1
|
Goetz M, Thotathil N, Zhao Z, Mitragotri S. Vaccine adjuvants for infectious disease in the clinic. Bioeng Transl Med 2024; 9:e10663. [PMID: 39036089 PMCID: PMC11256182 DOI: 10.1002/btm2.10663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 07/23/2024] Open
Abstract
Adjuvants, materials added to vaccines to enhance the resulting immune response, are important components of vaccination that are many times overlooked. While vaccines always include an antigen to tell the body what to vaccinate to, of equal importance the adjuvant provides the how, a significant factor in producing a complete response. The adjuvant space has been slow to develop with the first use of an adjuvant in a licensed vaccine occurring in the 1930s, and remaining the only adjuvant in licensed vaccines for the next 80 years. However, with vaccination at the forefront of protection against new and complex pathogens, it is important to consider all components when designing an effective vaccine. Here we summarize the adjuvant space in licensed vaccines as well as the novel adjuvant space in clinical trials with a specific focus on the materials utilized and their resulting impact on the immune response. We discuss five major categories of adjuvant materials: aluminum salts, nanoparticles, viral vectors, TLR agonists, and emulsions. For each category, we delve into the current clinical trials space, the impact of these materials on vaccination, as well as some of the ways in which they could be improved. Adjuvants present an exciting opportunity to improve vaccine responses and stability, this review will help inform about the current progress of this space. Translational impact statement In the aftermath of the COVID-19 pandemic, vaccines for infectious diseases have come into the spotlight. While antigens have always been an important focus of vaccine design, the adjuvant is a significant tool for enhancing the immune response to the vaccine that has been largely underdeveloped. This article provides a broad review of the history of adjuvants and, the current vaccine adjuvant space, and the progress seen in adjuvants in clinical trials. There is specific emphasis on the material landscape for adjuvants and their resulting mechanism of action. Looking ahead, while the novel vaccine adjuvant space features exciting new technologies and materials, there is still a need for more to meet the protective needs of new and complex pathogens.
Collapse
Affiliation(s)
- Morgan Goetz
- John A Paulson School of Engineering & Applied SciencesHarvard UniversityAllstonMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Naaz Thotathil
- University of Massachusetts AmherstAmherstMassachusettsUSA
| | - Zongmin Zhao
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Illinois ChicagoChicagoIllinoisUSA
| | - Samir Mitragotri
- John A Paulson School of Engineering & Applied SciencesHarvard UniversityAllstonMassachusettsUSA
- Wyss Institute of Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
2
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
3
|
Xu K, An Y, Li Q, Huang W, Han Y, Zheng T, Fang F, Liu H, Liu C, Gao P, Xu S, Liu X, Zhang R, Zhao X, Liu WJ, Bi Y, Wang Y, Zhou D, Wang Q, Hou W, Xia Q, Gao GF, Dai L. Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat spike protein RBD protects mice against COVID-19. Emerg Microbes Infect 2021; 10:1574-1588. [PMID: 34289779 PMCID: PMC8366625 DOI: 10.1080/22221751.2021.1959270] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
A safe and effective vaccine is urgently needed to control the unprecedented COVID-19 pandemic. Four adenovirus-vectored vaccines expressing spike (S) protein have been approved for use. Here, we generated several recombinant chimpanzee adenovirus (AdC7) vaccines expressing S, receptor-binding domain (RBD), or tandem-repeat dimeric RBD (RBD-tr2). We found vaccination via either intramuscular or intranasal route was highly immunogenic in mice to elicit both humoral and cellular immune responses. AdC7-RBD-tr2 showed higher antibody responses compared to either AdC7-S or AdC7-RBD. Intranasal administration of AdC7-RBD-tr2 additionally induced mucosal immunity with neutralizing activity in bronchoalveolar lavage fluid. Either single-dose or two-dose mucosal administration of AdC7-RBD-tr2 protected mice against SARS-CoV-2 challenge, with undetectable subgenomic RNA in lung and relieved lung injury. AdC7-RBD-tr2-elicted sera preserved the neutralizing activity against the circulating variants, especially the Delta variant. These results support AdC7-RBD-tr2 as a promising COVID-19 vaccine candidate.
Collapse
Affiliation(s)
- Kun Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, People’s Republic of China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yaling An
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qunlong Li
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, People’s Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Yuxuan Han
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Tianyi Zheng
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Fang Fang
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, People’s Republic of China
| | - Hui Liu
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, People’s Republic of China
| | - Chuanyu Liu
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, People’s Republic of China
| | - Ping Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Senyu Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xueyuan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Rong Zhang
- Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, People’s Republic of China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - William J. Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Qinghan Wang
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, People’s Republic of China
| | - Wenli Hou
- Chengdu Kanghua Biological Products Co., Ltd, Chengdu, People’s Republic of China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, People’s Republic of China
| | - George F. Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lianpan Dai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Haikou, People’s Republic of China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Alhashimi M, Elkashif A, Sayedahmed EE, Mittal SK. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021; 13:1493. [PMID: 34452358 PMCID: PMC8402644 DOI: 10.3390/v13081493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Immunology and Infectious Disease, and Purdue University Center for Cancer Research, Department of Comparative Pathobiology, Purdue Institute for Inflammation, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.A.); (A.E.); (E.E.S.)
| |
Collapse
|
5
|
Weklak D, Pembaur D, Koukou G, Jönsson F, Hagedorn C, Kreppel F. Genetic and Chemical Capsid Modifications of Adenovirus Vectors to Modulate Vector-Host Interactions. Viruses 2021; 13:1300. [PMID: 34372506 PMCID: PMC8310343 DOI: 10.3390/v13071300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Adenovirus-based vectors are playing an important role as efficacious genetic vaccines to fight the current COVID-19 pandemic. Furthermore, they have an enormous potential as oncolytic vectors for virotherapy and as vectors for classic gene therapy. However, numerous vector-host interactions on a cellular and noncellular level, including specific components of the immune system, must be modulated in order to generate safe and efficacious vectors for virotherapy or classic gene therapy. Importantly, the current widespread use of Ad vectors as vaccines against COVID-19 will induce antivector immunity in many humans. This requires the development of strategies and techniques to enable Ad-based vectors to evade pre-existing immunity. In this review article, we discuss the current status of genetic and chemical capsid modifications as means to modulate the vector-host interactions of Ad-based vectors.
Collapse
Affiliation(s)
| | | | | | | | | | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Street 10, 58453 Witten, Germany; (D.W.); (D.P.); (G.K.); (F.J.); (C.H.)
| |
Collapse
|
6
|
Protective Immunity against SARS Subunit Vaccine Candidates Based on Spike Protein: Lessons for Coronavirus Vaccine Development. J Immunol Res 2020; 2020:7201752. [PMID: 32695833 PMCID: PMC7368938 DOI: 10.1155/2020/7201752] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
The recent outbreak of the novel coronavirus disease, COVID-19, has highlighted the threat that highly pathogenic coronaviruses have on global health security and the imminent need to design an effective vaccine for prevention purposes. Although several attempts have been made to develop vaccines against human coronavirus infections since the emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2003, there is no available licensed vaccine yet. A better understanding of previous coronavirus vaccine studies may help to design a vaccine for the newly emerged virus, SARS-CoV-2, that may also cover other pathogenic coronaviruses as a potentially universal vaccine. In general, coronavirus spike protein is the major antigen for the vaccine design as it can induce neutralizing antibodies and protective immunity. By considering the high genetic similarity between SARS-CoV and SARS-CoV-2, here, protective immunity against SARS-CoV spike subunit vaccine candidates in animal models has been reviewed to gain advances that can facilitate coronavirus vaccine development in the near future.
Collapse
|
7
|
Hagedorn C, Kreppel F. Capsid Engineering of Adenovirus Vectors: Overcoming Early Vector-Host Interactions for Therapy. Hum Gene Ther 2018; 28:820-832. [PMID: 28854810 DOI: 10.1089/hum.2017.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenovirus-based vectors comprise the most frequently used vector type in clinical studies to date. Both intense lab research and insights from the clinical trials reveal the importance of a comprehensive understanding of vector-host interactions. Especially for systemic intravenous adenovirus vector delivery, it is paramount to develop safe and efficacious vectors. Very early vector-host interactions that take place in blood long before the first cell is being transduced are phenomena triggered by the surface, shape, and size of the adenovirus vector particles. Not surprisingly, a multitude of different technologies ranging from genetics to chemistry has been developed to alter the adenovirus vector surface. In this review, we discuss the most important technologies and evaluate them for their suitability to overcome hurdles imposed by early vector-host interactions.
Collapse
Affiliation(s)
- Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| |
Collapse
|
8
|
Guo J, Mondal M, Zhou D. Development of novel vaccine vectors: Chimpanzee adenoviral vectors. Hum Vaccin Immunother 2018; 14:1679-1685. [PMID: 29300685 PMCID: PMC6067905 DOI: 10.1080/21645515.2017.1419108] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022] Open
Abstract
Adenoviral vector has been employed as one of the most efficient means against infectious diseases and cancer. It can be genetically modified and armed with foreign antigens to elicit specific antibody responses and T cell responses in hosts as well as engineered to induce apoptosis in cancer cells. The chimpanzee adenovirus-based vector is one kind of novel vaccine carriers whose unique features and non-reactivity to pre-existing human adenovirus neutralizing antibodies makes it an outstanding candidate for vaccine research and development. Here, we review the different strategies for constructing chimpanzee adenoviral vectors and their applications in recent clinical trials and also discuss the oncolytic virotherapy and immunotherapy based on chimpanzee adenoviral vectors.
Collapse
Affiliation(s)
- Jingao Guo
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Moumita Mondal
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Dongming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage. J Virol 2018; 92:JVI.01722-17. [PMID: 29298885 DOI: 10.1128/jvi.01722-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control.IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M/E glycoproteins was used for ZIKV vaccine development. Impressively, AdC7-M/E exhibited exceptional performance as a ZIKV vaccine, as follows: (i) protective efficacy by a single vaccination, (ii) rapid development of a robust humoral response, (iii) durable immune responses, (iv) robust T cell responses, and (v) sterilizing immunity achieved by a single vaccination. These advantages of AdC7-M/E strongly support its potential application as a promising ZIKV vaccine in the clinic.
Collapse
|
10
|
Lorin C, Vanloubbeeck Y, Baudart S, Ska M, Bayat B, Brauers G, Clarinval G, Donner MN, Marchand M, Koutsoukos M, Mettens P, Cohen J, Voss G. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques. PLoS One 2015; 10:e0122835. [PMID: 25856308 PMCID: PMC4391709 DOI: 10.1371/journal.pone.0122835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/15/2015] [Indexed: 01/04/2023] Open
Abstract
HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation.
Collapse
|
11
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
12
|
Capone S, D'Alise AM, Ammendola V, Colloca S, Cortese R, Nicosia A, Folgori A. Development of chimpanzee adenoviruses as vaccine vectors: challenges and successes emerging from clinical trials. Expert Rev Vaccines 2013; 12:379-93. [PMID: 23560919 DOI: 10.1586/erv.13.15] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Replication-defective chimpanzee adenovirus vectors are emerging as a promising new class of genetic vaccine carriers. Chimpanzee adenovirus vectors have now reached the clinical stage and appear to be endowed with all the properties needed for human vaccine development, including high quality and magnitude of the immune response induced against the encoded antigens, good safety and ease of manufacturing on a large-scale basis. Here the authors review the recent findings of this novel class of adenovirus vectors and compare their properties to other clinical stage vaccine vectors derived from poxvirus, alphavirus and human adenovirus.
Collapse
|
13
|
Hasegawa N, Abei M, Yokoyama KK, Fukuda K, Seo E, Kawashima R, Nakano Y, Yamada T, Nakade K, Hamada H, Obata Y, Hyodo I. Cyclophosphamide enhances antitumor efficacy of oncolytic adenovirus expressing uracil phosphoribosyltransferase (UPRT) in immunocompetent Syrian hamsters. Int J Cancer 2013; 133:1479-88. [PMID: 23444104 DOI: 10.1002/ijc.28132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 02/07/2013] [Indexed: 12/16/2022]
Abstract
Oncolytic viruses (OVs) are novel cancer therapeutics with great promise, but host antiviral immunity represents the hurdle for their efficacy. Immunosuppression by cyclophosphamide (CP) has thus been shown to enhance the oncolytic efficacy of many OVs, but its effects on OVs armed with therapeutic genes remain unknown. We have previously reported on the efficacy of AxE1CAUP, an oncolytic adenovirus (OAd) expressing uracil phosphoribosyltransferase (UPRT), an enzyme that markedly enhanced the toxicity of 5-fluorouracil (5-FU), in immunodeficient, Ad-nonpermissive nude mice. Here we explored the efficacy and safety of intratumoral (i.t.) AxE1CAUP/5-FU therapy and of its combination with CP for syngenic HaP-T1 pancreatic cancers in immunocompetent, Ad-permissive Syrian hamsters. AxE1CAUP infected, replicated, expressed UPRT, and increased the sensitivity to 5-FU in HaP-T1 cells in vitro. I.t. AxE1CAUP/5-FU treatment inhibited the growth of subcutaneous HaP-T1 allografts. The combination with high-dose CP inhibited serum Ad-neutralizing antibody formation, increased intratumoral AxE1CAUP replication and UPRT expression, and resulted in further enhanced therapeutic effects with 5-FU. Neither body weight nor histology of the liver and lung changed during these treatments. A clinically-approved, intermediate-dose CP also enhanced the efficacy of i.t. AxE1CAUP/5-FU treatment in these hamsters, which was not affected by preexisting immunity to the vector. These data demonstrate the excellent antitumor efficacy and safety of an OAd armed with a suicide gene in combination with CP for treating syngenic tumors in immunocompetent, Ad-permissive animals, indicating the efficacy of CP in overcoming the hurdle of antiviral immunity for effective OV-mediated gene therapy.
Collapse
Affiliation(s)
- Naoyuki Hasegawa
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vitelli A, Quirion MR, Lo CY, Misplon JA, Grabowska AK, Pierantoni A, Ammendola V, Price GE, Soboleski MR, Cortese R, Colloca S, Nicosia A, Epstein SL. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus. PLoS One 2013; 8:e55435. [PMID: 23536756 PMCID: PMC3594242 DOI: 10.1371/journal.pone.0055435] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/23/2012] [Indexed: 12/11/2022] Open
Abstract
Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.
Collapse
MESH Headings
- Adenoviruses, Human/immunology
- Adenoviruses, Simian/genetics
- Adenoviruses, Simian/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cross Reactions/immunology
- Female
- Gene Expression
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- Humans
- Immunity, Mucosal
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Mice
- Molecular Sequence Data
- Nucleocapsid Proteins
- Nucleophosmin
- Orthomyxoviridae Infections/prevention & control
- Pan paniscus
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/immunology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes/immunology
- Viral Core Proteins/chemistry
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
| | - Mary R. Quirion
- Gene Therapy and Immunogenicity Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Chia-Yun Lo
- Gene Therapy and Immunogenicity Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Julia A. Misplon
- Gene Therapy and Immunogenicity Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | | | | | | | - Graeme E. Price
- Gene Therapy and Immunogenicity Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Mark R. Soboleski
- Gene Therapy and Immunogenicity Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | | | | | - Alfredo Nicosia
- Okairòs, Rome, Italy
- Centro di Ingegneria Genetica e Biotecnologia Avanzate (CEINGE), Naples, Italy
- Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Suzanne L. Epstein
- Gene Therapy and Immunogenicity Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
|
16
|
Aurisicchio L, Ciliberto G. Emerging cancer vaccines: the promise of genetic vectors. Cancers (Basel) 2011; 3:3687-713. [PMID: 24212974 PMCID: PMC3759217 DOI: 10.3390/cancers3033687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 01/18/2023] Open
Abstract
Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.
Collapse
Affiliation(s)
- Luigi Aurisicchio
- Takis, via di Castel Romano 100, 00128 Rome, Italy; E-Mail:
- BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Gennaro Ciliberto
- Takis, via di Castel Romano 100, 00128 Rome, Italy; E-Mail:
- Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
17
|
Development of a targeted gene vector platform based on simian adenovirus serotype 24. J Virol 2010; 84:10087-101. [PMID: 20631120 DOI: 10.1128/jvi.02425-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Efforts to develop adenovirus vectors suitable for genetic interventions in humans have identified three major limitations of the most frequently used vector prototype, human adenovirus serotype 5 (Ad5). These limitations--widespread preexisting anti-Ad5 immunity in humans, the high rate of transduction of normal nontarget tissues, and the lack of target-specific gene delivery--justify the exploration of other Ad serotypes as vector prototypes. In this paper, we describe the development of an alternative vector platform using simian Ad serotype 24 (sAd24). We found that sAd24 virions formed unstable complexes with blood coagulation factor X and, because of that, transduced the liver and other organs at low levels when administered intravenously. The overall pattern of biodistribution of sAd24 particles was similar, however, to that of Ad5, and the intravenously injected sAd24 was cleared by Kupffer cells, leading to their depletion. We modified the virus's fiber protein to design a Her2-specific derivative of sAd24 capable of infecting target human tumor cells in vitro. In the presence of neutralizing anti-Ad5 antibodies, Her2-mediated infection with targeted sAd24 compared favorably to that with the Ad5-derived vector. When used to target Her2-expressing tumors in animals, this fiber-modified vector achieved a higher level of gene transfer to metastasis-containing murine lungs than to tumor-free lungs. In aggregate, these studies provide important insights into sAd24 biology, identify its advantages and limitations as a vector prototype, and are thus essential for further development of an sAd24-based gene delivery platform.
Collapse
|
18
|
Aurisicchio L, Ciliberto G. Patented cancer vaccines: the promising leads. Expert Opin Ther Pat 2010; 20:647-60. [DOI: 10.1517/13543771003720483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Wonganan P, Croyle MA. PEGylated Adenoviruses: From Mice to Monkeys. Viruses 2010; 2:468-502. [PMID: 21994645 PMCID: PMC3185605 DOI: 10.3390/v2020468] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 12/13/2022] Open
Abstract
Covalent modification with polyethylene glycol (PEG), a non-toxic polymer used in food, cosmetic and pharmaceutical preparations for over 60 years, can profoundly influence the pharmacokinetic, pharmacologic and toxciologic profile of protein and peptide-based therapeutics. This review summarizes the history of PEGylation and PEG chemistry and highlights the value of this technology in the context of the design and development of recombinant viruses for gene transfer, vaccination and diagnostic purposes. Specific emphasis is placed on the application of this technology to the adenovirus, the most potent viral vector with the most highly characterized toxicity profile to date, in several animal models.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; E-Mail:
| | - Maria A. Croyle
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; E-Mail:
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-512-471-1972; Fax: +1-512-471-7474
| |
Collapse
|
20
|
Dharmapuri S, Peruzzi D, Aurisicchio L. Engineered adenovirus serotypes for overcoming anti-vector immunity. Expert Opin Biol Ther 2009; 9:1279-87. [PMID: 19645630 DOI: 10.1517/14712590903187053] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenovirus (Ad)-based gene transfer has been successfully utilised in gene therapy and vaccine applications. To date, an increasing number of human clinical trials utilise recombinant Ad-based vectors as a gene transfer platform. In particular, progress has been made recently in utilising Ad-based vectors as a vaccine platform in HIV, cancer immunotherapy approaches and in vaccination for other infections. Despite these successes, the scientific and bio-industrial communities have recently recognised that innate and pre-existing immunity against Ad vectors can constitute a serious obstacle to the development and application of this technology. It is essential to overcome vector-mediated immune responses, such as production of inflammatory cytokines and pre-existing immunity to Ad, because the induction of these responses not only shortens the period of gene expression but also leads to serious side effects. This review focuses on the biology of Ad infection and the approaches that are being adopted to overcome immunity against the Ad-based vectors.
Collapse
|
21
|
A new genetic vaccine platform based on an adeno-associated virus isolated from a rhesus macaque. J Virol 2009; 83:12738-50. [PMID: 19812149 DOI: 10.1128/jvi.01441-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8(+) T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8(+) T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses.
Collapse
|
22
|
Thacker EE, Timares L, Matthews QL. Strategies to overcome host immunity to adenovirus vectors in vaccine development. Expert Rev Vaccines 2009; 8:761-77. [PMID: 19485756 DOI: 10.1586/erv.09.29] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first clinical evaluations of adenovirus (Ad)-based vectors for gene therapy were initiated in the mid-1990s and led to great anticipation for future utility. However, excitement surrounding gene therapy, particularly Ad-based therapy, was diminished upon the death of Jesse Gelsinger, and recent discouraging results from the HIV vaccine STEP trial have brought efficacy and safety issues to the forefront again. Even so, Ad vectors are still considered among the safest and most effective vaccine vectors. Innate and pre-existing immunity to Ad mediate much of the acute toxicities and reduced therapeutic efficacies observed following vaccination with this vector. Thus, innovative strategies must continue to be developed to reduce Ad-specific antigenicity and immune recognition. This review provides an overview and critique of the most promising strategies, including results from preclinical trials in mice and nonhuman primates, which aim to revive the future of Ad-based vaccines.
Collapse
Affiliation(s)
- Erin E Thacker
- Division of Human Gene Therapy, Departments of Medicine, University of Alabama at Birmingham, BMR2 470, 901 19th Street South, Birmingham, AL 35294-32172, USA.
| | | | | |
Collapse
|
23
|
Antigen delivery systems for veterinary vaccine development. Viral-vector based delivery systems. Vaccine 2009; 26:6508-28. [PMID: 18838097 PMCID: PMC7131726 DOI: 10.1016/j.vaccine.2008.09.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 08/21/2008] [Accepted: 09/16/2008] [Indexed: 11/30/2022]
Abstract
The recent advances in molecular genetics, pathogenesis and immunology have provided an optimal framework for developing novel approaches in the rational design of vaccines effective against viral epizootic diseases. This paper reviews most of the viral-vector based antigen delivery systems (ADSs) recently developed for vaccine testing in veterinary species, including attenuated virus and DNA and RNA viral vectors. Besides their usefulness in vaccinology, these ADSs constitute invaluable tools to researchers for understanding the nature of protective responses in different species, opening the possibility of modulating or potentiating relevant immune mechanisms involved in protection.
Collapse
|
24
|
Yasui F, Kai C, Kitabatake M, Inoue S, Yoneda M, Yokochi S, Kase R, Sekiguchi S, Morita K, Hishima T, Suzuki H, Karamatsu K, Yasutomi Y, Shida H, Kidokoro M, Mizuno K, Matsushima K, Kohara M. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. THE JOURNAL OF IMMUNOLOGY 2009; 181:6337-48. [PMID: 18941225 DOI: 10.4049/jimmunol.181.9.6337] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The details of the mechanism by which severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia are unclear. We investigated the immune responses and pathologies of SARS-CoV-infected BALB/c mice that were immunized intradermally with recombinant vaccinia virus (VV) that expressed either the SARS-CoV spike (S) protein (LC16m8rVV-S) or simultaneously all the structural proteins, including the nucleocapsid (N), membrane (M), envelope (E), and S proteins (LC16m8rVV-NMES) 7-8 wk before intranasal SARS-CoV infection. The LC16m8rVV-NMES-immunized group exhibited as severe pneumonia as the control groups, although LC16m8rVV-NMES significantly decreased the pulmonary SARS-CoV titer to the same extent as LC16m8rVV-S. To identify the cause of the exacerbated pneumonia, BALB/c mice were immunized with recombinant VV that expressed the individual structural proteins of SARS-CoV (LC16mOrVV-N, -M, -E, -S) with or without LC16mOrVV-S (i.e., LC16mOrVV-N, LC16mOrVV-M, LC16mOrVV-E, or LC16mOrVV-S alone or LC16mOrVV-N + LC16mOrVV-S, LC16mOrVV-M + LC16mOrVV-S, or LC16mOrVV-E + LC16mOrVV-S), and infected with SARS-CoV more than 4 wk later. Both LC16mOrVV-N-immunized mice and LC16mOrVV-N + LC16mOrVV-S-immunized mice exhibited severe pneumonia. Furthermore, LC16mOrVV-N-immunized mice upon infection exhibited significant up-regulation of both Th1 (IFN-gamma, IL-2) and Th2 (IL-4, IL-5) cytokines and down-regulation of anti-inflammatory cytokines (IL-10, TGF-beta), resulting in robust infiltration of neutrophils, eosinophils, and lymphocytes into the lung, as well as thickening of the alveolar epithelium. These results suggest that an excessive host immune response against the nucleocapsid protein of SARS-CoV is involved in severe pneumonia caused by SARS-CoV infection. These findings increase our understanding of the pathogenesis of SARS.
Collapse
Affiliation(s)
- Fumihiko Yasui
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bukreyev A, Marzi A, Feldmann F, Zhang L, Yang L, Ward JM, Dorward DW, Pickles RJ, Murphy BR, Feldmann H, Collins PL. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge. Virology 2009; 383:348-61. [PMID: 19010509 PMCID: PMC2649782 DOI: 10.1016/j.virol.2008.09.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022]
Abstract
We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/DeltaF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/DeltaF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/DeltaF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Base Sequence
- Blood/virology
- Body Weight
- Cell Line
- Chlorocebus aethiops
- Ebola Vaccines/genetics
- Ebola Vaccines/immunology
- Guinea Pigs
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Lung/virology
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Organ Culture Techniques
- Parainfluenza Virus 3, Human/genetics
- Parainfluenza Virus 3, Human/immunology
- Survival Analysis
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Virion/ultrastructure
Collapse
Affiliation(s)
- Alexander Bukreyev
- National Institute of Allergy and Infectious Diseases, Building 50, Room 6505, NIAID, National Institutes of Health, 50 South Dr. MSC 8007, Bethesda, MD 20892-8007, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Peruzzi D, Dharmapuri S, Cirillo A, Bruni BE, Nicosia A, Cortese R, Colloca S, Ciliberto G, La Monica N, Aurisicchio L. A novel chimpanzee serotype-based adenoviral vector as delivery tool for cancer vaccines. Vaccine 2009; 27:1293-300. [PMID: 19162112 PMCID: PMC7115565 DOI: 10.1016/j.vaccine.2008.12.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/22/2008] [Accepted: 12/28/2008] [Indexed: 01/03/2023]
Abstract
The use of adenovirus (Ad) as vaccine vectors is hindered by pre-existing immunity to human Ads in most of the human population. In order to overcome this limitation, uncommon alternative Ad serotypes need to be utilized. In this study, an E1-E3 deleted recombinant Ad based on the chimpanzee serotype 3 (ChAd3) was engineered to express human carcinoembryonic antigen (CEA) protein or rat neu extracellular/transmembrane domains (ECD.TM). ChAd3 vectors were tested in CEA transgenic (CEA.Tg) and BALB/NeuT mice, which show immunologic tolerance to these antigens. ChAd3 is capable of inducing an immune response comparable to that of hAd5 serotype-based vectors, thus breaking tolerance to tumor associated antigens (TAAs) and achieving anti-tumor effects. Of importance is that ChAd3 can overcome hAd5 pre-existing immunity and work in conjunction with DNA electroporation (DNA-EP) and other Ad vaccines based on common human serotypes.
Collapse
Affiliation(s)
- Daniela Peruzzi
- Oncology/Functional Department, IRBM-Merck Research Labs-via Pontina Km30.6, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gao G, Wang Q, Dai Z, Calcedo R, Sun X, Li G, Wilson JM. Adenovirus-based vaccines generate cytotoxic T lymphocytes to epitopes of NS1 from dengue virus that are present in all major serotypes. Hum Gene Ther 2008; 19:927-36. [PMID: 18788905 DOI: 10.1089/hum.2008.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dengue virus (DENV) infection is an expanding global threat to public health. Effective vaccine and treatment approaches remain elusive. B cell-directed vaccines may be complicated by an antibody-dependent enhancement (ADE) phenomenon based on cross-serotype, nonneutralizing antibodies. We hypothesized that a CD8(+) T cell-directed genetic vaccine that targets a DENV nonstructural protein, NS1, could be a potential strategy to overcome the ADE barrier and accomplish cross-serotype protection. We selected an adenovirus-based vector as the dengue vaccine carrier. To bypass preexisting immunity to human adenoviruses and to improve vaccine efficacy, we created vaccine vectors, based on simian adenoviruses SAdV22 and SAdV25 as well as human adenovirus serotype 5, expressing the NS1 antigen of the Hainan strain, DENV serotype 2. An NS1 peptide library was screened to identify the immunodominant and functional epitope within the NS1 protein for H-2(d)-restricted CD8(+) T cells in BALB/c mice, using interferon-gamma enzyme-linked immunospot and intracellular cytokine-staining assays. Our study identified the 9-mer AGPWHLGKL (NS1(265273)) as the H-2(d)-restricted T cell epitope whose sequence is highly conserved among 26 strains of DENV serotypes 1, 2, 3, and 4, suggesting potential cross-serotype protection of NS1-directed genetic vaccines in the BALB/c model of DENV infection. Importantly, we characterized the cytokine profile of CD8(+) NS1-specific T cells in BALB/c mice vaccinated with HAdV-5-NS1, SAdV-22-NS1, and SAdV-25 NS1 and demonstrated the effective in vivo cytolytic killing capacity of CD8(+) T cells from SAdV-25-NS1-vaccinated mice.
Collapse
Affiliation(s)
- Guangping Gao
- Vaccine Research Institute, Sun Yat-Sen University, Guangzhou, 510630, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Croyle MA, Patel A, Tran KN, Gray M, Zhang Y, Strong JE, Feldmann H, Kobinger GP. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice. PLoS One 2008; 3:e3548. [PMID: 18958172 PMCID: PMC2569416 DOI: 10.1371/journal.pone.0003548] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 09/28/2008] [Indexed: 11/30/2022] Open
Abstract
Pre-existing immunity to human adenovirus serotype 5 (Ad5) is common in the general population. Bypassing pre-existing immunity could maximize Ad5 vaccine efficacy. Vaccination by the intramuscular (I.M.), nasal (I.N.) or oral (P.O.) route with Ad5 expressing Ebola Zaire glycoprotein (Ad5-ZGP) fully protected naïve mice against lethal challenge with Ebola. In the presence of pre-existing immunity, only mice vaccinated I.N. survived. The frequency of IFN-γ+ CD8+ T cells was reduced by 80% and by 15% in animals vaccinated by the I.M. and P.O. routes respectively. Neutralizing antibodies could not be detected in serum from either treatment group. Pre-existing immunity did not compromise the frequency of IFN-γ+ CD8+ T cells (3.9±1% naïve vs. 3.6±1% pre-existing immunity, PEI) nor anti-Ebola neutralizing antibody (NAB, 40±10 reciprocal dilution, both groups). The number of INF-γ+ CD8+ cells detected in bronchioalveolar lavage fluid (BAL) after I.N. immunization was not compromised by pre-existing immunity to Ad5 (146±14, naïve vs. 120±16 SFC/million MNCs, PEI). However, pre-existing immunity reduced NAB levels in BAL by ∼25% in this group. To improve the immune response after oral vaccination, the Ad5-based vaccine was PEGylated. Mice given the modified vaccine did not survive challenge and had reduced levels of IFN-γ+ CD8+ T cells 10 days after administration (0.3±0.3% PEG vs. 1.7±0.5% unmodified). PEGylation did increase NAB levels 2-fold. These results provide some insight about the degree of T and B cell mediated immunity necessary for protection against Ebola virus and suggest that modification of the virus capsid can influence the type of immune response elicited by an Ad5-based vaccine.
Collapse
Affiliation(s)
- Maria A. Croyle
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ami Patel
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Kaylie N. Tran
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Michael Gray
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Yi Zhang
- Department of Internal Medicine, Division of Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James E. Strong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Heinz Feldmann
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Gary P. Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
29
|
Yang L, Sanchez A, Ward JM, Murphy BR, Collins PL, Bukreyev A. A paramyxovirus-vectored intranasal vaccine against Ebola virus is immunogenic in vector-immune animals. Virology 2008; 377:255-64. [PMID: 18570964 DOI: 10.1016/j.virol.2008.04.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 11/27/2022]
Abstract
Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans. The virus can be transmitted by direct contact as well as by aerosol and is considered a potential bioweapon. Because direct immunization of the respiratory tract should be particularly effective against infection of mucosal surfaces, we previously developed an intranasal vaccine based on replication-competent human parainfluenza virus type 3 (HPIV3) expressing EBOV glycoprotein GP (HPIV3/EboGP) and showed that it is immunogenic and protective against a high dose parenteral EBOV challenge. However, because the adult human population has considerable immunity to HPIV3, which is a common human pathogen, replication and immunogenicity of the vaccine in this population might be greatly restricted. Indeed, in the present study, replication of the vaccine in the respiratory tract of HPIV3-immune guinea pigs was found to be restricted to undetectable levels. This restriction appeared to be based on both neutralizing antibodies and cellular or other components of the immunity to HPIV3. Surprisingly, even though replication of HPIV3/EboGP was highly restricted in HPIV3-immune animals, it induced a high level of EBOV-specific antibodies that nearly equaled that obtained in HPIV3-naive animals. We also show that the previously demonstrated presence of functional GP in the vector particle was not associated with increased replication in the respiratory tract nor with spread beyond the respiratory tract of HPIV3-naive guinea pigs, indicating that expression and functional incorporation of the attachment/penetration glycoprotein of this systemic virus did not mediate a change in tissue tropism.
Collapse
Affiliation(s)
- Lijuan Yang
- Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Rm. 6505, Bethesda, Maryland 20892-8007, USA
| | | | | | | | | | | |
Collapse
|
30
|
Thomas MA, Spencer JF, Toth K, Sagartz JE, Phillips NJ, Wold WSM. Immunosuppression enhances oncolytic adenovirus replication and antitumor efficacy in the Syrian hamster model. Mol Ther 2008; 16:1665-73. [PMID: 18665155 DOI: 10.1038/mt.2008.162] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We recently described an immunocompetent Syrian hamster model for oncolytic adenoviruses (Ads) that permits virus replication in tumor cells as well as some normal tissues. This model allows exploration of interactions between the virus, tumor, normal organs, and host immune system that could not be examined in the immunodeficient or nonpermissive animal models previously used in the oncolytic Ad field. Here we asked whether the immune response to oncolytic Ad enhances or limits antitumor efficacy. We first determined that cyclophosphamide (CP) is a potent immunosuppressive agent in the Syrian hamster and that CP alone had no effect on tumor growth. Importantly, we found that the antitumor efficacy of oncolytic Ads was significantly enhanced in immunosuppressed animals. In animals that received virus therapy plus immunosuppression, significant differences were observed in tumor histology, and in many cases little viable tumor remained. Notably, we also determined that immunosuppression allowed intratumoral virus levels to remain elevated for prolonged periods. Although favorable tumor responses can be achieved in immunocompetent animals, the rate of virus clearance from the tumor may lead to varied antitumor efficacy. Immunosuppression, therefore, allows sustained Ad replication and oncolysis, which leads to substantially improved suppression of tumor growth.
Collapse
Affiliation(s)
- Maria A Thomas
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gao G, Wang Q, Dai Z, Calcedo R, Sun X, Li G, Wilson JM. ADENOVIRUS BASED VACCINES GENERATE CYTOTOXIC T LYMPHOCYTES TO EPITOPES OF NS1 FROM DENGUE VIRUS THAT ARE PRESENT IN ALL MAJOR SEROTYPES. Hum Gene Ther 2008. [DOI: 10.1089/hgt.2008.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Reyes-Sandoval A, Sridhar S, Berthoud T, Moore AC, Harty JT, Gilbert SC, Gao G, Ertl HCJ, Wilson JC, Hill AVS. Single-dose immunogenicity and protective efficacy of simian adenoviral vectors against Plasmodium berghei. Eur J Immunol 2008; 38:732-41. [PMID: 18266272 DOI: 10.1002/eji.200737672] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Simian adenoviral vectors (SAd) offer an attractive alternative to standard human adenovirus serotype 5 (AdH5) subunit vaccination, due to pre-existing immunity affecting vaccine performance. We have used a mouse model of liver-stage malaria to test the efficiency of three chimpanzee-origin adenoviral vectors, AdC6, AdC7 and AdC9 containing ME.TRAP as an insert. AdC7 and AdC9 elicited strong immunogenicity ( approximately 20% of CD8(+) T cells in spleen), equivalent to or outperforming AdH5 and inducing sterile protection in 92% (C9), 83% (H5 and C7) and 67% (C6) of the mice, providing the first evidence of single-dose protection to Plasmodium berghei. Protection was afforded by the SAd despite high levels of pre-existing immunity to AdH5. Phenotypic analysis showed that all adenoviral vectors (Ad) elicited CD8(+) T cell responses with an effector memory T cell (T(EM)) phenotype. By contrast, vaccination with poxviral vectors did not confer protection to P. berghei and induced a predominantly CD8(+) central memory T cell (T(CM)) response. Multifunctional CD8(+) T cell responses (co-expressing IFN-gamma, TNF-alpha and IL-2) were also induced by the Ad in higher percentages than the poxviral vectors. Our data suggest that T(EM) cells are important as a first line of defense against fast-replicating pathogens such as murine Plasmodium and demonstrate the potential of replication-defective SAd as future malaria vaccines for humans.
Collapse
|
33
|
Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, He Y, Jiang S, Wu C, Yuen KY, Jin DY, Zhou Y, Zheng BJ. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:948-56. [PMID: 18178835 DOI: 10.4049/jimmunol.180.2.948] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously reported that a subunit protein vaccine based on the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein and a recombinant adeno-associated virus (rAAV)-based RBD (RBD-rAAV) vaccine could induce highly potent neutralizing Ab responses in immunized animals. In this study, systemic, mucosal, and cellular immune responses and long-term protective immunity induced by RBD-rAAV were further characterized in a BALB/c mouse model, with comparison of the i.m. and intranasal (i.n.) routes of administration. Our results demonstrated that: 1) the i.n. vaccination induced a systemic humoral immune response of comparable strength and shorter duration than the i.m. vaccination, but the local humoral immune response was much stronger; 2) the i.n. vaccination elicited stronger systemic and local specific cytotoxic T cell responses than the i.m. vaccination, as evidenced by higher prevalence of IL-2 and/or IFN-gamma-producing CD3+/CD8+ T cells in both lungs and spleen; 3) the i.n. vaccination induced similar protection as the i.m. vaccination against SARS-CoV challenge in mice; 4) higher titers of mucosal IgA and serum-neutralizing Ab were associated with lower viral load and less pulmonary pathological damage, while no Ab-mediated disease enhancement effect was observed; and 5) the vaccination could provide long-term protection against SARS-CoV infection. Taken together, our findings suggest that RBD-rAAV can be further developed into a vaccine candidate for prevention of SARS and that i.n. vaccination may be the preferred route of administration due to its ability to induce SARS-CoV-specific systemic and mucosal immune responses and its better safety profile.
Collapse
Affiliation(s)
- Lanying Du
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol 2008; 82:3822-33. [PMID: 18256155 DOI: 10.1128/jvi.02568-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus serotype 5 (AdH5) vector vaccines elicit strong immune responses to the encoded antigen and have been used in various disease models. We designed AdH5 vectors expressing antigen under the control of a human cytomegalovirus (HCMV) immediate-early promoter containing its intron A sequence. The transcriptional levels of antigen and immune responses to antigen for vectors with the HCMV promoter with the intron A sequence (LP) were greater than those for AdH5 vectors using the HCMV promoter sequence without intron A (SP). We compared an E1E3-deleted AdH5 adenoviral vector, which affords more space for insertion of foreign sequences, and showed it to be as immunogenic as an E1-deleted AdH5 vector. Neutralizing antibodies to AdH5 limit the efficacy of vaccines based on the AdH5 serotype, and simian adenoviral vectors offer an attractive option to overcome this problem. We constructed E1E3-deleted human and simian adenoviral vectors encoding the pre-erythrocytic-stage malarial antigen Plasmodium berghei circumsporozoite protein. We compared the immunogenicity and efficacy of AdC6, a recombinant simian adenovirus serotype 6 vector, in a murine malaria model to those of AdH5 and the poxviral vectors MVA and FP9. AdC6 induced sterile protection from a single dose in 90% of mice, in contrast to AdH5 (25%) and poxviral vectors MVA and FP9 (0%). Adenoviral vectors maintained potent CD8(+) T-cell responses for a longer period after immunization than did poxviral vectors and mainly induced an effector memory phenotype of cells. Significantly, AdC6 was able to maintain protection in the presence of preexisting immunity to AdH5.
Collapse
|
35
|
Srivastava IK, Kan E, Srivastava IN, Cisto J, Biron Z. Structure, Immunopathogenesis and Vaccines Against SARS Coronavirus. IMMUNITY AGAINST MUCOSAL PATHOGENS 2008. [PMCID: PMC7122221 DOI: 10.1007/978-1-4020-8412-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new disease, severe atypical respiratory syndrome (SARS), emerged in China in late 2002 and developed into the first epidemic of the 21st century. The disease was caused by an unknown animal coronavirus (CoV) that had crossed the species barrier through close contact of humans with infected animals, and was identified as the etiological agent for SARS. This new CoV not only became readily transmissible between humans but also was also more pathogenic. The disease spread across the world rapidly due to the air travel, and infected 8096 people and caused 774 deaths in 26 countries on 5 continents. The disease is characterized by flu-like symptoms, including high fever, malaise, cough, diarrhea, and infiltrates visible on chest radiography. The overall mortality was about 10%, but varied profoundly with age; the course of disease seemed to be milder in the pediatric age group and resulted rarely in a fatal outcome, but the mortality in the elderly was as high as 50%. Aggressive quarantine measures taken by the health authorities have successfully contained and terminated the disease transmission. As a result there are no SARS cases recorded recently. Nevertheless there is a possibility that the disease may emerge in the population with high vigor. Significant progress has been made in understanding the disease biology, pathogenesis, development of animal models, and design and evaluation of different vaccines, and these are the focus of this chapter.
Collapse
|
36
|
Protective immunity to pseudomonas aeruginosa induced with a capsid-modified adenovirus expressing P. aeruginosa OprF. J Virol 2007; 81:13801-8. [PMID: 17942539 DOI: 10.1128/jvi.01246-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study focuses on the development of a new clinical vaccine candidate (AdOprF.RGD.Epi8) against Pseudomonas aeruginosa using an E1(-) E3(-) adenovirus (Ad) vector expressing OprF (AdOprF.RGD.Epi8) and modifications of the Ad genome providing two capsid changes: (i) modification of the Ad hexon gene to incorporate an immune-dominant OprF epitope (Epi8) into loop 1 of the hexon, enabling repeat administration to boost the anti-OprF immune response, and (ii) modification of the fiber gene to incorporate an integrin-binding RGD sequence to enhance gene delivery to antigen-presenting cells. Western analysis confirmed that AdOprF.RGD.Epi8 expresses OprF, contains Epi8 in the hexon protein, and enhances gene transfer to dendritic cells compared to AdOprF, a comparable Ad vector expressing OprF with an unmodified capsid. Intramuscular immunization of C57BL/6 mice with AdOprF.RGD.Epi8 resulted in the generation of anti-OprF antibodies at comparable levels to those induced following immunization with AdOprF, but immunization with AdOprF.RGD.Epi8 was associated with increased CD4 and CD8 gamma interferon T-cell responses against OprF as well as increased survival against lethal pulmonary challenge with agar-encapsulated P. aeruginosa. Importantly, repeat administration of AdOprF.RGD.Epi8 resulted in boosting of the humoral anti-OprF response as well as increased protection, whereas no boosting could be achieved with repeat administration of AdOprF. This suggests that the capsid-modified AdOprF.RGD.Epi8 vector is a more effective immunogen compared to a comparable wild-type Ad capsid, making it a good candidate for an anti-P. aeruginosa vaccine.
Collapse
|
37
|
Roy S, Kobinger GP, Lin J, Figueredo J, Calcedo R, Kobasa D, Wilson JM. Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein. Vaccine 2007; 25:6845-51. [PMID: 17728024 PMCID: PMC2748222 DOI: 10.1016/j.vaccine.2007.07.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 11/28/2022]
Abstract
The development of adenoviral vectors based on non-human serotypes such as the chimpanzee adenovirus simian adenovirus 24 (AdC7) may allow for their utilization in populations harboring neutralizing antibodies to common human serotypes. Because adenoviral vectors can be used to generate potent T cell responses, they may be useful as vaccines against pandemic influenza such as may be caused by the H5N1 strains that are currently endemic in avian populations. The influenza nucleoprotein (NP) is known to provide MHC Class I restricted epitopes that are effective in evoking a cytolytic response. Because there is only low sequence variation in NP sequences between different influenza strains, a T cell vaccine may provide heterosubtypic protection against a spectrum of influenza A strains. An AdC7 vector expressing the influenza A/Puerto Rico/8/34 NP was tested for its efficacy in protecting BALB/c mice against two H5N1 strains and compared to a conventional human adenovirus serotype 5 vaccine. The AdC7 NP vaccine elicited a strong anti-NP T cell response. When tested in a mouse challenge model, there was improved survival following challenge with two strains of H5N1 that have caused human outbreaks, Vietnam/1203/04 and Hong Kong/483/97, although the improved survival reached statistical significance only with the strain from Vietnam.
Collapse
Affiliation(s)
- Soumitra Roy
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania, Philadelphia, PA 19104-4268, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Translating knowledge of genetic disease mechanisms into gene therapies has been slow with limited clinical success. One major reason is that the transfer vectors, which are most often of viral origin, are not targeted sufficiently towards the cells of interest. To achieve successful delivery of genetic material, transductional targeting is often essential to enter the target cell and to avoid side effects from the transduction of non-target cells. Many techniques to target viral vectors to specific cells have been developed. They can be divided into three types: systems that use adaptor proteins from other viruses (pseudotyping); systems that use adaptors to couple the targeting ligand to the vector; and systems that genetically incorporate the targeting moiety into the viral genome. Whereas systems involving adaptor proteins are highly useful in preclinical evaluations, systems that make use of genetically incorporated targeting ligands are advantageous for clinical applications. Combinations of several targeting principles (including ablation of natural tropism, pseudotyping and adaptors) and novel combinations (such as the adeno-associated virus (AAV) genome in a phage vector) allow systemic vector application. An initial clinical study with a targeted retrovirus showed feasibility to transfer laboratory success to patient application, underlining that there are no principal regulatory barriers for targeted vectors. Systemic vector applications will be facilitated by enabling the vector to move beyond the vascular endothelium at specific sites, using transcytosis or cellular vehicles. The application of existing targeting techniques to new viral vector serotypes and new vector classes is extending the therapeutic capabilities further. Obstacles to systemic application of vectors are found in the blood as immune reactions against the vector and as binding of blood proteins to the vector. Some targeting approaches might have the potential to circumvent these obstacles. To preclinically evaluate new targeting strategies, several models that reflect the human situation to varying degrees are available. The use of primary cells, tissue-slice systems and transgenic animals seems to be especially promising. Imaging technologies provide the ability to monitor the vector in vivo in real time without sacrificing the animal model. These techniques facilitate vector targeting and biodistribution studies.
A key challenge in gene therapy is vector targeting to specific cells, while avoiding effects on other tissues. Several strategies have been developed recently to enable targeting of the main viral vectors, moving them a step closer to clinical use. To achieve therapeutic success, transfer vehicles for gene therapy must be capable of transducing target cells while avoiding impact on non-target cells. Despite the high transduction efficiency of viral vectors, their tropism frequently does not match the therapeutic need. In the past, this lack of appropriate targeting allowed only partial exploitation of the great potential of gene therapy. Substantial progress in modifying viral vectors using diverse techniques now allows targeting to many cell types in vitro. Although important challenges remain for in vivo applications, the first clinical trials with targeted vectors have already begun to take place.
Collapse
Affiliation(s)
- Reinhard Waehler
- Division of Human Gene Therapy, 502 Biomedical Research Building II, 901 19th Street, South Birmingham, 35294-2172 Alabama USA
| | - Stephen J. Russell
- Molecular Medicine Program, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, 55905 Minnesota USA
| | - David T. Curiel
- Division of Human Gene Therapy, 502 Biomedical Research Building II, 901 19th Street, South Birmingham, 35294-2172 Alabama USA
| |
Collapse
|
39
|
Gomez-Gutierrez JG, Elpek KG, Montes de Oca-Luna R, Shirwan H, Sam Zhou H, McMasters KM. Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunol Immunother 2007; 56:997-1007. [PMID: 17146630 PMCID: PMC11030956 DOI: 10.1007/s00262-006-0247-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 09/26/2006] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cervical cancer remains a leading cause of cancer-related mortality in women, particularly in developing countries. The causal association between genital human papilloma virus (HPV) infection and cervical cancer has been firmly established, and the oncogenic potential of certain HPV types has been clearly demonstrated. Vaccines targeting the oncogenic proteins, E6 and E7 of HPV-16 and -18 are the focus of current vaccine development. Previous studies have shown that calreticulin (CRT) enhances the MHC class I presentation of linked peptide/protein and may serve as an effective vaccination strategy for antigen-specific cancer treatment. METHODS Two replication-deficient adenoviruses, one expressing HPV-16 E7 (Ad-E7) and the other expressing CRT linked to E7 (Ad-CRT/E7), were assessed for their ability to induce cellular immune response and tested for prophylactic and therapeutic effects in an E7-expressing mouse tumor model. RESULTS Vaccination with Ad-CRT/E7 led to a dramatic increase in E7-specific T cell proliferation, interferon (IFN)-gamma-secretion, and cytotoxic activity. Immunization of mice with Ad-CRT/E7 was effective in preventing E7-expressing tumor growth, as well as eradicating established tumors with long-term immunological memory. CONCLUSION Vaccination with an adenoviral vector expressing CRT-E7 fusion protein represents an effective strategy for immunotherapy of cervical cancer in rodents, with possible therapeutic potential in clinical settings.
Collapse
Affiliation(s)
- Jorge G. Gomez-Gutierrez
- Louisville, KY USA
- Department of Surgery, University of Louisville School of Medicine; James Graham Brown Cancer Center, 40292 Louisville, KY USA
- Facultad de Ciencias Biológicas, Departamanto de Microbiología e Inmunología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL México
| | - Kutlu G. Elpek
- Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY USA
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY USA
| | - Roberto Montes de Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL México
| | - Haval Shirwan
- Louisville, KY USA
- Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY USA
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, Louisville, KY USA
- Microbiology and Immunology, University of Louisville School of Medicine; James Graham Brown Cancer Center, Louisville, KY USA
| | - H. Sam Zhou
- Louisville, KY USA
- Department of Medicine, University of Louisville School of Medicine; James Graham Brown Cancer Center, Louisville, KY USA
- Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY USA
- Microbiology and Immunology, University of Louisville School of Medicine; James Graham Brown Cancer Center, Louisville, KY USA
| | - Kelly M. McMasters
- Louisville, KY USA
- Department of Surgery, University of Louisville School of Medicine; James Graham Brown Cancer Center, 40292 Louisville, KY USA
| |
Collapse
|
40
|
DiNapoli JM, Kotelkin A, Yang L, Elankumaran S, Murphy BR, Samal SK, Collins PL, Bukreyev A. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc Natl Acad Sci U S A 2007; 104:9788-93. [PMID: 17535926 PMCID: PMC1887550 DOI: 10.1073/pnas.0703584104] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The international outbreak of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) in 2002-2003 highlighted the need to develop pretested human vaccine vectors that can be used in a rapid response against newly emerging pathogens. We evaluated Newcastle disease virus (NDV), an avian paramyxovirus that is highly attenuated in primates, as a topical respiratory vaccine vector with SARS-CoV as a test pathogen. Complete recombinant NDV was engineered to express the SARS-CoV spike S glycoprotein, the viral neutralization and major protective antigen, from an added transcriptional unit. African green monkeys immunized through the respiratory tract with two doses of the vaccine developed a titer of SARS-CoV-neutralizing antibodies comparable with the robust secondary response observed in animals that have been immunized with a different experimental SARS-CoV vaccine and challenged with SARS-CoV. When animals immunized with NDV expressing S were challenged with a high dose of SARS-CoV, direct viral assay of lung tissues taken by necropsy at the peak of viral replication demonstrated a 236- or 1,102-fold (depending on the NDV vector construct) mean reduction in pulmonary SARS-CoV titer compared with control animals. NDV has the potential for further development as a pretested, highly attenuated, intranasal vector to be available for expedited vaccine development for humans, who generally lack preexisting immunity against NDV.
Collapse
Affiliation(s)
- Joshua M. DiNapoli
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Alexander Kotelkin
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Lijuan Yang
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Brian R. Murphy
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | | | - Peter L. Collins
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Alexander Bukreyev
- *Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
- To whom correspondence should be addressed at:
Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6505, Bethesda, MD 20892. E-mail:
| |
Collapse
|
41
|
Du L, Zhao G, He Y, Guo Y, Zheng BJ, Jiang S, Zhou Y. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine 2006; 25:2832-8. [PMID: 17092615 PMCID: PMC7115660 DOI: 10.1016/j.vaccine.2006.10.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Revised: 09/10/2006] [Accepted: 10/17/2006] [Indexed: 12/16/2022]
Abstract
Development of effective vaccines against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is still a priority in prevention of re-emergence of SARS. Our previous studies have shown that the receptor-binding domain (RBD) of SARS-CoV spike (S) protein elicits highly potent neutralizing antibody responses in the immunized animals. But it is unknown whether RBD can also induce protective immunity in an animal model, a key aspect for vaccine development. In this study, BALB/c mice were vaccinated intramuscularly (i.m.) with 10 μg of RBD-Fc (RBD fused with human IgG1 Fc) and boosted twice at 3-week intervals and one more time at 12th month. Humoral immune responses of vaccinated mice were investigated for up to 12 months at a 1-month interval and the neutralizing titers of produced antibodies were reported at months 0, 3, 6 and 12 post-vaccination. Mice were challenged with the homologous strain of SARS-CoV 5 days after the last boost, and sacrificed 5 days after the challenge. Mouse lung tissues were collected for detection of viral load, virus replication and histopathological effects. Our results showed that RBD-Fc vaccination induced high titer of S-specific antibodies with long-term and potent SARS-CoV neutralizing activity. Four of five vaccinated mice were protected from subsequent SARS-CoV challenge because no significant virus replication, and no obvious histopathological changes were found in the lung tissues of the vaccinated mice challenged with SARS-CoV. Only one vaccinated mouse had mild alveolar damage in the lung tissues. In contrast, high copies of SARS-CoV RNA and virus replication were detected, and pathological changes were observed in the lung tissues of the control mice. In conclusion, our findings suggest that RBD, which can induce protective antibodies to SARS-CoV, may be further developed as a safe and effective SARS subunit vaccine.
Collapse
Affiliation(s)
- Lanying Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | |
Collapse
|