1
|
Lin Y, Kuo H, Lu M, Rungkittikhun C, Hu W. Expression of Viral DNA Polymerase in Synthetic Recombinant Adeno-Associated Virus Producer Cell Line Enhances Full Particle Productivity. Biotechnol Bioeng 2025; 122:424-434. [PMID: 39578398 PMCID: PMC11718424 DOI: 10.1002/bit.28885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a widely used viral vector in gene therapy. To meet the growing clinical demand, a scalable production technology which can efficiently produce high-quality products is required. We have developed a synthetic biology strategy to generate HEK293-based cell lines which have integrated essential AAV and adenoviral helper genes and are capable of producing rAAV upon induction. One such cell line, GX6B, produced up to 106 capsids per cell, but only a much lower level of rAAV genomes. The low AAV genome titer limited its rAAV productivity and increased empty viral particle content. To boost AAV genome amplification, the coding sequence of the DNA polymerase complex (UL30/UL42) from helper Herpes Simplex Virus type 1 (HSV-1) was placed under an inducible promoter control and integrated into GX6B genome at a relatively low level. The resulting clones produced significantly higher titer of viral genomes, while their capsid level was unaffected. As a result, the encapsidated rAAV2 titer and the full particle content were significantly increased. We further demonstrated that this strategy of expressing HSV-1 DNA polymerase to increase full particle productivity could be implemented in a synthetic cell line producing another serotype rAAV8.
Collapse
Affiliation(s)
- Yu‐Chieh Lin
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Han‐Jung Kuo
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Min Lu
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Carissa Rungkittikhun
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Wei‐Shou Hu
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
2
|
Shih FH, Chang HH, Wang YC. Utilizing adeno-associated virus as a vector in treating genetic disorders or human cancers. IUBMB Life 2024; 76:1000-1010. [PMID: 38970351 DOI: 10.1002/iub.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024]
Abstract
Clinical data from over two decades, involving more than 3000 treated patients, demonstrate that adeno-associated virus (AAV) gene therapy is a safe, effective, and well-tolerated therapeutic method. Clinical trials using AAV-mediated gene delivery to accessible tissues have led to successful treatments for numerous monogenic disorders and advancements in tissue engineering. Although the US Food and Drug Administration (FDA) has approved AAV for clinical use, systemic administration remains a significant challenge. In this review, we delve into AAV biology, focusing on current manufacturing technologies and transgene engineering strategies. We examine the use of AAVs in ongoing clinical trials for ocular, neurological, and hematological disorders, as well as cancers. By discussing recent advancements and current challenges in the field, we aim to provide valuable insights for researchers and clinicians navigating the evolving landscape of AAV-based gene therapy.
Collapse
Affiliation(s)
- Fu-Hsuan Shih
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hsiung-Hao Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
3
|
Roach MK, Wirz P, Rouse J, Schorzman A, Beard CW, Scott D. Production of recombinant adeno-associated virus 5 using a novel self-attenuating adenovirus production platform. Mol Ther Methods Clin Dev 2024; 32:101320. [PMID: 39282074 PMCID: PMC11399549 DOI: 10.1016/j.omtm.2024.101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Recombinant adeno-associated virus (rAAV) has become a prominent vector for clinical use. Despite an increase in successful clinical outcomes, the amount of high-quality rAAVs required for clinical trials and eventual commercial demand is difficult to produce, especially for genetic diseases that are prevalent or require high doses. Many groups are focused on establishing production processes that can produce sufficient rAAV while maintaining potency and quality. Our group used a novel production platform to increase our yield of rAAV5. This production platform uses tetracycline-enabled self-silencing adenovirus (TESSA) to deliver the wild-type AAV replication and capsid genes alongside the adenovirus helper genes necessary for production. Here, we describe our efforts to evaluate the TESSA platform in house. We conducted numerous experiments to determine the optimal conditions for producing rAAV5 from the TESSA production system. We then produced rAAV5 from the TESSA system to compare against rAAV5 produced from triple transfection. Ultimately, we generated data that showed that the vector genome yield of rAAV5 produced with TESSA was >20-fold higher than rAAV5 produced with triple transfection. Additionally, our data show that quality as well as potency in mice of rAAV5 produced with the TESSA system and by triple transfection are equivalent.
Collapse
Affiliation(s)
| | - Phillip Wirz
- BridgeBio Gene Therapy LLC, Raleigh, NC 27607, USA
| | - Jeremy Rouse
- BridgeBio Gene Therapy LLC, Raleigh, NC 27607, USA
| | | | | | - David Scott
- BridgeBio Gene Therapy LLC, Raleigh, NC 27607, USA
| |
Collapse
|
4
|
Merten OW. Development of Stable Packaging and Producer Cell Lines for the Production of AAV Vectors. Microorganisms 2024; 12:384. [PMID: 38399788 PMCID: PMC10892526 DOI: 10.3390/microorganisms12020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Today, recombinant adeno-associated virus (rAAV) vectors represent the vector systems which are mostly used for in vivo gene therapy for the treatment of rare and less-rare diseases. Although most of the past developments have been performed by using a transfection-based method and more than half of the authorized rAAV-based treatments are based on transfection process, the tendency is towards the use of stable inducible packaging and producer cell lines because their use is much more straightforward and leads in parallel to reduction in the overall manufacturing costs. This article presents the development of HeLa cell-based packaging/producer cell lines up to their use for large-scale rAAV vector production, the more recent development of HEK293-based packaging and producer cell lines, as well as of packaging cell lines based on the use of Sf9 cells. The production features are presented in brief (where available), including vector titer, specific productivity, and full-to-empty particle ratio.
Collapse
|
5
|
Lu M, Lee Z, Lin YC, Irfanullah I, Cai W, Hu WS. Enhancing the production of recombinant adeno-associated virus in synthetic cell lines through systematic characterization. Biotechnol Bioeng 2024; 121:341-354. [PMID: 37749931 DOI: 10.1002/bit.28562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is among the most commonly used in vivo gene delivery vehicles and has seen a number of successes in clinical application. Current manufacturing processes of rAAV employ multiple plasmid transfection or rely on virus infection and face challenges in scale-up. A synthetic biology approach was taken to generate stable cell lines with integrated genetic modules, which produced rAAV upon induction albeit at a low productivity. To identify potential factors that restrained the productivity, we systematically characterized virus production kinetics through targeted quantitative proteomics and various physical assays of viral components. We demonstrated that reducing the excessive expression of gene of interest by its conditional expression greatly increased the productivity of these synthetic cell lines. Further enhancement was gained by optimizing induction profiles and alleviating proteasomal degradation of viral capsid protein by the addition of proteasome inhibitors. Altogether, these enhancements brought the productivity close to traditional multiple plasmid transfection. The rAAV produced had comparable full particle contents as those produced by conventional transient plasmid transfection. The present work exemplified the versatility of our synthetic biology-based viral vector production platform and its potential for plasmid- and virus-free rAAV manufacturing.
Collapse
Affiliation(s)
- Min Lu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yu-Chieh Lin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ibrahim Irfanullah
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wen Cai
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Ou J, Tang Y, Xu J, Tucci J, Borys MC, Khetan A. Recent advances in upstream process development for production of recombinant adeno-associated virus. Biotechnol Bioeng 2024; 121:53-70. [PMID: 37691172 DOI: 10.1002/bit.28545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.
Collapse
Affiliation(s)
- Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yawen Tang
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Julian Tucci
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| |
Collapse
|
7
|
Blay E, Hardyman E, Morovic W. PCR-based analytics of gene therapies using adeno-associated virus vectors: Considerations for cGMP method development. Mol Ther Methods Clin Dev 2023; 31:101132. [PMID: 37964893 PMCID: PMC10641278 DOI: 10.1016/j.omtm.2023.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The field of gene therapy has evolved and improved so that today the treatment of thousands of genetic diseases is now possible. An integral aspect of the drug development process is generating analytical methods to be used throughout clinical and commercial manufacturing. Enumeration and identification assays using genetic testing are critical to ensure the safety, efficacy, and stability of many active pharmaceutical ingredients. While nucleic acid-based methods are already reliable and rapid, there are unique biological, technological, and regulatory aspects in gene therapies that must be considered. This review surveys aspects of method development and validation using nucleic acid-based testing of gene therapies by focusing on adeno-associated virus (AAV) vectors and their co-transfection factors. Key differences between quantitative PCR and droplet digital technologies are discussed to show how improvements can be made while still adhering to regulatory guidance. Example validation parameters for AAV genome titers are described to demonstrate the scope of analytical development. Finally, several areas for improving analytical testing are presented to inspire future innovation, including next-generation sequencing and artificial intelligence. Reviewing the broad characteristics of gene therapy assessment serves as an introduction for new researchers, while clarifying processes for professionals already involved in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Emmanuel Blay
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| | - Elaine Hardyman
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| | - Wesley Morovic
- Gene & Cell Therapy, PPD GMP Laboratories, Part of ThermoFisher Scientific, Middleton, WI, USA
| |
Collapse
|
8
|
Leon-Astudillo C, Trivedi PD, Sun RC, Gentry MS, Fuller DD, Byrne BJ, Corti M. Current avenues of gene therapy in Pompe disease. Curr Opin Neurol 2023; 36:464-473. [PMID: 37639402 PMCID: PMC10911405 DOI: 10.1097/wco.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Pompe disease is a rare, inherited, devastating condition that causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement therapy has dramatically changed the outcome of patients with the disease, this strategy has several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the multisystem aspects of the disease and need to address the central nervous system manifestations. This review highlights the recent work in this field, including methods, progress, shortcomings, and future directions. RECENT FINDINGS Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are well studied platforms for gene therapy in Pompe disease. These products can be further adapted for safe and efficient administration with concomitant immunosuppression, with the modification of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials demonstrating safety and tolerability. SUMMARY Gene therapy for the treatment of patients with Pompe disease is feasible and offers an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. Further work is needed to overcome the limitations related to vector production, immunologic reactions and redosing.
Collapse
Affiliation(s)
- Carmen Leon-Astudillo
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Prasad D Trivedi
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ramon C Sun
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | - Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville FL, United States
- Lafora Epilepsy Cure Initiative, United States
| | | | - Barry J Byrne
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Manuela Corti
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
9
|
Fu Q, Polanco A, Lee YS, Yoon S. Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing. Biotechnol Bioeng 2023; 120:2601-2621. [PMID: 37126355 DOI: 10.1002/bit.28412] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Gene therapy is a promising therapeutic approach for genetic and acquired diseases nowadays. Among DNA delivery vectors, recombinant adeno-associated virus (rAAV) is one of the most effective and safest vectors used in commercial drugs and clinical trials. However, the current yield of rAAV biomanufacturing lags behind the necessary dosages for clinical and commercial use, which embodies a concentrated reflection of low productivity of rAAV from host cells, difficult scalability of the rAAV-producing bioprocess, and high levels of impurities materialized during production. Those issues directly impact the price of gene therapy medicine in the market, limiting most patients' access to gene therapy. In this context, the current practices and several critical challenges associated with rAAV gene therapy bioprocesses are reviewed, followed by a discussion of recent advances in rAAV-mediated gene therapy and other therapeutic biological fields that could improve biomanufacturing if these advances are integrated effectively into the current systems. This review aims to provide the current state-of-the-art technology and perspectives to enhance the productivity of rAAV while reducing impurities during production of rAAV.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Biomedical Engineering and Biotechnology, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Ashli Polanco
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
10
|
Asaad W, Volos P, Maksimov D, Khavina E, Deviatkin A, Mityaeva O, Volchkov P. AAV genome modification for efficient AAV production. Heliyon 2023; 9:e15071. [PMID: 37095911 PMCID: PMC10121408 DOI: 10.1016/j.heliyon.2023.e15071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
The adeno-associated virus (AAV) is one of the most potent vectors in gene therapy. The experimental profile of this vector shows its efficiency and accepted safety, which explains its increased usage by scientists for the research and treatment of a wide range of diseases. These studies require using functional, pure, and high titers of vector particles. In fact, the current knowledge of AAV structure and genome helps improve the scalable production of AAV vectors. In this review, we summarize the latest studies on the optimization of scalable AAV production through modifying the AAV genome or biological processes inside the cell.
Collapse
|
11
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
12
|
Collins L, Ponnazhagan S, Curiel DT. Synthetic Biology Design as a Paradigm Shift toward Manufacturing Affordable Adeno-Associated Virus Gene Therapies. ACS Synth Biol 2023; 12:17-26. [PMID: 36627108 PMCID: PMC9872172 DOI: 10.1021/acssynbio.2c00589] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 01/12/2023]
Abstract
Gene therapy has demonstrated enormous potential for changing how we combat disease. By directly engineering the genetic composition of cells, it provides a broad range of options for improving human health. Adeno-associated viruses (AAVs) represent a leading gene therapy vector and are expected to address a wide range of conditions in the coming decade. Three AAV therapies have already been approved by the FDA to treat Leber's congenital amaurosis, spinal muscular atrophy, and hemophilia B. Yet these therapies cost around $850,000, $2,100,000, and $3,500,000, respectively. Such prices limit the broad applicability of AAV gene therapy and make it inaccessible to most patients. Much of this problem arises from the high manufacturing costs of AAVs. At the same time, the field of synthetic biology has grown rapidly and has displayed a special aptitude for addressing biomanufacturing problems. Here, we discuss emerging efforts to apply synthetic biology design to decrease the price of AAV production, and we propose that such efforts could play a major role in making gene therapy much more widely accessible.
Collapse
Affiliation(s)
- Logan
Thrasher Collins
- Department
of Biomedical Engineering, Washington University
in St. Louis, 4950 Childrens Place, St. Louis, Missouri 63110, United
States
| | - Selvarangan Ponnazhagan
- Department
of Pathology, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, Alabama 35233, United States
| | - David T. Curiel
- Department
of Biomedical Engineering, Washington University
in St. Louis, 4950 Childrens Place, St. Louis, Missouri 63110, United
States
- Department
of Radiation Oncology, Washington University
in St. Louis, 4950 Childrens
Place, St. Louis, Missouri 63110, United States
| |
Collapse
|
13
|
Weger S. High-Level rAAV Vector Production by rAdV-Mediated Amplification of Small Amounts of Input Vector. Viruses 2022; 15:64. [PMID: 36680104 PMCID: PMC9867474 DOI: 10.3390/v15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The successful application of recombinant adeno-associated virus (rAAV) vectors for long-term transgene expression in clinical studies requires scalable production methods with genetically stable components. Due to their simple production scheme and the high viral titers achievable, first generation recombinant adenoviruses (rAdV) have long been taken into consideration as suitable tools for simultaneously providing both the helper functions and the AAV rep and cap genes for rAAV packaging. So far, however, such rAdV-rep/cap vectors have been difficult to generate and often turned out to be genetically unstable. Through ablation of cis and trans inhibitory function in the AAV-2 genome we have succeeded in establishing separate and stable rAdVs for high-level AAV serotype 2 Rep and Cap expression. These allowed rAAV-2 production at high burst sizes by simple coinfection protocols after providing the AAV-ITR flanked transgene vector genome either as rAAV-2 particles at low input concentrations or in form of an additional rAdV. With characteristics such as the ease of producing the required components, the straightforward adaption to other transgenes and the possible extension to further serotypes or capsid variants, especially the rAdV-mediated rAAV amplification system presents a very promising candidate for up-scaling to clinical grade vector preparations.
Collapse
Affiliation(s)
- Stefan Weger
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic for Neurology with Experimental Neurology, Gene Therapy Group, Campus Benjamin Franklin, Hindenburgdamm27, 12203 Berlin, Germany
| |
Collapse
|
14
|
Pupo A, Fernández A, Low SH, François A, Suárez-Amarán L, Samulski RJ. AAV vectors: The Rubik's cube of human gene therapy. Mol Ther 2022; 30:3515-3541. [PMID: 36203359 PMCID: PMC9734031 DOI: 10.1016/j.ymthe.2022.09.015] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
Defective genes account for ∼80% of the total of more than 7,000 diseases known to date. Gene therapy brings the promise of a one-time treatment option that will fix the errors in patient genetic coding. Recombinant viruses are highly efficient vehicles for in vivo gene delivery. Adeno-associated virus (AAV) vectors offer unique advantages, such as tissue tropism, specificity in transduction, eliciting of a relatively low immune responses, no incorporation into the host chromosome, and long-lasting delivered gene expression, making them the most popular viral gene delivery system in clinical trials, with three AAV-based gene therapy drugs already approved by the US Food and Drug Administration (FDA) or European Medicines Agency (EMA). Despite the success of AAV vectors, their usage in particular scenarios is still limited due to remaining challenges, such as poor transduction efficiency in certain tissues, low organ specificity, pre-existing humoral immunity to AAV capsids, and vector dose-dependent toxicity in patients. In the present review, we address the different approaches to improve AAV vectors for gene therapy with a focus on AAV capsid selection and engineering, strategies to overcome anti-AAV immune response, and vector genome design, ending with a glimpse at vector production methods and the current state of recombinant AAV (rAAV) at the clinical level.
Collapse
Affiliation(s)
- Amaury Pupo
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Audry Fernández
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Siew Hui Low
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Achille François
- Viralgen. Parque Tecnológico de Guipuzkoa, Edificio Kuatro, Paseo Mikeletegui, 83, 20009 San Sebastián, Spain
| | - Lester Suárez-Amarán
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA
| | - Richard Jude Samulski
- R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, Durham, NC 27709, USA,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Corresponding author: Richard Jude Samulski, R&D Department, Asklepios BioPharmaceutical, Inc. (AskBio), 20 T.W. Alexander, Suite 110 RTP, NC 27709, USA.
| |
Collapse
|
15
|
Lee Z, Lu M, Irfanullah E, Soukup M, Hu WS. Construction of an rAAV Producer Cell Line through Synthetic Biology. ACS Synth Biol 2022; 11:3285-3295. [PMID: 36219557 PMCID: PMC9595119 DOI: 10.1021/acssynbio.2c00207] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 01/24/2023]
Abstract
Recombinant adeno-associated viruses (rAAV) are important gene delivery vehicles for gene therapy applications. Their production relies on plasmid transfection or virus infection of producer cells, which pose a challenge in process scale-up. Here, we describe a template for a transfection-free, helper virus-free rAAV producer cell line using a synthetic biology approach. Three modules were integrated into HEK293 cells including an rAAV genome and multiple inducible promoters controlling the expression of AAV Rep, Cap, and helper coding sequences. The synthetic cell line generated infectious rAAV vectors upon induction. Independent control over replication and packaging activities allowed for manipulation of the fraction of capsid particles containing viral genomes, affirming the feasibility of tuning gene expression profiles in a synthetic cell line for enhancing the quality of the viral vector produced. The synthetic biology approach for rAAV production presented in this study can be exploited for scalable biomanufacturing.
Collapse
Affiliation(s)
| | | | - Eesha Irfanullah
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Morgan Soukup
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wei-Shou Hu
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Trivedi PD, Yu C, Chaudhuri P, Johnson EJ, Caton T, Adamson L, Byrne BJ, Paulk NK, Clément N. Comparison of highly pure rAAV9 vector stocks produced in suspension by PEI transfection or HSV infection reveals striking quantitative and qualitative differences. Mol Ther Methods Clin Dev 2022; 24:154-170. [PMID: 35071688 PMCID: PMC8760416 DOI: 10.1016/j.omtm.2021.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/22/2021] [Indexed: 01/31/2023]
Abstract
Recent clinical successes have propelled recombinant adeno-associated virus vectors (rAAV) to the center stage for human gene therapy applications. However, the exploding demand for high titers of highly pure rAAV vectors for clinical applications and market needs remains hindered by challenges met at the manufacturing stage. The production of rAAV by transfection in suspension cells remains one of the most commonly used production platforms. In this study, we describe our optimized protocol to produce rAAV by polyethyleneimine (PEI)-mediated transfection in suspension HEK293 cells, along with a side-by-side comparison to our high-performing system using the herpes simplex virus (HSV). Further, we detail a new, robust, and highly efficient downstream purification protocol compatible with both transfection and infection-based harvests that generated rAAV9 stocks of high purity. Our in-depth comparison revealed quantitative, qualitative, and biological differences between PEI-mediated transfection and HSV infection. The HSV production system yielded to higher rAAV vector titers, higher specific yields, and a higher percentage of full capsids than transfection. Furthermore, HSV-produced stocks had a significantly lower concentration of residual host cell proteins and helper DNA impurities, but contained detectable levels of HSV DNA. Importantly, the potency of PEI-produced and HSV-produced rAAV stocks were identical. Analyses of AAV Rep and Cap expression levels and replication showed that HSV-mediated production led to a lower expression of Rep and Cap, but increased levels of AAV genome replication. Our methodology enables high-yield, high purity rAAV production and a biological framework to improve transfection quality and yields by mimicking HSV-induced biological outcomes.
Collapse
Affiliation(s)
- Prasad D Trivedi
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Chenghui Yu
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Payel Chaudhuri
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Evan J Johnson
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Tina Caton
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Laura Adamson
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | - Nicole K Paulk
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Dobrowsky T, Gianni D, Pieracci J, Suh J. AAV manufacturing for clinical use: Insights on current challenges from the upstream process perspective. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Usman NY, Rebrikov DV. Recombinant adeno-associated viruses as a gene delivery vehicle for the use in molecular medicine. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Viral mechanisms for the delivery of genetic material are widely used in molecular medicine. Recombinant adeno-associated viruses (rAAV) represent a promising tool for in vivo gene delivery. The review considers nosological spectrum, molecular mechanisms, the choice of drug administration route depending on target structures, the choice of serotype, and the methods of active ingredient manufacturing for rAAV-mediated gene therapy.
Collapse
Affiliation(s)
- NYu Usman
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - DV Rebrikov
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia
| |
Collapse
|
19
|
Selvaraj N, Wang CK, Bowser B, Broadt T, Shaban S, Burns J, Saptharishi N, Pechan P, Golebiowski D, Alimardanov A, Yang N, Mitra G, Vepachedu R. Detailed Protocol for the Novel and Scalable Viral Vector Upstream Process for AAV Gene Therapy Manufacturing. Hum Gene Ther 2021; 32:850-861. [PMID: 33397196 PMCID: PMC8418526 DOI: 10.1089/hum.2020.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 12/27/2020] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated viral (rAAV) vector-based gene therapy has been adapted for use in more than 100 clinical trials. This is mainly because of its excellent safety profile, ability to target a wide range of tissues, stable transgene expression, and significant clinical benefit. However, the major challenge is to produce a high-titer, high-potency vector to achieve a better therapeutic effect. Even though the three plasmid-based transient transfection method is currently being used for AAV production in many clinical trials, there are complications associated with scalability and it is not cost-effective. Other methods require either large-scale production of two herpes simplex viruses, rHSV-RepCap and rHSV-GOI (gene of interest), with high titers, or a stable cell line with high titer wild-type adenovirus infection. Both of these options make the process even more complex. To address this issue, we have developed a stable cell line-based production with the use of only one rHSV-RepCap virus. Using this new methodology in small-scale production, we achieved ∼1-6 E + 04 vg/cell of AAV9 in the top producer clones. Large-scale production in 10-CS (10-Cell Stack) of one of the top producing clones resulted in ∼1-2 E + 13 vg/10-CS with 50% of full capsid ratio after purification. This method could potentially be adapted to suspension cells. The major advantage of this novel methodology is that by using the rHSV-RepCap virus, high titer AAV can be produced with any GOI containing a stable adherent or suspension producer cell line. The use of this AAV production platform could be beneficial for the treatment of many diseases.
Collapse
Affiliation(s)
- Nagarathinam Selvaraj
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Chao-Kuei Wang
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brian Bowser
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Trevor Broadt
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Samir Shaban
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jenna Burns
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nirmala Saptharishi
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Peter Pechan
- Solid Biosciences, Cambridge, Massachusetts, USA
| | | | - Asaf Alimardanov
- National Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - Nora Yang
- National Center for Advancing Translational Sciences, Bethesda, Maryland, USA
| | - George Mitra
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ramarao Vepachedu
- Biopharmaceutical Development Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
20
|
Yu C, Trivedi PD, Chaudhuri P, Bhake R, Johnson EJ, Caton T, Potter M, Byrne BJ, Clément N. NaCl and KCl mediate log increase in AAV vector particles and infectious titers in a specific/timely manner with the HSV platform. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:1-13. [PMID: 33768125 PMCID: PMC7960503 DOI: 10.1016/j.omtm.2021.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
The increasing demand for adeno-associated virus (AAV) vectors, a result from the surging interest for their potential to cure human genetic diseases by gene transfer, tumbled on low-performing production systems. Innovative improvements to increase both yield and quality of the vector produced have become a priority undertaking in the field. In a previous study, we showed that adding a specific concentration of sodium chloride (NaCl) to the production medium resulted in a dramatic increase of AAV vector particle and infectious titers when using the herpes simplex virus (HSV) production system, both in adherent or suspension platforms. In this work, we studied additional salts and their impact on AAV vector production. We found that potassium chloride (KCl), or a combination of KCl and NaCl, resulted in the highest increase in AAV vector production. We determined that the salt-mediated effect was the most impactful when the salt was present between 8 and approximately 16 h post-infection, with the highest rate increase occurring within the first 24 h of the production cycle. We showed that the AAV vector yield increase did not result from an increase in cell growth, size, or viability. Furthermore, we demonstrated that the impact on AAV vector production was specifically mediated by NaCl and KCl independently of their impact on the osmolality of the production media. Our findings convincingly showed that NaCl and KCl were uniquely efficacious to promote up to a 10-fold increase in the production of highly infectious AAV vectors when produced in the presence of HSV. We think that this study will provide unique and important new insights in AAV biology toward the establishment of more successful production protocols.
Collapse
Affiliation(s)
- Chenghui Yu
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA.,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Prasad D Trivedi
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Payel Chaudhuri
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Radhika Bhake
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Evan J Johnson
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Tina Caton
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Mark Potter
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, 1200 Newell Drive, Academic Research Building, RG-187, Gainesville, FL 32610, USA
| |
Collapse
|
21
|
Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Fischer MD. Immune responses to retinal gene therapy using adeno-associated viral vectors - Implications for treatment success and safety. Prog Retin Eye Res 2020; 83:100915. [PMID: 33069860 DOI: 10.1016/j.preteyeres.2020.100915] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated virus (AAV) is the leading vector for gene therapy in the retina. As non-pathogenic, non-integrating, replication deficient vector, the recombinant virus efficiently transduces all key retinal cell populations. Successful testing of AAV vectors in clinical trials of inherited retinal diseases led to the recent approval of voretigene neparvovec (Luxturna) for the treatment of RPE65 mutation-associated retinal dystrophies. However, studies applying AAV-mediated retinal gene therapy independently reported intraocular inflammation and/or loss of efficacy after initial functional improvements. Both observations might be explained by targeted removal of transduced cells via anti-viral defence mechanisms. AAV has been shown to activate innate pattern recognition receptors (PRRs) such as toll-like receptor (TLR)-2 and TLR-9 resulting in the release of inflammatory cytokines and type I interferons. The vector can also induce capsid-specific and transgene-specific T cell responses and neutralizing anti-AAV antibodies which both limit the therapeutic effect. However, the target organ of retinal gene therapy, the eye, is known as an immune-privileged site. It is characterized by suppression of inflammation and promotion of immune tolerance which might prevent AAV-induced immune responses. This review evaluates AAV-related immune responses, toxicity and inflammation in studies of retinal gene therapy, identifies influencing variables of these responses and discusses potential strategies to modulate immune reactions to AAV vectors to increase the safety and efficacy of ocular gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Eduardo Rodríguez-Bocanegra
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Daniyar Dauletbekov
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
McNally DJ, Piras BA, Willis CM, Lockey TD, Meagher MM. Development and Optimization of a Hydrophobic Interaction Chromatography-Based Method of AAV Harvest, Capture, and Recovery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:275-284. [PMID: 33102619 PMCID: PMC7569186 DOI: 10.1016/j.omtm.2020.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022]
Abstract
With many ongoing clinical trials utilizing adeno-associated virus (AAV) gene therapy, it is necessary to find scalable and serotype-independent primary capture and recovery methods to allow for efficient and robust manufacturing processes. Here, we demonstrate the ability of a hydrophobic interaction chromatography membrane to capture and recover AAV1, AAV5, AAV8, and AAV “Mutant C” (a novel serotype incorporating elements of AAV3B and AAV8) particles from cell culture media and cell lysate with recoveries of 76%–100% of loaded material, depending on serotype. A simple, novel technique that integrates release and recovery of cell-associated AAV capsids is demonstrated. We show that by the addition of lyotropic salts to AAV-containing cell suspensions, AAV is released at an equivalent efficiency to mechanical lysis. The addition of the lyotropic salt also promotes a phase separation, which allows physical removal of large amounts of DNA and insoluble cellular debris from the AAV-containing aqueous fraction. The AAV is then captured and eluted from a hydrophobic interaction chromatography membrane. This integrated lysis and primary capture and recovery technique facilitates substantial removal of host-cell DNA and host-cell protein impurities.
Collapse
Affiliation(s)
- David J McNally
- Department of Therapeutics Production & Quality, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Bryan A Piras
- Department of Therapeutics Production & Quality, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | - Timothy D Lockey
- Department of Therapeutics Production & Quality, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Michael M Meagher
- Department of Therapeutics Production & Quality, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| |
Collapse
|
23
|
Hakim CH, Clément N, Wasala LP, Yang HT, Yue Y, Zhang K, Kodippili K, Adamson-Small L, Pan X, Schneider JS, Yang NN, Chamberlain JS, Byrne BJ, Duan D. Micro-dystrophin AAV Vectors Made by Transient Transfection and Herpesvirus System Are Equally Potent in Treating mdx Mouse Muscle Disease. Mol Ther Methods Clin Dev 2020; 18:664-678. [PMID: 32775499 PMCID: PMC7403893 DOI: 10.1016/j.omtm.2020.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
Abstract
Vector production scale-up is a major barrier in systemic adeno-associated virus (AAV) gene therapy. Many scalable manufacturing methods have been developed. However, the potency of the vectors generated by these methods has rarely been compared with vectors made by transient transfection (TT), the most commonly used method in preclinical studies. In this study, we blindly compared therapeutic efficacy of an AAV9 micro-dystrophin vector generated by the TT method and scalable herpes simplex virus (HSV) system in a Duchenne muscular dystrophy mouse model. AAV was injected intravenously at 5 × 1014 (high), 5 × 1013 (medium), or 5 × 1012 (low) viral genomes (vg)/kg. Comparable levels of micro-dystrophin expression were observed at each dose in a dose-dependent manner irrespective of the manufacturing method. Vector biodistribution was similar in mice injected with either the TT or the HSV method AAV. Evaluation of muscle degeneration/regeneration showed equivalent protection by vectors made by either method in a dose-dependent manner. Muscle function was similarly improved in a dose-dependent manner irrespective of the vector production method. No apparent toxicity was observed in any mouse. Collectively, our results suggest that the biological potency of the AAV micro-dystrophin vector made by the scalable HSV method is comparable to that made by the TT method.
Collapse
Affiliation(s)
- Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Lakmini P. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Hsiao T. Yang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kasun Kodippili
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Laura Adamson-Small
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - N. Nora Yang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
24
|
Meier AF, Fraefel C, Seyffert M. The Interplay between Adeno-Associated Virus and its Helper Viruses. Viruses 2020; 12:E662. [PMID: 32575422 PMCID: PMC7354565 DOI: 10.3390/v12060662] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The adeno-associated virus (AAV) is a small, nonpathogenic parvovirus, which depends on helper factors to replicate. Those helper factors can be provided by coinfecting helper viruses such as adenoviruses, herpesviruses, or papillomaviruses. We review the basic biology of AAV and its most-studied helper viruses, adenovirus type 5 (AdV5) and herpes simplex virus type 1 (HSV-1). We further outline the direct and indirect interactions of AAV with those and additional helper viruses.
Collapse
Affiliation(s)
| | | | - Michael Seyffert
- Institute of Virology, University of Zurich, CH-8057 Zurich, Switzerland; (A.F.M.); (C.F.)
| |
Collapse
|
25
|
Chen SH, Papaneri A, Walker M, Scappini E, Keys RD, Martin NP. A Simple, Two-Step, Small-Scale Purification of Recombinant Adeno-Associated Viruses. J Virol Methods 2020; 281:113863. [PMID: 32371233 DOI: 10.1016/j.jviromet.2020.113863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/22/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are robust and versatile tools for in vivo gene delivery. Natural and designer capsid variations in rAAVs allow for targeted gene delivery to specific cell types. Low immunogenicity and lack of pathogenesis also add to the popularity of this virus as an innocuous gene delivery vector for gene therapy. rAAVs are routinely used to express recombinases, sensors, detectors, CRISPR-Cas9 components, or to simply overexpress a gene of interest for functional studies. High production demand has given rise to multiple platforms for the production and purification of rAAVs. However, most platforms rely heavily on large amounts of starting material and multiple purification steps to produce highly purified viral particles. Often, researchers require several small-scale purified rAAVs. Here, we describe a simple and efficient technique for purification of recombinant rAAVs from small amounts of starting material in a two-step purification method. In this method, rAAVs are released into the packaging cell medium using high salt concentration, pelleted by ultracentrifugation to remove soluble impurities. Then, the resuspended pellet is purified using a protein spin-concentrator. In this protocol, we modify the conventional rAAV purification methods to eliminate the need for fraction collection and the labor-intensive steps for evaluating the titer and purity of individual fractions. The resulting rAAV preparations are comparable in titer and purity to commercially available samples. This simplified process can be used to generate highly purified rAAV particles on a small scale, thereby saving resources, generating less waste, and reducing a laboratory's environmental footprint.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Neurobiology Laboratory, U.S.A; Viral Vector Core, U.S.A
| | | | - Mitzie Walker
- Neurobiology Laboratory, U.S.A; Viral Vector Core, U.S.A
| | | | - Robert D Keys
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, NIH/DHHS, 111 T.W. Alexander Drive, Research Triangle Park, N.C. 27709, U.S.A
| | - Negin P Martin
- Neurobiology Laboratory, U.S.A; Viral Vector Core, U.S.A.
| |
Collapse
|
26
|
Su P, Ying M, Han Z, Xia J, Jin S, Li Y, Wang H, Xu F. High-brightness anterograde transneuronal HSV1 H129 tracer modified using a Trojan horse-like strategy. Mol Brain 2020; 13:5. [PMID: 31931837 PMCID: PMC6958791 DOI: 10.1186/s13041-020-0544-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/05/2020] [Indexed: 08/24/2023] Open
Abstract
Neurotropic viral transsynaptic tracing is an increasingly powerful technique for dissecting the structure and function of neural circuits. Herpes simplex virus type 1 strain H129 has been widely used as an anterograde tracer. However, HSV tracers still have several shortcomings, including high toxicity, low sensitivity and non-specific retrograde labeling. Here, we aimed to construct high-brightness HSV anterograde tracers by increasing the expression of exogenous genes carried by H129 viruses. Using a Trojan horse-like strategy, a HSV/AAV (adeno-associated virus) chimaera termed H8 was generated to enhance the expression of a fluorescent marker. In vitro and in vivo assays showed that the exogenous gene was efficiently replicated and amplified by the synergism of the HSV vector and introduced AAV replication system. H8 reporting fluorescence was brighter than that of currently available H129 tracers, and H8 could be used for fast and effective anterograde tracing without additional immunostaining. These results indicated that foreign gene expression in HSV tracers could be enhanced by integrating HSV with AAV replication system. This approach may be useful as a general enhanced expression strategy for HSV-based tracing tools or gene delivery vectors.
Collapse
Affiliation(s)
- Peng Su
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Ying
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengpeng Han
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinjin Xia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Sen Jin
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, 215125, China
| | - Yingli Li
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huadong Wang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
27
|
Thorne B, Takeya R, Vitelli F, Swanson X. Gene Therapy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:351-399. [PMID: 28289769 DOI: 10.1007/10_2016_53] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.
Collapse
Affiliation(s)
- Barb Thorne
- Thorne Bio-Consulting LLC, Sammamish, WA, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Adeno-associated virus (AAV) vectors are the leading platform for gene delivery for the treatment of a variety of human diseases. Recent advances in developing clinically desirable AAV capsids, optimizing genome designs and harnessing revolutionary biotechnologies have contributed substantially to the growth of the gene therapy field. Preclinical and clinical successes in AAV-mediated gene replacement, gene silencing and gene editing have helped AAV gain popularity as the ideal therapeutic vector, with two AAV-based therapeutics gaining regulatory approval in Europe or the United States. Continued study of AAV biology and increased understanding of the associated therapeutic challenges and limitations will build the foundation for future clinical success.
Collapse
Affiliation(s)
- Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
29
|
Joshi PR, Cervera L, Ahmed I, Kondratov O, Zolotukhin S, Schrag J, Chahal PS, Kamen AA. Achieving High-Yield Production of Functional AAV5 Gene Delivery Vectors via Fedbatch in an Insect Cell-One Baculovirus System. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:279-289. [PMID: 30886878 PMCID: PMC6404649 DOI: 10.1016/j.omtm.2019.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022]
Abstract
Despite numerous advancements in production protocols, manufacturing AAV to meet exceptionally high demand (1016–1017 viral genomes [VGs]) in late clinical stages and for eventual systemic delivery poses significant challenges. Here, we report an efficient, simple, scalable, robust AAV5 production process utilizing the most recent modification of the OneBac platform. An increase in volumetric yield of genomic particles by ∼6-fold and functional particles by ∼20-fold was achieved by operating a high-cell-density process in shake flasks and bioreactors that involves an Sf9-based rep/cap stable cell line grown at a density of about 10 million cells/mL infected with a single baculovirus. The overall volumetric yields of genomic (VG) and bioactive particles (enhanced transducing units [ETUs]) in representative fedbatch bioreactor runs ranged from 2.5 to 3.5 × 1014 VG/L and from 1 to 2 × 1011 ETU/L. Analytical ultracentrifugation analyses of affinity-purified AAV vector samples from side-by-side batch and fedbatch production runs showed vector preparations with a full and empty particle distribution of 20%–30% genomic and 70%–80% empty particles. Moreover, the stoichiometric analysis of capsid proteins from fedbatch production in shake flask and bioreactor run samples demonstrated the incorporation of higher VP1 subunits, resulting in better functionality.
Collapse
Affiliation(s)
- Pranav R.H. Joshi
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Laura Cervera
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Ibrahim Ahmed
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Oleksandr Kondratov
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Joseph Schrag
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Parminder S. Chahal
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Amine A. Kamen
- Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
- Corresponding author: Amine Kamen, Viral Vectors and Vaccine Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| |
Collapse
|
30
|
Wang Z, Cheng F, Engelhardt JF, Yan Z, Qiu J. Development of a Novel Recombinant Adeno-Associated Virus Production System Using Human Bocavirus 1 Helper Genes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:40-51. [PMID: 30397626 PMCID: PMC6205362 DOI: 10.1016/j.omtm.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/27/2018] [Indexed: 01/13/2023]
Abstract
Human bocavirus 1 (HBoV1), an autonomous parvovirus, is a helper virus supporting replication of wild-type adeno-associated virus 2 (AAV2). In this study, we compared the helper functions from HBoV1 with those from adenovirus (Ad) for the production of recombinant AAV (rAAV) vector in HEK293 cells. We demonstrated that triple plasmids transfection of (1) a cloned HBoV1 helper minigenome (pBocaHelper) that expresses HBoV1 genes NP1, NS2, and BocaSR, (2) pAAV transfer plasmid, and (3) pAAVRepCap supports rAAV production in HEK293 cells. Despite a production yield of 1–2 log lower than that using pAdHelper (expressing Ad genes E2A, E4, and VA), rAAV vector produced using pBocaHelper transduced cells as efficiently as that produced using pAdHelper. The low vector production is largely due to the inefficient expression of the AAV Rep52 and capsid proteins, as well as reduced rAAV genome replication. When the AAV capsid proteins and Rep52 were ectopically expressed under strong promoters, the enhanced protein expression significantly improved the rAAV production using pBocaHelper, approaching a level of 50%–70% of that produced using pAdHelper. Through further dissection of the helper functions from pAdHelper in a five-plasmid transfection system, we found that the addition of the Ad E2A gene to the above HBoV1 helper system significantly increased rAAV DNA replication, which increased the rAAV vector production to a level of 3–7 times higher than that using pAdHelper. We finally combined HBoV1 NP1 and NS2 genes with Ad helper genes to create a novel dual helper plasmid (pABHelper) for rAAV vector production in the conventional three-plasmid transfection system. The pABHelper facilitated rAAV production at a yield ∼2 times higher than that using the pAdHelper.
Collapse
Affiliation(s)
- Zekun Wang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.,Center for Gene Therapy, University of Iowa, Iowa City, IA 52242, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.,Center for Gene Therapy, University of Iowa, Iowa City, IA 52242, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
31
|
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 2018; 17:641-659. [DOI: 10.1038/nrd.2018.110] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol Ther 2018; 26:2337-2356. [PMID: 30093306 PMCID: PMC6171037 DOI: 10.1016/j.ymthe.2018.07.011] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by dystrophin gene mutation. Conceptually, replacing the mutated gene with a normal one would cure the disease. However, this task has encountered significant challenges due to the enormous size of the gene and the distribution of muscle throughout the body. The former creates a hurdle for viral vector packaging and the latter begs for whole-body therapy. To address these obstacles, investigators have invented the highly abbreviated micro-dystrophin gene and developed body-wide systemic gene transfer with adeno-associated virus (AAV). Numerous microgene configurations and various AAV serotypes have been explored in animal models in many laboratories. Preclinical data suggests that intravascular AAV micro-dystrophin delivery can significantly ameliorate muscle pathology, enhance muscle force, and attenuate dystrophic cardiomyopathy in animals. Against this backdrop, several clinical trials have been initiated to test the safety and tolerability of this promising therapy in DMD patients. While these trials are not powered to reach a conclusion on clinical efficacy, findings will inform the field on the prospects of body-wide DMD therapy with a synthetic micro-dystrophin AAV vector. This review discusses the history, current status, and future directions of systemic AAV micro-dystrophin therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
33
|
Wu Y, Jiang L, Geng H, Yang T, Han Z, He X, Lin K, Xu F. A Recombinant Baculovirus Efficiently Generates Recombinant Adeno-Associated Virus Vectors in Cultured Insect Cells and Larvae. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:38-47. [PMID: 29988889 PMCID: PMC6034586 DOI: 10.1016/j.omtm.2018.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Current large-scale recombinant adeno-associated virus (rAAV) production systems based on the baculovirus expression vector (BEV) remain complicated and cost-intensive, and they lack versatility and flexibility. Here we present a novel recombinant baculovirus integrated with all packaging elements for the production of rAAV. To optimize BEV construction, ribosome leaky-scanning mechanism was used to express AAV Rep and Cap proteins downstream of the PH and P10 promoters in the pFast.Bac.Dual vector, respectively, and the rAAV genome was inserted between the two promoters. The yields of rAAV2, rAAV8, and rAAV9 derived from the BEV-infected Sf9 cells exceeded 105 vector genomes (VG) per cell. The BEV was shown to be stable and showed no apparent decrease of rAAV yield after at least four serial passages. The rAAVs derived from the new Bac system displayed high-quality and high-transduction activity. Additionally, rAAV2 could be efficiently generated from BEV-infected beet armyworm larvae at a per-larvae yield of 2.75 ± 1.66 × 1010 VG. The rAAV2 derived from larvae showed a structure similar to the rAAV2 derived from HEK293 cells, and it also displayed high-transduction activity. In summary, the novel BEV is ideally suitable for large-scale rAAV production. Further, this study exploits a potential cost-efficient platform for rAAV production in insect larvae.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Liangyu Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hao Geng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tian Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaobing He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Kunzhang Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
34
|
Naso MF, Tomkowicz B, Perry WL, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2018; 31:317-334. [PMID: 28669112 PMCID: PMC5548848 DOI: 10.1007/s40259-017-0234-5] [Citation(s) in RCA: 785] [Impact Index Per Article: 112.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been a resurgence in gene therapy efforts that is partly fueled by the identification and understanding of new gene delivery vectors. Adeno-associated virus (AAV) is a non-enveloped virus that can be engineered to deliver DNA to target cells, and has attracted a significant amount of attention in the field, especially in clinical-stage experimental therapeutic strategies. The ability to generate recombinant AAV particles lacking any viral genes and containing DNA sequences of interest for various therapeutic applications has thus far proven to be one of the safest strategies for gene therapies. This review will provide an overview of some important factors to consider in the use of AAV as a vector for gene therapy.
Collapse
Affiliation(s)
- Michael F Naso
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA.
| | - Brian Tomkowicz
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA
| | - William L Perry
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA
| | | |
Collapse
|
35
|
Aponte-Ubillus JJ, Barajas D, Peltier J, Bardliving C, Shamlou P, Gold D. Molecular design for recombinant adeno-associated virus (rAAV) vector production. Appl Microbiol Biotechnol 2017; 102:1045-1054. [PMID: 29204900 PMCID: PMC5778157 DOI: 10.1007/s00253-017-8670-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are increasingly popular tools for gene therapy applications. Their non-pathogenic status, low inflammatory potential, availability of viral serotypes with different tissue tropisms, and prospective long-lasting gene expression are important attributes that make rAAVs safe and efficient therapeutic options. Over the last three decades, several groups have engineered recombinant AAV-producing platforms, yielding high titers of transducing vector particles. Current specific productivity yields from different platforms range from 103 to 105 vector genomes (vg) per cell, and there is an ongoing effort to improve vector yields in order to satisfy high product demands required for clinical trials and future commercialization. Crucial aspects of vector production include the molecular design of the rAAV-producing host cell line along with the design of AAV genes, promoters, and regulatory elements. Appropriately, configuring and balancing the expression of these elements not only contributes toward high productivity, it also improves process robustness and product quality. In this mini-review, the rational design of rAAV-producing expression systems is discussed, with special attention to molecular strategies that contribute to high-yielding, biomanufacturing-amenable rAAV production processes. Details on molecular optimization from four rAAV expression systems are covered: adenovirus, herpesvirus, and baculovirus complementation systems, as well as a recently explored yeast expression system.
Collapse
Affiliation(s)
- Juan Jose Aponte-Ubillus
- Biomarin Pharmaceutical Inc., 105 Digital drive, Novato, CA, 94949, USA.
- Keck Graduate Institute of Applied Life Sciences, 535 Watson drive, Claremont, CA, 91711, USA.
| | - Daniel Barajas
- Biomarin Pharmaceutical Inc., 105 Digital drive, Novato, CA, 94949, USA
| | - Joseph Peltier
- Biomarin Pharmaceutical Inc., 105 Digital drive, Novato, CA, 94949, USA
| | - Cameron Bardliving
- Keck Graduate Institute of Applied Life Sciences, 535 Watson drive, Claremont, CA, 91711, USA
| | - Parviz Shamlou
- Keck Graduate Institute of Applied Life Sciences, 535 Watson drive, Claremont, CA, 91711, USA
| | - Daniel Gold
- Biomarin Pharmaceutical Inc., 105 Digital drive, Novato, CA, 94949, USA
| |
Collapse
|
36
|
Guggino WB, Benson J, Seagrave J, Yan Z, Engelhardt J, Gao G, Conlon TJ, Cebotaru L. A Preclinical Study in Rhesus Macaques for Cystic Fibrosis to Assess Gene Transfer and Transduction by AAV1 and AAV5 with a Dual-Luciferase Reporter System. HUM GENE THER CL DEV 2017; 28:145-156. [PMID: 28726496 DOI: 10.1089/humc.2017.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease that is potentially treatable by gene therapy. Since the identification of the gene encoding CF transmembrane conductance regulator, a number of preclinical and clinical trials have been conducted using the first generation of adeno-associated virus, AAV2. All these studies showed that AAV gene therapy for CF is safe, but clinical benefit was not clearly demonstrated. Thus, a new generation of AAV vectors based on other serotypes is needed to move the field forward. This study tested two AAV serotypes (AAV1 and AAV5) using a dual-luciferase reporter system with firefly and Renilla luciferase genes packaged into AAV1 or AAV5, respectively. Two male and two female Rhesus macaques were each instilled in their lungs with both serotypes using a Penn-Century microsprayer. Both AAV1 and AAV5 vector genomes were detected in all the lung samples when measured at the time of necropsy, 45 days after instillation. However, the vector genome number for AAV1 was at least 10-fold higher than for AAV5. Likewise, luciferase activity was also detected in the same samples at 45 days. AAV1-derived activity was not statistically greater than that derived from AAV5. These data suggest that gene transfer is greater for AAV1 than for AAV5 in macaque lungs. Serum neutralizing antibodies were increased dramatically against both serotypes but were less abundant with AAV1 than with AAV5. No adverse events were noted, again indicating that AAV gene therapy is safe. These results suggest that with more lung-tropic serotypes such as AAV1, new clinical studies of gene therapy using AAV are warranted.
Collapse
Affiliation(s)
- William B Guggino
- 1 Department of Physiology, Johns Hopkins University , Baltimore, Maryland
| | - Janet Benson
- 2 Lovelace Respiratory Research Institute , Albuquerque, New Mexico
| | | | - Ziying Yan
- 3 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - John Engelhardt
- 3 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Guangping Gao
- 4 Department of Microbiology & Physiological Systems, University of Massachusetts , Worcester, Massachusetts
| | - Thomas J Conlon
- 5 Department of Pediatrics, University of Florida , Gainesville, Florida
| | - Liudmila Cebotaru
- 6 Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| |
Collapse
|
37
|
Guggino WB, Cebotaru L. Adeno-Associated Virus (AAV) gene therapy for cystic fibrosis: current barriers and recent developments. Expert Opin Biol Ther 2017; 17:1265-1273. [PMID: 28657358 DOI: 10.1080/14712598.2017.1347630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Since the cystic fibrosis (CF) gene was discovered in 1989, researchers have worked to develop a gene therapy. One of the most promising and enduring vectors is the AAV, which has been shown to be safe. In particular, several clinical trials have been conducted with AAV serotype 2. All of them detected viral genomes, but identification of mRNA transduction was not consistent; clinical outcomes in Phase II studies were also inconsistent. The lack of a positive outcome has been attributed to a less-than-efficient viral infection by AAV2, a weak transgene promoter and the host immune response to the vector. Areas covered: Herein, the authors focus on AAV gene therapy for CF, evaluating past experience with this approach and identifying ways forward, based on the progress that has already been made in identifying and overcoming the limitations of AAV gene therapy. Expert opinion: Such progress makes it clear that this is an opportune time to push forward toward the development of a gene therapy for CF. Drugs to treat the basic defect in CF represent a remarkable advance but cannot treat a significant cohort of patients with rare mutations. Thus, there is a critical need to develop a gene therapy for those individuals.
Collapse
Affiliation(s)
- William B Guggino
- a Departments of Medicine and Physiology , Johns Hopkins University , Baltimore , MD , USA
| | - Liudmila Cebotaru
- a Departments of Medicine and Physiology , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
38
|
Zamboni CG, Kozielski KL, Vaughan HJ, Nakata MM, Kim J, Higgins LJ, Pomper MG, Green JJ. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release 2017; 263:18-28. [PMID: 28351668 DOI: 10.1016/j.jconrel.2017.03.384] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third most deadly cancer in the US, with a meager 5-year survival rate of <20%. Such unfavorable numbers are closely related to the heterogeneity of the disease and the unsatisfactory therapies currently used to manage patients with invasive HCC. Outside of the clinic, gene therapy research is evolving to overcome the poor responses and toxicity associated with standard treatments. The inadequacy of gene delivery vectors, including poor intracellular delivery and cell specificity, are major barriers in the gene therapy field. Herein, we described a non-viral strategy for effective and cancer-specific DNA delivery to human HCC using biodegradable poly(beta-amino ester) (PBAE) nanoparticles (NPs). Varied PBAE NP formulations were evaluated for transfection efficacy and cytotoxicity to a range of human HCC cells as well as healthy human hepatocytes. To address HCC heterogeneity, nine different sources of human HCC cells were utilized. The polymeric NPs composed of 2-((3-aminopropyl)amino) ethanol end-modified poly(1,5-pentanediol diacrylate-co-3-amino-1-propanol) ('536') at a 25 polymer-to-DNA weight-to-weight ratio led to high transfection efficacy to all of the liver cancer lines, but not to hepatocytes. Each individual HCC line had a significantly higher percentage of exogenous gene expression than the healthy liver cells (P<0.01). Notably, this biodegradable end-modified PBAE gene delivery vector was not cytotoxic and maintained the viability of hepatocytes above 80%. In a HCC/hepatocyte co-culture model, in which cancerous and healthy cells share the same micro-environment, 536 25 w/w NPs specifically transfected cancer cells. PBAE NP administration to a subcutaneous HCC mouse model, established with one of the human lines tested in vitro, confirmed effective DNA transfection in vivo. PBAE-based NPs enabled high and preferential DNA delivery to HCC cells, sparing healthy hepatocytes. These biodegradable and liver cancer-selective NPs are a promising technology to deliver therapeutic genes to liver cancer.
Collapse
Affiliation(s)
- Camila G Zamboni
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen L Kozielski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah J Vaughan
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Maisa M Nakata
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jayoung Kim
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Luke J Higgins
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Martin G Pomper
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Departments of Neurosurgery, Oncology and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Robert MA, Chahal PS, Audy A, Kamen A, Gilbert R, Gaillet B. Manufacturing of recombinant adeno-associated viruses using mammalian expression platforms. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600193] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Marc-André Robert
- Département de génie chimique; Université Laval; Québec QC Canada
- National Research Council Canada; Montréal QC Canada
| | | | - Alexandre Audy
- Département de génie chimique; Université Laval; Québec QC Canada
- National Research Council Canada; Montréal QC Canada
| | - Amine Kamen
- Department of Bioengineering; McGill University; Montréal QC Canada
| | | | - Bruno Gaillet
- Département de génie chimique; Université Laval; Québec QC Canada
| |
Collapse
|
40
|
Kattenhorn LM, Tipper CH, Stoica L, Geraghty DS, Wright TL, Clark KR, Wadsworth SC. Adeno-Associated Virus Gene Therapy for Liver Disease. Hum Gene Ther 2016; 27:947-961. [PMID: 27897038 PMCID: PMC5177998 DOI: 10.1089/hum.2016.160] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments.
Collapse
|
41
|
Adamson-Small L, Potter M, Falk DJ, Cleaver B, Byrne BJ, Clément N. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform. Mol Ther Methods Clin Dev 2016; 3:16031. [PMID: 27222839 PMCID: PMC4863725 DOI: 10.1038/mtm.2016.31] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023]
Abstract
Recombinant adeno-associated vectors based on serotype 9 (rAAV9) have demonstrated highly effective gene transfer in multiple animal models of muscular dystrophies and other neurological indications. Current limitations in vector production and purification have hampered widespread implementation of clinical candidate vectors, particularly when systemic administration is considered. In this study, we describe a complete herpes simplex virus (HSV)-based production and purification process capable of generating greater than 1 × 10(14) rAAV9 vector genomes per 10-layer CellSTACK of HEK 293 producer cells, or greater than 1 × 10(5) vector genome per cell, in a final, fully purified product. This represents a 5- to 10-fold increase over transfection-based methods. In addition, rAAV vectors produced by this method demonstrated improved biological characteristics when compared to transfection-based production, including increased infectivity as shown by higher transducing unit-to-vector genome ratios and decreased total capsid protein amounts, shown by lower empty-to-full ratios. Together, this data establishes a significant improvement in both rAAV9 yields and vector quality. Further, the method can be readily adapted to large-scale good laboratory practice (GLP) and good manufacturing practice (GMP) production of rAAV9 vectors to enable preclinical and clinical studies and provide a platform to build on toward late-phases and commercial production.
Collapse
Affiliation(s)
- Laura Adamson-Small
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Mark Potter
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Darin J Falk
- Department of Pediatrics, Child Health Research Institute, University of Florida, Florida, USA
| | - Brian Cleaver
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
42
|
|
43
|
Piras BA, Drury JE, Morton CL, Spence Y, Lockey TD, Nathwani AC, Davidoff AM, Meagher MM. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector. Mol Ther Methods Clin Dev 2016; 3:16015. [PMID: 27069949 PMCID: PMC4813606 DOI: 10.1038/mtm.2016.15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV) to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII) in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development.
Collapse
Affiliation(s)
- Bryan A Piras
- Department of Therapeutics Production & Quality, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jason E Drury
- Department of Therapeutics Production & Quality, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Christopher L Morton
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yunyu Spence
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Timothy D Lockey
- Department of Therapeutics Production & Quality, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amit C Nathwani
- UCL Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, UK
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Michael M Meagher
- Department of Therapeutics Production & Quality, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
44
|
A Regulatory Element Near the 3' End of the Adeno-Associated Virus rep Gene Inhibits Adenovirus Replication in cis by Means of p40 Promoter-Associated Short Transcripts. J Virol 2016; 90:3981-93. [PMID: 26842470 DOI: 10.1128/jvi.03120-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Adeno-associated virus (AAV) has long been known to inhibit helper adenovirus (Ad) replication independently of AAV Rep protein expression. More recently, replication of Ad serotype 5 (Ad5)/AAV serotype 2 (AAV-2) hybrid vectors was shown to be inhibited incisby a sequence near the 3' end of AAVrep, termed the Rep inhibition sequence for adenoviral replication (RIS-Ad). RIS-Ad functions independently of Rep protein expression. Here we demonstrate that inhibition of adenoviral replication by RIS-Ad requires an active AAV p40 promoter and the 5' half of the intron. In addition, Ad inhibition is critically dependent on the integrity of the p40 transcription start site (TSS) leading to short p40-associated transcripts. These do not give rise to effector molecules capable of inhibiting adenoviral replication intrans, like small polypeptides or microRNAs. Our data point to an inhibitory mechanism in which RNA polymerase II (Pol II) pauses directly downstream of the p40 promoter, leading to interference of the stalled Pol II transcription complex with the adenoviral replication machinery. Whereas inhibition by RIS-Ad is mediated exclusively incis, it can be overcome by providing a replication-competent adenoviral genome intrans Moreover, the inhibitory effect of RIS-Ad is not limited to AAV-2 but could also be shown for the corresponding regions of other AAV serotypes, including AAV-5. These findings have important implications for the future generation of Ad5/AAV hybrid vectors. IMPORTANCE Insertion of sequences from the 3' part of therepgene of adeno-associated virus (AAV) into the genome of its helper adenovirus strongly reduces adenoviral genome replication. We could show that this inhibition is mediated exclusively inciswithout the involvement oftrans-acting regulatory RNAs or polypeptides but nevertheless requires an active AAV-2 p40 promoter and p40-associated short transcripts. Our results suggest a novel inhibitory mechanism that has so far not been described for AAV and that involves stalled RNA polymerase II complexes and their interference with adenoviral DNA replication. Such a mechanism would have important implications both for the generation of adenoviral vectors expressing the AAVrepandcapgenes and for the regulation of AAV gene expression in the absence and presence of helper virus.
Collapse
|
45
|
Manufacturing of recombinant adeno-associated viral vectors for clinical trials. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16002. [PMID: 27014711 PMCID: PMC4804725 DOI: 10.1038/mtm.2016.2] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023]
Abstract
The ability to elicit robust and long-term transgene expression in vivo together with minimal immunogenicity and little to no toxicity are only a few features that make recombinant adeno-associated virus (rAAV) vectors ideally suited for many gene therapy applications. Successful preclinical studies have encouraged the use of rAAV for therapeutic gene transfer to patients in the clinical setting. Nevertheless, the use of rAAV in clinical trials has underscored the need for production and purification systems capable of generating large amounts of highly pure rAAV particles. To date, generating vector quantities sufficient to meet the expanding clinical demand is still a hurdle when using current production systems. In this chapter, we will provide a description of the current methods to produce clinical grade of rAAV under current good manufacturing practice (cGMP) settings.
Collapse
|
46
|
Lipinski DM, Reid CA, Boye SL, Peterson JJ, Qi X, Boye SE, Boulton ME, Hauswirth WW. Systemic Vascular Transduction by Capsid Mutant Adeno-Associated Virus After Intravenous Injection. Hum Gene Ther 2015; 26:767-76. [PMID: 26359319 DOI: 10.1089/hum.2015.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ability to effectively deliver genetic material to vascular endothelial cells remains one of the greatest unmet challenges facing the development of gene therapies to prevent diseases with underlying vascular etiology, such as diabetes, atherosclerosis, and age-related macular degeneration. Herein, we assess the effectiveness of an rAAV2-based capsid mutant vector (Y272F, Y444F, Y500F, Y730F, T491V; termed QuadYF+TV) with strong endothelial cell tropism at transducing the vasculature after systemic administration. Intravenous injection of QuadYF+TV resulted in widespread transduction throughout the vasculature of several major organ systems, as assessed by in vivo bioluminescence imaging and postmortem histology. Robust transduction of lung tissue was observed in QuadYF+TV-injected mice, indicating a role for intravenous gene delivery in the treatment of chronic diseases presenting with pulmonary complications, such as α1-antitrypsin deficiency. The QuadYF+TV vector cross-reacted strongly with AAV2 neutralizing antibodies, however, indicating that a targeted delivery strategy may be required to maximize clinical translatability.
Collapse
Affiliation(s)
- Daniel M Lipinski
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida .,2 Nuffield Laboratory of Ophthalmology, Department of Clinical Neuroscience, University of Oxford , Oxford, United Kingdom
| | - Chris A Reid
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Sanford L Boye
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - James J Peterson
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Xiaoping Qi
- 3 Department of Ophthalmology, Indiana University School of Medicine, Indiana University , Indianapolis, Indiana
| | - Shannon E Boye
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| | - Michael E Boulton
- 3 Department of Ophthalmology, Indiana University School of Medicine, Indiana University , Indianapolis, Indiana
| | - William W Hauswirth
- 1 Department of Ophthalmology, College of Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
47
|
Abstract
INTRODUCTION An estimated 25 million Americans are living with rare diseases. Adeno-associated virus (AAV)-mediated gene therapy is an emerging therapeutic option for the more than 7,000 identified rare diseases. This paper highlights the benefits of AAV therapy compared to conventional small molecules, discusses current pre-clinical and clinical applications of AAV-mediated gene therapy, and offers insights into cutting edge research that will shape the future of AAV for broad therapeutic use. AREAS COVERED In this review the biology of AAV and our ability to generate disease-specific variants is summarized. Limitations of current therapy are reviewed, with an emphasis on immune detection of virus, viral tropism and tissue targeting, and limitations of gene expression. Information for this review was found using PubMed and clinicaltrials.gov. EXPERT OPINION Currently the scope of clinical trials of AAV gene therapy is concentrated in an array of phase I/II safety trials with less than two dozen rare diseases featured. Pre-clinical, translational studies are expanding in number as developments within the last decade have made generation of improved AAV vectors available to more researchers. Further, one bottleneck that is being overcome is the availability of disease models, which will allow for improved preclinical testing and advancement of AAV to more clinical applications.
Collapse
Affiliation(s)
- Eric Hastie
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States
| |
Collapse
|
48
|
Abstract
The use of antibodies as a treatment for disease has it origins in experiments performed in the 1890s, and since these initial experiments, monoclonal antibodies (mAbs) have become one of the fastest growing therapeutic classes for the treatment of cancer, autoimmune disease, and infectious diseases. However, treatment with therapeutic mAbs often requires high doses given via long infusions or multiple injections, which, coupled with the prohibitively high cost associated with the production of clinical-grade proteins and the transient serum half-lives that necessitate multiple administrations to gain therapeutic benefits, makes large-scale treatment of patients, especially patients in the developing world, difficult. Due to their low-cost and rapid scalability, nucleic acid-based approaches to deliver antibody gene sequences for in situ mAb production have gained substantial traction. In this review, we discuss new approaches to produce therapeutic mAbs in situ to overcome the need for the passive infusion of purified protein.
Collapse
Affiliation(s)
- Todd J Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | |
Collapse
|
49
|
Grosios K, Petry H, Lubelski J. Adeno-Associated Virus Gene Therapy and Its Application to the Prevention and Personalised Treatment of Rare Diseases. Rare Dis 2015. [DOI: 10.1007/978-94-017-9214-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
50
|
Enhanced cellular secretion of AAV2 by expression of foreign viral envelope proteins. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|