1
|
Abstract
Gene therapy is a promising new treatment modality based on molecular genetic modification to achieve a therapeutic benefit. We believe that gene therapy in the peritoneal cavity holds considerable promise, and we describe strategies by which genetic modification can be used to treat a variety of disease states or conditions. First, we can envision a strategy, based on genetic modification of the peritoneal membrane, to improve the practice of peritoneal dialysis through the production of proteins that would be of therapeutic value in preventing membrane damage and in preserving or enhancing its function as a dialyzing membrane. Second, the membrane could be genetically modified for either local or systemic delivery of therapeutic proteins. This approach could be applied to a variety of pathologies or conditions that require either sustained or transient delivery of therapeutic proteins, such as enzymes or growth factors. Third, gene transfer has already been incorporated into several strategies for the treatment of intra-abdominal carcinomas, and it has been effective in animal models of ovarian and bladder cancer and of peritoneal mesothelioma. Finally, gene transfer can be a valuable tool in increasing our understanding of the biology of the peritoneal membrane. By being able to manipulate the expression of specific genes through gene transfer, their role in various (patho)physiological processes can be identified. In summary, gene therapy in the peritoneal cavity has significant potential to address a variety of diseases or pathophysiological conditions, and to further our knowledge of peritoneal cavity biology.
Collapse
Affiliation(s)
- Catherine M. Hoff
- Baxter Healthcare Corporation, Renal Division, Scientific Affairs, McGaw Park, Illinois, U.S.A
| | - Ty R. Shockley
- Baxter Healthcare Corporation, Renal Division, Scientific Affairs, McGaw Park, Illinois, U.S.A
| |
Collapse
|
2
|
Abstract
Pleural malignancies remain a serious therapeutic challenge, and are frequently refractory to standard treatment; however, they have the advantage of occurring in an enclosed cavity readily accessible for examination, biopsy, and serial sampling. Novel therapeutics can be administered via intracavitary delivery to maximize efficacy by targeting the site of involvement and potentially mitigating the adverse effects of systemic therapies. The easy accessibility of the pleural space lends itself well to repeated sampling and analysis to determine efficacy and toxicity of a given treatment paradigm. These factors support the rationale for delivery of novel therapeutics directly into the pleural space.
Collapse
Affiliation(s)
- Vivek Murthy
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA
| | - Keshav Mangalick
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA
| | - Daniel H Sterman
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA.
| |
Collapse
|
3
|
Novel REIC/Dkk-3-encoding adenoviral vector as a promising therapeutic agent for pancreatic cancer. Cancer Gene Ther 2016; 23:278-83. [PMID: 27468808 DOI: 10.1038/cgt.2016.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/14/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
|
4
|
Abstract
The outcomes for treatment of pancreatic cancer have not improved dramatically in many decades. However, the recent promising results with combination chemotherapy regimens for metastatic disease increase optimism for future treatments. With greater control of overt or occult metastatic disease, there will likely be an expanding role for local treatment modalities, especially given that nearly a third of pancreatic cancer patients have locally destructive disease without distant metastatic disease at the time of death. Technical advances have allowed for the safe delivery of dose-escalated radiation therapy, which can then be combined with chemotherapy, targeted agents, immunotherapy, and nanoparticulate drug delivery techniques to produce novel and improved synergistic effects. Here we discuss recent advances and future directions for multimodality therapy in pancreatic cancer.
Collapse
|
5
|
Liu SX, Xia ZS, Zhong YQ. Gene therapy in pancreatic cancer. World J Gastroenterol 2014; 20:13343-68. [PMID: 25309069 PMCID: PMC4188890 DOI: 10.3748/wjg.v20.i37.13343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/29/2013] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.
Collapse
|
6
|
Lin G, Hu R, Law WC, Chen CK, Wang Y, Li Chin H, Nguyen QT, Lai CK, Yoon HS, Wang X, Xu G, Ye L, Cheng C, Yong KT. Biodegradable nanocapsules as siRNA carriers for mutant K-Ras gene silencing of human pancreatic carcinoma cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2757-63. [PMID: 23427041 DOI: 10.1002/smll.201201716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/27/2012] [Indexed: 06/01/2023]
Abstract
The application of small interfering RNA (siRNA)-based RNA interference (RNAi) for cancer gene therapy has attracted great attention. Gene therapy is a promising strategy for cancer treatment because it is relatively non-invasive and has a higher therapeutic specificity than chemotherapy. However, without the use of safe and efficient carriers, siRNAs cannot effectively penetrate the cell membranes and RNAi is impeded. In this work, cationic poly(lactic acid) (CPLA)-based degradable nanocapsules (NCs) are utilized as novel carriers of siRNA for effective gene silencing of pancreatic cancer cells. These CPLA-NCs can readily form nanoplexes with K-Ras siRNA and over 90% transfection efficiency is achieved using the nanoplexes. Cell viability studies show that the nanoparticles are highly biocompatible and non-toxic, indicating that CPLA-NC is a promising potential candidate for gene therapy in a clinical setting.
Collapse
Affiliation(s)
- Guimiao Lin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mao H, Lebrun DG, Yang J, Zhu VF, Li M. Deregulated signaling pathways in glioblastoma multiforme: molecular mechanisms and therapeutic targets. Cancer Invest 2012; 30:48-56. [PMID: 22236189 DOI: 10.3109/07357907.2011.630050] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant and aggressive type of brain tumor with an average life expectancy of less than 15 months. This is mostly due to the highly mutated genome of GBM, which is characterized by the deregulation of many key signaling pathways involving growth, proliferation, survival, and apoptosis. It is critical to explore novel diagnostic and therapeutic strategies that target these pathways to improve the treatment of malignant glioma in the future. This review summarizes the most common and important pathways that are highly mutated or deregulated in GBM and discusses potential therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Hua Mao
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
8
|
Yoshimura K, Olino K, Edil BH, Schulick RD, Oka M. Immuno- and gene-therapeutic strategies targeted against cancer (mainly focusing on pancreatic cancer). Surg Today 2010; 40:404-10. [PMID: 20425541 DOI: 10.1007/s00595-009-4120-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 07/26/2009] [Indexed: 02/02/2023]
Abstract
Current treatment modalities of surgical resection and chemotherapy against cancers have improved survival. However, mortality from tumor recurrence remains high. Immunotherapy and gene therapy are potential additions to the treatment arsenal in the care of cancer patients. These novel therapeutic approaches need further investigation in in vitro and in vivo models as they are developed for potential use in humans. Here we reviewed immunotherapies and gene therapies that included clinical trials against cancers (mainly focusing on pancreatic cancer) suggesting the strong possibility of using these novel approaches.
Collapse
Affiliation(s)
- Kiyoshi Yoshimura
- Department of Surgery II, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | |
Collapse
|
9
|
Yu X, Zhang Y, Chen C, Yao Q, Li M. Targeted drug delivery in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2009; 1805:97-104. [PMID: 19853645 DOI: 10.1016/j.bbcan.2009.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/07/2009] [Accepted: 10/11/2009] [Indexed: 12/16/2022]
Abstract
Effective drug delivery in pancreatic cancer treatment remains a major challenge. Because of the high resistance to chemo and radiation therapy, the overall survival rate for pancreatic cancer is extremely low. Recent advances in drug delivery systems hold great promise for improving cancer therapy. Using liposomes, nanoparticles, and carbon nanotubes to deliver cancer drugs and other therapeutic agents such as siRNA, suicide gene, oncolytic virus, small molecule inhibitor, and antibody has been a success in recent preclinical trials. However, how to improve the specificity and stability of the delivered drug using ligand or antibody directed delivery represent a major problem. Therefore, developing novel, specific, tumor-targeted drug delivery systems is urgently needed for this terrible disease. This review summarizes the current progress on targeted drug delivery in pancreatic cancer and provides important information on potential therapeutic targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xianjun Yu
- Michael E. DeBakey Department of Surgery, Molecular Surgeon Research Center, Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
10
|
Fogar P, Navaglia F, Basso D, Zambon CF, Moserle L, Indraccolo S, Stranges A, Greco E, Fadi E, Padoan A, Pantano G, Sanzari MC, Pedrazzoli S, Montecucco C, Plebani M. Heat-induced transcription of diphtheria toxin A or its variants, CRM176 and CRM197: implications for pancreatic cancer gene therapy. Cancer Gene Ther 2009; 17:58-68. [DOI: 10.1038/cgt.2009.48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Tros De Ilarduya C, Buñuales M, Qian C, Düzgüneş N. Antitumoral activity of transferrin-lipoplexes carrying the IL-12 gene in the treatment of colon cancer. J Drug Target 2008; 14:527-35. [PMID: 17050119 DOI: 10.1080/10611860600825282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present study aimed to establish an efficient targeted nonviral strategy for IL-12 gene transfer in colon carcinoma in vivo employing transferrin (Tf)-lipoplexes. Complexes for in vitro experiments were prepared at a 5/1(+/ - ) (lipid/DNA) charge ratio, with the ligand Tf (32 (microg/(microg DNA). Complexes for in vivo experiments contained 144 mM of total lipid (DOTAP/Chol), 60 (microg of pCMVLuc or pCMVIL-12 and 32 (microg of Tf-lipoplexes per microgram of plasmid. For intratumoral studies, CT26 (5 x 105 cells) in 50 microl of PBS were inoculated subcutaneously into the back of the mouse. Treatments began when tumor sizes reached 5-6 mm in diameter. Complexes were injected by a single intratumoral injection in a volume of 50 microl. Our in vitro results indicate that Tf-lipoplexes always mediate higher gene expression in colon (CT26) tumor cells, compared to plain-lipoplexes (without ligand) or naked plasmid. At the same time, CT26 tumor-bearing animals treated with Tf-lipoplexes containing the therapeutic gene IL-12, showed tumor growth inhibition, leading to a complete tumor regression in 75% of the treated mice (p < 0.001), without signs of recurrence. High levels of IL-12 and IFN-gamma were detected in the sera of treated mice. Mice survival also improved considerably by treatment with this system, with a survival rate of 88%, at 23 days post-administration. In summary, in this study we have developed an efficient, targeted cationic lipid-based system for the treatment of colon tumors. The vector has the advantages of ease of preparation and economy, in comparison with commercial transfection reagents, as well as, the possibility of a large scale production.
Collapse
Affiliation(s)
- Conchita Tros De Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
12
|
Abstract
Pancreatic cancer is a lethal disease and notoriously difficult to treat. Only a small proportion is curative by surgical resection, whilst standard chemotherapy for patients with advanced disease has only modest effect with substantial toxicity. Clearly there is a need for the continual development of novel therapeutic agents to improve the current situation. Improvement of our understanding of the disease has generated a large number of studies on biological approaches targeting the molecular abnormalities of pancreatic cancer, including gene therapy and signal transduction inhibition, antiangiogenic and matrix metalloproteinase inhibition, oncolytic viral therapy and immunotherapy. This article provides a review of these approaches, both investigated in the laboratories and in subsequent clinical trials.
Collapse
Affiliation(s)
- Han Hsi Wong
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, UK.
| | | |
Collapse
|
13
|
Liu SH, Davis A, Li Z, Ballian N, Davis E, Wang XP, Fisher W, Brunicardi FC. Effective ablation of pancreatic cancer cells in SCID mice using systemic adenoviral RIP-TK/GCV gene therapy. J Surg Res 2007; 141:45-52. [PMID: 17512546 DOI: 10.1016/j.jss.2007.02.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/20/2007] [Accepted: 02/26/2007] [Indexed: 01/25/2023]
Abstract
BACKGROUND Studies have demonstrated that adenovirus subtype 5 mediated rat insulin promoter directed thymidine kinase (A-5-RIP-TK)/ganciclovir (GCV) gene therapy resulted in significant enhanced cytotoxicity to both PANC-1 and MIA PaCa2 pancreatic cancer cells in vitro. However, little is known about the effect in vivo. In this study we examine the in vivo safety and efficacy of intravenous A-5-RIP-TK/GCV gene therapy. MATERIALS AND METHODS 1 x 10(6) Mia PaCa2 cells were injected intraperitoneally (i.p.) into SCID mice to create a mouse model of human pancreatic cancer. A-5-RIP-TK gene construct was administered intravenously (i.v.), followed by i.p. GCV administration. Intravenous injection of A-5-RIP-lacZ reporter gene constructs was used for evaluation of Ad-RIP-gene expression in tumors and other tissues. Optimal adenoviral and GCV doses and treatment duration were determined. Tumor volume, serum insulin, and glucose levels were measured. Immunohistochemical staining of pancreata and tumors were performed to assess morphology and hormone expression and apoptotic rates were determined. RESULTS All A-5-RIP-TK/GCV-treated mice had reduced tumor volume compared with controls, but maximal tumor volume reduction was observed with 10(8) vp followed by GCV treatment for 4 wk. A-5-RIP-TK/GCV gene therapy contributed to significant survival advantage in MIA PaCa2 bearing mice, and the greatest survival benefit was observed with 10(8) vp and was not affected by length of treatment of GCV. A-5-RIP-TK/GCV therapy increased PDX-1 expression and tumor cells apoptosis, and altered islet morphology. However, A-5-RIP-TK/GCV gene therapy caused diabetes associated with islet cell apoptosis, increased delta-cells and reduced pancreatic polypeptide (PP)-cell numbers. CONCLUSIONS Systemically administered A-5-RIP-TK/GCV is an effective treatment of pancreatic cancer. A-5-RIP-TK/GCV cytotoxicity to malignant cells varies with adenoviral dose and length of GCV treatment. However, A-5-RIP-TK/GCV is associated with islet cell toxicity and diabetogenesis. The type of diabetes observed is distinct from Types 1 and 2 and is associated with islet cell apoptosis and reduced delta- and PP-cells.
Collapse
Affiliation(s)
- Shi-He Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kasuya H, Nishiyama Y, Nomoto S, Goshima F, Takeda S, Watanabe I, Nomura N, Shikano T, Fujii T, Kanazumi N, Nakao A. Suitability of a US3-inactivated HSV mutant (L1BR1) as an oncolytic virus for pancreatic cancer therapy. Cancer Gene Ther 2007; 14:533-42. [PMID: 17415379 DOI: 10.1038/sj.cgt.7701049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recently, the use of oncolytic viruses against cancer has attracted considerable attention. We studied the potential of the US3 locus-deficient herpes simplex virus (HSV), L1BR1, for oncolytic virus therapy. Its high specificity and potency indicate that L1BR1 is a promising candidate as a new oncolytic virus against pancreatic cancer. Moreover, the virus exhibited the unique characteristic of increasing apoptosis when used in combination with anticancer drugs. We assessed the feasibility of using the US3 locus-deficient HSV named L1BR1 as a new replication-competent oncolytic virus for the treatment of pancreatic cancer. The US3 locus of HSV has been shown to be a key gene in producing a multifunctional protein kinase that inhibits apoptosis induced by viral infections, chemicals and ultraviolet (UV) light. L1BR1 has been reported to be more than 10 000-fold less virulent than the parental virus in mice. In this study, we examined the tumor specificity and oncolytic effect of this attenuated replication-competent virus, L1BR1, in pancreatic cancers derived from SW1990, Capan2 and Bxpc-3cells compared with the parent virus and other well-known oncolytic herpes viruses (R3616 and hrR3). We also studied the efficacy of L1BR1 for the induction of apoptosis as an attribute of this virus in combination with the anticancer drugs 5FU and cisplatin. The combined treatment of the pancreatic cancer cells with L1BR1 and these anticancer drugs enhanced apoptosis significantly. More importantly, L1BR1 showed the lowest replication capacity in normal human hepatocytes, but the highest tumor-reducing effect in vivo among the oncolytic herpes viruses tested. In addition, L1BR1 significantly increased the induction of apoptosis of cancer cells when treated in combination with anticancer drugs although the parental virus inhibited the induction of apoptosis. These results suggest that L1BR1 is promising as a new anticancer oncolytic virus.
Collapse
Affiliation(s)
- H Kasuya
- Department of Surgery II, Nagoya University School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu S, Wang XP, Brunicardi FC. Enhanced Cytotoxicity of RIPTK Gene Therapy of Pancreatic Cancer via PDX-1 Co-Delivery. J Surg Res 2007; 137:1-9. [PMID: 17161985 DOI: 10.1016/j.jss.2006.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/24/2006] [Accepted: 04/26/2006] [Indexed: 01/20/2023]
Abstract
BACKGROUND Using in vivo mouse models, we have demonstrated that the insulin promoter-driven suicidal gene therapy (RIPTK) could be used in the treatment of mouse insulinoma and human pancreatic cancer cells. However, limitations of this therapy include tumor cells lack of sufficient PDX-1 protein and low levels of transgene expression mediated by liposome delivery system. The purpose of this study was to determine 1) whether transient transfection of PDX-1 into selected pancreatic cancer cells would lead to increased RIPTK cytotoxicity, and 2) whether an adenoviral delivery system would increase the overall RIPTK gene expression in vitro. MATERIAL AND METHODS RIPlacZ and RSVlacZ plasmid DNA as well as AdCMVlacZ and AdRIPlacZ were used in transfection assays in human pancreatic cancer cell lines PANC-1 and MIA PaCa2 (n = 8). An expression plasmid DNA containing the mouse PDX-1 cDNA was also used. LacZ reporter assays were performed. RIPTK genes constructed either in plasmid or in adenoviral vectors were used in cytotoxic assays. RT-PCR assays were used to determine PDX-1 expression levels. RESULTS PDX-1 protein was detected in the human pancreatic ductal carcinoma cell line PANC-1, a little in MIA PaCa2 cells. Liposome mediated (L) RSVlacZ and RIPlacZ transfection in PANC-1 cells resulted in 10.1% and 9.3% transgene expression, respectively. Co-delivery of PDX-1 had no significant effect on RSVlacZ expression (9.3%, P = NS) but significantly increased RIPlacZ gene expression (14.9% P < 0.05). Adenoviral mediated (Ad) RIPlacZ transgene was highly expressed in PANC-1 cells (66.1%) and the reporter activity was further enhanced when PDX-1 was co-delivered (70.2%, P < 0.05). Liposomal transfection of MIA PaCa2 cells using RSVlacZ and RIPlacZ reporter genes resulted in 9.3% and 1.0% gene expression, respectively. Co-transfection of PDX-1 in these cells resulted in a significant activation of RIPlacZ gene expression (14.5%, P < 0.05) with no effects on RSVlacZ treated cells (9.8%). AdCMVlacZ and AdRIPlacZ significantly increased reporter activities in MIA PaCa2 cells (63.0% and 9.8%, respectively). Transfection of PDX-1 also significantly enhanced the AdRIPlacZ activities (46.0%, P < 0.05), with no significant effect in AdCMVlacZ treated cells (68.2%). The cytotoxic effect of liposome-RIPTK/ganciclovir (GCV) in PANC-1 cells was 18.6% and increased to 22.8% when PDX-1 was co-transfected into the cells (P = NS). MIA PaCa2 cells treated with RIPTK alone resulted in 4.9% cell death and increased to 18.2% when exogenous PDX-1 was co-delivered (P < 0.05). The AdRIPTK gene delivery with GCV treatment caused significant cytotoxic effect in PANC-1 (29.3%) and MIA PaCa2 (12.4%) compared with untreated cells. The cytotoxic effects were further increased to 43.4% and 29.4% in PANC-1 and MIA PaCa2 cells, respectively, when PDX-1 was co-transfected (P < 0.05 for both). CONCLUSIONS These data demonstrated that adenoviral mediated gene delivery resulted in a significant increase of transgene expression compared with liposomal delivery systems. RIPTK mediated cytotoxicity was also significantly enhanced via co-delivery of exogenous PDX-1 in these cells. Thus, these results also indicated that PDX-1 plays critical roles in insulin promoter activation and demonstrated that PDX-1 production is essential for insulin promoter-directed gene therapy.
Collapse
Affiliation(s)
- Shihe Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
16
|
Wang X, Olmsted-Davis E, Davis A, Liu S, Li Z, Yang J, Brunicardi FC. Specific targeting of pancreatic islet cells in vivo by insulin-promoter-driven adenoviral conjugated reporter genes. World J Surg 2006; 30:1543-52. [PMID: 16855800 DOI: 10.1007/s00268-005-0688-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND The objective of this study was to determine whether rat insulin promoter (RIP) could, in a mouse model, direct expression of an adenovirus-mediated reporter gene specifically into pancreatic islets via systemic delivery. METHODS Five hundred and eight base pairs of the RIP DNA sequence were constructed into an adenoviral vector containing a lacZ reporter gene (Adeno-RIP-lacZ). The cytomegalovirus (CMV) promoter was constructed to drive lacZ reporter-gene expression (Adeno-CMV-lacZ) and used as controls. In vitro transient transfection assays were performed to determine levels of reporter-gene expression and compared with that of liposome-mediated plasmid transfection. SCID mice were bred and housed in the barrier BL-4 animal facility. At 2 months of age, the human pancreatic cancer cell PANC-1 was intraperitoneally injected into male mice. Two months after the tumor cell inoculation, mice were injected with 10(7) adenoviral particles via tail veins. After gene delivery, mice were sacrificed at different time points to determine transgene expression levels. Complete necropsies were performed. Morphological alterations were determined using hematoxylin and eosin (H&E) staining, and distribution of the reporter lacZ gene was determined by immunohistochemistry analyses. RESULTS Adenoviral-driven reporter-gene expression resulted in more than 5 times higher transgene expression compared with conventional plasmid transfections. In Adeno-RIP-lacZ-injected mice, lacZ expression was specifically detected in pancreatic islets. By contrast, in Adeno-CMV-lacZ-injected mice, lacZ gene expression was observed in multiple organs and tissues. Mononuclear cell infiltration and liver cell inflammation were found in Adeno-CMV-lacZ-treated mice. Similar phenomena were observed in islet cells of Adeno-RIP-lacZ-treated mice. A significantly higher level of reporter-gene expression was also found at the edge of in-vivo-inoculated human pancreatic tumors. CONCLUSION These results demonstrate that RIP-directed reporter-gene expression was found specifically in mouse pancreatic islets and implanted human pancreatic cancer cells. These data thus demonstrate that the combination of an adenoviral vector and a tissue-specific promoter could lead to an enhanced and more specific transgene expression in vivo.
Collapse
Affiliation(s)
- Xiaoping Wang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, 1709 Dryden, Suit 1500, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Treatment options for pancreatic cancer have limited success and it is therefore an appropriate target for the development of new strategies, including gene therapy. Gene therapy approaches include inhibition of activated oncogenes (KRAS, LSM1) with antisense and RNA interference strategies, replacement of inactivated tumour suppressor genes (TP53, CDKN2A, CDKN1A), targeting of cell signalling pathways, gene-directed prodrug-activation therapies and the use of replication-competent oncolytic viruses. Angiogenesis and apoptosis have also been targeted for gene therapy. Clinical trials of gene therapy have shown only moderate anti-tumour effects. As there are many genetic abnormalities in pancreatic cancer, strategies combining different targets or indeed different modalities of treatment, may be more successful. Identification of new targets and improvements in delivery and targeting may further improve the efficacy of gene therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Madhumita Bhattacharyya
- Centre for Molecular Oncology, Institute of Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square EC1M 6BQ, London.
| | | |
Collapse
|
18
|
Kasuya H, Takeda S, Nomoto S, Nakao A. The potential of oncolytic virus therapy for pancreatic cancer. Cancer Gene Ther 2005; 12:725-36. [PMID: 15818382 DOI: 10.1038/sj.cgt.7700830] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The objective of this paper was to review a new category of gene therapy using oncolytic viruses for the treatment of pancreatic cancer. The eligibility and feasibility of oncolytic virus therapy as a novel therapeutic agent against pancreatic cancer are discussed as well as basic research for clinical trials, including a historical perspective and the current status of these novel agents. Even combination therapy, such as surgery with radiation and chemotherapy, has not significantly improved the survival rate of pancreatic cancer. Recently, a clinical trial (phase I and II) using an oncolytic adenovirus, ONYX-015, was completed in patients with pancreatic cancer. The phase II trial yielded beneficial results (tumor reduction or stabilization) in about 50% of the patients. A phase I study of the efficacy of oncolytic herpes viruses, G207, OncoVEX GM-CSF, and 1716 against a variety of tumors has been completed, and G207 is in phase II trials for use against brain tumors. In addition, a phase I trial using the herpesvirus showed good tolerance at all dosages. We discuss the basic scientific principles and current results of the above clinical trials with respect to these oncolytic viruses, and then compare the relative advantages and disadvantages of adenoviruses and herpesviruses as oncolytic agents. We also review the published literature on newly developed oncolytic viruses. The concept of oncolytic therapy has been studied for a century. Recent technological developments have made these oncolytic viruses more tumor-specific by exploiting the tumor cell environments. In addition, these viruses have been reported to increase the immunosusceptibility of the tumor cells, and have been designed to express other genes to increase the susceptibility of tumor cells to other therapeutic agents. Oncolytic virus therapy certainly appears to be a feasible treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Hideki Kasuya
- Surgery II, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan.
| | | | | | | |
Collapse
|
19
|
Deharvengt S, Wack S, Aprahamian M, Hajri A. Transcriptional tumor-selective promoter targeting of E. coli purine nucleoside phosphorylase for pancreatic cancer suicide gene therapy. J Gene Med 2005; 7:672-80. [PMID: 15580629 DOI: 10.1002/jgm.701] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Pancreatic cancer remains a rapidly fatal disease. Suicide gene therapy has been shown to be an effective tool for pancreatic tumor cell destruction, but a cell-specific gene delivery is required to limit host toxicity. The objective of this study was both to design recombinant vectors in which the suicide gene E. coli purine nucleoside phosphorylase (ePNP) is under the control of either CEA or MUC1 promoter sequences and to investigate on experimental pancreatic carcinomas the selective killing effects of the conditional ePNP/prodrug (MePdR) system. METHODS Transcriptional activities of CEA and MUC1 promoter sequences were analyzed using luciferase reporter gene constructions. Thereafter, recombinant vectors expressing ePNP under control of the most promising pCEA and pMUC1 sequences were designed and used to establish stable tumor cell transfectants from two human pancreatic cell lines, respectively tumor-marker positive (BxPc3) or negative (Panc-1), then applied for in vitro and in vivo experiments. RESULTS Transient experiments indicated that CEA and MUC1 promoter sequences confer specificity while preserving high transcriptional activities. The MePdR treatment induced a high in vitro cytotoxicity on the sole CEA- and MUC1-producing cell lines (i.e. BxPc3-CEA and -MUC1/ePNP). In the same way, prodrug treatment induced a significant tumor regression on the sole tumor-marker-positive BxPc3 xenografts, whilst the Panc1-CEA and -MUC1/ePNP tumors were not affected. CONCLUSIONS These data confirm and extend the antitumor efficacy of the ePNP/MePdR killing system and demonstrate the feasibility of the transcriptional targeting strategy under tumor marker promoter control and thereby a preferential killing of CEA- and MUC1-producing pancreatic tumor cells. Thus, efficient in vivo gene delivery and transcriptional targeting constitute the major future clinical challenge for a selective pancreatic cancer suicide gene strategy.
Collapse
Affiliation(s)
- Sophie Deharvengt
- INSERM U375, IRCAD, 1 place de l'Hôpital, BP 426, 67091 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
20
|
Abstract
During the last decade significant advances in gene therapy have made it possible to treat various pancreatic disorders in both animal models and in humans. For example, insulin gene delivery to non-beta-cell tissues has been shown to reverse hyperglycemia in diabetic mice, and islet transplantation, based on in vitro differentiation of beta cells and concomitant gene targeting to prevent host autoimmune responses, has become more feasible. Additionally, introduction of the glucokinase regulatory protein and protein kinase C-zeta have been shown to improve glucose tolerance in non-insulin-dependent diabetes mellitus animal models. Pancreatic cancer studies utilize several DNA-based strategies for tumor treatment including introduction of tumor suppressor genes, suppression of oncogenes, suicide gene/prodrug therapy, and restricted replication-competent virus therapy. Tumor-specific targeting is an important part of suicide gene therapy, and tumor-specific promoters are used for cell-specific targeting. Tumor-specific suicide gene therapy directed by the rat insulin promoter has been used to eliminate insulinoma tumors in a mouse model. This review compiles a compendium of information related to the treatment of pancreatic disorders using gene therapy.
Collapse
Affiliation(s)
- Kiichi Tamada
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
21
|
Miura Y, Ohnami S, Yoshida K, Ohashi M, Nakano M, Ohnami S, Fukuhara M, Yanagi K, Matsushita A, Uchida E, Asaka M, Yoshida T, Aoki K. Intraperitoneal injection of adenovirus expressing antisense K-ras RNA suppresses peritoneal dissemination of hamster syngeneic pancreatic cancer without systemic toxicity. Cancer Lett 2005; 218:53-62. [PMID: 15639340 DOI: 10.1016/j.canlet.2004.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 07/28/2004] [Accepted: 08/04/2004] [Indexed: 01/29/2023]
Abstract
We examined the antitumor effect and safety of the adenovirus-mediated expression of antisense K-ras RNA in two peritoneal dissemination models of pancreatic cancer. First, we found that the infection of an adenovirus vector expressing antisense human K-ras RNA (AxCA-AS) induced significant apoptosis in vitro in human pancreatic cancer cells with K-ras mutation. Second, the intraperitoneal (ip) injection of AxCA-AS effectively suppressed the growth of human pancreatic cancer cells in the peritoneal cavity of nude mice. Third, in the hamster syngeneic peritoneal dissemination model, the ip injection of an adenovirus expressing antisense hamster K-ras RNA significantly suppressed the peritoneal growth of hamster pancreatic cancer cells, and no significant systemic toxicity was observed in the treated hamsters. This study suggests a feasibility of the development of a therapeutic strategy against pancreatic cancer based on the adenovirus-mediated transduction of an antisense K-ras construct.
Collapse
Affiliation(s)
- Yoshiaki Miura
- Genetics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang XP, Yazawa K, Templeton NS, Yang J, Liu S, Li Z, Li M, Yao Q, Chen C, Brunicardi FC. Intravenous Delivery of Liposome-mediated Nonviral DNA Is Less Toxic than Intraperitoneal Delivery in Mice. World J Surg 2005; 29:339-43. [PMID: 15706434 DOI: 10.1007/s00268-004-7822-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Suicide gene therapy has been shown to be an effective means of destroying pancreatic cancer cells. Liposomes have been described as having better efficacy in gene delivery, and an advantage of using liposomes as gene carriers is that they can be used repeatedly in vivo. The objective of this study is to compare the effect of gene delivery routes and to determine whether systemic delivery of the rat insulin promoter (RIP)-directed suicide gene construct would permit cell-specific gene delivery in vivo. Severe combined immunodeficient (SCID) mice were injected with liposome-RIP-TK (thymidine kinase) complex by either the intraperitoneal or the intravenous route. Twenty-four hours post gene delivery, mice received ganciclovir (GCV) treatment twice daily for 14 days. Mice were sacrificed at various time points. Complete necropsy and serum chemistry analysis were performed. Islet morphology was determined using hematoxylin and eosin (H&E) staining. Serum glucose and insulin levels were also determined. To determine the toxic effect on pancreatic islet cells, immunostaining of insulin-producing and glucagon-producing cells was carried out at each time point. H&E staining indicated that both intravenous and intraperitoneal liposome-RIP-TK gene expression had no effect in normal endocrine islet cells. Both gene-delivery routes in mice resulted in normal glycemia and serum insulin levels. The endocrine islets were intact, with a normal distribution pattern of insulin-producing beta cells and glucagon-secreting alpha cells. However, serum chemistry analysis revealed significantly elevated levels of liver enzymes; suggesting that possible liver damage had occurred with the intraperitoneal gene delivery of liposome-pRIP-TK. Intravenous liposome-mediated gene delivery had no effect on liver enzyme levels. Liposome-mediated gene delivery via intravenous injection was less toxic than intraperitoneal delivery. This gene-delivery route requires fewer liposome-DNA complexes and maintains normal liver function. Thus, intravenous delivery of gene therapy would be superior to intraperitoneal administration of gene therapy in mice.
Collapse
Affiliation(s)
- X P Wang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, 6550 Fannin, Suite 1661, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tanaka H, Yashiro M, Sunami T, Sakate Y, Kosaka K, Hirakawa K. ICAM-2 gene therapy for peritoneal dissemination of scirrhous gastric carcinoma. Clin Cancer Res 2005; 10:4885-92. [PMID: 15269165 DOI: 10.1158/1078-0432.ccr-0393-03] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human scirrhous gastric carcinoma develops peritoneal dissemination with high frequency, and the prognosis of patients with peritoneal metastasis is poor. There have been few reports of an immunogene therapy for peritoneal dissemination. Intercellular adhesion molecule (ICAM)-2 is a second ligand of leukocyte function-associated antigen-1, which functions as a costimulatory molecule for effector cells. In the present study, we examined whether ICAM-2 transfection using adenovirus vector is effective gene therapy for peritoneal metastasis of gastric cancer. EXPERIMENTAL DESIGN We constructed an adenovirus vector, AdICAM-2, that encodes the full-length human ICAM-2 gene under control of the cytomegalovirus promoter. This vector expresses high levels of ICAM-2 on the human gastric cancer cell line OCUM-2MD3, which has high peritoneal metastatic ability in nude mice. We investigated the antitumor effects of gene transfer of ICAM-2 using the adenovirus vector AdICAM-2 in vitro and in vivo. RESULTS ICAM-2 expressed on OCUM-2MD3 cells by AdICAM-2 demonstrated significantly high adhesiveness to and cytotoxicity against peripheral blood mononuclear cells in vitro compared with the control adenovirus vector AdlacZ. Intratumoral injection of AdICAM-2 significantly inhibited the growth of s.c. tumor. Mice with peritoneal metastasis survived for a significantly longer time after AdICAM-2 injection, compared with injection of AdlacZ. Histopathological findings revealed that many natural killer cells infiltrated the peritoneal metastatic lesions after AdICAM-2 injection. CONCLUSIONS These findings suggest that transduction of ICAM-2 into cancer cells enhances the adhesion and activation of natural killer cells, resulting in a reduction of peritoneal metastasis. ICAM-2 transfection using adenovirus vector might be an effective form of gene therapy for peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Takigawa Y, Akiyama Y, Maruyama K, Sugiyama K, Uchida E, Kosuge T, Ueda M, Kitajima M, Yamaguchi K. Antitumor effect induced by dendritic cell (DC)-based immunotherapy against peritoneal dissemination of the hamster pancreatic cancer. Cancer Lett 2004; 215:179-86. [PMID: 15488636 DOI: 10.1016/j.canlet.2004.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 06/30/2004] [Accepted: 07/02/2004] [Indexed: 10/26/2022]
Abstract
Establishing a method to control peritoneal dissemination is one of the most pressing issues in the postsurgical treatment of pancreatic cancer. In the present study, we investigated the effect of dendritic cell (DC)-based immunotherapy on peritoneal disseminations of hamster pancreatic cancer cells, PGHAM-1. After the orthotopically inoculation of 2 x 10(6) PGHAM-1 cells, DC pulsed with PGHAM-1-derived tumor lysates, DC alone or PBS as a vehicle was injected intraperitoneally (i.p.) three times at weekly intervals. The group treated with DC or DC+lysate was found to have smaller disseminated tumors than the vehicle-treated. In addition, mean survival time in the DC+lysate groups was significantly longer than the PBS group. These findings suggested that DC-based immunotherapy might be efficient for the treatment of peritoneal disseminations of the pancreatic cancer.
Collapse
Affiliation(s)
- Yutaka Takigawa
- Growth Factor Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hajri A, Wack S, Lehn P, Vigneron JP, Lehn JM, Marescaux J, Aprahamian M. Combined suicide gene therapy for pancreatic peritoneal carcinomatosis using BGTC liposomes. Cancer Gene Ther 2004; 11:16-27. [PMID: 14681723 DOI: 10.1038/sj.cgt.7700628] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Peritoneal dissemination is a common end-stage complication of pancreatic cancer for which novel therapeutic modalities are actively investigated, as there is no current effective therapy. Thus, we evaluated, in a mouse model of pancreatic peritoneal carcinomatosis, the therapeutic potential of a novel nonviral gene therapy approach consisting of bis-guanidinium-tren-cholesterol (BGTC)-mediated lipofection of a combined suicide gene system. Human BxPC-3 pancreatic cells secreting the carcinoembryonic antigen (CEA) tumor marker were injected into the peritoneal cavity of nude mice. After 8 days, intraperitoneal (i.p.) lipofection was performed using BGTC/DOPE cationic liposomes complexed with plasmids encoding the two prodrug-activating enzymes Herpes Simplex Virus thymidine kinase and Escherichia coli cytosine deaminase, the latter being expressed from a bicistronic cassette also encoding E. coli uracil phosphoribosyltransferase. Administration of the lipoplexes was followed by treatment with the corresponding prodrugs ganciclovir and 5-fluorocytosine. The results presented herein demonstrate that BGTC/DOPE liposomes can efficiently mediate gene transfection into peritoneal tumor nodules. Indeed, HSV-TK mRNA was detected in tumor nodule tissues by semiquantitative reverse transcription-polymerase chain reaction analysis. In addition, green fluorescent protein (GFP) fluorescence and X-gal staining were observed in the peritoneal tumor foci following lipofection of the corresponding EGFP and LacZ reporter genes. These expression analyses also showed that transgene expression lasted for about 2 weeks and was preferential for the tumor nodules, this tumor preference being in good agreement with the absence of obvious treatment-related toxicity. Most importantly, mice receiving the full treatment scheme (BGTC liposomes, suicide genes and prodrugs) had significantly lower serum CEA levels than those of the various control groups, a finding indicating that peritoneal carcinomatosis progression was strongly reduced in these mice. In conclusion, our results demonstrate the therapeutic efficiency of BGTC-mediated i.p. lipofection of a combined suicide gene system in a mouse peritoneal carcinomatosis model and suggest that BGTC-based prodrug-activating gene therapy approaches may constitute a potential treatment modality for patients with peritoneal carcinomatosis and minimal residual disease.
Collapse
Affiliation(s)
- Amor Hajri
- INSERM U375, IRCAD, 1 place de l'Hôpital, BP 426, 67091 Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tirone TA, Wang XP, Templeton NS, Lee T, Nguyen L, Fisher W, Brunicardi FC. Cell-specific cytotoxicity of human pancreatic adenocarcinoma cells using rat insulin promoter thymidine kinase-directed gene therapy. World J Surg 2004; 28:826-33. [PMID: 15457366 DOI: 10.1007/s00268-004-7291-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The formation of a normal pancreas and the activation of insulin production are, in part, dependent on the expression and activation of the pancreatic duodenal homeobox gene 1 (PDX-1). The expression of PDX-1 also has been detected in various human pancreatic ductal adenocarcinoma (PDA) cell lines. This has made it possible to generate a cancer cell-specific gene expression system to treat human pancreatic cancer. In this study, we have developed a cell-specific cytotoxic model of PDA cells using the expression of herpes simplex virus thymidine kinase (TK) under the control of the rat insulin promoter (RIP-TK). We have shown that the cell-specific cytotoxicity in human PDA cells depends on the presence of PDX-1. Our results also demonstrate that in vivo PDA-specific cytotoxicity can be achieved with RIP-TK using an intraperitoneal liposomal gene delivery method followed by a short period of ganciclovir treatment in severe combined immunodeficient (SCID) mice. Furthermore, PDX-1 protein was found in all six freshly isolated human pancreas cancer specimens and two liver metastasis samples that were group-tested, suggesting the feasibility of using RIP-TK gene therapy in humans. This study may provide an alternative strategy for the future treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Thomas A Tirone
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, 6550 Fannin, Suite 1661, 77030, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Sako A, Kitayama J, Koyama H, Ueno H, Uchida H, Hamada H, Nagawa H. Transduction of soluble Flt-1 gene to peritoneal mesothelial cells can effectively suppress peritoneal metastasis of gastric cancer. Cancer Res 2004; 64:3624-8. [PMID: 15150121 DOI: 10.1158/0008-5472.can-04-0304] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prognosis of gastric cancer with peritoneal metastasis has not improved. Despite many promising studies, gene therapy has limited clinical application because of the lack of suitable vector systems to enable selective gene transduction to tumor cells. The aim of this study was to clarify whether gene therapy targeted to peritoneal mesothelial cells (PMCs) can inhibit peritoneal dissemination of gastric cancer. In vitro experiments showed that adenovirus expressing LacZ infected human omental tissue-derived PMCs more efficiently than human gastric cancer cell lines MKN1 and MKN45. When adenovirus expressing LacZ was injected into the peritoneal cavity of nude mice, the expression was detected in the peritoneum for at least 4 weeks. Furthermore, when adenovirus expressing soluble Flt-1 (Ad-sFLT-1) was i.p. administered in vivo, a high level of sFlt-1 protein could be detected in peritoneal lavage for 8 weeks. When MKN45 cells were i.p. inoculated 3 days after adenoviral vector injection, Ad-sFLT-1 markedly reduced the number of metastatic nodules larger than 1 mm in diameter on the peritoneal surface, and significantly prolonged the survival of nude mice without any significant side effects. Thus, peritoneal dissemination was significantly suppressed by a single i.p. injection of Ad-sFlt-1. Anti-angiogenic gene therapy targeted to PMCs could be a novel and practical strategy against peritoneal dissemination of gastric cancer, because it does not require tumor-specific gene transfer.
Collapse
Affiliation(s)
- Akihiro Sako
- Department of Surgical Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ziller C, Lincet H, Muller CD, Staedel C, Behr JP, Poulain L. The cyclin-dependent kinase inhibitor p21cip1/waf1 enhances the cytotoxicity of ganciclovir in HSV-tk transfected ovarian carcinoma cells. Cancer Lett 2004; 212:43-52. [PMID: 15246560 DOI: 10.1016/j.canlet.2004.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 03/24/2004] [Indexed: 11/22/2022]
Abstract
Suicide gene therapy could be an attractive addition to the treatment of ovarian carcinomas, for which acquired chemoresistance frequently results in treatment failure. Here we show that transfection of the HSV-tk gene, followed by incubation with up to 1 mM ganciclovir fails to induce cell death in SKOV3 chemoresistant human ovarian carcinoma cells. However, co-transfection of HSV-tk with Cip1/Waf1 encoding the p21(cip1/waf1) inhibitor of cdks, allows 100 microM ganciclovir to eradicate the population of tumor cells. Potentiation of a drug by co-transfer of HSV-tk with Cip1/Waf1could thus represent another therapeutic approach for tumours that are resistant to conventional therapy.
Collapse
Affiliation(s)
- Christelle Ziller
- Laboratoire de Chimie Génétique, CNRS UMR 7514, Université Louis Pasteur Strasbourg I, Faculté de Pharmacie, 74 route du Rhin, BP 24, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
29
|
Yoshida T, Ohnami S, Aoki K. Development of gene therapy to target pancreatic cancer. Cancer Sci 2004; 95:283-9. [PMID: 15072584 PMCID: PMC11158832 DOI: 10.1111/j.1349-7006.2004.tb03204.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 01/03/2023] Open
Abstract
Pancreatic cancer remains one of the most difficult cancers to treat. Its high propensity to infiltrate and metastasize early from a small primary focus necessitates development of a new therapy which can track down the disseminated cancer cells in vivo. Gene therapy may offer new opportunities for a variety of targeting strategies, and we review here some of our work related to the development of targeted gene therapy: 1) Targeting by specific molecular abnormality: Many pancreatic cancer cells show "addiction" to K-ras mutation, while normal cells appear resistant to suppression of K-ras-mediated signaling by antisense K-ras RNA expression adenoviral vector. 2) Targeting by in vivo tumor characteristics: In a peritoneal dissemination model, intraperitoneal lipofection/polyfection can deliver and express transgenes highly preferentially in tumor nodules. 3) Targeting by vector: An efficient protocol for construction of an adenovirus expression vector library has been developed, which will enable a direct functional selection of fiber knob-modified targeting vector species for given cells. 4) Targeting by tumor immunity: Several cytokines not only induce direct cytotoxicity, but are also expected to activate specific immunity to achieve targeted suppression of cancer cells in vivo. Unlike parenteral administration of short-lived recombinant interferon protein, local interferon gene transfer can provide a target tissue-restricted distribution and sustained expression, which may improve the efficacy/safety balance of cytokine therapy. Cancer gene therapy development is, in general, at the stage of proof of principles and safety. However, it is an art of integrated science. The recent rapid progress of related sciences and technologies will expand the potential and consolidate the clinical reality of gene therapy.
Collapse
Affiliation(s)
- Teruhiko Yoshida
- Genetics Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | |
Collapse
|
30
|
Dass CR. Improving anti-angiogenic therapy via selective delivery of cationic liposomes to tumour vasculature. Int J Pharm 2004; 267:1-12. [PMID: 14602379 DOI: 10.1016/j.ijpharm.2003.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past three decades, two very important findings regarding tumour vasculature have been made. Firstly, it has been known a solid tumour has to establish an adequate blood supply to grow beyond a critical mass. Secondly, it has been proven that the tumour vasculature is relatively more aberrant, dynamic and permeable than healthy host tissue. This review discusses the potential of delivering therapeutic nucleic acids to tumour vasculature using cationic liposomes, vehicles recently demonstrated to be selectively delivered to tumour vasculature.
Collapse
Affiliation(s)
- Crispin R Dass
- Johnson & Johnson Research, Box 4555, Strawberry Hills 2012, Australia.
| |
Collapse
|
31
|
Deharvengt S, Wack S, Uhring M, Aprahamian M, Hajri A. Suicide gene/prodrug therapy for pancreatic adenocarcinoma by E. coli purine nucleoside phosphorylase and 6-methylpurine 2'-deoxyriboside. Pancreas 2004; 28:E54-64. [PMID: 15028961 DOI: 10.1097/00006676-200403000-00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Recent advances in diagnostics, staging, and therapy for pancreatic cancer have not resulted in significant improvements in long-term survival, and development of new approaches is particularly urgent. The use of prodrug-activating genes is a possible approach for cancer gene therapy. The aim of this study was to evaluate the efficacy of Escherichia coli purine nucleoside phosphorylase (ePNP) on pancreatic tumors. ePNP activates the prodrug 6-methylpurine deoxyribose (MePdR) into methyl purine (MeP), which is highly toxic to dividing and nondividing cells. METHODS A recombinant pCAG-ePNP vector was constructed and used to establish pancreatic cancer cells expressing constitutively ePNP (ePNP+). The ePNP/MePdR system effects were tested in vitro on HA-RPC (rat) and BxPC3 (human) pancreatic cancer cell lines and then in vivo on tumors established in nude mice with BxPC3 ePNP+ cells. RESULTS MePdR treatment of ePNP+ tumor cells induced cytotoxic and antiproliferative effects in a concentration-dependent manner with a 100% cell death since 5 x 10 mol/L. Bystander effect was strong in vitro as more than 50% of tumor cells were killed by MePdR with only 1%-2% of ePNP+ cells. In vivo, tumor growth was completely abolished with a prodrug treatment initiated 2 days after tumor cell inoculation, and mice remained tumor free. In addition, even if MePdR treatment was applied to large tumors, tumors significantly regressed. CONCLUSION These preliminary results support the therapeutic potential of the MePdR/ePNP system, which induces a highly cytotoxic effect with a potent bystander effect on pancreatic tumors.
Collapse
|
32
|
Fogar P, Greco E, Basso D, Habeler W, Navaglia F, Zambon CF, Tormen D, Gallo N, Cecchetto A, Plebani M, Pedrazzoli S. Suicide gene therapy with HSV-TK in pancreatic cancer has no effect in vivo in a mouse model. Eur J Surg Oncol 2004; 29:721-30. [PMID: 14602490 DOI: 10.1016/j.ejso.2003.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM To study in vivo whether pancreatic cancer tumour growth and metastasis can be modified by a gene construct with HSV-TK suicide gene and IL2 co-expression. METHODS Seventy-eight female SCID mice were i.p. inoculated with retrovirally transduced or control MIA PaCa 2, CAPAN-1 and PANC-1 cell lines. The animals were then randomly selected for saline or ganciclovir (GCV) treatment from the second week, for a total of two weeks. RESULTS Most inoculated mice developed tumour nodules and spleen metastases. The liver was colonized by control CAPAN-1 and MIA PaCa 2, but not by PANC-1. Tumours in transduced MIA PaCa 2 cell injected mice were smaller, and in transduced CAPAN-1 injected mice larger, than in control-inoculated mice. There were increased pancreatic and decreased spleen metastases from transduced CAPAN-1, and diminished liver involvement from transduced MIA PaCa 2. No differences were found between mice inoculated with transduced and control PANC-1 cell lines. GCV treatment had no effect on tumour's size or metastases. CONCLUSIONS The HSV-TK suicide gene does not confer GCV sensitivity to pancreatic cancer in this in vivo model. Different pancreatic cancer cell lines cause different growth and metastasis patterns after inoculation in SCID mice, possibly because of variations in their inherent characteristics. The different effects of our vector on cell growth and metastasis may be attributable to the effects of the immunostimulatory cytokine IL2.
Collapse
Affiliation(s)
- P Fogar
- Department of Medical and Surgical Sciences, University of Padua, Clinica Chirurgica IV, Via Giustiniani 2, 35128 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bright-Thomas RM, Agrawal A, Hargest R. Preclinical studies of gene transfer for the treatment of desmoid disease in familial adenomatous polyposis. Br J Surg 2002; 89:1563-9. [PMID: 12445067 DOI: 10.1046/j.1365-2168.2002.02277.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Familial adenomatous polyposis (FAP) arises following mutation or loss of the adenomatous polyposis coli (APC) gene. Desmoid tumours are proliferations of fibroblasts and occur as an extracolonic manifestation of FAP. They are a leading cause of death after colectomy. The aim of this study was to assess the potential for APC gene transfer into fibroblasts in vitro and in vivo as a basis for consideration of gene therapy in the prevention or treatment of desmoid tumours. METHODS The APC gene was transferred by lipofection into fibroblasts in tissue culture and into peritoneum and small bowel mesentery in vivo. Reverse transcriptase-polymerase chain reaction was used to determine whether or not transfection was successful. RESULTS Transgene expression was recorded in vitro to 7 days after transfection. High levels of transgene expression were also seen in samples of peritoneum (all eight mice), small bowel mesentery (seven of eight), liver (seven of eight) and intestinal tissues (five to six of eight) following intraperitoneal treatment. Interestingly, transgene expression in gonadal tissues was occasionally noted. CONCLUSION Liposomal transfection of APC gave prolonged high-level expression of the transgene, an important basis for gene therapy. No adverse effects were recorded. Further work is needed in animal models of desmoid disease to assess the clinical effects of gene therapy.
Collapse
Affiliation(s)
- R M Bright-Thomas
- Department of Surgery, Royal Free and University College Medical School, University College London, London, UK.
| | | | | |
Collapse
|
34
|
Reddy JA, Abburi C, Hofland H, Howard SJ, Vlahov I, Wils P, Leamon CP. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 2002; 9:1542-50. [PMID: 12407426 DOI: 10.1038/sj.gt.3301833] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2002] [Accepted: 06/16/2002] [Indexed: 11/09/2022]
Abstract
A folate-targeted, cationic lipid based transfection complex was developed and found to specifically transfect folate receptor-expressing cells and tumors. These liposomal vectors were comprised of protamine-condensed plasmid DNA, a mixture of cationic and neutral lipids, and a folic acid-cysteine-polyethyleneglycol-phosphatidylethanolamine (FA-Cys-PEG-PE) conjugate. Pre-optimization studies revealed that inclusion of low amounts (0.01 to 0.03%) of FA-Cys-PEG-PE yielded the highest binding activity of dioleoylphosphatidylcholine/cholesterol liposomes to folate receptor-bearing cells. In contrast, higher amounts (>0.5%) of FA-Cys-PEG-PE progressively decreased cellular binding of the liposomes. In vitro studies with cationic lipid/dioleoylphosphatidylethanolamine formulations indicated that as little as 0.01 to 0.3% of FA-Cys-PEG-PE was needed to produce optimal targeted expression of plasmid DNA. Similarly, using a disseminated intraperitoneal L1210A tumor model, maximum in vivo transfection activity occurred with intraperitoneally administered formulations that contained low amounts (0.01 mol%) of the FA-Cys-PEG-PE targeting lipid. Overall, folate-labeled formulations produced an eight- to 10-fold increase in tumor-associated luciferase expression, as compared with the corresponding non-targeted cationic lipid/DNA formulations. These results collectively indicate that transfection of widespread intraperitoneal cancers can be significantly enhanced using folate-targeted techniques.
Collapse
Affiliation(s)
- J A Reddy
- Endocyte, Inc., West Lafayette, IN, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Greco E, Fogar P, Basso D, Stefani AL, Navaglia F, Zambon CF, Mazza S, Gallo N, Piva MG, Scarpa A, Pedrazzoli S, Plebani M. Retrovirus-mediated herpes simplex virus thymidine kinase gene transfer in pancreatic cancer cell lines: an incomplete antitumor effect. Pancreas 2002; 25:e21-9. [PMID: 12142751 DOI: 10.1097/00006676-200208000-00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The transfer of drug-susceptible (suicide) genes to tumor cells by retroviral or adenoviral vectors is a novel approach to the treatment of human tumors. AIMS To ascertain the antitumor effect of retroviral transduction of the pancreatic cancer cell lines MIA PaCa 2, CAPAN-1, PANC1, and PSN1 with the herpes simplex virus thymidine kinase (HSV-TK) gene. METHODOLOGY The vector carried a neoselectable marker gene, the human interleukin-2 gene, an internal ribosome entry coding site, and the region coding HSV-TK. RESULTS Twenty micromoles or less of ganciclovir did not modify nontransduced TK- cell growth, whereas > or =100 micromol completely inhibited TK- cell growth, indicating that this dosage is cytotoxic per se. The 4 TK- and the 4 transduced cell lines were treated daily with 0.001, 0.01, 0.1, 1, 10, and 20 micromol of ganciclovir for 13 days. CAPAN-1 cell growth was completely inhibited by 0.1 micromol of ganciclovir; higher doses were required to kill PANC1 (10 micromol) and PSN1 (20 micromol). MIA PaCa 2 cell growth decreased following a 20-micromol ganciclovir dosing. The bystander effect was great in the CAPAN-1 cell line and moderate in PANC1; no bystander effect was recorded in MIA PaCa 2 and PSN1 cell lines. CONCLUSION Gene therapy with HSV-TK for pancreatic cancer seems effective in only a limited number of tumor-derived cell lines, and this limits its application in vivo.
Collapse
Affiliation(s)
- Eliana Greco
- Department of Laboratory Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Gene transfer technology has the potential to revolutionize cancer treatment. Developments in molecular biology, genetics, genomics, stem cell technology, virology, bioengineering, and immunology are accelerating the pace of innovation and movement from the laboratory bench to the clinical arena. Pancreatic adenocarcinoma, with its particularly poor prognosis and lack of effective traditional therapy for most patients, is an area where gene transfer and immunotherapy have a maximal opportunity to demonstrate efficacy. In this review, we have discussed current preclinical and clinical investigation of gene transfer technology for pancreatic cancer. We have emphasized that the many strategies under investigation for cancer gene therapy can be classified into two major categories. The first category of therapies rely on the transduction of cells other than tumor cells, or the limited transduction of tumor tissue. These therapies, which do not require efficient gene transfer, generally lead to systemic biological effects (e.g., systemic antitumor immunity, inhibition of tumor angiogenesis, etc) and therefore the effects of limited gene transfer are biologically "amplified." The second category of gene transfer strategies requires the delivery of therapeutic genetic material to all or most tumor cells. While these elegant approaches are based on state-of-the-art advances in our understanding of the molecular biology of cancer, they suffer from the current inadequacies of gene transfer technology. At least in the short term, it is very likely that success in pancreatic cancer gene therapy will involve therapies that require only the limited transduction of cells. The time-worn surgical maxim, "Do what's easy first," certainly applies here.
Collapse
Affiliation(s)
- Jennifer F Tseng
- Division of Molecular Medicine, Children's Hospital, Department of Genetics, Harvard Medical School, Enders 861, 320 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
37
|
Gilliam AD, Watson SA. Emerging biological therapies for pancreatic carcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2002; 28:370-8. [PMID: 12099644 DOI: 10.1053/ejso.2001.1248] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS The incidence of pancreatic carcinoma remains approximately equal to its mortality, with the vast majority of patients having advanced disease at presentation. This review is an update of the promising novel approaches involving biological therapy that may be used in conjunction with new chemotherapeutic agents in the near future. METHODS A literature review was performed using the National Library of Medicine's Pubmed database, combined with recently published data from the AGA and ASCO conferences. RESULTS Rapid progress is being made in gene and molecular technology potentially enabling us to inhibit pancreatic carcinogenesis and to reduce disease progression. Different targets include signal transduction inhibitors, gene therapy, genetic prodrug activation therapy, antisense therapy, immunotherapy, matrix metalloproteinase and cyclo-oxygenase-2 inhibition and hormonal manipulation. CONCLUSION A variety of biological agents are currently undergoing clinical trials, targeting different areas of the pancreas'neoplastic process. .
Collapse
Affiliation(s)
- Andrew D Gilliam
- Academic Unit of Cancer Studies, Department of Surgery Univertisy of Nottingham, Nottingham, NG7 2UH, UK.
| | | |
Collapse
|
38
|
Greil R. Multimodality Treatment Approaches in Pancreatic Cancer: Current Status and Future Perspectives. Eur Surg 2002. [DOI: 10.1046/j.1563-2563.2002.02016.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Bao R, Selvakumaran M, Hamilton TC. Targeted gene therapy of ovarian cancer using an ovarian-specific promoter. Gynecol Oncol 2002; 84:228-34. [PMID: 11812079 DOI: 10.1006/gyno.2001.6490] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The "suicide" gene therapy of cancer using promoters such as cytomegalovirus could cause severe toxicity to normal tissues due to a lack of specificity of prodrug activation. Therefore, we investigated gene therapy of ovarian cancer using ovarian-specific promoter (OSP1) to limit the synthesis of the prodrug activating enzyme HSVtk to ovarian cancer cells. METHODS The HSVtk expressing plasmid pOSP1-HSVtk was created and transfected into an ovarian cancer cell line OVCAR3. The ganciclovir (GCV) sensitivity of the stable transfectants was evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Tissue specificity of this promoter was evaluated by comparing the sensitivity to GCV between ovarian and nonovarian cancer cell lines after they were transfected with pOSP1-HSVtk. One transfectant sensitive to GCV was implanted intraperitoneally to immunocompromised mice which were treated subsequently with GCV. Furthermore, this ovarian cancer survival model was used to evaluate the in vivo efficacy of cationic lipid mediated pOSP1-HSVtk gene delivery followed by GCV treatment. RESULTS Stable transfectants of OVCAR3 cells bearing OSP1-HSVtk became more sensitive to GCV treatment compared to the parental cell line and vector transfected OVCAR3 cell line. OSP1-HSVtk could specifically sensitize the OVCAR3 ovarian cancer cell line to GCV. SCID mice transplanted with the OVCAR3 transfectant and treated with GCV survived longer than the mice without GCV treatment (P = 0.032). In vivo gene delivery mediated by a cationic lipid (GL67) followed by GCV treatment yielded a longer survival in the OVCAR3 survival model (P = 0.016). CONCLUSIONS The OSP1 promoter can selectively direct suicide gene therapy of ovarian cancer and the in vivo efficacy is improved by using a cationic lipid GL67 as delivery vehicle as opposed to the direct injection of plasmid.
Collapse
Affiliation(s)
- Rudi Bao
- Ovarian Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
40
|
Hoff CM, Shockley TR. Peritoneal Dialysis in the 21st Century: The Potential of Gene Therapy. J Am Soc Nephrol 2002. [DOI: 10.1681/asn.v13suppl_1s117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
ABSTRACT. One of the greatest biotechnologic advances of the last 25 yr is genetic engineering—the ability to identify and isolate individual genes and transfer genetic elements between cells. Genetic engineering forms the basis of a unique biotechnology platform called gene therapy: an approach to treating disease through genetic manipulation. It is becoming clear that during peritoneal dialysis, the peritoneal membrane undergoes various structural and functional changes that compromise the dialyzing efficiency of the membrane and eventually lead to membrane failure. A gene therapy strategy based on genetic modification of the peritoneal membrane could improve the practice of peritoneal dialysis through the production of proteins that would be of therapeutic value in preventing membrane damage and preserving its dialyzing capacity. The peritoneal membrane can be genetically modified by either ex vivo or in vivo gene transfer strategies with a variety of potentially therapeutic genes, including those for anti-inflammatory cytokines, fibrinolytic factors, and antifibrotic molecules. These genes could be administered either on an acute basis, such as in response to peritonitis, or on an intermittent basis to maintain physiologic homeostasis and perhaps to prevent the adverse changes in the membrane that occur over time. The anticipated effect of a gene therapy strategy could be measured in maintenance of desired transport characteristics and in patients being able to remain on the therapy for longer periods of time without the negative outcomes. In summary, the use of a gene therapy strategy to enhance peritoneal dialysis is an innovative and exciting concept with the potential to provide new treatment platforms for patients with end-stage renal disease.
Collapse
|
41
|
Rigg AS, Lemoine NR. Adenoviral delivery of TIMP1 or TIMP2 can modify the invasive behavior of pancreatic cancer and can have a significant antitumor effect in vivo. Cancer Gene Ther 2001; 8:869-78. [PMID: 11773977 DOI: 10.1038/sj.cgt.7700387] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2001] [Indexed: 01/29/2023]
Abstract
Pancreatic carcinomas overexpress several matrix metalloproteinases (MMPs), in particular MMP2 and MMP9. These enzymes are involved in the degradation of the extracellular matrix to aid tumor cell invasion. The aim of this study was to investigate the effect of TIMP gene therapy on human pancreatic cancer. Human TIMP1 or TIMP2 has been introduced in pancreatic tumor cells under the control of a constitutive promoter using adenoviral vectors, and the effect on tumor invasion observed. It has been demonstrated in vitro that the TIMP-expressing pancreatic tumor cells were significantly less invasive than those cells transfected with a control vector. In vivo, adenoviral delivery of TIMP1 or TIMP2 to nude mice harboring intraperitoneal human pancreatic cancers resulted in prolonged survival compared with control mice if the gene therapy was given early (P<.009 and P<.0293, respectively). The in vivo experiments demonstrated evidence of gene transfer by adenoviral vectors to tumor cells and murine mesenteric cells. There was no evidence of transgene expression in distant organs. These experiments have proved the hypothesis that TIMP overexpression in pancreatic cancer cells can modify the invasive phenotype. Also, TIMP gene transfer to human tumor cells is possible both in vitro and in vivo.
Collapse
Affiliation(s)
- A S Rigg
- Imperial Cancer Research Fund Molecular Oncology Unit, Imperial College School of Medicine, London W12 0NN, UK
| | | |
Collapse
|
42
|
Affiliation(s)
- G M Christman
- University of Michigan, 6428 Medical Science Building I, 1301 Catherine Street, Ann Arbor, MI 48109-0617, USA.
| | | |
Collapse
|
43
|
Shaw MM, Gürr WK, Watts PA, Littler E, Field HJ. Ganciclovir and penciclovir, but not acyclovir, induce apoptosis in herpes simplex virus thymidine kinase-transformed baby hamster kidney cells. Antivir Chem Chemother 2001; 12:175-86. [PMID: 12959326 DOI: 10.1177/095632020101200305] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The efficacies of ganciclovir (GCV), penciclovir (PCV) and acyclovir (ACV) in inducing cell death in the herpes simplex virus thymidine kinase (HSVTK) system were compared. HSVTK-transformed baby hamster kidney cells treated with GCV, PCV or ACV were monitored for growth by viable count, and for death by TUNEL assay, propidium iodide staining, detection of phosphatidyl serine translocation and detection of DNA laddering. All compounds delayed growth or reduced viability of HSVTK-transformed cells. Drug treatment reduced levels of cyclin B1 message (which normally peaks in G2/M-phase of the cell cycle) and induced a four- to fivefold upregulation of GADD45 message. Treatment with GCV or PCV induced rapid accumulation of cells in S-phase and apoptotic death. Treatment with ACV, however, was associated with sustained S-phase arrest. GCV (and to a lesser extent PCV) increased phosphatidyl serine translocation, induced positive TUNEL results with alterations in cell morphology, caused marked propidium iodide staining and induced DNA laddering. By contrast, up to 7 days' exposure to ACV did not induce DNA laddering, with very little TUNEL staining. ACV treatment had little effect on phosphatidyl serine translocation and propidium iodide staining was markedly reduced compared with treatment with the other compounds. Thus, by all criteria, GCV was the most potent inducer of cell death. The current theories regarding apoptosis or necrosis as the preferred form of cell death in prodrug gene therapy are considered and the suitability of PCV or ACV as potential alternatives to GCV in the HSVTK system is discussed.
Collapse
Affiliation(s)
- M M Shaw
- Centre for Veterinary Science, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
44
|
Aoki K, Furuhata S, Hatanaka K, Maeda M, Remy JS, Behr JP, Terada M, Yoshida T. Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity. Gene Ther 2001; 8:508-14. [PMID: 11319617 DOI: 10.1038/sj.gt.3301435] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2000] [Accepted: 01/15/2001] [Indexed: 11/08/2022]
Abstract
Although peritoneal dissemination of cancer cells often occurs at the advanced stages of pancreatic, gastric or ovarian cancers, no effective therapy has been established. Cationic lipid-mediated gene transfer into peritoneal dissemination may offer a prospect of safe therapies, but vector improvements are needed with regard to the efficiency and specificity of the gene transfer. In this study, the intraperitoneal injection of plasmid DNA:polyethylenimine (PEI) complexes into mice was evaluated as a gene delivery system for the peritoneal disseminations. The luciferase and beta-galactosidase genes were used as marker genes. PEI was more efficient than the cationic lipids examined in this study in vivo, and the transgene was preferentially expressed in the tumors. Although PCR analysis showed that the injected DNA was delivered to various organs, the distributed DNA became undetectable by 6 months after the gene transfer. Blood chemistry and histological analysis showed no significant toxicity in the injected mice. This study demonstrated that the intraperitoneal injection of DNA:PEI is a promising delivery method to transduce a gene into disseminated cancer nodules in the peritoneal cavity.
Collapse
Affiliation(s)
- K Aoki
- Section for Studies on Host-Immune Response, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Mäkinen K, Loimas S, Wahlfors J, Alhava E, Jänne J. Evaluation of herpes simplex thymidine kinase mediated gene therapy in experimental pancreatic cancer. J Gene Med 2001. [PMID: 11045430 DOI: 10.1002/1521-2254(200009/10)2:5%3c361::aid-jgm125%3e3.0.co;2-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Despite of recent improvements in the treatment of many malignant diseases, pancreatic ductal adenocarcinoma is still a disease with an extremely poor prognosis with current modes of treatment. Gene therapy has been suggested as a novel approach also against pancreatic cancer. Previous studies have been carried out predominantly with immunodeficient animal models and with tumors growing in environments other than the pancreas. We have attempted to mimic a more clinically relevant situation and investigated suicide gene therapy strategy for experimental pancreatic cancer in animals with an intact immune system. METHODS We used herpes simplex virus thymidine kinase (HSV-tk) and ganciclovir (GCV) strategy in both in vitro and in vivo settings. RESULTS In vitro studies demonstrated that retro- as well as adenovirally transduced HSV-tk-positive DSL-6A/C1 rat pancreatic carcinoma cells were sensitive to low concentrations of GCV when compared with parental, nontransduced cells. In addition, a strong bystander effect was observed. In in vivo studies, subcutaneously transplanted HSV-tk-positive DSL-6A/C1 cells were killed after GCV treatment, whereas parental, HSV-tk-negative cells continued to grow and developed into ductal adenocarcinomas. In in vivo HSV-tk-transduced pancreatic tumors, GCV treatment caused tumor necrosis and the necrosis volume was significantly more extensive when compared with control groups. CONCLUSIONS HSV-tk gene transfer followed by GCV treatment is efficient in killing pancreatic cancer cells in vitro, in a transduced subcutaneous tumor model, as well as in in vivo transduced pancreatic tumors using an immunocompetent animal model. These results highlight the potential of gene therapy to treat experimental pancreatic cancer.
Collapse
Affiliation(s)
- K Mäkinen
- Department of Surgery, Kuopio University Hospital, Finland.
| | | | | | | | | |
Collapse
|
46
|
Princen F, Lechanteur C, Lopez M, Gielen J, Bours V, Merville MP. Similar efficiency of DNA-liposome complexes and retrovirus-producing cells for HSV-tk suicide gene therapy of peritoneal carcinomatosis. J Drug Target 2000; 8:79-89. [PMID: 10852340 DOI: 10.3109/10611860008996854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several experimental approaches have been tested for suicide gene delivery into tumor cells, including viral and non-viral vectors. In this study, we compared the efficiency of Herpes Simplex Virus type 1 thymidine kinase gene (HSV-tk) delivery by retrovirus-producing cells and DNA/liposome complexes for the treatment of peritoneal carcinomatosis induced in syngeneic rats by DHD/K12 colorectal adenocarcinoma cells. After in vitro determination of the best transduction conditions, rats were treated with multiple intraperitoneal injections of plasmid DNA containing one or two copies of CMV-driven HSV-tk gene (pCMV-TK and p(CMV-TK)2, respectively) associated with LipofectAMINE, each injection being followed by a Ganciclovir (GCV) course. Animals treated by DNA/liposome complexes and GCV or with retrovirus-producing cells and GCV showed a similar increase of survival as compared to the control group. After DNA/ liposome injections, expression of the tk transgene was detected in tumor nodes (epiploon) and also in liver, lung, spleen, bowels and brain. The expression was not homogeneous throughout the different organs and most likely reflected the transfection of only a limited number of cells.
Collapse
Affiliation(s)
- F Princen
- Laboratory of Medical Chemistry and Medical Oncology, University of Liège, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Mäkinen K, Loimas S, Wahlfors J, Alhava E, Jänne J. Evaluation of herpes simplex thymidine kinase mediated gene therapy in experimental pancreatic cancer. J Gene Med 2000; 2:361-7. [PMID: 11045430 DOI: 10.1002/1521-2254(200009/10)2:5<361::aid-jgm125>3.0.co;2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Despite of recent improvements in the treatment of many malignant diseases, pancreatic ductal adenocarcinoma is still a disease with an extremely poor prognosis with current modes of treatment. Gene therapy has been suggested as a novel approach also against pancreatic cancer. Previous studies have been carried out predominantly with immunodeficient animal models and with tumors growing in environments other than the pancreas. We have attempted to mimic a more clinically relevant situation and investigated suicide gene therapy strategy for experimental pancreatic cancer in animals with an intact immune system. METHODS We used herpes simplex virus thymidine kinase (HSV-tk) and ganciclovir (GCV) strategy in both in vitro and in vivo settings. RESULTS In vitro studies demonstrated that retro- as well as adenovirally transduced HSV-tk-positive DSL-6A/C1 rat pancreatic carcinoma cells were sensitive to low concentrations of GCV when compared with parental, nontransduced cells. In addition, a strong bystander effect was observed. In in vivo studies, subcutaneously transplanted HSV-tk-positive DSL-6A/C1 cells were killed after GCV treatment, whereas parental, HSV-tk-negative cells continued to grow and developed into ductal adenocarcinomas. In in vivo HSV-tk-transduced pancreatic tumors, GCV treatment caused tumor necrosis and the necrosis volume was significantly more extensive when compared with control groups. CONCLUSIONS HSV-tk gene transfer followed by GCV treatment is efficient in killing pancreatic cancer cells in vitro, in a transduced subcutaneous tumor model, as well as in in vivo transduced pancreatic tumors using an immunocompetent animal model. These results highlight the potential of gene therapy to treat experimental pancreatic cancer.
Collapse
Affiliation(s)
- K Mäkinen
- Department of Surgery, Kuopio University Hospital, Finland.
| | | | | | | | | |
Collapse
|
48
|
Soler MN, Bobé P, Benihoud K, Lemaire G, Roos BA, Lausson S. Gene therapy of rat medullary thyroid cancer by naked nitric oxide synthase II DNA injection. J Gene Med 2000; 2:344-52. [PMID: 11045428 DOI: 10.1002/1521-2254(200009/10)2:5<344::aid-jgm124>3.0.co;2-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide (NO), produced by NO synthase II (NOS II), is the main mediator of the tumoricidal action of activated macrophages. In the present study we examined the potential of the NOS II gene as a suicide gene for medullary thyroid cancer (MTC) therapy. METHODS We orthotopically transplanted rMTC 6-23 cells into the inbred strain of Wag/Rij rats and constructed a plasmid carrying the NOS II gene under the control of the cytomegalovirus (CMV) promoter. RESULTS Successive injections of tumor cells (Day 0) and naked DNA (Day 2) caused strong inhibition of tumor growth (50%, p < 0.05). Plasmid injection into established tumors (14-day tumors) resulted in the development of large cavities due to tumor cell destruction, with a significant reduction in tumor tissue volume (35%, p < 0.05). Adjacent quiescent tissues were unaffected. Cell death occurred by apoptosis as demonstrated by specific labeling. Macrophages and CD4+ lymphocytes were recruited in the treated tumors. However, tumor-specific T lymphocytes were undetectable in the spleen of treated rats. In control experiments using Lac Z as a reporter gene, expression of beta-galactosidase was detected in only 1% of the tumor cells. CONCLUSIONS Despite a low gene transfer efficiency, NOS II plasmid produced a strong anti-tumor action resulting from its marked 'bystander' effect mainly due to NO production and diffusion. Therefore the NOS II gene appears to be a promising suicide gene therapy of human cancer.
Collapse
Affiliation(s)
- M N Soler
- Laboratoire d'Endocrinologie Cellulaire et Evolution, Université Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
49
|
Toyokawa Y, Kuriyama S, Tsujinoue H, Nakatani T, Mitoro A, Yoshiji H, Fukui H. Retrovirus-mediated in vivo gene therapy using the herpes simplex virus thymidine kinase gene against carcinomatous peritonitis. Scand J Gastroenterol 2000; 35:852-60. [PMID: 10994625 DOI: 10.1080/003655200750023237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Carcinomatous peritonitis is characterized by massive malignant ascites, while peritoneally disseminated carcinomatosis is characterized by a large number of metastatic solid tumors in the peritoneal cavity. Although both are fatal end-stage manifestations of malignancies derived from the digestive system, the former is usually more serious than the latter due to massive malignant ascites. Although the effectiveness of gene therapy against peritoneally disseminated carcinomatosis has been shown in animal experiments, its effectiveness against carcinomatous peritonitis remains to be examined. METHODS A carcinomatous peritonitis model was made by inoculating murine hepatocellular carcinoma cells, MH134, into the peritoneal cavity of syngeneic C3H/He mice, resulting in production of massive malignant ascites without development of intraperitoneal solid tumors. Model animals were injected intraperitoneally with retroviruses carrying the herpes simplex virus thymidine kinase (HSV-tk) gene followed by ganciclovir (GCV) treatment. RESULTS Retrovirus-mediated in vivo gene therapy with the HSV-tk/GCV system was shown to have a significant impact on survival of animals with carcinomatous peritonitis not only at an early stage, but also at an advanced stage. Furthermore, repeated injections of HSV-tk-carrying retroviruses significantly prolonged the survival of animals with carcinomatous peritonitis compared with a single injection protocol. When intraperitoneal administration of recombinant interleukin-2 (IL-2) was added to the HSV-tk/GCV system, levels of IL-1beta and IL-2 in malignant ascites were significantly increased, resulting in significantly reduced ascite volume and prolonged survival. CONCLUSIONS Our results indicate the feasibility of retrovirus-mediated in vivo gene therapy with the HSV-tk/GCV system plus IL-2 treatment against carcinomatous peritonitis.
Collapse
Affiliation(s)
- Y Toyokawa
- Third Dept. of Internal Medicine, Nara Medical University, Kashihara, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND Pancreatic cancer is the fifth leading cause of cancer death in the Western world. Despite improvement in operative mortality rates, little impact has been made on overall 5-year survival. This review discusses the molecular changes peculiar to pancreatic cancer and how the use of molecular technology might affect detection, screening, diagnosis and treatment of the disease. METHODS A literature review was performed using the National Library of Medicine's Pubmed database; this was combined with ongoing work within the Queen Elizabeth Hospital, Birmingham. RESULTS Over the past 20 years great strides have been made in our understanding of the molecular basis of disease. Advances in molecular biology are now reshaping how diseases are screened for, diagnosed, investigated and treated. In recent years collaboration between clinicians and basic scientists has revealed a unique pattern of genetic and molecular events in pancreatic cancer. This review discusses how these advances may impact on patients with this disease. CONCLUSION The past decade has seen some improvement in outlook for patients with pancreatic cancer, but the 'molecular age' promises to deliver even better results.
Collapse
Affiliation(s)
- M Manu
- Department of Surgery and Liver Unit, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
| | | | | |
Collapse
|