddPCR reaction. In total, 45 blood samples were collected from patients, of which 15 (33%) presented with positive blood cultures. The overall sensitivity of ddPCR was 80% (95% CI 52-96) and specificity 87% (95% CI 69-96). In conclusion, the ddPCR technique has considerable potential and is able to detect very low amounts of pathogen DNA in whole blood within 4 h. Currently, ddPCR has a reasonable sensitivity and specificity, but requires further optimization to make it more useful for clinical practice.
Collapse
Affiliation(s)
- Yannick Wouters
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Daisy Dalloyaux
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Anke Christenhusz
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Hennie M. J. Roelofs
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Heiman F. Wertheim
- Department of Medical MicrobiologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Chantal P. Bleeker‐Rovers
- Department of Internal Medicine and Infectious DiseasesRadboud University Medical CentreNijmegenThe Netherlands
| | - René H. te Morsche
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Geert J. A. Wanten
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| |
Collapse
|
21
|
Santeramo I, Bagnati M, Harvey EJ, Hassan E, Surmacz-Cordle B, Marshall D, Di Cerbo V. Vector Copy Distribution at a Single-Cell Level Enhances Analytical Characterization of Gene-Modified Cell Therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:944-956. [PMID: 32420408 PMCID: PMC7217927 DOI: 10.1016/j.omtm.2020.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/22/2020] [Indexed: 12/28/2022]
Abstract
The ability to deliver transgenes into the human genome using viral vectors is a major enabler of the gene-modified cell therapy field. However, the control of viral transduction is difficult and can lead to product heterogeneity, impacting efficacy and safety, as well as increasing the risk of batch failure during manufacturing. To address this, we generated a novel analytical method to measure vector copy distribution at the single-cell level in a gene-modified, lentiviral-based immunotherapy model. As the limited amount of genomic DNA in a single cell hinders reliable quantification, we implemented a preamplification strategy on selected lentiviral and human gene targets in isolated live single cells, followed by quantification of amplified material by droplet digital PCR. Using a bespoke probability framework based on Bayesian statistics, we show that we can estimate vector copy number (VCN) integers with maximum likelihood scores. Notably, single-cell data are consistent with population analysis and also provide an overall measurement of transduction efficiency by discriminating transduced (VCN ≥ 1) from nontransduced (VCN = 0) cells. The ability to characterize cell-to-cell variability provides a powerful high-resolution approach for product characterization, which could ultimately allow improved control over product quality and safety.
Collapse
Affiliation(s)
- Ilaria Santeramo
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Marta Bagnati
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Emily Jane Harvey
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Enas Hassan
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Beata Surmacz-Cordle
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Damian Marshall
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Vincenzo Di Cerbo
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| |
Collapse
|
22
|
Lu S, Liu G, Chen T, Wang W, Hu J, Tang D, Peng X. Lentivirus-Mediated hFGF21 Stable Expression in Liver of Diabetic Rats Model and Its Antidiabetic Effect Observation. Hum Gene Ther 2020; 31:472-484. [PMID: 32027183 DOI: 10.1089/hum.2019.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has been increasing annually, which is a serious threat to human health. Fibroblast growth factor 21 (FGF21) is one of the most popular targets for the treatment of diabetes because it effectively improves glycolipid metabolism. In our experiment, human FGF21 (hFGF21) was injected and stably expressed in the liver tissues of a rat T2DM model with lentivirus system. Based on clinical and histopathological examinations, islet cells were protected and liver tissue lesions were repaired for >4 months. Glucose metabolism and histopathology were controlled perfectly when hFGF21 was stably expressed in partial liver of T2DM rats. The results showed that the liver tissue cell apoptosis was reduced, the lipid droplet content was decreased, the oxidative stress indexes were improved, the glycogen content was increased, and the islet cells were increased too. Besides, insulin sensitivity and glycogen synthesis-related genes expression were increased, but cell apoptosis-related genes caspase3 and NFκB expression were decreased. The effectiveness of results suggested that injecting hFGF21 to rats liver could effectively treat T2DM.
Collapse
Affiliation(s)
- Shuaiyao Lu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| | - Guanglong Liu
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Tianxing Chen
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Wanpu Wang
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Jingwen Hu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Donghong Tang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| |
Collapse
|
23
|
Do Minh A, Tran MY, Kamen AA. Lentiviral Vector Production in Suspension Culture Using Serum-Free Medium for the Transduction of CAR-T Cells. Methods Mol Biol 2020; 2086:77-83. [PMID: 31707669 DOI: 10.1007/978-1-0716-0146-4_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The production of lentiviral vectors (LVs) in human embryonic kidney 293 (HEK293) cells using serum-free medium in a suspension culture for the transduction of chimeric antigen receptor T-cells (CAR-T) can be achieved by different methods. This chapter describes LV production by transient transfection, induction of stable packaging cell lines, and induction of stable producer cell lines.
Collapse
Affiliation(s)
- Aline Do Minh
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Michelle Yen Tran
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Wang Y, Keith M, Leyme A, Bergelson S, Feschenko M. Monitoring long-term DNA storage via absolute copy number quantification by ddPCR. Anal Biochem 2019; 583:113363. [PMID: 31310737 DOI: 10.1016/j.ab.2019.113363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Long-term storage of DNA is a routine practice in biomedical research, diagnostics and drug discovery. Periodic monitoring is important for early detection of changes in DNA quality and quantity. Existing methods include agarose gel, ultraviolet (UV) absorbance, fluorometric reading and qPCR. However, these methods are either limited by sensitivity or depend on DNA standards, which face the same storage challenges. In this paper, we tested the state-of-the-art droplet digital PCR (ddPCR) technology that can quantify the absolute DNA copy number with no need of a standard curve. We found that ddPCR was very accurate in determining the level of a plasmid DNA standard and was sensitive to DNA loss due to degradation or adsorption. With the ddPCR technology, we found a gradual process of DNA adsorption to several types of low binding tubes, which was unnoticed before. Although modest, adsorption significantly affected recovery of highly diluted DNA (<0.2 μg/mL), which could be rescued by addition of carrier DNA. In conclusion, this paper not only demonstrated that ddPCR is an ideal method for monitoring DNA storage, but also provided an effective approach to improving recovery of highly diluted DNA, which may have broad implications in assay development, diagnostics and forensic sciences.
Collapse
Affiliation(s)
- Yu Wang
- Department of Analytical Development, Biogen Inc. 225 Binney St, Cambridge, MA, 02142, USA.
| | - Marie Keith
- Department of Analytical Development, Biogen Inc. 225 Binney St, Cambridge, MA, 02142, USA
| | - Anthony Leyme
- Department of Analytical Development, Biogen Inc. 225 Binney St, Cambridge, MA, 02142, USA
| | - Svetlana Bergelson
- Department of Analytical Development, Biogen Inc. 225 Binney St, Cambridge, MA, 02142, USA
| | - Marina Feschenko
- Department of Analytical Development, Biogen Inc. 225 Binney St, Cambridge, MA, 02142, USA.
| |
Collapse
|
25
|
A Digestion-free Method for Quantification of Residual Host Cell DNA in rAAV Gene Therapy Products. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:526-531. [PMID: 31194094 PMCID: PMC6551374 DOI: 10.1016/j.omtm.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/08/2019] [Indexed: 11/22/2022]
Abstract
Recombinant adeno-associated virus (rAAV) is a vector with increasing popularity in the field of gene therapy. Like other drug substances manufactured in cell lines, rAAV vectors are commonly contaminated with host cell DNA, and the levels must be carefully monitored. The current method for residual DNA quantification in rAAV was adapted from protein programs and required sample digestion by proteinase prior to qPCR analysis. While the method worked effectively, it was unclear if proteinase digestion was essential for releasing DNA from rAAV capsids and improving qPCR efficiency. In this study, we systematically investigated the role of each component and treatment with the goal to simplify and streamline the method. It was determined that the proteinase digestion step was dispensable, while the addition of Tween 20 to rAAV samples was essential for accurate quantification of residual DNA. Based on this finding, a digestion-free method has been established that requires only a one-step sample preparation—addition of Tween 20. The method has been tested extensively with an rAAV9-based drug substance and process intermediates and verified with other rAAV serotypes. This significantly simplified and faster assay can be easily automated for high-throughput applications.
Collapse
|
26
|
Wang Y, Cooper R, Bergelson S, Feschenko M. Quantification of residual BHK DNA by a novel droplet digital PCR technology. J Pharm Biomed Anal 2018; 159:477-482. [PMID: 30048895 DOI: 10.1016/j.jpba.2018.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
For drug substances manufactured in cell lines, host cell DNA is a common contaminant and its level must be carefully monitored. While residual DNA assays have been developed for many production cell lines, a robust assay is unavailable for baby hamster kidney (BHK) cells. The lack of genomics data of Syrian hamster, the origin of BHK cells, makes it challenging to design primers and probes for PCR-based methods. In this paper, we identified intracisternal A-particle (IAP) as an efficient PCR target for BHK DNA. PCR against IAP has been tested with conventional qPCR as well as with the recently developed ddPCR method, both of which demonstrated good efficiency with purified BHK DNA. However, the ddPCR-based method is less prone to matrix interference and is significantly more accurate than qPCR when testing complex samples, including multiple process intermediates. This study not only established a robust assay for the detection of residual BHK DNA, but also evaluated the capability of ddPCR technology for a new application.
Collapse
Affiliation(s)
- Yu Wang
- Department of Analytical Development, Biogen Inc., 225 Binney St., Cambridge, MA, 02142, United States.
| | - Rebecca Cooper
- Department of Analytical Development, Biogen Inc., 225 Binney St., Cambridge, MA, 02142, United States
| | - Svetlana Bergelson
- Department of Analytical Development, Biogen Inc., 225 Binney St., Cambridge, MA, 02142, United States
| | - Marina Feschenko
- Department of Analytical Development, Biogen Inc., 225 Binney St., Cambridge, MA, 02142, United States.
| |
Collapse
|