1
|
Xue R, Wu H, Li S, Pu N, Wei D, Zhao N, Cui Y, Li H, Song Z, Tao Y. Biodegradable microspheres come into sight: A promising biomaterial for delivering drug to the posterior segment of the eyeball. Mater Today Bio 2024; 27:101126. [PMID: 38994470 PMCID: PMC11237977 DOI: 10.1016/j.mtbio.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Posterior segment disease acts as a major cause of irreversible visual impairments. Successful treatment of posterior segment disease requires the efficient delivery of therapeutic substances to the targeted lesion. However, the complex ocular architecture makes the bioavailability of topically applied drugs extremely low. Invasive delivery approaches like intravitreal injection may cause adverse complications. To enhance the efficiency, several biomedical engineering systems have been developed to increase the penetration efficiency and improve the bioavailability of drugs at the posterior segments. Advantageously, biodegradable microspheres are found to deliver the therapeutic agents in a controlled fashion. The microspheres prepared from novel biomaterials can realize the prolonged release at the posterior segment with minimum side effects. Moreover, it will be degraded automatically into products that are non-toxic to the human body without the necessity of secondary operation to remove the residual polymer matrix. Additionally, biodegradable microspheres have decent thermoplasticity, adjustable hydrophilicity, controlled crystallinity, and high tensile strength, which make them suitable for intraocular delivery. In this review, we introduce the latest advancements in microsphere production technology and elaborate on the biomaterials that are used to prepare microspheres. We discuss systematically the pharmacological characteristics of biodegradable microspheres and compare their potential advantages and limitations in the treatment of posterior segment diseases. These findings would enrich our knowledge of biodegradable microspheres and cast light into the discovery of effective biomaterials for ocular drug delivery.
Collapse
Affiliation(s)
- Rongyue Xue
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Siyu Li
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Ning Pu
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Na Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Yongheng Cui
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Haoyan Li
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou university, Zhengzhou, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| |
Collapse
|
2
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
3
|
Sánchez-Cruz A, Hernández-Fuentes MD, Murillo-Gómez C, de la Rosa EJ, Hernández-Sánchez C. Possible Role of Insulin-Degrading Enzyme in the Physiopathology of Retinitis Pigmentosa. Cells 2022; 11:cells11101621. [PMID: 35626658 PMCID: PMC9139804 DOI: 10.3390/cells11101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Insulin-degrading enzyme (IDE) was named after its role as a proteolytic enzyme of insulin. However, recent findings suggest that IDE is a widely expressed, multitask protein, with both proteolytic and non-proteolytic functions. Here, we characterize the expression of IDE in the mammalian retina in both physiological and pathological conditions. We found that IDE was enriched in cone inner segments. IDE levels were downregulated in the dystrophic retina of several mouse models of retinitis pigmentosa carrying distinct mutations. In rd10 mice, a commonly studied mouse model of retinitis pigmentosa, treatment with an IDE activator (a synthetic peptide analog of preimplantation factor) delayed loss of visual function and preserved photoreceptor cells. Together, these results point to potential novel roles for IDE in retinal physiology and disease, further extending the list of diverse functions attributed to this enzyme.
Collapse
Affiliation(s)
- Alonso Sánchez-Cruz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (M.D.H.-F.); (C.M.-G.); (E.J.d.l.R.)
| | - María D. Hernández-Fuentes
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (M.D.H.-F.); (C.M.-G.); (E.J.d.l.R.)
| | - Cayetana Murillo-Gómez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (M.D.H.-F.); (C.M.-G.); (E.J.d.l.R.)
| | - Enrique J. de la Rosa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (M.D.H.-F.); (C.M.-G.); (E.J.d.l.R.)
| | - Catalina Hernández-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (M.D.H.-F.); (C.M.-G.); (E.J.d.l.R.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM-ISCIII), 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
Insulin receptor activation by proinsulin preserves synapses and vision in retinitis pigmentosa. Cell Death Dis 2022; 13:383. [PMID: 35444190 PMCID: PMC9021205 DOI: 10.1038/s41419-022-04839-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
Abstract
Synaptic loss, neuronal death, and circuit remodeling are common features of central nervous system neurodegenerative disorders. Retinitis pigmentosa (RP), the leading cause of inherited blindness, is a group of retinal dystrophies characterized by photoreceptor dysfunction and death. The insulin receptor, a key controller of metabolism, also regulates neuronal survival and synaptic formation, maintenance, and activity. Indeed, deficient insulin receptor signaling has been implicated in several brain neurodegenerative pathologies. We present evidence linking impaired insulin receptor signaling with RP. We describe a selective decrease in the levels of the insulin receptor and its downstream effector phospho-S6 in retinal horizontal cell terminals in the rd10 mouse model of RP, as well as aberrant synapses between rod photoreceptors and the postsynaptic terminals of horizontal and bipolar cells. A gene therapy strategy to induce sustained proinsulin, the insulin precursor, production restored retinal insulin receptor signaling, by increasing S6 phosphorylation, without peripheral metabolic consequences. Moreover, proinsulin preserved photoreceptor synaptic connectivity and prolonged visual function in electroretinogram and optomotor tests. These findings point to a disease-modifying role of insulin receptor and support the therapeutic potential of proinsulin in retinitis pigmentosa.
Collapse
|
5
|
Van Gelder RN. Gene Therapy Approaches to Slow or Reverse Blindness From Inherited Retinal Degeneration: Growth Factors and Optogenetics. Int Ophthalmol Clin 2021; 61:209-228. [PMID: 34584058 PMCID: PMC8486303 DOI: 10.1097/iio.0000000000000386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To date, clinical gene therapy efforts for inherited retinal degeneration (IRD) have focused largely on gene replacement. The large number of genes and alleles causing IRD, however, makes this approach practical only for the most common causes. Additionally, gene replacement therapy cannot reverse existing retinal degeneration. Viral-mediated gene therapy can be used for two other approaches to slow or reverse IRD. First, by driving intraocular expression of growth factors or neuroprotective proteins, retinal degeneration can be slowed. Second, by expressing light-sensitive proteins (either microbial channelopsins or mammalian G-protein coupled opsins) in preserved inner retinal neurons, light sensitivity can be restored to the blind retina. Both approaches have advanced substantially in the past decade, and both are nearing clinical tests. This review surveys recent progress in these approaches.
Collapse
|
6
|
Sánchez-Cruz A, Méndez AC, Lizasoain I, de la Villa P, de la Rosa EJ, Hernández-Sánchez C. Tlr2 Gene Deletion Delays Retinal Degeneration in Two Genetically Distinct Mouse Models of Retinitis Pigmentosa. Int J Mol Sci 2021; 22:7815. [PMID: 34360582 PMCID: PMC8435220 DOI: 10.3390/ijms22157815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Although considered a rare retinal dystrophy, retinitis pigmentosa (RP) is the primary cause of hereditary blindness. Given its diverse genetic etiology (>3000 mutations in >60 genes), there is an urgent need for novel treatments that target common features of the disease. TLR2 is a key activator of innate immune response. To examine its role in RP progression we characterized the expression profile of Tlr2 and its adaptor molecules and the consequences of Tlr2 deletion in two genetically distinct models of RP: Pde6brd10/rd10 (rd10) and RhoP23H/+ (P23H/+) mice. In both models, expression levels of Tlr2 and its adaptor molecules increased in parallel with those of the proinflammatory cytokine Il1b. In rd10 mice, deletion of a single Tlr2 allele had no effect on visual function, as evaluated by electroretinography. However, in both RP models, complete elimination of Tlr2 attenuated the loss of visual function and mitigated the loss of photoreceptor cell numbers. In Tlr2 null rd10 mice, we observed decreases in the total number of microglial cells, assessed by flow cytometry, and in the number of microglia infiltrating the photoreceptor layers. Together, these results point to TLR2 as a mutation-independent therapeutic target for RP.
Collapse
Affiliation(s)
- Alonso Sánchez-Cruz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas-Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (E.J.d.l.R.)
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Andrea C. Méndez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain;
| | - Ignacio Lizasoain
- Neurovascular Research Unit, Department of Pharmacology and Toxicology, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Instituto de Investigación Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Pedro de la Villa
- Department of System Biology, Facultad de Medicina, Universidad de Alcalá, 28805 Alcalá de Henares, Spain;
- Instituto Ramón y Cajal de Investigación Sanitaria (ISCIII), 28034 Madrid, Spain
| | - Enrique J. de la Rosa
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas-Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (E.J.d.l.R.)
| | - Catalina Hernández-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas-Margarita Salas (CSIC), 28040 Madrid, Spain; (A.S.-C.); (E.J.d.l.R.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM-ISCIII), 28034 Madrid, Spain
| |
Collapse
|
7
|
Delivery Systems of Retinoprotective Proteins in the Retina. Int J Mol Sci 2021; 22:ijms22105344. [PMID: 34069505 PMCID: PMC8160820 DOI: 10.3390/ijms22105344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Retinoprotective proteins play important roles for retinal tissue integrity. They can directly affect the function and the survival of photoreceptors, and/or indirectly target the retinal pigment epithelium (RPE) and endothelial cells that support these tissues. Retinoprotective proteins are used in basic, translational and in clinical studies to prevent and treat human retinal degenerative disorders. In this review, we provide an overview of proteins that protect the retina and focus on pigment epithelium-derived factor (PEDF), and its effects on photoreceptors, RPE cells, and endothelial cells. We also discuss delivery systems such as pharmacologic and genetic administration of proteins to achieve photoreceptor survival and retinal tissue integrity.
Collapse
|
8
|
Hu ML, Edwards TL, O'Hare F, Hickey DG, Wang JH, Liu Z, Ayton LN. Gene therapy for inherited retinal diseases: progress and possibilities. Clin Exp Optom 2021; 104:444-454. [PMID: 33689657 DOI: 10.1080/08164622.2021.1880863] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal diseases (IRDs) comprise a heterogeneous group of genetic disorders affecting the retina. Caused by mutations in over 300 genes, IRDs result in visual impairment due to dysfunction and degeneration of photoreceptors, retinal pigment epithelium, or the choroid. Important photoreceptor IRDs include retinitis pigmentosa and Leber congenital amaurosis. Macular dystrophies include Stargardt and Best disease. Currently, IRDs are largely incurable but the landscape of treatment options is rapidly changing for these diseases which, untreated, result in severe visual impairment and blindness.Advances in DNA delivery to the retina and improved genetic diagnosis of IRDs have led to a new era of research into gene therapy for these vision-threatening disorders. Gene therapy is a compelling approach due to the monogenic nature of most IRDs, with the retina being a favourable target for administering genetic vectors due to its immunoprivileged environment, direct visibility, and multiple methods to assess sensitivity and function. Generally, retinal gene therapy involves a subretinal or intravitreal injection of a viral vector, which infects target cells to deliver a therapeutic gene, or transgene. A gene augmentation strategy introduces a functioning copy of a gene to restore expression of a mutated gene, whereas a gene-editing strategy aims to directly edit and correct the mutation. Common delivery vectors include adeno-associated virus (AAV) and lentivirus.Voretigene neparvovec-rzyl (Luxturna) became the first FDA-approved direct gene therapy in December 2017, and the Australian TGA followed suit in August 2020. More are projected to follow, with clinical trials underway for many other IRDs.This review provides an overview of gene therapy for IRDs, including current progress and challenges. A companion article in this issue details target patient populations for IRD gene therapy, and how optometrists can assist in assessing individuals who may be eligible for current and future therapies.
Collapse
Affiliation(s)
- Monica L Hu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Thomas L Edwards
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia
| | - Fleur O'Hare
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia
| | - Doron G Hickey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Zhengyang Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia.,Department of Surgery (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia.,Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, the University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Santhanam A, Shihabeddin E, Atkinson JA, Nguyen D, Lin YP, O’Brien J. A Zebrafish Model of Retinitis Pigmentosa Shows Continuous Degeneration and Regeneration of Rod Photoreceptors. Cells 2020; 9:E2242. [PMID: 33036185 PMCID: PMC7599532 DOI: 10.3390/cells9102242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
More than 1.5 million people suffer from Retinitis Pigmentosa, with many experiencing partial to complete vision loss. Regenerative therapies offer some hope, but their development is challenged by the limited regenerative capacity of mammalian model systems. As a step toward investigating regenerative therapies, we developed a zebrafish model of Retinitis Pigmentosa that displays ongoing regeneration. We used Tol2 transgenesis to express mouse rhodopsin carrying the P23H mutation and an epitope tag in zebrafish rod photoreceptors. Adult and juvenile fish were examined by immunofluorescence, TUNEL and BrdU incorporation assays. P23H transgenic fish expressed the transgene in rods from 3 days post fertilization onward. Rods expressing the mutant rhodopsin formed very small or no outer segments and the mutant protein was delocalized over the entire cell. Adult fish displayed thinning of the outer nuclear layer (ONL) and loss of rod outer segments, but retained a single, sparse row of rods. Adult fish displayed ongoing apoptotic cell death in the ONL and an abundance of proliferating cells, predominantly in the ONL. There was a modest remodeling of bipolar and Müller glial cells. This transgenic fish will provide a useful model system to study rod photoreceptor regeneration and integration.
Collapse
Affiliation(s)
- Abirami Santhanam
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Eyad Shihabeddin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Joshua A. Atkinson
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Duc Nguyen
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - Ya-Ping Lin
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
| | - John O’Brien
- Ruiz Department of Ophthalmology & Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.S.); (J.A.A.); (D.N.); (Y.-P.L.)
- The MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
10
|
Cuenca N, Ortuño-Lizarán I, Sánchez-Sáez X, Kutsyr O, Albertos-Arranz H, Fernández-Sánchez L, Martínez-Gil N, Noailles A, López-Garrido JA, López-Gálvez M, Lax P, Maneu V, Pinilla I. Interpretation of OCT and OCTA images from a histological approach: Clinical and experimental implications. Prog Retin Eye Res 2020; 77:100828. [PMID: 31911236 DOI: 10.1016/j.preteyeres.2019.100828] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
Abstract
Optical coherence tomography (OCT) and OCT angiography (OCTA) have been a technological breakthrough in the diagnosis, treatment, and follow-up of many retinal diseases, thanks to its resolution and its ability to inform of the retinal state in seconds, which gives relevant information about retinal degeneration. In this review, we present an immunohistochemical description of the human and mice retina and we correlate it with the OCT bands in health and pathological conditions. Here, we propose an interpretation of the four outer hyperreflective OCT bands with a correspondence to retinal histology: the first and innermost band as the external limiting membrane (ELM), the second band as the cone ellipsoid zone (EZ), the third band as the outer segment tips phagocytosed by the pigment epithelium (PhaZ), and the fourth band as the mitochondria in the basal portion of the RPE (RPEmitZ). The integrity of these bands would reflect the health of photoreceptors and retinal pigment epithelium. Moreover, we describe how the vascular plexuses vary in different regions of the healthy human and mice retina, using OCTA and immunohistochemistry. In humans, four, three, two or one plexuses can be observed depending on the distance from the fovea. Also, specific structures such as vascular loops in the intermediate capillary plexus, or spider-like structures of interconnected capillaries in the deep capillary plexus are found. In mice, three vascular plexuses occupy the whole retina, except in the most peripheral retina where only two plexuses are found. These morphological issues should be considered when assessing a pathology, as some retinal diseases are associated with structural changes in blood vessels. Therefore, the analysis of OCT bands and OCTA vascular plexuses may be complementary for the diagnosis and prognosis of retinal degenerative processes, useful to assess therapeutic approaches, and it is usually correlated to visual acuity.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain; Institute Ramón Margalef, University of Alicante, Alicante, Spain.
| | | | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | | | | | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Agustina Noailles
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | | | | | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa, University Hospital, Zaragoza, Spain
| |
Collapse
|
11
|
Lax P, Kutsyr O, Esquiva G, Altavilla C, Maneu V, Cuenca N. Cannabinoid-mediated retinal rescue correlates with improved circadian parameters in retinal dystrophic rats. Exp Eye Res 2019; 180:192-199. [DOI: 10.1016/j.exer.2018.12.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/13/2018] [Accepted: 12/30/2018] [Indexed: 11/15/2022]
|
12
|
de Pablo F, Hernández-Sánchez C, de la Rosa EJ. The Prohormone Proinsulin as a Neuroprotective Factor: Past History and Future Prospects. Front Mol Neurosci 2018; 11:426. [PMID: 30534050 PMCID: PMC6275302 DOI: 10.3389/fnmol.2018.00426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/02/2018] [Indexed: 01/22/2023] Open
Abstract
Proinsulin was first identified as the primary translation product of the insulin gene in Donald Steiner’s laboratory in 1967, and was the first prohormone to be isolated and sequenced. While its role as an insulin precursor has been extensively studied in the field of endocrinology, the bioactivity of the proinsulin molecule itself has received much less attention. Insulin binds to isoforms A and B of the insulin receptor (IR) with high affinity. Proinsulin, in contrast, binds with high affinity only to IR-A, which is present in the nervous system, among other tissues and elicits antiapoptotic and neuroprotective effects in the developing and postnatal nervous system. Proinsulin specifically exerts neuroprotection in the degenerating retina in mouse and rat models of retinitis pigmentosa (RP), delaying photoreceptor and vision loss after local administration in the eye or systemic (intramuscular) administration of an adeno-associated viral (AAV) vector that induces constitutive proinsulin release. AAV-mediated proinsulin expression also decreases the expression of neuroinflammation markers in the hippocampus and sustains cognitive performance in a mouse model of precocious brain senescence. We have therefore proposed that proinsulin should be considered a functionally distinct member of the insulin superfamily. Here, we briefly review the legacy of Steiner’s research, the neural expression of proinsulin, and the tissue expression patterns and functional characteristics of IR-A. We discuss the neuroprotective activity of proinsulin and its potential as a therapeutic tool in neurodegenerative conditions of the central nervous system, particularly in retinal dystrophies.
Collapse
Affiliation(s)
- Flora de Pablo
- 3D Lab, Development, Differentiation and Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Catalina Hernández-Sánchez
- 3D Lab, Development, Differentiation and Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Enrique J de la Rosa
- 3D Lab, Development, Differentiation and Degeneration, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| |
Collapse
|
13
|
Fernández-Sánchez L, Esquiva G, Pinilla I, Lax P, Cuenca N. Retinal Vascular Degeneration in the Transgenic P23H Rat Model of Retinitis Pigmentosa. Front Neuroanat 2018; 12:55. [PMID: 30008665 PMCID: PMC6034000 DOI: 10.3389/fnana.2018.00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/06/2018] [Indexed: 12/26/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal degenerative diseases involving a progressive degeneration of photoreceptor cells. Following the loss of photoreceptors, retinal vascularization tends to decrease, which seems to play a role in the degenerative process of retinal cells. This study reports changes in retinal vascular network architecture in the P23H rat model of RP at different stages of retinal degeneration. Homozygous P23H line-3 rats of ages ranging from 18 days to 16 months were used in this study. Age-matched Sprague-Dawley (SD) rats were used as control animals. Vertical sections and wholemount retinas were immunolabeled for type IV collagen or stained using NADPH diaphorase histochemistry, and retinal vascular networks were drawn using a camera lucida. The superficial and deep capillary plexus (DCP) were fully developed at P18 in P23H rat retinas and showed no differences from the control animals. In 4-month-old P23H rat retinas, the superficial and intermediate capillary plexus were similar to those observed in age-matched SD rats, but a reduction in the DCP could be observed in these animals, with a significant decrease in both capillary density and capillary loops. At 16 months, the DCP was completely lost, and only vessels exhibiting an abnormal, tortuous dead-end could be observed. The middle capillary plexus had virtually disappeared at this age. Only perpendicular vessels connecting the superficial and DCP were found. The superficial plexus showed no changes in the vascular surface with age. In RP, photoreceptor loss is accompanied by degenerative changes in the retinal vascular network. The disruption of the capillary plexus, with loss of capillary density and capillary loops, can hamper the normal supply of oxygen and nutrients to retinal cells, thus accelerating retinal degeneration. Therefore, changes in retinal vascularization must be taken into account in the design of therapies targeting retinal degenerative diseases.
Collapse
Affiliation(s)
| | - Gema Esquiva
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain.,Institute Ramón Margalef, University of Alicante, Alicante, Spain
| |
Collapse
|
14
|
Sánchez-Cruz A, Villarejo-Zori B, Marchena M, Zaldivar-Díez J, Palomo V, Gil C, Lizasoain I, de la Villa P, Martínez A, de la Rosa EJ, Hernández-Sánchez C. Modulation of GSK-3 provides cellular and functional neuroprotection in the rd10 mouse model of retinitis pigmentosa. Mol Neurodegener 2018; 13:19. [PMID: 29661219 PMCID: PMC5902946 DOI: 10.1186/s13024-018-0251-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a group of hereditary retinal neurodegenerative conditions characterized by primary dysfunction and death of photoreceptor cells, resulting in visual loss and, eventually, blindness. To date, no effective therapies have been transferred to clinic. Given the diverse genetic etiology of RP, targeting common cellular and molecular retinal alterations has emerged as a potential therapeutic strategy. Methods Using the Pde6brd10/rd10 mouse model of RP, we investigated the effects of daily intraperitoneal administration of VP3.15, a small-molecule heterocyclic GSK-3 inhibitor. Gene expression was analyzed by quantitative PCR and protein expression and phosphorylation by Western blot. Photoreceptor preservation was evaluated by histological analysis and visual function was assessed by electroretinography. Results In rd10 retinas, increased expression of pro-inflammatory markers and reactive gliosis coincided with the early stages of retinal degeneration. Compared with wild-type controls, GSK-3β expression (mRNA and protein) remained unchanged during the retinal degeneration period. However, levels of GSK-3βSer9 and its regulator AktSer473 were increased in rd10 versus wild-type retinas. In vivo administration of VP3.15 reduced photoreceptor cell loss and preserved visual function. This neuroprotective effect was accompanied by a decrease in the expression of neuroinflammatory markers. Conclusions These results provide proof of concept of the therapeutic potential of VP3.15 for the treatment of retinal neurodegenerative conditions in general, and RP in particular. Electronic supplementary material The online version of this article (10.1186/s13024-018-0251-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alonso Sánchez-Cruz
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain.,Neurovascular Research Unit, Department of Pharmacology, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Miguel Marchena
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Josefa Zaldivar-Díez
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Valle Palomo
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Carmen Gil
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Ignacio Lizasoain
- Neurovascular Research Unit, Department of Pharmacology, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro de la Villa
- Department of Systems Biology, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Ana Martínez
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Enrique J de la Rosa
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Catalina Hernández-Sánchez
- Departments of Molecular Biomedicine (3D Lab) and Structural and Chemical Biology (IPSBB Unit), Centro de Investigaciones Biológicas-CSIC, C/ Ramiro de Maeztu 9, E-28040, Madrid, Spain.
| |
Collapse
|
15
|
LaVail MM, Nishikawa S, Steinberg RH, Naash MI, Duncan JL, Trautmann N, Matthes MT, Yasumura D, Lau-Villacorta C, Chen J, Peterson WM, Yang H, Flannery JG. Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration. Exp Eye Res 2018; 167:56-90. [PMID: 29122605 PMCID: PMC5811379 DOI: 10.1016/j.exer.2017.10.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
We produced 8 lines of transgenic (Tg) rats expressing one of two different rhodopsin mutations in albino Sprague-Dawley (SD) rats. Three lines were generated with a proline to histidine substitution at codon 23 (P23H), the most common autosomal dominant form of retinitis pigmentosa in the United States. Five lines were generated with a termination codon at position 334 (S334ter), resulting in a C-terminal truncated opsin protein lacking the last 15 amino acid residues and containing all of the phosphorylation sites involved in rhodopsin deactivation, as well as the terminal QVAPA residues important for rhodopsin deactivation and trafficking. The rates of photoreceptor (PR) degeneration in these models vary in proportion to the ratio of mutant to wild-type rhodopsin. The models have been widely studied, but many aspects of their phenotypes have not been described. Here we present a comprehensive study of the 8 Tg lines, including the time course of PR degeneration from the onset to one year of age, retinal structure by light and electron microscopy (EM), hemispheric asymmetry and gradients of rod and cone degeneration, rhodopsin content, gene dosage effect, rapid activation and invasion of the outer retina by presumptive microglia, rod outer segment disc shedding and phagocytosis by the retinal pigmented epithelium (RPE), and retinal function by the electroretinogram (ERG). The biphasic nature of PR cell death was noted, as was the lack of an injury-induced protective response in the rat models. EM analysis revealed the accumulation of submicron vesicular structures in the interphotoreceptor space during the peak period of PR outer segment degeneration in the S334ter lines. This is likely due to the elimination of the trafficking consensus domain as seen before as with other rhodopsin mutants lacking the C-terminal QVAPA. The 8 rhodopsin Tg lines have been, and will continue to be, extremely useful models for the experimental study of inherited retinal degenerations.
Collapse
Affiliation(s)
- Matthew M LaVail
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Shimpei Nishikawa
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Roy H Steinberg
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2011, Houston, TX 77204-5060, USA.
| | - Jacque L Duncan
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Nikolaus Trautmann
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Michael T Matthes
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Douglas Yasumura
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA
| | - Cathy Lau-Villacorta
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Jeannie Chen
- Zilka Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90089-2821, USA.
| | - Ward M Peterson
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - Haidong Yang
- Beckman Vision Center, University of California, San Francisco, San Francisco, CA 94143-0730, USA.
| | - John G Flannery
- School of Optometry, UC Berkeley, Berkeley, CA 94720-2020, USA.
| |
Collapse
|
16
|
Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, Cheetham ME. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res 2018; 62:1-23. [PMID: 29042326 PMCID: PMC5779616 DOI: 10.1016/j.preteyeres.2017.10.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Inherited mutations in the rod visual pigment, rhodopsin, cause the degenerative blinding condition, retinitis pigmentosa (RP). Over 150 different mutations in rhodopsin have been identified and, collectively, they are the most common cause of autosomal dominant RP (adRP). Mutations in rhodopsin are also associated with dominant congenital stationary night blindness (adCSNB) and, less frequently, recessive RP (arRP). Recessive RP is usually associated with loss of rhodopsin function, whereas the dominant conditions are a consequence of gain of function and/or dominant negative activity. The in-depth characterisation of many rhodopsin mutations has revealed that there are distinct consequences on the protein structure and function associated with different mutations. Here we categorise rhodopsin mutations into seven discrete classes; with defects ranging from misfolding and disruption of proteostasis, through mislocalisation and disrupted intracellular traffic to instability and altered function. Rhodopsin adRP offers a unique paradigm to understand how disturbances in photoreceptor homeostasis can lead to neuronal cell death. Furthermore, a wide range of therapies have been tested in rhodopsin RP, from gene therapy and gene editing to pharmacological interventions. The understanding of the disease mechanisms associated with rhodopsin RP and the development of targeted therapies offer the potential of treatment for this currently untreatable neurodegeneration.
Collapse
Affiliation(s)
| | - Monica Aguila
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Caroline McCulley
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Philip J Reeves
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex CO4 3SQ, UK.
| | | |
Collapse
|
17
|
Dias MF, Joo K, Kemp JA, Fialho SL, da Silva Cunha A, Woo SJ, Kwon YJ. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog Retin Eye Res 2017; 63:107-131. [PMID: 29097191 DOI: 10.1016/j.preteyeres.2017.10.004] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Retinitis Pigmentosa (RP) is a hereditary retinopathy that affects about 2.5 million people worldwide. It is characterized with progressive loss of rods and cones and causes severe visual dysfunction and eventual blindness in bilateral eyes. In addition to more than 3000 genetic mutations from about 70 genes, a wide genetic overlap with other types of retinal dystrophies has been reported with RP. This diversity of genetic pathophysiology makes treatment extremely challenging. Although therapeutic attempts have been made using various pharmacologic agents (neurotrophic factors, antioxidants, and anti-apoptotic agents), most are not targeted to the fundamental cause of RP, and their clinical efficacy has not been clearly proven. Current therapies for RP in ongoing or completed clinical trials include gene therapy, cell therapy, and retinal prostheses. Gene therapy, a strategy to correct the genetic defects using viral or non-viral vectors, has the potential to achieve definitive treatment by replacing or silencing a causative gene. Among many clinical trials of gene therapy for hereditary retinal diseases, a phase 3 clinical trial of voretigene neparvovec (AAV2-hRPE65v2, Luxturna) recently showed significant efficacy for RPE65-mediated inherited retinal dystrophy including Leber congenital amaurosis and RP. It is about to be approved as the first ocular gene therapy biologic product. Despite current limitations such as limited target genes and indicated patients, modest efficacy, and the invasive administration method, development in gene editing technology and novel gene delivery carriers make gene therapy a promising therapeutic modality for RP and other hereditary retinal dystrophies in the future.
Collapse
Affiliation(s)
- Marina França Dias
- School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Silvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | | | - Se Joon Woo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA; Department of Chemical Engineering and Materials Sciences, University of California, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
18
|
Abstract
Brain inflammaging is increasingly considered as contributing to age-related cognitive loss and neurodegeneration. Despite intensive research in multiple models, no clinically effective pharmacological treatment has been found yet. Here, in the mouse model of brain senescence SAMP8, we tested the effects of proinsulin, a promising neuroprotective agent that was previously proven to be effective in mouse models of retinal neurodegeneration. Proinsulin is the precursor of the hormone insulin but also upholds developmental physiological effects, particularly as a survival factor for neural cells. Adeno-associated viral vectors of serotype 1 bearing the human proinsulin gene were administered intramuscularly to obtain a sustained release of proinsulin into the blood stream, which was able to reach the target area of the hippocampus. SAMP8 mice and the control strain SAMR1 were treated at 1 month of age. At 6 months, behavioral testing exhibited cognitive loss in SAMP8 mice treated with the null vector. Remarkably, the cognitive performance achieved in spatial and recognition tasks by SAMP8 mice treated with proinsulin was similar to that of SAMR1 mice. In the hippocampus, proinsulin induced the activation of neuroprotective pathways and the downstream signaling cascade, leading to the decrease of neuroinflammatory markers. Furthermore, the decrease of astrocyte reactivity was a central effect, as demonstrated in the connectome network of changes induced by proinsulin. Therefore, the neuroprotective effects of human proinsulin unveil a new pharmacological potential therapy in the fight against cognitive loss in the elderly.
Collapse
|
19
|
Fernández-Sánchez L, Bravo-Osuna I, Lax P, Arranz-Romera A, Maneu V, Esteban-Pérez S, Pinilla I, Puebla-González MDM, Herrero-Vanrell R, Cuenca N. Controlled delivery of tauroursodeoxycholic acid from biodegradable microspheres slows retinal degeneration and vision loss in P23H rats. PLoS One 2017; 12:e0177998. [PMID: 28542454 PMCID: PMC5444790 DOI: 10.1371/journal.pone.0177998] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022] Open
Abstract
Successful drug therapies for treating ocular diseases require effective concentrations of neuroprotective compounds maintained over time at the site of action. The purpose of this work was to assess the efficacy of intravitreal controlled delivery of tauroursodeoxycholic acid (TUDCA) encapsulated in poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres for the treatment of the retina in a rat model of retinitis pigmentosa. PLGA microspheres (MSs) containing TUDCA were produced by the O/W emulsion-solvent evaporation technique. Particle size and morphology were assessed by light scattering and scanning electronic microscopy, respectively. Homozygous P23H line 3 rats received a treatment of intravitreal injections of TUDCA-PLGA MSs. Retinal function was assessed by electroretinography at P30, P60, P90 and P120. The density, structure and synaptic contacts of retinal neurons were analyzed using immunofluorescence and confocal microscopy at P90 and P120. TUDCA-loaded PLGA MSs were spherical, with a smooth surface. The production yield was 78%, the MSs mean particle size was 23 μm and the drug loading resulted 12.5 ± 0.8 μg TUDCA/mg MSs. MSs were able to deliver the loaded active compound in a gradual and progressive manner over the 28-day in vitro release study. Scotopic electroretinografic responses showed increased ERG a- and b-wave amplitudes in TUDCA-PLGA-MSs-treated eyes as compared to those injected with unloaded PLGA particles. TUDCA-PLGA-MSs-treated eyes showed more photoreceptor rows than controls. The synaptic contacts of photoreceptors with bipolar and horizontal cells were also preserved in P23H rats treated with TUDCA-PLGA MSs. This work indicates that the slow and continuous delivery of TUDCA from PLGA-MSs has potential neuroprotective effects that could constitute a suitable therapy to prevent neurodegeneration and visual loss in retinitis pigmentosa.
Collapse
Affiliation(s)
- Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Irene Bravo-Osuna
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Alicia Arranz-Romera
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Sergio Esteban-Pérez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - María del Mar Puebla-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rocío Herrero-Vanrell
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Industrial Pharmacy Institute, Complutense University of Madrid, Madrid, Spain
- * E-mail: (NS); (RHV)
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
- Institute Ramón Margalef, University of Alicante, Alicante, Spain
- * E-mail: (NS); (RHV)
| |
Collapse
|
20
|
Petit L, Punzo C. Gene therapy approaches for the treatment of retinal disorders. DISCOVERY MEDICINE 2016; 22:221-229. [PMID: 27875674 PMCID: PMC5142441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is an impelling need to develop effective therapeutic strategies for patients with retinal disorders. Gleaning from the large quantity of information gathered over the past two decades on the mechanisms governing degeneration of the retina, it is now possible to devise innovative therapies based on retinal gene transfer. Different gene-based approaches are under active investigation. They include strategies to correct the specific genetic defect in inherited retinal diseases, strategies to delay the onset of blindness independently of the disease-causing mutations, and strategies to reactivate residual cells at late stages of the diseases. In this review, we discuss the status of application of these technologies, outlining the future therapeutic potential for many forms of retinal blinding diseases.
Collapse
Affiliation(s)
- Lolita Petit
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Claudio Punzo
- Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
21
|
Abstract
Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future.
Collapse
Affiliation(s)
- Lolita Petit
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Hemant Khanna
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Claudio Punzo
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
22
|
Scott PA, Kaplan HJ, McCall MA. Prenatal Exposure to Curcumin Protects Rod Photoreceptors in a Transgenic Pro23His Swine Model of Retinitis Pigmentosa. Transl Vis Sci Technol 2015; 4:5. [PMID: 26396931 DOI: 10.1167/tvst.4.5.5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/12/2015] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Rhodopsin localization and rod photoreceptor (PR) morphology is altered in embryonic transgenic (Tg) Pro23His (P23H) miniswine. At birth, the Tg P23H swine retina lacks rod driven signaling. Curcumin, a neuroprotective food additive, has been shown to rescue Tg P23H rat rod PRs and promote normal trafficking of rhodopsin. We tested the hypothesis that prenatal exposure to curcumin would prevent PR morphological changes in Tg P23H miniswine retinae. METHODS A domestic sow was inseminated with semen from a Tg P23H miniswine founder. Her daily diet was supplemented with curcumin (100 mg/Kg body weight) from embryonic (E) day 80 to E112. The same diet without curcumin was fed to a second inseminated control sow. At E112, 2 days before parturition, both sows were euthanized. Their embryos were harvested, genotyped, and their eyes enucleated and prepared for morphological evaluation. RESULTS In all pigs, we measured mean outer retinal thickness, localization of rhodopsin, and rod PR morphology. Curcumin-treated Tg P23H swine embryonic retinas were similar to WT. Untreated Tg P23H embryonic retinas show significant degenerative effects; their outer retina was thinner, rod PR morphology was abnormal, and rhodopsin was mislocalized to the outer nuclear layer (ONL). CONCLUSIONS These data support a role for curcumin as a neuroprotective agent that prevents/delays morphological abnormalities associated with rod PR degeneration in this Tg P23H swine model of retinitis pigmentosa (RP). TRANSLATIONAL RELEVANCE Curcumin, a Food and Drug Administration-approved dietary supplement, may arrest/delay PR degeneration if ingested by individuals at risk for developing RP.
Collapse
Affiliation(s)
- Patrick A Scott
- Departments of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA ; Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Henry J Kaplan
- Departments of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA ; Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Maureen A McCall
- Departments of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY, USA ; Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
23
|
Chen Y, Tang H, Seibel W, Papoian R, Li X, Lambert NA, Palczewski K. A High-Throughput Drug Screening Strategy for Detecting Rhodopsin P23H Mutant Rescue and Degradation. Invest Ophthalmol Vis Sci 2015; 56:2553-67. [PMID: 25783607 DOI: 10.1167/iovs.14-16298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Inherent instability of the P23H mutant opsin accounts for approximately 10% of autosomal dominant retinitis pigmentosa cases. Our purpose was to develop an overall set of reliable screening strategies to assess if either stabilization or enhanced degradation of mutant rhodopsin could rescue rod photoreceptors expressing this mutant protein. These strategies promise to reveal active compounds and clarify molecular mechanisms of biologically important processes, such as inhibition of target degradation or enhanced target folding. METHODS Cell-based bioluminescence reporter assays were developed and validated for high-throughput screening (HTS) of compounds that promote either stabilization or degradation of P23H mutant opsin. Such assays were further complemented by immunoblotting and image-based analyses. RESULTS Two stabilization assays of P23H mutant opsin were developed and validated, one based on β-galactosidase complementarity and a second assay involving bioluminescence resonance energy transfer (BRET) technology. Moreover, two additional assays evaluating mutant protein degradation also were employed, one based on the disappearance of luminescence and another employing the ALPHA immunoassay. Imaging of cells revealed the cellular localization of mutant rhodopsin, whereas immunoblots identified changes in the aggregation and glycosylation of P23H mutant opsin. CONCLUSIONS Our findings indicate that these initial HTS and following assays can identify active therapeutic compounds, even for difficult targets such as mutant rhodopsin. The assays are readily scalable and their function has been proven with model compounds. High-throughput screening, supported by automated imaging and classic immunoassays, can further characterize multiple steps and pathways in the biosynthesis and degradation of this essential visual system protein.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| | - Hong Tang
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - William Seibel
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Ruben Papoian
- Drug Discovery Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Xiaoyu Li
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States
| | - Krzysztof Palczewski
- Department of Pharmacology Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
24
|
Fernández-Sánchez L, Lax P, Noailles A, Angulo A, Maneu V, Cuenca N. Natural Compounds from Saffron and Bear Bile Prevent Vision Loss and Retinal Degeneration. Molecules 2015; 20:13875-93. [PMID: 26263962 PMCID: PMC6332441 DOI: 10.3390/molecules200813875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022] Open
Abstract
All retinal disorders, regardless of their aetiology, involve the activation of oxidative stress and apoptosis pathways. The administration of neuroprotective factors is crucial in all phases of the pathology, even when vision has been completely lost. The retina is one of the most susceptible tissues to reactive oxygen species damage. On the other hand, proper development and functioning of the retina requires a precise balance between the processes of proliferation, differentiation and programmed cell death. The life-or-death decision seems to be the result of a complex balance between pro- and anti-apoptotic signals. It has been recently shown the efficacy of natural products to slow retinal degenerative process through different pathways. In this review, we assess the neuroprotective effect of two compounds used in the ancient pharmacopoeia. On one hand, it has been demonstrated that administration of the saffron constituent safranal to P23H rats, an animal model of retinitis pigmentosa, preserves photoreceptor morphology and number, the capillary network and the visual response. On the other hand, it has been shown that systemic administration of tauroursodeoxycholic acid (TUDCA), the major component of bear bile, to P23H rats preserves cone and rod structure and function, together with their contact with postsynaptic neurons. The neuroprotective effects of safranal and TUDCA make these compounds potentially useful for therapeutic applications in retinal degenerative diseases.
Collapse
Affiliation(s)
- Laura Fernández-Sánchez
- Departament of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
| | - Pedro Lax
- Departament of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
| | - Agustina Noailles
- Departament of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
| | - Antonia Angulo
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain.
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain.
| | - Nicolás Cuenca
- Departament of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
| |
Collapse
|
25
|
Orhan E, Dalkara D, Neuillé M, Lechauve C, Michiels C, Picaud S, Léveillard T, Sahel JA, Naash MI, Lavail MM, Zeitz C, Audo I. Genotypic and phenotypic characterization of P23H line 1 rat model. PLoS One 2015; 10:e0127319. [PMID: 26009893 PMCID: PMC4444340 DOI: 10.1371/journal.pone.0127319] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/13/2015] [Indexed: 01/26/2023] Open
Abstract
Rod-cone dystrophy, also known as retinitis pigmentosa (RP), is the most common inherited degenerative photoreceptor disease, for which no therapy is currently available. The P23H rat is one of the most commonly used autosomal dominant RP models. It has been created by incorporation of a mutated mouse rhodopsin (Rho) transgene in the wild-type (WT) Sprague Dawley rat. Detailed genetic characterization of this transgenic animal has however never been fully reported. Here we filled this knowledge gap on P23H Line 1 rat (P23H-1) and provide additional phenotypic information applying non-invasive and state-of-the-art in vivo techniques that are relevant for preclinical therapeutic evaluations. Transgene sequence was analyzed by Sanger sequencing. Using quantitative PCR, transgene copy number was calculated and its expression measured in retinal tissue. Full field electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT) were performed at 1-, 2-, 3- and 6-months of age. Sanger sequencing revealed that P23H-1 rat carries the mutated mouse genomic Rho sequence from the promoter to the 3’ UTR. Transgene copy numbers were estimated at 9 and 18 copies in the hemizygous and homozygous rats respectively. In 1-month-old hemizygous P23H-1 rats, transgene expression represented 43% of all Rho expressed alleles. ERG showed a progressive rod-cone dysfunction peaking at 6 months-of-age. SD-OCT confirmed a progressive thinning of the photoreceptor cell layer leading to the disappearance of the outer retina by 6 months with additional morphological changes in the inner retinal cell layers in hemizygous P23H-1 rats. These results provide precise genotypic information of the P23H-1 rat with additional phenotypic characterization that will serve basis for therapeutic interventions, especially for those aiming at gene editing.
Collapse
Affiliation(s)
- Elise Orhan
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Marion Neuillé
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Christophe Lechauve
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Christelle Michiels
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Serge Picaud
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Thierry Léveillard
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - José-Alain Sahel
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, France
- Institute of Ophthalmology, University College of London, London, United Kingdom
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- Academie des Sciences, Institut de France, Paris, France
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Matthew M. Lavail
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California United States of America
| | - Christina Zeitz
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
| | - Isabelle Audo
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, DHU ViewMaintain, INSERM-DHOS CIC 1423, Paris, France
- Institute of Ophthalmology, University College of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Noailles A, Fernández-Sánchez L, Lax P, Cuenca N. Microglia activation in a model of retinal degeneration and TUDCA neuroprotective effects. J Neuroinflammation 2014; 11:186. [PMID: 25359524 PMCID: PMC4221719 DOI: 10.1186/s12974-014-0186-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/14/2014] [Indexed: 12/12/2022] Open
Abstract
Background Retinitis pigmentosa is a heterogeneous group of inherited neurodegenerative retinal disorders characterized by a progressive peripheral vision loss and night vision difficulties, subsequently leading to central vision impairment. Chronic microglia activation is associated with various neurodegenerative diseases including retinitis pigmentosa. The objective of this study was to quantify microglia activation in the retina of P23H rats, an animal model of retinitis pigmentosa, and to evaluate the therapeutic effects of TUDCA (tauroursodeoxycholic acid), which has been described as a neuroprotective compound. Methods For this study, homozygous P23H line 3 and Sprague-Dawley (SD) rats were injected weekly with TUDCA (500 mg/kg, ip) or vehicle (saline) from 20 days to 4 months old. Vertical retinal sections and whole-mount retinas were immunostained for specific markers of microglial cells (anti-CD11b, anti-Iba1 and anti-MHC-II). Microglial cell morphology was analyzed and the number of retinal microglial was quantified. Results Microglial cells in the SD rat retinas were arranged in regular mosaics homogenously distributed within the plexiform and ganglion cell layers. In the P23H rat retina, microglial cells increased in number in all layers compared with control SD rat retinas, preserving the regular mosaic distribution. In addition, a large number of amoeboid CD11b-positive cells were observed in the P23H rat retina, even in the subretinal space. Retinas of TUDCA-treated P23H animals exhibited lower microglial cell number in all layers and absence of microglial cells in the subretinal space. Conclusions These results report novel TUDCA anti-inflammatory actions, with potential therapeutic implications for neurodegenerative diseases, including retinitis pigmentosa.
Collapse
|
27
|
Sotoca JV, Alvarado JC, Fuentes-Santamaría V, Martinez-Galan JR, Caminos E. Hearing impairment in the P23H-1 retinal degeneration rat model. Front Neurosci 2014; 8:297. [PMID: 25278831 PMCID: PMC4166116 DOI: 10.3389/fnins.2014.00297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/31/2014] [Indexed: 12/17/2022] Open
Abstract
The transgenic P23H line 1 (P23H-1) rat expresses a variant of rhodopsin with a mutation that leads to loss of visual function. This rat strain is an experimental model usually employed to study photoreceptor degeneration. Although the mutated protein should not interfere with other sensory functions, observing severe loss of auditory reflexes in response to natural sounds led us to study auditory brain response (ABR) recording. Animals were separated into different hearing levels following the response to natural stimuli (hand clapping and kissing sounds). Of all the analyzed animals, 25.9% presented auditory loss before 50 days of age (P50) and 45% were totally deaf by P200. ABR recordings showed that all the rats had a higher hearing threshold than the control Sprague-Dawley (SD) rats, which was also higher than any other rat strains. The integrity of the central and peripheral auditory pathway was analyzed by histology and immunocytochemistry. In the cochlear nucleus (CN), statistical differences were found between SD and P23H-1 rats in VGluT1 distribution, but none were found when labeling all the CN synapses with anti-Syntaxin. This finding suggests anatomical and/or molecular abnormalities in the auditory downstream pathway. The inner ear of the hypoacusic P23H-1 rats showed several anatomical defects, including loss and disruption of hair cells and spiral ganglion neurons. All these results can explain, at least in part, how hearing impairment can occur in a high percentage of P23H-1 rats. P23H-1 rats may be considered an experimental model with visual and auditory dysfunctions in future research.
Collapse
Affiliation(s)
- Jorge V Sotoca
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain ; Barn och Ungdomsmedicin Eskilstuna, Sweden
| | - Juan C Alvarado
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| | - Verónica Fuentes-Santamaría
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| | - Juan R Martinez-Galan
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| | - Elena Caminos
- Deparment of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha Albacete, Spain
| |
Collapse
|
28
|
Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43:17-75. [PMID: 25038518 DOI: 10.1016/j.preteyeres.2014.07.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, Alicante, Spain.
| | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
29
|
Lax P, Esquiva G, Altavilla C, Cuenca N. Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration. Exp Eye Res 2014; 120:175-85. [PMID: 24495949 DOI: 10.1016/j.exer.2014.01.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 11/18/2022]
Abstract
Cannabinoids have been demonstrated to exert neuroprotective effects on different types of neuronal insults. Here we have addressed the therapeutic potential of the synthetic cannabinoid HU210 on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model for autosomal dominant retinitis pigmentosa (RP). In P23H rats administered with HU210 (100 μg/kg, i.p.) from P24 to P90, ERG recordings showed an amelioration of vision loss, as compared to vehicle-administered animals. Under scotopic conditions, the maximum a-wave amplitudes recorded at P60 and P90 were higher in HU210-treated animals, as compared to the values obtained in untreated animals. The scotopic b-waves were significantly higher in treated animals than in untreated rats at P30, P60 and P90. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. HU210-treated animals had 40% more photoreceptors than untreated animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were also preserved in HU210-treated P23H rats. These results indicate that HU210 preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in P23H rats. These data suggest that cannabinoids are potentially useful to delay retinal degeneration in RP patients.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Gema Esquiva
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Cesare Altavilla
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Institute Ramón Margalef, University of Alicante, Alicante, Spain.
| |
Collapse
|