1
|
Mulligan TS, Mumm JS. Selective Cell Ablation Using an Improved Prodrug-Converting Nitroreductase. Methods Mol Biol 2024; 2707:223-234. [PMID: 37668916 DOI: 10.1007/978-1-0716-3401-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Selective cell ablation is an invaluable tool to investigate the function of cell types, the regeneration of cells, and the modeling of diseases associated with cell loss. The nitroreductase (NTR)-mediated cell ablation system is a simple method enabling the elimination of targeted cells through the expression of a nitroreductase enzyme and the application of a prodrug (such as metronidazole). The prodrug is reduced to a cytotoxic product by nitroreductase, thereby leading to DNA damage-induced cell death. In species with elevated regenerative capacity such as zebrafish, removing the prodrug allows endogenous tissue to replace the lost cells. Herein, we describe a method for the use of a markedly improved nitroreductase enzyme for spatially and temporally controlled targeted cell ablation in the zebrafish. Recently, we identified an NTR variant (NTR 2.0) that achieves effective targeted cell ablation at concentrations of metronidazole well below those causing toxic side effects. NTR 2.0 thereby enables the ablation of "resistant" cell types and novel cell ablation paradigms. These advances simplify investigations of cell function, enable interrogations of the effects of chronic inflammation on regenerative processes and facilitate modeling of degenerative diseases associated with chronic cell loss. Techniques for transgenic nitroreductase expression and prodrug application are discussed.
Collapse
Affiliation(s)
- Timothy S Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Guo W, Li X, Fan J, Li H, Wen Y, Meng C, Chen H, Zhao Z, Zhang Y, Du Y, Wu B. Structural characterization of an isocytosine-specific deaminase VCZ reveals its application potential in the anti-cancer therapy. iScience 2023; 26:107672. [PMID: 37680460 PMCID: PMC10481359 DOI: 10.1016/j.isci.2023.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Non-natural nucleobase isocytosine (IC) is the isomer of cytosine; its chemical derivate 5-fluoroisocytosine (5-FIC) together with the isocytosine-specific deaminase (ICD) VCZ was suggested to be potential practical enzyme/prodrug pair for cancer therapy through gene-directed enzyme-prodrug therapy (GDEPT) method. In this study, we have determined the crystal structures of apo-VCZ and its complex with 5-FU. We identified the critical residues for substrate binding and catalytic reaction. We also captured the substrate-induced conformational changes of VCZ, then proposed the conjectural reaction procedures of VCZ for converting the IC into the uracil. Moreover, we evaluated the therapeutic effect of wildtype or the mutated VCZ protein in the colorectal cancer cell lines. Our studies will shed light on optimizing the ICD/5-FIC pairs by modifying either the enzyme or the prodrug based on the structural observations, thereby improving the possibility of applying the ICD/5-FIC pair in clinical trials.
Collapse
Affiliation(s)
- Wenting Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xiaojia Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jingyu Fan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongwei Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology and Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yan Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chunyan Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhipeng Zhao
- Department of Basic Medical Sciences, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Yuling Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Cardiology, Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology and Guangzhou Key Laboratory of Molecular Mechanism and Translation in Major Cardiovascular Disease, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
3
|
Labbaf Z, Petratou K, Ermlich L, Backer W, Tarbashevich K, Reichman-Fried M, Luschnig S, Schulte-Merker S, Raz E. A robust and tunable system for targeted cell ablation in developing embryos. Dev Cell 2022; 57:2026-2040.e5. [PMID: 35914525 DOI: 10.1016/j.devcel.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/03/2022]
Abstract
Cell ablation is a key method in the research fields of developmental biology, tissue regeneration, and tissue homeostasis. Eliminating specific cell populations allows for characterizing interactions that control cell differentiation, death, behavior, and spatial organization of cells. Current methodologies for inducing cell death suffer from relatively slow kinetics, making them unsuitable for analyzing rapid events and following primary and immediate consequences of the ablation. To address this, we developed a cell-ablation system that is based on bacterial toxin/anti-toxin proteins and enables rapid and cell-autonomous elimination of specific cell types and organs in zebrafish embryos. A unique feature of this system is that it uses an anti-toxin, which allows for controlling the degree and timing of ablation and the resulting phenotypes. The transgenic zebrafish generated in this work represent a highly efficient tool for cell ablation, and this approach is applicable to other model organisms as demonstrated here for Drosophila.
Collapse
Affiliation(s)
- Zahra Labbaf
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Kleio Petratou
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Münster 48149, Germany
| | - Laura Ermlich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Wilko Backer
- Institute for Integrative Cell Biology and Physiology, University of Münster, Münster 48149, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Michal Reichman-Fried
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany
| | - Stefan Luschnig
- Institute for Integrative Cell Biology and Physiology, University of Münster, Münster 48149, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, Münster 48149, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, Münster 48149, Germany.
| |
Collapse
|
4
|
Sharrock AV, Mulligan TS, Hall KR, Williams EM, White DT, Zhang L, Emmerich K, Matthews F, Nimmagadda S, Washington S, Le KD, Meir-Levi D, Cox OL, Saxena MT, Calof AL, Lopez-Burks ME, Lander AD, Ding D, Ji H, Ackerley DF, Mumm JS. NTR 2.0: a rationally engineered prodrug-converting enzyme with substantially enhanced efficacy for targeted cell ablation. Nat Methods 2022; 19:205-215. [PMID: 35132245 PMCID: PMC8851868 DOI: 10.1038/s41592-021-01364-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
Transgenic expression of bacterial nitroreductase (NTR) enzymes sensitizes eukaryotic cells to prodrugs such as metronidazole (MTZ), enabling selective cell-ablation paradigms that have expanded studies of cell function and regeneration in vertebrates. However, first-generation NTRs required confoundingly toxic prodrug treatments to achieve effective cell ablation, and some cell types have proven resistant. Here we used rational engineering and cross-species screening to develop an NTR variant, NTR 2.0, which exhibits ~100-fold improvement in MTZ-mediated cell-specific ablation efficacy, eliminating the need for near-toxic prodrug treatment regimens. NTR 2.0 therefore enables sustained cell-loss paradigms and ablation of previously resistant cell types. These properties permit enhanced interrogations of cell function, extended challenges to the regenerative capacities of discrete stem cell niches, and novel modeling of chronic degenerative diseases. Accordingly, we have created a series of bipartite transgenic reporter/effector resources to facilitate dissemination of NTR 2.0 to the research community.
Collapse
Affiliation(s)
- Abigail V Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Timothy S Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Kelsi R Hall
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Elsie M Williams
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David T White
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Liyun Zhang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Frazer Matthews
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Saumya Nimmagadda
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Selena Washington
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Katherine D Le
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Danielle Meir-Levi
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Olivia L Cox
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
- Luminomics, Baltimore, MD, USA
| | - Anne L Calof
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Martha E Lopez-Burks
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Centre for Biodiscovery and Maurice Wilkins Centre for Molecular Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Interrogation of the Structure–Activity Relationship of a Lipophilic Nitroaromatic Prodrug Series Designed for Cancer Gene Therapy Applications. Pharmaceuticals (Basel) 2022; 15:ph15020185. [PMID: 35215297 PMCID: PMC8877822 DOI: 10.3390/ph15020185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
PR-104A is a dual hypoxia/nitroreductase gene therapy prodrug by virtue of its ability to undergo either one- or two-electron reduction to its cytotoxic species. It has been evaluated extensively in pre-clinical GDEPT studies, yet off-target human aldo-keto reductase AKR1C3-mediated activation has limited its use. Re-evaluation of this chemical scaffold has previously identified SN29176 as an improved hypoxia-activated prodrug analogue of PR-104A that is free from AKR1C3 activation. However, optimization of the bystander effect of SN29176 is required for use in a GDEPT setting to compensate for the non-uniform distribution of therapeutic gene transfer that is often observed with current gene therapy vectors. A lipophilic series of eight analogues were synthesized from commercially available 3,4-difluorobenzaldehyde. Calculated octanol-water partition coefficients (LogD7.4) spanned > 2 orders of magnitude. 2D anti-proliferative and 3D multicellular layer assays were performed using isogenic HCT116 cells expressing E. coli NfsA nitroreductase (NfsA_Ec) or AKR1C3 to determine enzyme activity and measure bystander effect. A variation in potency for NfsA_Ec was observed, while all prodrugs appeared AKR1C3-resistant by 2D assay. However, 3D assays indicated that increasing prodrug lipophilicity correlated with increased AKR1C3 activation and NfsA_Ec activity, suggesting that metabolite loss from the cell of origin into media during 2D monolayer assays could mask cytotoxicity. Three prodrugs were identified as bono fide AKR1C3-negative candidates whilst maintaining activity with NfsA_Ec. These were converted to their phosphate ester pre-prodrugs before being taken forward into in vivo therapeutic efficacy studies. Ultimately, 2-(5-(bis(2-bromoethyl)amino)-4-(ethylsulfonyl)-N-methyl-2-nitrobenzamido)ethyl dihydrogen phosphate possessed a significant 156% improvement in median survival in mixed NfsA_Ec/WT tumors compared to untreated controls (p = 0.005), whilst still maintaining hypoxia selectivity comparable to PR-104A.
Collapse
|
6
|
Lou Z, Post A, Rodgers CE, Chamankhah M, Hong J, Ahuja CS, Khazaei M, Fehlings MG. Neural Progenitor Cells Expressing Herpes Simplex Virus-Thymidine Kinase for Ablation Have Differential Chemosensitivity to Brivudine and Ganciclovir. Front Cell Neurosci 2021; 15:638021. [PMID: 34938162 PMCID: PMC8685296 DOI: 10.3389/fncel.2021.638021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/09/2021] [Indexed: 11/27/2022] Open
Abstract
Neural progenitor cell (NPC) transplants are a promising therapy for treating spinal cord injury (SCI), however, their long-term role after engraftment and the relative contribution to ongoing functional recovery remains a key knowledge gap. Selective human cell ablation techniques, currently being developed to improve the safety of progenitor cell transplant therapies in patients, may also be used as tools to probe the regenerative effects attributable to individual grafted cell populations. The Herpes Simplex Virus Thymidine Kinase (HSV-TK) and ganciclovir (GCV) system has been extensively studied in the context of SCI and broader CNS disease. However, the efficacy of brivudine (BVDU), another HSV-TK prodrug with potentially reduced bystander cytotoxic effects and in vivo toxicity, has yet to be investigated for NPC ablation. In this study, we demonstrate successful generation and in vitro ablation of HSV-TK-expressing human iPSC-derived NPCs with a >80% reduction in survival over controls. We validated an HSV-TK and GCV/BVDU synergistic system with iPSC-NPCs using an efficient gene-transfer method and in vivo ablation in a translationally relevant model of SCI. Our findings demonstrate enhanced ablation efficiency and reduced bystander effects when targeting all rapidly dividing cells with combinatorial GCV and BVDU treatment. However, for use in loss of function studies, BVDU alone is optimal due to reduced nonselective cell ablation.
Collapse
Affiliation(s)
- Zijian Lou
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Alexander Post
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Christopher E Rodgers
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mahmood Chamankhah
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Christopher S Ahuja
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Lai S, Kumari A, Liu J, Zhang Y, Zhang W, Yen K, Xu J. Chemical screening reveals Ronidazole is a superior prodrug to Metronidazole for nitroreductase-induced cell ablation system in zebrafish larvae. J Genet Genomics 2021; 48:1081-1090. [PMID: 34411714 DOI: 10.1016/j.jgg.2021.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The Metronidazole (MTZ)/nitroreductase (NTR)-mediated cell ablation system is the most commonly used chemical-genetic cell ablation method in zebrafish. This system can specifically ablate target cells under spatial and temporal control. The MTZ/NTR system has become a widely used cell ablation system in biological, developmental, and functional studies. However, the inadequate cell-ablation ability of some cell types and the side effects of high concentration MTZ impede extensive applications of the MTZ/NTR system. In the present study, the US drug collection library was searched to extend the NTR system. Six MTZ analogs were found, and the cell-ablation ability of these analogs was tested in zebrafish larvae. The results revealed that two of the NTR substrates, Furazolidone and Ronidazole, ablated target cells more efficiently than MTZ at lower concentrations. Furthermore, the working concentration of Ronidazole, but not Furazolidone and MTZ, did not affect axonal bridge formation during spinal cord regeneration. Our results, taken together, indicate that Ronidazole is a superior prodrug to MTZ for the NTR system, especially for the study of neuron regeneration in zebrafish larvae.
Collapse
Affiliation(s)
- Siting Lai
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ankita Kumari
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jixiang Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Kuangyu Yen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Sharrock AV, McManaway SP, Rich MH, Mumm JS, Hermans IF, Tercel M, Pruijn FB, Ackerley DF. Engineering the Escherichia coli Nitroreductase NfsA to Create a Flexible Enzyme-Prodrug Activation System. Front Pharmacol 2021; 12:701456. [PMID: 34163368 PMCID: PMC8215503 DOI: 10.3389/fphar.2021.701456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial nitroreductase enzymes that can efficiently convert nitroaromatic prodrugs to a cytotoxic form have numerous applications in targeted cellular ablation. For example, the generation of cytotoxic metabolites that have low bystander potential (i.e., are largely confined to the activating cell) has been exploited for precise ablation of specific cell types in animal and cell-culture models; while enzyme-prodrug combinations that generate high levels of bystander cell killing are useful for anti-cancer strategies such as gene-directed enzyme-prodrug therapy (GDEPT). Despite receiving substantial attention for such applications, the canonical nitroreductase NfsB from Escherichia coli has flaws that limit its utility, in particular a low efficiency of conversion of most prodrugs. Here, we sought to engineer a superior broad-range nitroreductase, E. coli NfsA, for improved activity with three therapeutically-relevant prodrugs: the duocarmycin analogue nitro-CBI-DEI, the dinitrobenzamide aziridine CB1954 and the 5-nitroimidazole metronidazole. The former two prodrugs have applications in GDEPT, while the latter has been employed for targeted ablation experiments and as a precise 'off-switch' in GDEPT models to eliminate nitroreductase-expressing cells. Our lead engineered NfsA (variant 11_78, with the residue substitutions S41Y, L103M, K222E and R225A) generated reduced metabolites of CB1954 and nitro-CBI-DEI that exhibited high bystander efficiencies in both bacterial and 2D HEK-293 cell culture models, while no cell-to-cell transfer was evident for the reduced metronidazole metabolite. We showed that the high bystander efficiency for CB1954 could be attributed to near-exclusive generation of the 2-hydroxylamine reduction product, which has been shown in 3D cell culture to cause significantly greater bystander killing than the 4-hydroxylamine species that is also produced by NfsB. We similarly observed a high bystander effect for nitro-CBI-DEI in HCT-116 tumor spheroids in which only a small proportion of cells were expressing variant 11_78. Collectively, our data identify variant 11_78 as a broadly improved prodrug-activating nitroreductase that offers advantages for both targeted cellular ablation and suicide gene therapy applications.
Collapse
Affiliation(s)
- Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sarah P. McManaway
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Michelle H. Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jeff S. Mumm
- The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ian F. Hermans
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Moana Tercel
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Frederik B. Pruijn
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
9
|
Molecular Imaging of Gene Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Sukumar UK, Rajendran JCB, Gambhir SS, Massoud TF, Paulmurugan R. SP94-Targeted Triblock Copolymer Nanoparticle Delivers Thymidine Kinase-p53-Nitroreductase Triple Therapeutic Gene and Restores Anticancer Function against Hepatocellular Carcinoma in Vivo. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11307-11319. [PMID: 32048820 PMCID: PMC7997290 DOI: 10.1021/acsami.9b20071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gene-directed enzyme-prodrug therapy (GDEPT) is a promising approach for cancer therapy, but it suffers from poor targeted delivery in vivo. Polyethylenimine (PEI) is a cationic polymer efficient in delivering negatively charged nucleic acids across cell membranes; however, it is highly toxic in vivo. Hence, we efficiently reduced PEI toxicity without compromising its transfection efficiency by conjugating it with poly(d,l-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) as triblock copolymers through a multistep synthetic process. The synthesized nanoparticles showed efficient delivery of loaded nucleic acids to tumor cells in vitro and in vivo in mice. We used this nanoparticle to deliver a rationally engineered thymidine kinase (TK)-p53-nitroreductase (NTR) triple therapeutic gene against hepatocellular carcinoma (HCC), where p53 tumor suppressor gene is mutated in more than 85% of cancers. TK-p53-NTR triple gene therapy restores p53 function and potentiates cancer cell response to delivered prodrugs (ganciclovir (GCV) and CB1954). We used SP94 peptide-functionalized PLGA-PEG-PEI nanoparticles for the optimal delivery of TK-p53-NTR therapeutic gene in vivo. The nanoparticles prepared from the conjugated polymer showed high loading efficiency for the DNA and markedly enhanced TK-NTR-mediated gene therapy upon the simultaneous coexpression of p53 by the concurrent rescue of the endogenous apoptotic pathway in HCC cells of both p53-mutant and wild-type phenotypes in vitro. In vivo delivery of TK-p53-NTR genes by SP94-targeted PLGA-PEG-PEI NP in mice resulted in a strong expression of suicide genes selectively in tumors, and subsequent administration of GCV and CB1954 led to a decline in tumor growth, and established a superior therapeutic outcome against HCC. We demonstrate a highly efficient approach that exogenously supplements p53 to enable synergy with the outcome of TK-NTR suicide gene therapy against HCC.
Collapse
Affiliation(s)
- Uday K Sukumar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Jagadesh Chandra Bose Rajendran
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Tarik F Massoud
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, California 94305, United States
| |
Collapse
|
11
|
Güngör T, Önder FC, Tokay E, Gülhan ÜG, Hacıoğlu N, Tok TT, Çelik A, Köçkar F, Ay M. PRODRUGS FOR NITROREDUCTASE BASED CANCER THERAPY- 2: Novel amide/Ntr combinations targeting PC3 cancer cells. Eur J Med Chem 2019; 171:383-400. [DOI: 10.1016/j.ejmech.2019.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
|
12
|
Evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model Gram negative vector for bacterial-directed enzyme-prodrug therapy. Biochem Pharmacol 2018; 158:192-200. [PMID: 30352235 DOI: 10.1016/j.bcp.2018.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Gene-directed enzyme-prodrug therapy (GDEPT) employs tumour-tropic vectors including viruses and bacteria to deliver a genetically-encoded prodrug-converting enzyme to the tumour environment, thereby sensitising the tumour to the prodrug. Nitroreductases, able to activate a range of promising nitroaromatic prodrugs to genotoxic metabolites, are of great interest for GDEPT. The bystander effect (cell-to-cell transfer of activated prodrug metabolites) has been quantified for some nitroaromatic prodrugs in mixed multilayer human cell cultures, however while these provide a good model for viral DEPT (VDEPT) they do not inform on the ability of these prodrug metabolites to exit bacterial vectors (relevant to bacterial-DEPT (BDEPT)). To investigate this we grew two Escherichia coli strains in co-culture; an activator strain expressing the nitroreductase E. coli NfsA and a recipient strain containing an SOS-GFP DNA damage responsive gene construct. In this system, induction of GFP by reduced prodrug metabolites can only occur following their transfer from the activator to the recipient cells. We used this to investigate five clinically relevant prodrugs: metronidazole, CB1954, nitro-CBI-DEI, and two dinitrobenzamide mustard prodrug analogues, PR-104A and SN27686. Consistent with the bystander efficiencies previously measured in human cell multilayers, reduced metronidazole exhibited little bacterial cell-to-cell transfer, whereas nitro-CBI-DEI was passed very efficiently from activator to recipient cells post-reduction. However, in contrast with observations in human cell multilayers, the nitrogen mustard prodrug metabolites were not effectively passed between the two bacterial strains, whereas reduced CB1954 was transferred efficiently. Using nitroreductase enzymes that exhibit different biases for the 2- versus 4-nitro substituents of CB1954, we further showed that the 2-nitro reduction products exhibit substantially higher levels of bacterial cell-to-cell transfer than the 4-nitro reduction products, consistent with their relative bystander efficiencies in human cell culture. Overall, our data suggest that prodrugs may differ in their suitability for VDEPT versus BDEPT applications and emphasise the importance of evaluating an enzyme-prodrug partnership in an appropriate context for the intended vector.
Collapse
|
13
|
Bergemann D, Massoz L, Bourdouxhe J, Carril Pardo CA, Voz ML, Peers B, Manfroid I. Nifurpirinol: A more potent and reliable substrate compared to metronidazole for nitroreductase-mediated cell ablations. Wound Repair Regen 2018; 26:238-244. [PMID: 29663654 DOI: 10.1111/wrr.12633] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 12/21/2022]
Abstract
The zebrafish is a popular animal model with well-known regenerative capabilities. To study regeneration in this fish, the nitroreductase/metronidazole-mediated system is widely used for targeted ablation of various cell types. Nevertheless, we highlight here some variability in ablation efficiencies with the metronidazole prodrug that led us to search for a more efficient and reliable compound. Herein, we present nifurpirinol, another nitroaromatic antibiotic, as a more potent prodrug compared to metronidazole to trigger cell-ablation in nitroreductase expressing transgenic models. We show that nifurpirinol induces robust and reliable ablations at concentrations 2,000 fold lower than metronidazole and three times below its own toxic concentration. We confirmed the efficiency of nifurpirinol in triggering massive ablation of three different cell types: the pancreatic beta cells, osteoblasts, and dopaminergic neurons. Our results identify nifurpirinol as a very potent prodrug for the nitroreductase-mediated ablation system and suggest that its use could be extended to many other cell types, especially if difficult to ablate, or when combined pharmacological treatments are desired.
Collapse
Affiliation(s)
- David Bergemann
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Laura Massoz
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Jordane Bourdouxhe
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Claudio A Carril Pardo
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Marianne L Voz
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Bernard Peers
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| | - Isabelle Manfroid
- Zebrafish Development and Disease Models Laboratory/GIGA, University of Liège, Liege, Belgium
| |
Collapse
|
14
|
Krais JJ, Virani N, McKernan PH, Nguyen Q, Fung KM, Sikavitsas VI, Kurkjian C, Harrison RG. Antitumor Synergism and Enhanced Survival with a Tumor Vasculature-Targeted Enzyme Prodrug System, Rapamycin, and Cyclophosphamide. Mol Cancer Ther 2017; 16:1855-1865. [PMID: 28522586 DOI: 10.1158/1535-7163.mct-16-0263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 01/17/2017] [Accepted: 05/09/2017] [Indexed: 11/16/2022]
Abstract
Mutant cystathionine gamma-lyase was targeted to phosphatidylserine exposed on tumor vasculature through fusion with Annexin A1 or Annexin A5. Cystathionine gamma-lyase E58N, R118L, and E338N mutations impart nonnative methionine gamma-lyase activity, resulting in tumor-localized generation of highly toxic methylselenol upon systemic administration of nontoxic selenomethionine. The described therapeutic system circumvents systemic toxicity issues using a novel drug delivery/generation approach and avoids the administration of nonnative proteins and/or DNA required with other enzyme prodrug systems. The enzyme fusion exhibits strong and stable in vitro binding with dissociation constants in the nanomolar range for both human and mouse breast cancer cells and in a cell model of tumor vascular endothelium. Daily administration of the therapy suppressed growth of highly aggressive triple-negative murine 4T1 mammary tumors in immunocompetent BALB/cJ mice and MDA-MB-231 tumors in SCID mice. Treatment did not result in the occurrence of negative side effects or the elicitation of neutralizing antibodies. On the basis of the vasculature-targeted nature of the therapy, combinations with rapamycin and cyclophosphamide were evaluated. Rapamycin, an mTOR inhibitor, reduces the prosurvival signaling of cells in a hypoxic environment potentially exacerbated by a vasculature-targeted therapy. IHC revealed, unsurprisingly, a significant hypoxic response (increase in hypoxia-inducible factor 1 α subunit, HIF1A) in the enzyme prodrug-treated tumors and a dramatic reduction of HIF1A upon rapamycin treatment. Cyclophosphamide, an immunomodulator at low doses, was combined with the enzyme prodrug therapy and rapamycin; this combination synergistically reduced tumor volumes, inhibited metastatic progression, and enhanced survival. Mol Cancer Ther; 16(9); 1855-65. ©2017 AACR.
Collapse
Affiliation(s)
- John J Krais
- School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Needa Virani
- School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Patrick H McKernan
- School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Quang Nguyen
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Vassilios I Sikavitsas
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma
| | - Carla Kurkjian
- Oncology/Hematology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Roger G Harrison
- School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma. .,School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
15
|
Weber T, Namikawa K, Winter B, Müller-Brown K, Kühn R, Wurst W, Köster RW. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons. Development 2016; 143:4279-4287. [PMID: 27729409 DOI: 10.1242/dev.122721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/30/2016] [Indexed: 01/11/2023]
Abstract
The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTACTM) further expands the repertoire of genetic tools for conditional interrogation of cellular functions.
Collapse
Affiliation(s)
- Thomas Weber
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany.,Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Kazuhiko Namikawa
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Barbara Winter
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Karina Müller-Brown
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Ralf Kühn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Feodor-Lynen-Str. 17, München 81377, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, München 81377, Germany.,Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Reinhard W Köster
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| |
Collapse
|
16
|
Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 2015; 471:131-53. [PMID: 26431849 DOI: 10.1042/bj20150650] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.
Collapse
|
17
|
Abstract
Cancer is a multifactorial disease and is one of the leading causes of death worldwide. The contributing factors include specific genetic background, chronic exposure to various environmental stresses and improper diet. All these risk factors lead to the accumulation of molecular changes or mutations in some important proteins in cells which contributes to the initiation of carcinogenesis. Chemotherapy is an effective treatment against cancer but undesirable chemotherapy reactions and the development of resistance to drugs which results in multi-drug resistance (MDR) are the major obstacles in cancer chemotherapy. Strategies which are in practice with limited success include alternative formulations e.g., liposomes, resistance modulation e.g., PSC833, antidotes/toxicity modifiers e.g., ICRF-187 and gene therapy. Targeted therapy is gaining importance due to its specificity towards cancer cells while sparing toxicity to off-target cells. The scope of this review involves the various strategies involved in targeted therapy like-monoclonal antibodies, prodrug, small molecule inhibitors and nano-particulate antibody conjugates.
Collapse
Affiliation(s)
- Viswanadha Vijaya Padma
- Department of Biotechnology, Bharathiar University, 641 046, Coimbatore, Tamil Nadu, India. .,Department of Health and Nutrition Biotechnology, Asia University, 413, Taichung, Taiwan.
| |
Collapse
|
18
|
Shimizu Y, Ito Y, Tanaka H, Ohshima T. Radial glial cell-specific ablation in the adult Zebrafish brain. Genesis 2015; 53:431-9. [PMID: 26045148 DOI: 10.1002/dvg.22865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/31/2015] [Accepted: 06/01/2015] [Indexed: 11/06/2022]
Abstract
The zebrafish brain can continue to produce new neurons in widespread neurogenic brain regions throughout life. In contrast, neurogenesis in the adult mammalian brain is restricted to the subventricular zone (SVZ) and dentate gyrus (DG). In neurogenic regions in the adult brain, radial glial cells (RGCs) are considered to function as neural stem cells (NSCs). We generated a Tg(gfap:Gal4FF) transgenic zebrafish line, which enabled us to express specific genes in RGCs. To study the function of RGCs in neurogenesis in the adult zebrafish brain, we also generated a Tg(gfap: Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, which allowed us to induce cell death exclusively within RGCs upon addition of metronidazole (Mtz) to the media. RGCs expressing nitroreductase were specifically ablated by the Mtz treatment, decreasing the number of proliferative RGCs. Using the Tg(gfap:Gal4FF; UAS:nfsB-mcherry) transgenic zebrafish line, we found that RGCs were specifically ablated in the adult zebrafish telencephalon. The Tg(gfap:Gal4FF) line could be useful to study the function of RGCs.
Collapse
Affiliation(s)
- Yuki Shimizu
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, Japan
| | - Yoko Ito
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, Japan
| | - Hideomi Tanaka
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, Japan
| |
Collapse
|
19
|
Abstract
As one targeting strategy of prodrug delivery, gene-directed enzyme prodrug therapy (GDEPT) promises to realize the targeting through its three key features in cancer therapy-cell-specific gene delivery and expression, controlled conversion of prodrugs to drugs in target cells, and expanded toxicity to the target cells' neighbors through bystander effects. After over 20 years of development, multiple GDEPT systems have advanced into clinical trials. However, no GDEPT product is currently marketed as a drug, suggesting that there are still barriers to overcome before GDEPT becomes a standard therapy. In this review, we first provide a general introduction of this prodrug targeting strategy. Then, we utilize the four most thoroughly studied systems to illustrate components, mechanisms, preclinical and clinical results, and further development directions of GDEPT. These four systems are herpes simplex virus thymidine kinase/ganciclovir, cytosine deaminase/5-fluorocytosine, cytochrome P450/oxazaphosphorines, and nitroreductase/CB1954 system. Later, we focus our discussion on bystander effects including local and distant bystander effects. Lastly, we discuss carriers that are used to deliver genes for GDEPT including virus carriers and non-virus carriers. Among these carriers, the stem cell-based gene delivery system represents one of the newest carriers under development, and may brought about a breakthrough to the gene delivery issue of GDEPT.
Collapse
Affiliation(s)
- Jin Zhang
- />The U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland 20993 USA
| | - Vijay Kale
- />College of Pharmacy, Roseman University of Health Sciences, 10920 S. Riverfront Pkwy, South Jordan, Utah 84095 USA
| | - Mingnan Chen
- />Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112 USA
| |
Collapse
|
20
|
Sekar TV, Foygel K, Ilovich O, Paulmurugan R. Noninvasive theranostic imaging of HSV1-sr39TK-NTR/GCV-CB1954 dual-prodrug therapy in metastatic lung lesions of MDA-MB-231 triple negative breast cancer in mice. Am J Cancer Res 2014; 4:460-74. [PMID: 24669276 PMCID: PMC3964441 DOI: 10.7150/thno.8077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
Metastatic breast cancer is an obdurate cancer type that is not amenable to chemotherapy regimens currently used in clinic. There is a desperate need for alternative therapies to treat this resistant cancer type. Gene-Directed Enzyme Prodrug Therapy (GDEPT) is a superior gene therapy method when compared to chemotherapy and radiotherapy procedures, proven to be effective against many types of cancer in pre-clinical evaluations and clinical trials. Gene therapy that utilizes a single enzyme/prodrug combination targeting a single cellular mechanism needs significant overexpression of delivered therapeutic gene in order to achieve therapy response. Hence, to overcome this obstacle we recently developed a dual therapeutic reporter gene fusion that uses two different prodrugs, targeting two distinct cellular mechanisms in order to achieve effective therapy with a limited expression of delivered transgenes. In addition, imaging therapeutic reporter genes offers additional information that indirectly correlates gene delivery, expression, and functional effectiveness as a theranostic approach. In the present study, we evaluate the therapeutic potential of HSV1-sr39TK-NTR fusion dual suicide gene therapy system that we recently developed, in MDA-MB-231 triple negative breast cancer lung-metastatic lesions in a mouse model. We compared the therapeutic potential of HSV1-sr39TK-NTR fusion with respective dual prodrugs GCV-CB1954 with HSV1-sr39TK/GCV and NTR/CB1954 single enzyme prodrug system in this highly resistant metastatic lesion of the lungs. In vitro optimization of dose and duration of exposure to GCV and CB1954 was performed in MDA-MB-231 cells. Drug combinations of 1 μg/ml GCV and 10 μM CB1954 for 3 days was found to be optimal regimen for induction of significant cell death, as assessed by FACS analysis. In vivo therapeutic evaluation in animal models showed a complete ablation of lung metastatic nodules of MDA-MB-231 triple negative breast cancer cells following two consecutive doses of a combination of GCV (40 mg/kg) and CB1954 (40 mg/kg) administered at 5 day intervals. In contrast, the respective treatment condition in animals expressing HSV1-sr39TK or NTR separately, showed minimal or no effect on tumor reduction as measured by bioluminescence (tumor mass) and [18F]-FHBG microPET (TK expression) imaging. These highlight the strong therapeutic effect of the dual fusion prodrug therapy and its use in theranostic imaging of tumor monitoring in living animals by multimodality molecular imaging.
Collapse
|
21
|
Mathias JR, Zhang Z, Saxena MT, Mumm JS. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase. Zebrafish 2014; 11:85-97. [PMID: 24428354 DOI: 10.1089/zeb.2013.0937] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology.
Collapse
|
22
|
Lehouritis P, Springer C, Tangney M. Bacterial-directed enzyme prodrug therapy. J Control Release 2013; 170:120-31. [DOI: 10.1016/j.jconrel.2013.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/21/2023]
|
23
|
Swift SL, Rivera GC, Dussupt V, Leadley RM, Hudson LC, MA de Ridder C, Kraaij R, Burns JE, Maitland NJ, Georgopoulos LJ. Evaluating baculovirus as a vector for human prostate cancer gene therapy. PLoS One 2013; 8:e65557. [PMID: 23755250 PMCID: PMC3675042 DOI: 10.1371/journal.pone.0065557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/26/2013] [Indexed: 02/07/2023] Open
Abstract
Gene therapy represents an attractive strategy for the non-invasive treatment of prostate cancer, where current clinical interventions show limited efficacy. Here, we evaluate the use of the insect virus, baculovirus (BV), as a novel vector for human prostate cancer gene therapy. Since prostate tumours represent a heterogeneous environment, a therapeutic approach that achieves long-term regression must be capable of targeting multiple transformed cell populations. Furthermore, discrimination in the targeting of malignant compared to non-malignant cells would have value in minimising side effects. We employed a number of prostate cancer models to analyse the potential for BV to achieve these goals. In vitro, both traditional prostate cell lines as well as primary epithelial or stromal cells derived from patient prostate biopsies, in two- or three-dimensional cultures, were used. We also evaluated BV in vivo in murine prostate cancer xenograft models. BV was capable of preferentially transducing invasive malignant prostate cancer cell lines compared to early stage cancers and non-malignant samples, a restriction that was not a function of nuclear import. Of more clinical relevance, primary patient-derived prostate cancer cells were also efficiently transduced by BV, with robust rates observed in epithelial cells of basal phenotype, which expressed BV-encoded transgenes faster than epithelial cells of a more differentiated, luminal phenotype. Maximum transduction capacity was observed in stromal cells. BV was able to penetrate through three-dimensional structures, including in vitro spheroids and in vivo orthotopic xenografts. BV vectors containing a nitroreductase transgene in a gene-directed enzyme pro-drug therapy approach were capable of efficiently killing malignant prostate targets following administration of the pro-drug, CB1954. Thus, BV is capable of transducing a large proportion of prostate cell types within a heterogeneous 3-D prostate tumour, can facilitate cell death using a pro-drug approach, and shows promise as a vector for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Stephanie L. Swift
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Guillermo C. Rivera
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Vincent Dussupt
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Regina M. Leadley
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Lucy C. Hudson
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | | | - Robert Kraaij
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Julie E. Burns
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Norman J. Maitland
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
- * E-mail:
| | - Lindsay J. Georgopoulos
- Yorkshire Cancer Research Unit, Department of Biology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
24
|
Patterson LB, Parichy DM. Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation. PLoS Genet 2013; 9:e1003561. [PMID: 23737760 PMCID: PMC3667786 DOI: 10.1371/journal.pgen.1003561] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/26/2013] [Indexed: 11/18/2022] Open
Abstract
Skin pigment patterns of vertebrates are a classic system for understanding fundamental mechanisms of morphogenesis, differentiation, and pattern formation, and recent studies of zebrafish have started to elucidate the cellular interactions and molecular mechanisms underlying these processes. In this species, horizontal dark stripes of melanophores alternate with light interstripes of yellow or orange xanthophores and iridescent iridophores. We showed previously that the highly conserved zinc finger protein Basonuclin-2 (Bnc2) is required in the environment in which pigment cells reside to promote the development and maintenance of all three classes of pigment cells; bnc2 mutants lack body stripes and interstripes. Previous studies also revealed that interactions between melanophores and xanthophores are necessary for organizing stripes and interstripes. Here we show that bnc2 promotes melanophore and xanthophore development by regulating expression of the growth factors Kit ligand a (Kitlga) and Colony stimulating factor-1 (Csf1), respectively. Yet, we found that rescue of melanophores and xanthophores was insufficient for the recovery of stripes in the bnc2 mutant. We therefore asked whether bnc2-dependent iridophores might contribute to stripe and interstripe patterning as well. We found that iridophores themselves express Csf1, and by ablating iridophores in wild-type and mutant backgrounds, we showed that iridophores contribute to organizing both melanophores and xanthophores during the development of stripes and interstripes. Our results reveal an important role for the cellular environment in promoting adult pigment pattern formation and identify new components of a pigment-cell autonomous pattern-generating system likely to have broad implications for understanding how pigment patterns develop and evolve.
Collapse
Affiliation(s)
- Larissa B. Patterson
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - David M. Parichy
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
25
|
Wennier ST, Liu J, McFadden G. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr Pharm Biotechnol 2013; 13:1817-33. [PMID: 21740354 DOI: 10.2174/138920112800958850] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 09/18/2010] [Indexed: 12/16/2022]
Abstract
Single agent therapies are rarely successful in treating cancer, particularly at metastatic or end stages, and survival rates with monotherapies alone are generally poor. The combination of multiple therapies to treat cancer has already driven significant improvements in the standard of care treatments for many types of cancers. The first combination treatments exploited for cancer therapy involved the use of several cytotoxic chemotherapy agents. Later, with the development of more targeted agents, the use of novel, less toxic drugs, in combination with the more classic cytotoxic drugs has proven advantageous for certain cancer types. Recently, the combination of oncolytic virotherapy with chemotherapy has shown that the use of these two therapies with very distinct anti-tumor mechanisms may also lead to synergistic interactions that ultimately result in increased therapeutic effects not achievable by either therapy alone. The mechanisms of synergy between oncolytic viruses (OVs) and chemotherapeutic agents are just starting to be elucidated. It is evident, however, that the success of these OV-drug combinations depends greatly on the particular OV, the drug(s) selected, and the cancer type targeted. This review summarizes the different OV-drug combinations investigated to date, including the use of second generation armed OVs, which have been studied with the specific purpose of generating synergistic interactions with particular chemotherapy agents. The known mechanisms of synergy between these OV-drug combinations are also summarized. The importance of further investigating these mechanisms of synergy will be critical in order to maximize the therapeutic efficacy of OV-drug combination therapies in the future.
Collapse
Affiliation(s)
- Sonia Tusell Wennier
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, P.O. Box 100266 Gainesville, FL 32610, USA
| | | | | |
Collapse
|
26
|
McCormack E, Silden E, West RM, Pavlin T, Micklem DR, Lorens JB, Haug BE, Cooper ME, Gjertsen BT. Nitroreductase, a near-infrared reporter platform for in vivo time-domain optical imaging of metastatic cancer. Cancer Res 2012; 73:1276-86. [PMID: 23233739 DOI: 10.1158/0008-5472.can-12-2649] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to visualize reporter gene expression in vivo has revolutionized all facets of biologic investigation and none more so than imaging applications in oncology. Near-infrared reporter gene imaging may facilitate more accurate evaluation of chemotherapeutic response in preclinical models of orthotopic and metastatic cancers. We report the development of a cell permeable, quenched squarine probe (CytoCy5S), which is reduced by Escherichia coli nitroreductase (NTR), resulting in a near-infrared fluorescent product. Time-domain molecular imaging of NTR/CytoCy5S reporter platform permitted noninvasive monitoring of disease progression in orthotopic xenografts of disseminated leukemia, lung, and metastatic breast cancer. This methodology facilitated therapeutic evaluation of NTR gene-directed enzymatic prodrug therapy with conventional metronidazole antibiotics. These studies show NTR/CytoCy5S as a near-infrared gene reporter system with broad preclinical and prospective clinical applications within imaging, and gene therapy, of cancer.
Collapse
Affiliation(s)
- Emmet McCormack
- Institute of Medicine, Hematology Section; Department of Biomedicine, University of Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lee G, Kim KY, Chang CH, Kim MG. Thymic epithelial requirement for γδ T cell development revealed in the cell ablation transgenic system with TSCOT promoter. Mol Cells 2012; 34:481-93. [PMID: 23178972 PMCID: PMC3524997 DOI: 10.1007/s10059-012-0246-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022] Open
Abstract
In order to investigate the role of thymic epithelial cell (TEC) subsets during T-cell development, we established a new transgenic system, enabling inducible cell-specific ablation as well as marking the TEC subsets using bicistronic bacterial nitroreductase and EGFP genes. Two different lengths of the TSCOT promoter in transgenic mice, named 3.1T-NE and 9.1T-NE, drive EGFP expression into TECs. In adult life, EGFP expression was located in the medulla with a smaller 3.1 kb TSCOT promoter, while it was maintained in the cortex with a 9.1 kb promoter, suggesting putative TEC specific as well as compartment specific cis elements within two promoters. Nitroreductase induced cell death was specific without bystander killing upon the treatment of prodrugs such as nitrofurantoin and metronidazol. The degree of cell death was dependent on the dose of the prodrug in the cell and the fetal thymic organ cultures (FTOCs). Fetal thymic stromal populations were analyzed based on the expression levels of EpCAM, MHCII, CDR1 and/or UEA-1. EGFP expression patterns varied among subsets indicating the differential TSCOT promoter activity in each TEC subset. Prodrug treatment in FTOCs reduced the numbers of total and subsets of thymocytes. A CD4(+)CD8(+) double positive cell population was highly susceptible in both transgenic lines. Surprisingly, there was a distinct reduction in γδ T cell population only in the 9.1T-NE thymus, indicating that they require a NTREGFP expressing TEC population. Therefore, these results support a division of labor within TEC subsets for the αβ and γδ lineage specification.
Collapse
Affiliation(s)
| | - Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 402-701,
Korea
| | | | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 402-701,
Korea
| |
Collapse
|
28
|
Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging. Gene Ther 2012; 20:529-37. [PMID: 22914496 DOI: 10.1038/gt.2012.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two of the successful gene-directed enzyme prodrug therapies include herpes simplex virus-thymidine kinase (HSV1-TK) enzyme-ganciclovir prodrug and the Escherichia coli nitroreductase (NTR) enzyme-CB1954 prodrug strategies; these enzyme-prodrug combinations produce activated cytotoxic metabolites of the prodrugs capable of tumor cell death by inhibiting DNA synthesis and killing quiescent cells, respectively. Both these strategies also affect significant bystander cell killing of neighboring tumor cells that do not express these enzymes. We have developed a dual-combination gene strategy, where we identified HSV1-TK and NTR fused in a particular orientation can effectively kill tumor cells when the tumor cells are treated with a fusion HSV1-TK-NTR gene- along with a prodrug combination of GCV and CB1954. In order to determine whether the dual-system demonstrate superior therapeutic efficacy than either HSV1-TK or NTR systems alone, we conducted both in vitro and in vivo tumor xenograft studies using triple negative SUM159 breast cancer cells, by evaluating the efficacy of cell death by apoptosis and necrosis upon treatment with the dual HSV1-TK genes-GCV-CB1954 prodrugs system, and compared the efficiency to HSV1-TK-GCV and NTR-CB1954. Our cell-based studies, tumor regression studies in xenograft mice, histological analyses of treated tumors and bystander studies indicate that the dual HSV1-TK-NTR-prodrug system is two times more efficient even with half the doses of both prodrugs than the respective single gene-prodrug system, as evidenced by enhanced apoptosis and necrosis of tumor cells in vitro in culture and xenograft of tumor tissues in animals.
Collapse
|
29
|
Li X, Montgomery J, Cheng W, Noh JH, Hyde DR, Li L. Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish. PLoS One 2012; 7:e40508. [PMID: 22815753 PMCID: PMC3398033 DOI: 10.1371/journal.pone.0040508] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 06/08/2012] [Indexed: 11/28/2022] Open
Abstract
In non-mammalian vertebrates, the pineal gland functions as the central pacemaker that regulates the circadian rhythms of animal behavior and physiology. We generated a transgenic zebrafish line [Tg(Gnat2:gal4-VP16/UAS:nfsB-mCherry)] in which the E. coli nitroreductase is expressed in pineal photoreceptor cells. In developing embryos and young adults, the transgene is expressed in both retinal and pineal photoreceptor cells. During aging, the expression of the transgene in retinal photoreceptor cells gradually diminishes. By 8 months of age, the Gnat2 promoter-driven nitroreductase is no longer expressed in retinal photoreceptor cells, but its expression in pineal photoreceptor cells persists. This provides a tool for selective ablation of pineal photoreceptor cells, i.e., by treatments with metronidazole. In the absence of pineal photoreceptor cells, the behavioral visual sensitivity of the fish remains unchanged; however, the circadian rhythms of rod and cone sensitivity are diminished. Brief light exposures restore the circadian rhythms of behavioral visual sensitivity. Together, the data suggest that retinal photoreceptor cells respond to environmental cues and are capable of entraining the circadian rhythms of visual sensitivity; however, they are insufficient for maintaining the rhythms. Cellular signals from the pineal photoreceptor cells may be required for maintaining the circadian rhythms of visual sensitivity.
Collapse
Affiliation(s)
- Xinle Li
- Department of Biological Sciences, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Tianjin Key Laboratory of Animal Models and Degenerative Neurological Diseases, Nankai University, Tianjin, China
| | - Jake Montgomery
- Department of Biological Sciences, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Wesley Cheng
- Department of Biological Sciences, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jung Hyun Noh
- Department of Biological Sciences, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - David R. Hyde
- Department of Biological Sciences, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Lei Li
- Department of Biological Sciences, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, United States of America
- Tianjin Key Laboratory of Animal Models and Degenerative Neurological Diseases, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
30
|
Hunt MA, Li D, Hay MP, Currie MJ, Robinson BA, Patterson AV, Dachs GU. Characterisation of enzyme prodrug gene therapy combinations in coated spheroids and vascular networks in vitro. J Gene Med 2012; 14:62-74. [DOI: 10.1002/jgm.1635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michelle A. Hunt
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| | - Dan Li
- Auckland Cancer Society Research Centre; University of Auckland; Auckland; New Zealand
| | - Michael P. Hay
- Auckland Cancer Society Research Centre; University of Auckland; Auckland; New Zealand
| | - Margaret J. Currie
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| | - Bridget A. Robinson
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre; University of Auckland; Auckland; New Zealand
| | - Gabi U. Dachs
- Angiogenesis and Cancer Research Group, Department of Pathology; University of Otago; Christchurch; New Zealand
| |
Collapse
|
31
|
Rivera-Gonzalez GC, Swift SL, Dussupt V, Georgopoulos LJ, Maitland NJ. Baculoviruses as gene therapy vectors for human prostate cancer. J Invertebr Pathol 2011; 107 Suppl:S59-70. [PMID: 21784232 DOI: 10.1016/j.jip.2011.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/10/2011] [Indexed: 12/13/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in ageing men in the western world. While the primary cancers can be treated with androgen ablation, radiotherapy and surgery, recurrent castration resistant cancers have an extremely poor prognosis, hence promoting research that could lead to a better treatment. Targeted therapeutic gene therapy may provide an attractive option for these patients. By exploiting the natural ability of viruses to target and transfer their genes into cancer cells, either naturally or after genetic manipulation, new generations of biological control can be developed. In this review we present the advantages and practicalities of using baculovirus as a vector for prostate cancer gene therapy and provide evidence for the potential of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) as a safer alternative vehicle for targeting cancer cells. Strategies to target baculovirus binding specifically to prostate cell surfaces are also presented. The large insertion capacity of baculoviruses also permits restricted, prostate-specific gene expression of therapeutic genes by cloning extended human transcriptional control sequences into the baculovirus genome.
Collapse
|
32
|
Vajda A, Marignol L, Foley R, Lynch TH, Lawler M, Hollywood D. Clinical potential of gene-directed enzyme prodrug therapy to improve radiation therapy in prostate cancer patients. Cancer Treat Rev 2011; 37:643-54. [DOI: 10.1016/j.ctrv.2011.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/08/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022]
|
33
|
Chen CF, Chu CY, Chen TH, Lee SJ, Shen CN, Hsiao CD. Establishment of a transgenic zebrafish line for superficial skin ablation and functional validation of apoptosis modulators in vivo. PLoS One 2011; 6:e20654. [PMID: 21655190 PMCID: PMC3105106 DOI: 10.1371/journal.pone.0020654] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 05/09/2011] [Indexed: 01/31/2023] Open
Abstract
Background Zebrafish skin is composed of enveloping and basal layers which form a first-line defense system against pathogens. Zebrafish epidermis contains ionocytes and mucous cells that aid secretion of acid/ions or mucous through skin. Previous studies demonstrated that fish skin is extremely sensitive to external stimuli. However, little is known about the molecular mechanisms that modulate skin cell apoptosis in zebrafish. Methodology/Principal Findings This study aimed to create a platform to conduct conditional skin ablation and determine if it is possible to attenuate apoptotic stimuli by overexpressing potential apoptosis modulating genes in the skin of live animals. A transgenic zebrafish line of Tg(krt4:NTR-hKikGR)cy17 (killer line), which can conditionally trigger apoptosis in superficial skin cells, was first established. When the killer line was incubated with the prodrug metrodinazole, the superficial skin displayed extensive apoptosis as judged by detection of massive TUNEL- and active caspase 3-positive signals. Great reductions in NTR-hKikGR+ fluorescent signals accompanied epidermal cell apoptosis. This indicated that NTR-hKikGR+ signal fluorescence can be utilized to evaluate apoptotic events in vivo. After removal of metrodinazole, the skin integrity progressively recovered and NTR-hKikGR+ fluorescent signals gradually restored. In contrast, either crossing the killer line with testing lines or transiently injecting the killer line with testing vectors that expressed human constitutive active Akt1, mouse constitutive active Stat3, or HPV16 E6 element displayed apoptosis-resistant phenotypes to cytotoxic metrodinazole as judged by the loss of reduction in NTR-hKikGR+ fluorescent signaling. Conclusion/Significance The killer/testing line binary system established in the current study demonstrates a nitroreductase/metrodinazole system that can be utilized to conditionally perform skin ablation in a real-time manner, and provides a valuable tool to visualize and quantify the anti-apoptotic potential of interesting target genes in vivo. The current work identifies a potential use for transgenic zebrafish as a high-throughput platform to validate potential apoptosis modulators in vivo.
Collapse
Affiliation(s)
- Chi-Fang Chen
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Che-Yu Chu
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Te-Hao Chen
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Shyh-Jye Lee
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Chia-Ning Shen
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Genome Research Center, Academia Sinica, NanKang, Taipei, Taiwan
- * E-mail: (C-NS); (C-DH)
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan
- * E-mail: (C-NS); (C-DH)
| |
Collapse
|
34
|
Choi RY, Engbretson GA, Solessio EC, Jones GA, Coughlin A, Aleksic I, Zuber ME. Cone degeneration following rod ablation in a reversible model of retinal degeneration. Invest Ophthalmol Vis Sci 2011; 52:364-73. [PMID: 20720220 DOI: 10.1167/iovs.10-5347] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE Amphibian retinas regenerate after injury, making them ideal for studying the mechanisms of retinal regeneration, but this leaves their value as models of retinal degeneration in question. The authors asked whether the initial cellular changes after rod loss in the regenerative model Xenopus laevis mimic those observed in nonregenerative models. They also asked whether rod loss was reversible. METHODS The authors generated transgenic X. laevis expressing the Escherichia coli enzyme nitroreductase (NTR) under the control of the rod-specific rhodopsin (XOP) promoter. NTR converts the antibiotic metronidazole (Mtz) into an interstrand DNA cross-linker. A visually mediated behavioral assay and immunohistochemistry were used to determine the effects of Mtz on the vision and retinas of XOPNTR F1 tadpoles. RESULTS NTR expression was detected only in the rods of XOPNTR tadpoles. Mtz treatment resulted in rapid vision loss and near complete ablation of rod photoreceptors by day 12. Müller glial cell hypertrophy and progressive cone degeneration followed rod cell ablation. When animals were allowed to recover, new rods were born and formed outer segments. CONCLUSIONS The initial secondary cellular changes detected in the rodless tadpole retina mimic those observed in other models of retinal degeneration. The rapid and synchronous rod loss in XOPNTR animals suggested this model may prove useful in the study of retinal degeneration. Moreover, the regenerative capacity of the Xenopus retina makes these animals a valuable tool for identifying the cellular and molecular mechanisms at work in lower vertebrates with the remarkable capacity of retinal regeneration.
Collapse
Affiliation(s)
- Rene Y Choi
- Department of Ophthalmology, Center for Vision Research, SUNY Eye Institute, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Montgomery JE, Parsons MJ, Hyde DR. A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors. J Comp Neurol 2010; 518:800-14. [PMID: 20058308 DOI: 10.1002/cne.22243] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The adult zebrafish retina continuously produces rod photoreceptors from infrequent Müller glial cell division, yielding neuronal progenitor cells that migrate to the outer nuclear layer and become rod precursor cells that are committed to differentiate into rods. Retinal damage models suggested that rod cell death induces regeneration from rod precursor cells, whereas loss of any other retinal neurons activates Müller glia proliferation to produce pluripotent neuronal progenitors that can generate any other neuronal cell type in the retina. We tested this hypothesis by creating two transgenic lines that expressed the E. coli nitroreductase enzyme fused to EGFP (NTR-EGFP) in only rods. Treating transgenic adults with metronidazole resulted in two rod cell death models. First, killing all rods throughout the Tg(zop:nfsB-EGFP)(nt19) retina induced robust Müller glial proliferation, which yielded clusters of neuronal progenitor cells. In contrast, ablating only a subset of rods across the Tg(zop:nfsB-EGFP)(nt20) retina led to rod precursor, but not Müller glial, cell proliferation. We propose that two different criteria determine whether rod cell death will induce a regenerative response from the Müller glia rather than from the resident rod precursor cells in the ONL. First, there must be a large amount of rod cell death to initiate Müller glia proliferation. Second, the rod cell death must be acute, rather than chronic, to stimulate regeneration from the Müller glia. This suggests that the zebrafish retina possesses mechanisms to quantify the amount and timing of rod cell death.
Collapse
Affiliation(s)
- Jacob E Montgomery
- Department of Biological Sciences and the Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
36
|
Singh P, Yam M, Russell PJ, Khatri A. Molecular and traditional chemotherapy: a united front against prostate cancer. Cancer Lett 2010; 293:1-14. [PMID: 20117879 DOI: 10.1016/j.canlet.2009.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 01/28/2023]
Abstract
Castrate resistant prostate cancer (CRPC) is essentially incurable. Recently though, chemotherapy demonstrated a survival benefit ( approximately 2months) in the treatment of CRPC. While this was a landmark finding, suboptimal efficacy and systemic toxicities at the therapeutic doses warranted further development. Smart combination therapies, acting through multiple mechanisms to target the heterogeneous cell populations of PC and with potential for reduction in individual dosing, need to be developed. In that, targeted molecular chemotherapy has generated significant interest with the potential for localized treatment to generate systemic efficacy. This can be further enhanced through the use of oncolytic conditionally replicative adenoviruses (CRAds) to deliver molecular chemotherapy. The prospects of chemotherapy and molecular-chemotherapy as single and as components of combination therapies are discussed.
Collapse
Affiliation(s)
- P Singh
- Centre for Medicine and Oral Health, Griffith University - Gold Coast GH1, High Street, Southport, Gold Coast, QLD 4215, Australia
| | | | | | | |
Collapse
|
37
|
Dachs GU, Hunt MA, Syddall S, Singleton DC, Patterson AV. Bystander or no bystander for gene directed enzyme prodrug therapy. Molecules 2009; 14:4517-45. [PMID: 19924084 PMCID: PMC6255103 DOI: 10.3390/molecules14114517] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 12/12/2022] Open
Abstract
Gene directed enzyme prodrug therapy (GDEPT) of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV), cytosine deaminase (CD) from bacteria or yeast with 5-fluorocytodine (5-FC), and bacterial nitroreductase (NfsB) with 5-(azaridin-1-yl)-2,4-dinitrobenzamide (CB1954), and their respective derivatives.
Collapse
Affiliation(s)
- Gabi U. Dachs
- Angiogenesis and Cancer Research Group, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail: (M.A.H.)
| | - Michelle A. Hunt
- Angiogenesis and Cancer Research Group, University of Otago, Christchurch, PO Box 4345, Christchurch 8140, New Zealand; E-Mail: (M.A.H.)
| | - Sophie Syddall
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| | - Dean C. Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; E-Mails: (S.S.); (D-C.S.); (A-V.P.)
| |
Collapse
|
38
|
Onion D, Patel P, Pineda RG, James N, Mautner V. Antivector and Tumor Immune Responses Following Adenovirus-Directed Enzyme Prodrug Therapy for the Treatment of Prostate Cancer. Hum Gene Ther 2009; 20:1249-58. [DOI: 10.1089/hum.2009.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- David Onion
- Cancer Research UK Institute of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT United Kingdom
| | - Prashant Patel
- Cancer Research UK Institute of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT United Kingdom
| | - Robert G. Pineda
- Cancer Research UK Institute of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT United Kingdom
| | - Nicholas James
- Cancer Research UK Institute of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT United Kingdom
| | - Vivien Mautner
- Cancer Research UK Institute of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT United Kingdom
| |
Collapse
|
39
|
Grohmann M, Paulmann N, Fleischhauer S, Vowinckel J, Priller J, Walther DJ. A mammalianized synthetic nitroreductase gene for high-level expression. BMC Cancer 2009; 9:301. [PMID: 19712451 PMCID: PMC3087338 DOI: 10.1186/1471-2407-9-301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 08/27/2009] [Indexed: 11/29/2022] Open
Abstract
Background The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. Methods We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. Results In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Conclusion Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans.
Collapse
Affiliation(s)
- Maik Grohmann
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
A phase I/II clinical trial in localized prostate cancer of an adenovirus expressing nitroreductase with CB1954 [correction of CB1984]. Mol Ther 2009; 17:1292-9. [PMID: 19367257 DOI: 10.1038/mt.2009.80] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We report a phase I/II clinical trial in prostate cancer (PCa) using direct intraprostatic injection of a replication defective adenovirus vector (CTL102) encoding bacterial nitroreductase (NTR) in conjunction with systemic prodrug CB1954. One group of patients with localized PCa scheduled for radical prostatectomy received virus alone, prior to surgery, in a dose escalation to establish safety, tolerability, and NTR expression. A second group with local failure following primary treatment received virus plus prodrug to establish safety and tolerability. Based on acceptable safety data and indications of prostate-specific antigen (PSA) responses, an extended cohort received virus at a single dose level plus prodrug. The vector was well tolerated with minimal side effects, had a short half-life in the circulation, and stimulated a robust antibody response. Immunohistochemistry of resected prostate demonstrated NTR staining in tumor and glandular epithelium at all dose levels [5 x 10(10)-1 x 10(12) virus particles (vp)]. A total of 19 patients received virus plus prodrug and 14 of these had a repeat treatment; minimal toxicity was observed and there was preliminary evidence of change in PSA kinetics, with an increase in the time to 10% PSA progression in 6 out of 18 patients at 6 months.
Collapse
|
41
|
Boyd M, Sorensen A, McCluskey AG, Mairs RJ. Radiation quality-dependent bystander effects elicited by targeted radionuclides. J Pharm Pharmacol 2008; 60:951-8. [PMID: 18644188 DOI: 10.1211/jpp.60.8.0002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The efficacy of radiotherapy may be partly dependent on indirect effects, which can sterilise malignant cells that are not directly irradiated. However, little is known of the influence of these effects in targeted radionuclide treatment of cancer. We determined bystander responses generated by the uptake of radioiodinated iododeoxyuridine ([*I]IUdR) and radiohaloanalogues of meta-iodobenzylguanidine ([*I]MIBG) by noradrenaline transporter (NAT) gene-transfected tumour cells. NAT specifically accumulates MIBG. Multicellular spheroids that consisted of 5% of NAT-expressing cells, capable of the active uptake of radiopharmaceutical, were sterilised by treatment with 20 kBqmL(-1) of the alpha-emitter meta-[211At]astatobenzylguanidine ([211At]MABG). Similarly, in nude mice, retardation of the growth of tumour xenografts containing 5% NAT-positivity was observed after treatment with [131I]MIBG. To determine the effect of subcellular localisation of radiolabelled drugs, we compared the bystander effects resulting from the intracellular concentration of [131I]MIBG and [131I]IUdR (low linear energy transfer (LET) beta-emitters) as well as [123I]MIBG and [123I]IUdR (high LET Auger electron emitters). [*I]IUdR is incorporated in DNA whereas [*I]MIBG accumulates in extranuclear sites. Cells exposed to media from [131I]MIBG- or [131I]IUdR-treated cells demonstrated a dose-response relationship with respect to clonogenic cell death. In contrast, cells receiving media from cultures treated with [123I]MIBG or [123I]IUdR exhibited dose-dependent toxicity at low dose but elimination of cytotoxicity with increasing radiation dose (i.e. U-shaped survival curves). Therefore radionuclides emitting high LET radiation may elicit toxic or protective effects on neighbouring untargeted cells at low and high dose respectively. It is concluded that radiopharmaceutical-induced bystander effects may depend on LET of the decay particles but are independent of site of intracellular concentration of radionuclide.
Collapse
Affiliation(s)
- Marie Boyd
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Medicine, Glasgow University, Cancer Research UK Beatson Laboratories, Glasgow, G61 1BD, UK
| | | | | | | |
Collapse
|
42
|
Hatfield JM, Wierdl M, Wadkins RM, Potter PM. Modifications of human carboxylesterase for improved prodrug activation. Expert Opin Drug Metab Toxicol 2008; 4:1153-65. [PMID: 18721110 DOI: 10.1517/17425255.4.9.1153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Carboxylesterases (CEs) are ubiquitous enzymes responsible for the hydrolysis of numerous clinically useful drugs. As ester moieties are frequently included in molecules to improve their water solubility and bioavailability, de facto they become substrates for CEs. OBJECTIVE In this review, we describe the properties of human CEs with regard to their ability to activate anticancer prodrugs and demonstrate how structure-based design can be used to modulate substrate specificity and to increase efficiency of hydrolysis. METHODS A specific example using CPT-11 and a human liver CE is discussed. However, these techniques can be applied to other enzymes and their associated prodrugs. RESULTS Structure-guided mutagenesis of CEs can be employed to alter substrate specificity and generate novel enzymes that are efficacious at anticancer prodrug activation.
Collapse
Affiliation(s)
- Jason M Hatfield
- Department of Molecular Pharmacology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
43
|
Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc 2008; 3:948-54. [PMID: 18536643 DOI: 10.1038/nprot.2008.58] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ablation studies are used to elucidate cell lineage relationships, developmental roles for specific cells during embryogenesis and mechanisms of tissue regeneration. Previous chemical and genetic approaches to directed cell ablation have been hampered by poor specificity, limited efficacy, irreversibility, hypersensitivity to promoter leakiness, restriction to proliferating cells, slow inducibility or complex genetics. Here, we provide a step-by-step protocol for a hybrid chemical-genetic cell ablation method in zebrafish that, by combining spatial and temporal control, is cell-type specific, inducible, reversible, rapid and scaleable. Bacterial Nitroreductase (NTR) is used to catalyze the reduction of the innocuous prodrug metrodinazole (Mtz), thereby producing a cytotoxic product that induces cell death. Based on this principle, NTR is expressed in transgenic zebrafish using a tissue-specific promoter. Subsequent exposure to Mtz by adding it to the media induces cell death exclusively within NTR(+) cells. This approach can be applied to regeneration studies, as removing Mtz by washing permits tissue recovery. Using this protocol, cell ablation can be achieved in 12-72 h, depending on the transgenic line used, and recovery initiates within the following 24 h.
Collapse
|
44
|
Singleton DC, Li D, Bai SY, Syddall SP, Smaill JB, Shen Y, Denny WA, Wilson WR, Patterson AV. The nitroreductase prodrug SN 28343 enhances the potency of systemically administered armed oncolytic adenovirus ONYX-411NTR. Cancer Gene Ther 2007; 14:953-67. [DOI: 10.1038/sj.cgt.7701088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Young JG, Green NK, Mautner V, Searle PF, Young LS, James ND. Combining gene and immunotherapy for prostate cancer. Prostate Cancer Prostatic Dis 2007; 11:187-93. [PMID: 17726452 DOI: 10.1038/sj.pcan.4501008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nitroreductase (NR)/CB1954 enzyme prodrug system has given promising results in pre-clinical studies and is currently being assessed in phase I and II clinical trials in prostate cancer. Enhanced cell killing by apparent immune-mediated mechanisms has been shown in pancreatic and colorectal cancer models, by co-expressing murine granulocyte macrophage colony-stimulating factor (GM-CSF) with NR in a single replication deficient adenoviral vector. This consists of the CMV immediate early promotor driving expression of NR, with an internal ribosome entry site (IRES) and the gene for murine GM-CSF (mGM-CSF). To examine if similar enhancement of tumour cell killing could be produced in prostate cancer, the TRAMP model was chosen. Results illustrate that the combination of suicide gene therapy using NR and CB1954, with cytokine stimulation with mGM-CSF gives an improved response compared with either modality alone. The mechanism of this improved response is however likely to be non-immune based as it lacks a memory effect.
Collapse
Affiliation(s)
- J G Young
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | |
Collapse
|
46
|
Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DYR. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 2007; 236:1025-35. [PMID: 17326133 DOI: 10.1002/dvdy.21100] [Citation(s) in RCA: 382] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Conditional targeted cell ablation in zebrafish would greatly expand the utility of this genetic model system in developmental and regeneration studies, given its extensive regenerative capabilities. Here, we show that, by combining chemical and genetic tools, one can ablate cells in a temporal- and spatial-specific manner in zebrafish larvae. For this purpose, we used the bacterial Nitroreductase (NTR) enzyme to convert the prodrug Metronidazole (Mtz) into a cytotoxic DNA cross-linking agent. To investigate the efficiency of this system, we targeted three different cell lineages in the heart, pancreas, and liver. Expression of the fusion protein Cyan Fluorescent Protein-NTR (CFP-NTR) under control of tissue-specific promoters allowed us to induce the death of cardiomyocytes, pancreatic beta-cells, and hepatocytes at specific times. Moreover, we have observed that Mtz can be efficiently washed away and that, upon Mtz withdrawal, the profoundly affected tissue can quickly recover. These findings show that the NTR/Mtz system is effective for temporally and spatially controlled cell ablation in zebrafish, thereby constituting a most promising genetic tool to analyze tissue interactions as well as the mechanisms underlying regeneration.
Collapse
Affiliation(s)
- Silvia Curado
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158-2324, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kwak SP, Malberg JE, Howland DS, Cheng KY, Su J, She Y, Fennell M, Ghavami A. Ablation of central nervous system progenitor cells in transgenic rats using bacterial nitroreductase system. J Neurosci Res 2007; 85:1183-93. [PMID: 17304579 DOI: 10.1002/jnr.21223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Specific ablation of central nervous system (CNS) progenitor cells in the brain of live animals is a powerful method to determine the functions of these cells and to reveal novel avenues for the treatment of several CNS-related disorders. To achieve this goal, we generated a line of transgenic rats expressing a bacterial enzyme, Escherichia coli nitroreductase gene (NTR), under control of the nestin promoter. In this system, NTR(+) cells are selectively eliminated upon application of prodrug CB1954, through activation of programmed cell death machineries. At 5 days of age, which is a time when cerebellar development is occurring, transgenic rats bearing the nestin-NTR/green fluorescent protein (GFP) gene are overtly normal and express NTR/GFP in neuronal stem cells, without any toxicity in these cells. The functional consequence of progenitor cell ablation was demonstrated by administering prodrug CB1954 into the cerebellum at this 5-day time point. Stem cell ablation in these neonates resulted in sensorimotor abnormalities, cerebellar degeneration, overall reduction in cerebellar seize, and manifestation of ataxia. In adult rats, GFP expression was not seen in the hippocampal progenitor cells and seen only at very low levels in the lateral ventricles, indicating a different NTR/GFP expression pattern between neonates and adults. In addition, application of CB1954 by intraventricular delivery reduced the number of 5-bromo-2'-deoxyuridine-labeled proliferating cells in the lateral ventricle but not hippocampus of NTR/GFP rats. These findings shows that targeted expression of NTR under a specific promoter might be of significant value in addressing the function of distinct cell population in vivo.
Collapse
|
48
|
Atwell GJ, Yang S, Pruijn FB, Pullen SM, Hogg A, Patterson AV, Wilson WR, Denny WA. Synthesis and Structure−Activity Relationships for 2,4-Dinitrobenzamide-5-mustards as Prodrugs for the Escherichia coli nfsB Nitroreductase in Gene Therapy. J Med Chem 2007; 50:1197-212. [PMID: 17326614 DOI: 10.1021/jm061062o] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of 2,4-dinitrobenzamide mustards were prepared from 5-chloro-2,4-dinitrobenzoic acid or the corresponding 5-dimesylate mustard as potential prodrugs for gene-directed enzyme prodrug therapy (GDEPT) with the E. coli nfsB nitroreductase (NTR). The compounds, including 32 new examples, were evaluated in four pairs of NTR+ve/-ve cell lines for selective cytotoxicity (IC50 and IC50 ratios), in multicellular layer (MCL) cultures for bystander effects, and for in vivo activity against tumors grown from stably NTR transfected EMT6 and WiDr cells in nude mice. Multivariate regression analysis of the IC50 results was undertaken using a partial least-squares projection to latent structures model. In NTR-ve lines, cytotoxicity correlated positively with logP, negatively with hydrogen bond acceptors (HA) and donors (HD) in the amide side chain, and positively with the reactivity of the less-reactive leaving group of the mustard function, likely reflecting toxicity due to DNA monoadducts. Potency and selectivity for NTR+ve lines was increased by logP and HD, decreased by HA, and was positively correlated with the leaving group efficiency of the more-reactive group, likely reflecting DNA crosslinking. NTR selectivity was greatest for asymmetric chloro/mesylate and bromo/mesylate mustards. Bystander effects in the MCL assay also correlated positively with logP and negatively with leaving group reactivity, presumably reflecting the transcellular diffusion/reaction properties of the activated metabolites. A total of 18 of 22 mustards showed equal or greater bystander efficiencies in MCLs than the aziridinylbenzamide CB 1954, which is currently in clinical trial for NTR-GDEPT. The dibromo and bromomesylate mustards were surprisingly well tolerated in mice. High MTD/IC50 (NTR+ve) ratios translated into curative activity of several compounds against NTR+ve tumors. A bromomesylate mustard showed superior activity against WiDr tumors grown from 1:9 mixtures of NTR+ve and NTR-ve cells, indicating a strong bystander effect in vivo.
Collapse
Affiliation(s)
- Graham J Atwell
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Guise CP, Grove JI, Hyde EI, Searle PF. Direct positive selection for improved nitroreductase variants using SOS triggering of bacteriophage lambda lytic cycle. Gene Ther 2007; 14:690-8. [PMID: 17301844 DOI: 10.1038/sj.gt.3302919] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of prodrug-activating enzymes that convert non-toxic substrates to cytotoxic derivatives is a promising strategy for cancer gene therapy. However, their catalytic activity with unnatural, prodrug substrates is often suboptimal. Efforts to improve these enzymes have been limited by the inability to select directly for increased prodrug activation. We have focussed on developing variants of Escherichia coli (E. coli) nitroreductase (NTR) with improved ability to activate the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954), and describe here a novel, direct, positive selection for improved enzymes that exploits the alternative life cycles of bacteriophage lambda. In lambda lysogens of E. coli, the activation of the prodrug CB1954 by NTR triggers the SOS response to DNA damage, switching integrated lambda prophages into lytic cycle. This provides a direct, positive selection for phages encoding improved NTR variants, as, upon limiting exposure of lysogenized E. coli to CB1954, only those encoding the most active enzyme variants are triggered into lytic cycle, allowing their selective recovery. We exemplify the selection by isolating highly improved 'turbo-NTR' variants from a library of 6.8 x 10(5) clones, conferring up to 50-fold greater sensitivity to CB1954 than the wild type. Carcinoma cells infected with adenovirus expressing T41Q/N71S/F124T-NTR were sensitized to CB1954 concentrations 40- to 80-fold lower than required with WT-NTR.
Collapse
Affiliation(s)
- C P Guise
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham, UK
| | | | | | | |
Collapse
|
50
|
Race PR, Lovering AL, White SA, Grove JI, Searle PF, Wrighton CW, Hyde EI. Kinetic and structural characterisation of Escherichia coli nitroreductase mutants showing improved efficacy for the prodrug substrate CB1954. J Mol Biol 2007; 368:481-92. [PMID: 17350040 DOI: 10.1016/j.jmb.2007.02.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 01/29/2007] [Accepted: 02/06/2007] [Indexed: 11/17/2022]
Abstract
Escherichia coli nitroreductase (NTR) is a flavoprotein that reduces a variety of quinone and nitroaromatic substrates. Among these substrates is the prodrug 5-[aziridin-1-yl]-2,4-dinitrobenzamide (CB1954) that is activated by NTR to form two products, one of which is highly cytotoxic. NTR in combination with CB1954 has entered clinical trials for virus-directed enzyme-prodrug therapy of cancer. Enhancing the catalytic efficiency of NTR for CB1954 is likely to improve the therapeutic potential of this system. We previously identified a number of mutants at six positions around the active site of NTR that showed enhanced sensitisation to CB1954 in an E. coli cell-killing assay. In this study we have purified improved mutants at each of these positions and determined their steady-state kinetic parameters for CB1954 and for the antibiotic nitrofurazone. We have also made a double mutant, combining two of the most beneficial single mutations. All the mutants show enhanced specificity constants for CB1954, and, apart from N71S, the enhancement is selective for CB1954 over nitrofurazone. One mutant, T41L, also shows an increase in selectivity for reducing the 4-nitro group of CB1954 rather than the 2-nitro group. We have determined the three-dimensional structures of selected mutants bound to the substrate analogue nicotinic acid, using X-ray crystallography. The N71S mutation affects interactions of the FMN cofactor, while mutations at T41 and F124 affect the interactions with nicotinic acid. The structure of double mutant N71S/F124K combines the effects of the two individual single mutations, but it gives a greater selective enhancement of activity with CB1954 over nitrofurazone than either of these, and the highest specificity constant for CB1954 of all the mutations studied.
Collapse
Affiliation(s)
- Paul R Race
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|