1
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Shen CF, Rodenbrock A, Lanthier S, Burney E, Loignon M. Optimization of Culture Media and Feeding Strategy for High Titer Production of an Adenoviral Vector in HEK 293 Fed-Batch Culture. Vaccines (Basel) 2024; 12:524. [PMID: 38793775 PMCID: PMC11125598 DOI: 10.3390/vaccines12050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Adenoviruses are efficient and safe vectors for delivering target antigens and adenovirus-based vaccines have been used against a wide variety of pathogens, including tuberculosis and COVID-19. Cost-effective and scalable biomanufacturing processes are critical for the commercialization of adenovirus-vectored vaccines. Adenoviral vectors are commonly produced through the infection of batch cultures at low cell density cultures, mostly because infections at high cell densities result in reduced cell-specific virus productivity and does not improve volumetric productivity. In this study, we have investigated the feasibility of improving the volumetric productivity by infecting fed-batch cultures at high cell densities. Four commercial and one in-house developed serum-free media were first tested for supporting growth of HEK 293 cells and production of adenovirus type 5 (Ad5) in batch culture. Two best media were then selected for development of fed-batch culture to improve cell growth and virus productivity. A maximum viable cell density up to 16 × 106 cells/mL was achieved in shake flask fed-batch cultures using the selected media and commercial or in-house developed feeds. The volumetric virus productivity was improved by up to six folds, reaching 3.0 × 1010 total viral particles/mL in the fed-batch culture cultivated with the media and feeds developed in house and infected at a cell density of 5 × 106 cells/mL. Additional rounds of optimization of media and feed were required to maintain the improved titer when the fed-batch culture was scaled up in a bench scale (3 L) bioreactor. Overall, the results suggested that fed-batch culture is a simple and feasible process to significantly improve the volumetric productivity of Ad5 through optimization and balance of nutrients in culture media and feeds.
Collapse
Affiliation(s)
- Chun Fang Shen
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | | | | | | | | |
Collapse
|
3
|
Petrović Koshmak I, Jug H, Vrabec K, Mavri A, Novak V, Dekleva P, Fujs V, Leskovec M, Štrancar A. Bridging upstream and downstream for improved adenovirus 5 bioprocess. Electrophoresis 2024; 45:369-379. [PMID: 38059740 DOI: 10.1002/elps.202300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Adenoviruses are well-known viral vectors that have been previously used in gene therapy and as a vaccine-delivery vehicle for humans and animals. During the COVID-19 pandemic, it gained renewed attention, but at the same time, it raised concerns due to side effects observed with some of the resulting vaccines administered to patients. It has been indicated that these side effects might be attributed to impurities present in the final product. Therefore, constant enhancement of the vaccine purity and further improvement of impurity detection methods are needed. In this work, we showcase an example of industry-relevant adenovirus bioprocess optimization. Our data show the effect of upstream parameters on the bioburden introduced to the downstream process. We provide an example of process optimization using a combination of the PATfix analytical method, ddPCR, infectivity, total DNA, and total protein analyses to optimize cell density, multiplicity of infection, and length of production. Additionally, we provide data illustrating the robustness of the convective interaction media quaternary amine monolithic chromatography step. This anion exchange strategy was shown to remove over 99% of protein and DNA impurities, including those unable to be addressed by tangential flow filtration, while maintaining high adenovirus recoveries.
Collapse
Affiliation(s)
| | - Hana Jug
- Sartorius BIA Separations, Mirce, Ajdovščina, Slovenia
| | - Katja Vrabec
- Sartorius BIA Separations, Mirce, Ajdovščina, Slovenia
| | - Ana Mavri
- Sartorius BIA Separations, Mirce, Ajdovščina, Slovenia
| | | | - Petra Dekleva
- Sartorius BIA Separations, Mirce, Ajdovščina, Slovenia
| | - Veronika Fujs
- Sartorius BIA Separations, Mirce, Ajdovščina, Slovenia
| | - Maja Leskovec
- Sartorius BIA Separations, Mirce, Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations, Mirce, Ajdovščina, Slovenia
| |
Collapse
|
4
|
Yang J, Wang Y, Hou Y, Sun M, Xia T, Wu X. Evasion of host defense by Brucella. CELL INSIGHT 2024; 3:100143. [PMID: 38250017 PMCID: PMC10797155 DOI: 10.1016/j.cellin.2023.100143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Brucella , an adept intracellular pathogen, causes brucellosis, a zoonotic disease leading to significant global impacts on animal welfare and the economy. Regrettably, there is currently no approved and effective vaccine for human use. The ability of Brucella to evade host defenses is essential for establishing chronic infection and ensuring stable intracellular growth. Brucella employs various mechanisms to evade and undermine the innate and adaptive immune responses of the host through modulating the activation of pattern recognition receptors (PRRs), inflammatory responses, or the activation of immune cells like dendritic cells (DCs) to inhibit antigen presentation. Moreover, it regulates multiple cellular processes such as apoptosis, pyroptosis, and autophagy to establish persistent infection within host cells. This review summarizes the recently discovered mechanisms employed by Brucella to subvert host immune responses and research progress on vaccines, with the aim of advancing our understanding of brucellosis and facilitating the development of more effective vaccines and therapeutic approaches against Brucella .
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yuanpan Hou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Mengyao Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tian Xia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xin Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| |
Collapse
|
5
|
Nold NM, Pearson E, Heldt CL. Economic simulation of batch and continuous aqueous two-phase purification for viral products. Biotechnol Prog 2024; 40:e3397. [PMID: 37843875 DOI: 10.1002/btpr.3397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
Vaccine manufacturing strategies that lower capital and production costs could improve vaccine access by reducing the cost per dose and encouraging localized manufacturing. Continuous processing is increasingly utilized to drive lower costs in biological manufacturing by requiring fewer capital and operating resources. Aqueous two-phase systems (ATPS) are a liquid-liquid extraction technique that enables continuous processing for viral vectors. To date, no economic comparison between viral vector purifications using traditional methods and ATPS has been published. In this work, economic simulations of traditional chromatography-based virus purification were compared to ATPS-based virus purification for the same product output in both batch and continuous modes. First, the modeling strategy was validated by re-creating a viral subunit manufacturing economic simulation. Then, ATPS capital and operating costs were compared to that of a traditional chromatography purification at multiple scales. At all scales, ATPS purification required less than 10% of the capital expenditure compared to chromatography-based purification. At an 11 kg per year production scale, the ATPS production costs were 50% less than purification with chromatography. Other chromatography configurations were explored, and may provide a production cost benefit to ATPS, but the purity and recovery were not experimentally verified. Batch and continuous ATPS were similar in capital and production costs. However, manual price adjustments suggest that continuous ATPS plant-building costs could be less than half that of batch ATPS at the 11 kg per year production scale. These simulations show the significant reduction in manufacturing costs that ATPS-based purification could deliver to the vaccine industry.
Collapse
Affiliation(s)
- Natalie M Nold
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
- Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| | - Eric Pearson
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
- Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
6
|
Joe CCD, Segireddy RR, Oliveira C, Berg A, Li Y, Doultsinos D, Scholze S, Ahmad A, Nestola P, Niemann J, Douglas AD. Accelerated and intensified manufacturing of an adenovirus-vectored vaccine to enable rapid outbreak response. Biotechnol Bioeng 2024; 121:176-191. [PMID: 37747758 DOI: 10.1002/bit.28553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
The Coalition for Epidemic Preparedness Innovations' "100-day moonshot" aspires to launch a new vaccine within 100 days of pathogen identification, followed by large-scale vaccine availability within the "second hundred days." Here, we describe work to optimize adenoviral vector manufacturing for rapid response, by minimizing time to clinical trial and first large-scale supply, and maximizing output from the available manufacturing footprint. We describe a rapid virus seed expansion workflow that allows vaccine release to clinical trials within 60 days of antigen sequence identification, followed by vaccine release from globally distributed sites within a further 40 days. We also describe a perfusion-based upstream production process, designed to maximize output while retaining simplicity and suitability for existing manufacturing facilities. This improves upstream volumetric productivity of ChAdOx1 nCoV-19 by approximately fourfold and remains compatible with the existing downstream process, yielding drug substance sufficient for 10,000 doses from each liter of bioreactor capacity. This accelerated manufacturing process, along with other advantages such as thermal stability, supports the ongoing value of adenovirus-vectored vaccines as a rapidly adaptable and deployable platform for emergency response.
Collapse
Affiliation(s)
- Carina C D Joe
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Cathy Oliveira
- Clinical Biomanufacturing Facility, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adam Berg
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yuanyuan Li
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dimitrios Doultsinos
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Asma Ahmad
- Repligen Corporation, Waltham, Massachusetts, USA
| | | | | | - Alexander D Douglas
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Leikas AJ, Ylä-Herttuala S, Hartikainen JEK. Adenoviral Gene Therapy Vectors in Clinical Use-Basic Aspects with a Special Reference to Replication-Competent Adenovirus Formation and Its Impact on Clinical Safety. Int J Mol Sci 2023; 24:16519. [PMID: 38003709 PMCID: PMC10671366 DOI: 10.3390/ijms242216519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Adenoviral vectors are commonly used in clinical gene therapy. Apart from oncolytic adenoviruses, vector replication is highly undesired as it may pose a safety risk for the treated patient. Thus, careful monitoring for the formation of replication-competent adenoviruses (RCA) during vector manufacturing is required. To render adenoviruses replication deficient, their genomic E1 region is deleted. However, it has been known for a long time that during their propagation, some viruses will regain their replication capability by recombination in production cells, most commonly HEK293. Recently developed RCA assays have revealed that many clinical batches contain more RCA than previously assumed and allowed by regulatory authorities. The clinical significance of the higher RCA content has yet to be thoroughly evaluated. In this review, we summarize the biology of adenovirus vectors, their manufacturing methods, and the origins of RCA formed during HEK293-based vector production. Lastly, we share our experience using minimally RCA-positive serotype 5 adenoviral vectors based on observations from our clinical cardiovascular gene therapy studies.
Collapse
Affiliation(s)
- Aleksi J. Leikas
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Juha E. K. Hartikainen
- Heart Center, Kuopio University Hospital, 70200 Kuopio, Finland; (S.Y.-H.); (J.E.K.H.)
- Gene Therapy Unit, Kuopio University Hospital, 70200 Kuopio, Finland
- School of Medicine, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
8
|
Sonugür FG, Babahan C, Abdi Abgarmi S, Akbulut H. Incubation Temperature and Period During Denarase Treatment and Microfiltration Affect the Yield of Recombinant Adenoviral Vectors During Downstream Processing. Mol Biotechnol 2022:10.1007/s12033-022-00616-8. [PMID: 36451062 PMCID: PMC9713150 DOI: 10.1007/s12033-022-00616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Adenoviral vectors (AV) are commonly used as vaccine and gene therapy vehicles because of their ease of construction, ability to grow to high titers in the large-scale production process, and safety for human applications. However, the efficiency rate of downstream processes for adenoviral vectors still varies greatly. In the current study, we aimed to investigate the effect of the downstream treatment protocol and microfiltration of the harvested upstream material on viral vector yield. We compared the performance of the repeated freeze-thaw (RFT) and the Tween-20 detergent lysis (DLT) methods. In addition, the effects of the cell lysis method, incubation temperature, and time on viral yield were investigated. The samples were incubated at either room temperature or 37 °C for 1-, 2-, and 4-h periods. Samples were filtered with PES and SFCA membrane. Virus yield and infectivity were assayed by qPCR and immuno-titration. In conclusion, our results suggest that 2-h incubation gives the best results when incubated at 37 °C for denarase activity when Tween-20 is used for virus recovery. If the room temperature is preferred, 4-h incubation could be preferred. A phase 1 clinical trial (NCT05526183, January 21, 2022) was started with the recombinant adenovirus used in the study.
Collapse
Affiliation(s)
- Fatma Gizem Sonugür
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey
| | - Cansu Babahan
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey
| | - Samira Abdi Abgarmi
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey
| | - Hakan Akbulut
- Department of Tumor Biology, Cancer Research Institute, Ankara University, Ankara, Turkey ,Department of Medical Oncology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Heidary M, Dashtbin S, Ghanavati R, Mahdizade Ari M, Bostanghadiri N, Darbandi A, Navidifar T, Talebi M. Evaluation of Brucellosis Vaccines: A Comprehensive Review. Front Vet Sci 2022; 9:925773. [PMID: 35923818 PMCID: PMC9339783 DOI: 10.3389/fvets.2022.925773] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a bacterial zoonosis caused by Brucella spp. which can lead to heavy economic losses and severe human diseases. Thus, controlling brucellosis is very important. Due to humans easily gaining brucellosis from animals, animal brucellosis control programs can help the eradication of human brucellosis. There are two popular vaccines against animal brucellosis. Live attenuated Brucella abortus strain 19 (S19 vaccine) is the first effective and most extensively used vaccine for the prevention of brucellosis in cattle. Live attenuated Brucella melitensis strain Rev.1 (Rev.1 vaccine) is the most effective vaccine against caprine and ovine brucellosis. Although these two vaccines provide good immunity for animals against brucellosis, the expense of persistent serological responses is one of the main problems of both vaccines. The advantages and limitations of Brucella vaccines, especially new vaccine candidates, have been less studied. In addition, there is an urgent need for new strategies to control and eradicate this disease. Therefore, this narrative review aims to present an updated overview of the available different types of brucellosis vaccines.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Malihe Talebi
| |
Collapse
|
10
|
Jt S, M H, Wam B, Ac B, Sa N. Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. J Mol Med (Berl) 2022; 100:875-901. [PMID: 35606652 PMCID: PMC9126699 DOI: 10.1007/s00109-022-02208-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract Despite the development of novel pharmacological treatments, cardiovascular disease morbidity and mortality remain high indicating an unmet clinical need. Viral gene therapy enables targeted delivery of therapeutic transgenes and represents an attractive platform for tackling acquired and inherited cardiovascular diseases in the future. Current cardiovascular gene therapy trials in humans mainly focus on improving cardiac angiogenesis and function. Encouragingly, local delivery of therapeutic transgenes utilising first-generation human adenovirus serotype (HAd)-5 is safe in the short term and has shown some efficacy in drug refractory angina pectoris and heart failure with reduced ejection fraction. Despite this success, systemic delivery of therapeutic HAd-5 vectors targeting cardiovascular tissues and internal organs is limited by negligible gene transfer to target cells, elimination by the immune system, liver sequestration, off-target effects, and episomal degradation. To circumvent these barriers, cardiovascular gene therapy research has focused on determining the safety and efficacy of rare alternative serotypes and/or genetically engineered adenoviral capsid protein-modified vectors following local or systemic delivery. Pre-clinical studies have identified several vectors including HAd-11, HAd-35, and HAd-20–42-42 as promising platforms for local and systemic targeting of vascular endothelial and smooth muscle cells. In the past, clinical gene therapy trials were often restricted by limited scale-up capabilities of gene therapy medicinal products (GTMPs) and lack of regulatory guidance. However, significant improvement of industrial GTMP scale-up and purification, development of novel producer cell lines, and issuing of GTMP regulatory guidance by national regulatory health agencies have addressed many of these challenges, creating a more robust framework for future adenoviral-based cardiovascular gene therapy. In addition, this has enabled the mass roll out of adenovirus vector-based COVID-19 vaccines. Key messages First-generation HAd-5 vectors are widely used in cardiovascular gene therapy. HAd-5-based gene therapy was shown to lead to cardiac angiogenesis and improved function. Novel HAd vectors may represent promising transgene carriers for systemic delivery. Novel methods allow industrial scale-up of rare/genetically altered Ad serotypes. National regulatory health agencies have issued guidance on GMP for GTMPs.
Collapse
Affiliation(s)
- Schwartze Jt
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Havenga M
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bakker Wam
- Batavia Biosciences B.V., Bioscience Park Leiden, Zernikedreef 16, 2333, CL, Leiden, The Netherlands
| | - Bradshaw Ac
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicklin Sa
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Kawka K, Wilton AN, Redmond EJ, Medina MFC, Lichty BD, Ghosh R, Latulippe DR. Comparison of the performance of anion exchange membrane materials for adenovirus purification using laterally-fed membrane chromatography. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Joe CCD, Jiang J, Linke T, Li Y, Fedosyuk S, Gupta G, Berg A, Segireddy RR, Mainwaring D, Joshi A, Cashen P, Rees B, Chopra N, Nestola P, Humphreys J, Davies S, Smith N, Bruce S, Verbart D, Bormans D, Knevelman C, Woodyer M, Davies L, Cooper L, Kapanidou M, Bleckwenn N, Pappas D, Lambe T, Smith DC, Green CM, Venkat R, Ritchie AJ, Gilbert SC, Turner R, Douglas AD. Manufacturing a chimpanzee adenovirus-vectored SARS-CoV-2 vaccine to meet global needs. Biotechnol Bioeng 2022; 119:48-58. [PMID: 34585736 PMCID: PMC8653296 DOI: 10.1002/bit.27945] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Manufacturing has been the key factor limiting rollout of vaccination during the COVID-19 pandemic, requiring rapid development and large-scale implementation of novel manufacturing technologies. ChAdOx1 nCoV-19 (AZD1222, Vaxzevria) is an efficacious vaccine against SARS-CoV-2, based upon an adenovirus vector. We describe the development of a process for the production of this vaccine and others based upon the same platform, including novel features to facilitate very large-scale production. We discuss the process economics and the "distributed manufacturing" approach we have taken to provide the vaccine at globally-relevant scale and with international security of supply. Together, these approaches have enabled the largest viral vector manufacturing campaign to date, providing a substantial proportion of global COVID-19 vaccine supply at low cost.
Collapse
Affiliation(s)
- Carina C. D. Joe
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Jinlin Jiang
- Biopharmaceuticals DevelopmentR&D, AstraZenecaGaithersburgMarylandUSA
| | - Thomas Linke
- Biopharmaceuticals DevelopmentR&D, AstraZenecaGaithersburgMarylandUSA
| | - Yuanyuan Li
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Sofiya Fedosyuk
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Gaurav Gupta
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Adam Berg
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nicole Bleckwenn
- Biopharmaceuticals DevelopmentR&D, AstraZenecaGaithersburgMarylandUSA
| | - Daniel Pappas
- Biopharmaceuticals DevelopmentR&D, AstraZenecaGaithersburgMarylandUSA
| | - Teresa Lambe
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | | | - Catherine M. Green
- Clinical Biomanufacturing Facility, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Raghavan Venkat
- Biopharmaceuticals DevelopmentR&D, AstraZenecaGaithersburgMarylandUSA
| | - Adam J. Ritchie
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Sarah C. Gilbert
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Richard Turner
- Purification Process Sciences, Biopharmaceuticals DevelopmentR&D, AstraZenecaCambridgeUK
| | | |
Collapse
|
13
|
Suleman S, Schrubaji K, Filippou C, Ignatova S, Hewitson P, Huddleston J, Karda R, Waddington SN, Themis M. Rapid and inexpensive purification of adenovirus vectors using an optimised aqueous two-phase technology. J Virol Methods 2022; 299:114305. [PMID: 34626684 PMCID: PMC9757833 DOI: 10.1016/j.jviromet.2021.114305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 08/24/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
Adenoviruses (AdVs) are used as gene therapy vectors to treat human diseases and as vaccines against COVID-19. AdVs are produced by transfecting human embryonic kidney 239 (HEK293) or PER.C6 virus producer cells with AdV plasmid vectors or infecting these cells withcell lysates containing replication-defective AdV. Cell lysates can be purified further by caesium chloride or chromatographic protocols to research virus seed stocks (RVSS) for characterisation to high quality master virus seed stocks (MVSS) and working virus seed stocks (WVSS) before downstream production of pure, high titre AdV. Lysates are poorly infectious, block filtration columns and have limited storage capability. Aqueous two-phase systems (ATPS) are an alternative method for AdV purification that rapidly generates cleaner RVSS for characterisation to MVSS. After testing multiple ATPS formulations, an aqueous mixture of 20 % PEG 600 and 20 % (NH4)2SO4 (w/w) was found most effective for AdV partitioning, producing up to 97+3% yield of high-titre virus that was devoid of aggregates both effective in vitro and in vivo with no observable cytotoxicity. Importantly, AdV preparations stored at -20 °C or 4 °C show negligible loss of titre and are suitable for downstream processing to clinical grade to support the need for AdV vaccines.
Collapse
Affiliation(s)
- Saqlain Suleman
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Kuteiba Schrubaji
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Chrysovalanto Filippou
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK
| | - Svetlana Ignatova
- Department of Chemical Engineering, College of Engineering, Design & Physical Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Peter Hewitson
- Department of Chemical Engineering, College of Engineering, Design & Physical Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Jonathan Huddleston
- Department of Chemical Engineering, College of Engineering, Design & Physical Sciences, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
| | - Rajvinder Karda
- Gene Transfer Technology, EGA Institute for Women’s Health, University College London, London, WC1E 6HX, UK
| | - Simon N. Waddington
- Gene Transfer Technology, EGA Institute for Women’s Health, University College London, London, WC1E 6HX, UK,MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Michael Themis
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, Middlesex, UK; Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
14
|
Evaluation of a downstream process for the recovery and concentration of a Cell-Culture-Derived rVSV-Spike COVID-19 vaccine candidate. Vaccine 2021; 39:7044-7051. [PMID: 34756612 PMCID: PMC8531466 DOI: 10.1016/j.vaccine.2021.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 12/25/2022]
Abstract
rVSV-Spike (rVSV-S) is a recombinant viral vaccine candidate under development to control the COVID-19 pandemic and is currently in phase II clinical trials. rVSV-S induces neutralizing antibodies and protects against SARS-CoV-2 infection in animal models. Bringing rVSV-S to clinical trials required the development of a scalable downstream process for the production of rVSV-S that can meet regulatory guidelines. The objective of this study was the development of the first downstream unit operations for cell-culture-derived rVSV-S, namely, the removal of nucleic acid contamination, the clarification and concentration of viral harvested supernatant, and buffer exchange. Retaining the infectivity of the rVSV-S during the downstream process was challenged by the shear sensitivity of the enveloped rVSV-S and its membrane protruding spike protein. Through a series of screening experiments, we evaluated and established the required endonuclease treatment conditions, filter train composition, and hollow fiber-tangential flow filtration parameters to remove large particles, reduce the load of impurities, and concentrate and exchange the buffer while retaining rVSV-S infectivity. The combined effect of the first unit operations on viral recovery and the removal of critical impurities was examined during scale-up experiments. Overall, approximately 40% of viral recovery was obtained and the regulatory requirements of less than 10 ng host cell DNA per dose were met. However, while 86–97% of the host cell proteins were removed, the regulatory acceptable HCP levels were not achieved, requiring subsequent purification and polishing steps. The results we obtained during the scale-up experiments were similar to those obtained during the screening experiments, indicating the scalability of the process. The findings of this study set the foundation for the development of a complete downstream manufacturing process, requiring subsequent purification and polishing unit operations for clinical preparations of rVSV-S.
Collapse
|
15
|
Akache B, Renner TM, Tran A, Deschatelets L, Dudani R, Harrison BA, Duque D, Haukenfrers J, Rossotti MA, Gaudreault F, Hemraz UD, Lam E, Régnier S, Chen W, Gervais C, Stuible M, Krishnan L, Durocher Y, McCluskie MJ. Immunogenic and efficacious SARS-CoV-2 vaccine based on resistin-trimerized spike antigen SmT1 and SLA archaeosome adjuvant. Sci Rep 2021; 11:21849. [PMID: 34750472 PMCID: PMC8576046 DOI: 10.1038/s41598-021-01363-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
The huge worldwide demand for vaccines targeting SARS-CoV-2 has necessitated the continued development of novel improved formulations capable of reducing the burden of the COVID-19 pandemic. Herein, we evaluated novel protein subunit vaccine formulations containing a resistin-trimerized spike antigen, SmT1. When combined with sulfated lactosyl archaeol (SLA) archaeosome adjuvant, formulations induced robust antigen-specific humoral and cellular immune responses in mice. Antibodies had strong neutralizing activity, preventing viral spike binding and viral infection. In addition, the formulations were highly efficacious in a hamster challenge model reducing viral load and body weight loss even after a single vaccination. The antigen-specific antibodies generated by our vaccine formulations had stronger neutralizing activity than human convalescent plasma, neutralizing the spike proteins of the B.1.1.7 and B.1.351 variants of concern. As such, our SmT1 antigen along with SLA archaeosome adjuvant comprise a promising platform for the development of efficacious protein subunit vaccine formulations for SARS-CoV-2.
Collapse
Affiliation(s)
- Bassel Akache
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Tyler M Renner
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Anh Tran
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Lise Deschatelets
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Renu Dudani
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Blair A Harrison
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Diana Duque
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Julie Haukenfrers
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Martin A Rossotti
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Francis Gaudreault
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Usha D Hemraz
- National Research Council Canada, Aquatic and Crop Resource Development, 6100 Avenue Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Edmond Lam
- National Research Council Canada, Aquatic and Crop Resource Development, 6100 Avenue Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Sophie Régnier
- National Research Council Canada, Aquatic and Crop Resource Development, 6100 Avenue Royalmount, Montreal, QC, H4P 2R2, Canada
| | - Wangxue Chen
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Christian Gervais
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Matthew Stuible
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Lakshmi Krishnan
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
16
|
Abstract
INTRODUCTION Lentiviral vectors have emerged as powerful vectors for vaccination, due to their high efficiency to transduce dendritic cells and to induce long-lasting humoral immunity, CD8+ T cells, and effective protection in numerous preclinical animal models of infection and oncology. AREAS COVERED Here, we reviewed the literature, highlighting the relevance of lentiviral vectors in vaccinology. We recapitulated both their virological and immunological aspects of lentiviral vectors. We compared lentiviral vectors to the gold standard viral vaccine vectors, i.e. adenoviral vectors, and updated the latest results in lentiviral vector-based vaccination in preclinical models. EXPERT OPINION Lentiviral vectors are non-replicative, negligibly inflammatory, and not targets of preexisting immunity in human populations. These are major characteristics to consider in vaccine development. The potential of lentiviral vectors to transduce non-dividing cells, including dendritic cells, is determinant in their strong immunogenicity. Notably, lentiviral vectors can be engineered to target antigen expression to specific host cells. The very weak inflammatory properties of these vectors allow their use in mucosal vaccination, with particular interest in infectious diseases that affect the lungs or brain, including COVID-19. Recent results in various preclinical models have reinforced the interest of these vectors in prophylaxis against infectious diseases and in onco-immunotherapy.
Collapse
Affiliation(s)
- Min-Wen Ku
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Pierre Charneau
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laleh Majlessi
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| |
Collapse
|
17
|
Li G, Ma W, Mo J, Cheng B, Shoda SI, Zhou D, Ye XS. Influenza Virus Precision Diagnosis and Continuous Purification Enabled by Neuraminidase-Resistant Glycopolymer-Coated Microbeads. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46260-46269. [PMID: 34547894 DOI: 10.1021/acsami.1c11561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rapid diagnosis and vaccine development are critical to prevent the threat posed by viruses. However, rapid tests, such as colloidal gold assays, yield false-negative results due to the low quantities of viruses; moreover, conventional virus purification, including ultracentrifugation and nanofiltration, is multistep and time-consuming, which limits laboratory research and commercial development of viral vaccines. A rapid virus enrichment and purification technique will improve clinical diagnosis sensitivity and simplify vaccine production. Hence, we developed the surface-glycosylated microbeads (glycobeads) featuring chemically synthetic glycoclusters and reversible linkers to selectively capture the influenza virus. The surface plasmon resonance (SPR) evaluation indicated broad spectrum affinity of S-linked glycosides to various influenza viruses. The magnetic glycobeads were integrated into clinical rapid diagnosis, leading to a 30-fold lower limit of detection. Additionally, the captured viruses can be released under physiological conditions, delivering purified viruses with >50% recovery and without decreasing their native infectivity. Notably, this glycobead platform will facilitate the sensitive detection and continuous one-step purification of the target virus that contributes to future vaccine production.
Collapse
Affiliation(s)
- Gefei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Wenxiao Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Juan Mo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Boyang Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Shin-Ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
| |
Collapse
|
18
|
Abstract
The COVID-19 pandemic has motivated the rapid development of numerous vaccines that have proven effective against SARS-CoV-2. Several of these successful vaccines are based on the adenoviral vector platform. The mass manufacturing of these vaccines poses great challenges, especially in the context of a pandemic where extremely large quantities must be produced quickly at an affordable cost. In this work, two baseline processes for the production of a COVID-19 adenoviral vector vaccine, B1 and P1, were designed, simulated and economically evaluated with the aid of the software SuperPro Designer. B1 used a batch cell culture viral production step, with a viral titer of 5 × 1010 viral particles (VP)/mL in both stainless-steel and disposable equipment. P1 used a perfusion cell culture viral production step, with a viral titer of 1 × 1012 VP/mL in exclusively disposable equipment. Both processes were sized to produce 400 M/yr vaccine doses. P1 led to a smaller cost per dose than B1 ($0.15 vs. $0.23) and required a much smaller capital investment ($126 M vs. $299 M). The media and facility-dependent expenses were found to be the main contributors to the operating cost. The results indicate that adenoviral vector vaccines can be practically manufactured at large scale and low cost.
Collapse
|
19
|
Schijns V, Majhen D, van der Ley P, Thakur A, Summerfield A, Berisio R, Nativi C, Fernández-Tejada A, Alvarez-Dominguez C, Gizurarson S, Zamyatina A, Molinaro A, Rosano C, Jakopin Ž, Gursel I, McClean S. Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation. Pharmaceutics 2021; 13:501. [PMID: 33917629 PMCID: PMC8067490 DOI: 10.3390/pharmaceutics13040501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/21/2023] Open
Abstract
Vaccines are the most effective medical intervention due to their continual success in preventing infections and improving mortality worldwide. Early vaccines were developed empirically however, rational design of vaccines can allow us to optimise their efficacy, by tailoring the immune response. Establishing the immune correlates of protection greatly informs the rational design of vaccines. This facilitates the selection of the best vaccine antigens and the most appropriate vaccine adjuvant to generate optimal memory immune T cell and B cell responses. This review outlines the range of vaccine types that are currently authorised and those under development. We outline the optimal immunological correlates of protection that can be targeted. Finally we review approaches to rational antigen selection and rational vaccine adjuvant design. Harnessing current knowledge on protective immune responses in combination with critical vaccine components is imperative to the prevention of future life-threatening diseases.
Collapse
Affiliation(s)
- Virgil Schijns
- Intravacc, Institute for Translational Vaccinology (Intravacc), Utrecht Science Park, 3721 MA Bilthoven, The Netherlands;
- Epitopoietic Research Corporation (ERC), 5374 RE Schaijk, The Netherlands
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Instiute, HR-10000 Zagreb, Croatia;
| | - Peter van der Ley
- Intravacc, Institute for Translational Vaccinology (Intravacc), Utrecht Science Park, 3721 MA Bilthoven, The Netherlands;
| | - Aneesh Thakur
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhausern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, I-80134 Naples, Italy;
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Biscay Science and Technology Park, 48160 Derio-Bilbao, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Carmen Alvarez-Dominguez
- Facultativo en plantilla (Research Faculty), Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, University of Iceland, 107 Reykjavik, Iceland;
- Department of Pharmacy, College of Medicine, University of Malawi, Blantyre 3, Malawi
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, I-80126 Napoli, Italy;
- Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Policlinico San Martino, 16132 Genova-1, Italy;
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubiljana, Slovenia;
| | - Ihsan Gursel
- Molecular Biology and Genetics Department, Science Faculty, Bilkent University, Bilkent, 06800 Ankara, Turkey;
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
20
|
Kerstetter LJ, Buckley S, Bliss CM, Coughlan L. Adenoviral Vectors as Vaccines for Emerging Avian Influenza Viruses. Front Immunol 2021; 11:607333. [PMID: 33633727 PMCID: PMC7901974 DOI: 10.3389/fimmu.2020.607333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
It is evident that the emergence of infectious diseases, which have the potential for spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic transmission events have increased in frequency in recent decades due to changes in human behavior, including increased international travel, the wildlife trade, deforestation, and the intensification of farming practices to meet demand for meat consumption. Influenza A viruses (IAV) possess a number of features which make them a pandemic threat and a major concern for human health. Their segmented genome and error-prone process of replication can lead to the emergence of novel reassortant viruses, for which the human population are immunologically naïve. In addition, the ability for IAVs to infect aquatic birds and domestic animals, as well as humans, increases the likelihood for reassortment and the subsequent emergence of novel viruses. Sporadic spillover events in the past few decades have resulted in human infections with highly pathogenic avian influenza (HPAI) viruses, with high mortality. The application of conventional vaccine platforms used for the prevention of seasonal influenza viruses, such as inactivated influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development of vaccines for HPAI viruses is fraught with challenges. These issues are associated with manufacturing under enhanced biosafety containment, and difficulties in propagating HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs. Overcoming manufacturing hurdles through the use of safer backbones, such as low pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of advantages for the development of vaccines against HPAI viruses. Their genome is stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo following vaccination. Therefore, their manufacture does not require enhanced biosafety facilities or procedures and is egg-independent. Importantly, Ad vaccines have an exemplary safety and immunogenicity profile in numerous human clinical trials, and can be thermostabilized for stockpiling and pandemic preparedness. This review will discuss the status of Ad-based vaccines designed to protect against avian influenza viruses with pandemic potential.
Collapse
Affiliation(s)
- Lucas J. Kerstetter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen Buckley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carly M. Bliss
- Division of Cancer & Genetics, Division of Infection & Immunity, School of Medicine, Cardiff University, Wales, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
21
|
Kawka K, Wilton AN, Madadkar P, Medina MFC, Lichty BD, Ghosh R, Latulippe DR. Integrated development of enzymatic DNA digestion and membrane chromatography processes for the purification of therapeutic adenoviruses. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Emerson J, Kara B, Glassey J. Multivariate data analysis in cell gene therapy manufacturing. Biotechnol Adv 2020; 45:107637. [PMID: 32980438 DOI: 10.1016/j.biotechadv.2020.107637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/26/2023]
Abstract
The emergence of cell gene therapy (CGT) as a safe and efficacious treatment for numerous severe inherited and acquired human diseases has led to growing interest and investment in new CGT products. The most successful of these have been autologous viral vector-based treatments. The development of viral vector manufacturing processes and ex vivo patient cell processing capabilities is a pressing issue in the advancement of autologous viral vector-based CGT treatments. In viral vector production, scale-up is a critical task due to the limited scalability of traditional laboratory systems and the demand for high volumes of viral vector manufactured in accordance with current good manufacturing practice. Ex vivo cell processing methods require optimisation and automation before they can be scaled out, and several other manufacturing challenges are prevalent such as high levels of raw material and process variability, difficulty characterising complex materials, and a lack of knowledge of critical process parameters and their effect on critical quality attributes of the viral vector and cell drug products. Multivariate data analysis (MVDA) has been leveraged successfully in a variety of applications in the chemical and biochemical industries, including for tasks such as bioprocess monitoring, identification of critical process parameters and assessment of process variability and comparability during process development, scale-up and technology transfer. Henceforth, MVDA is reviewed here as a suitable tool for tackling some of the challenges faced in the development of CGT manufacturing processes. A summary of some key CGT manufacturing challenges is provided along with a review of MVDA applications to mammalian and microbial processes, and an exploration of the potential benefits, requirements and pre-requisites of MVDA applications in the development of CGT manufacturing processes.
Collapse
Affiliation(s)
- Joseph Emerson
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Bo Kara
- Currently, Evox Therapeutics, Medawar Centre, Oxford OX4 4HG, UK.
| | - Jarka Glassey
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
23
|
Wang J, Peng Y, Xu H, Cui Z, Williams RO. The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation. AAPS PharmSciTech 2020; 21:225. [PMID: 32761294 PMCID: PMC7405756 DOI: 10.1208/s12249-020-01744-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
Abstract
In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process.
Collapse
Affiliation(s)
- Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Ying Peng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Haiyue Xu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
24
|
Napolitano F, Merone R, Abbate A, Ammendola V, Horncastle E, Lanzaro F, Esposito M, Contino AM, Sbrocchi R, Sommella A, Duncan JD, Hinds J, Urbanowicz RA, Lahm A, Colloca S, Folgori A, Ball JK, Nicosia A, Wizel B, Capone S, Vitelli A. A next generation vaccine against human rabies based on a single dose of a chimpanzee adenovirus vector serotype C. PLoS Negl Trop Dis 2020; 14:e0008459. [PMID: 32667913 PMCID: PMC7363076 DOI: 10.1371/journal.pntd.0008459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies, caused by RNA viruses in the Genus Lyssavirus, is the most fatal of all infectious diseases. This neglected zoonosis remains a major public health problem in developing countries, causing the death of an estimated 25,000-159,000 people each year, with more than half of them in children. The high incidence of human rabies in spite of effective vaccines is mainly linked to the lack of compliance with the complicated administration schedule, inadequacies of the community public health system for local administration by the parenteral route and the overall costs of the vaccine. The goal of our work was the development of a simple, affordable and effective vaccine strategy to prevent human rabies virus infection. This next generation vaccine is based on a replication-defective chimpanzee adenovirus vector belonging to group C, ChAd155-RG, which encodes the rabies glycoprotein (G). We demonstrate here that a single dose of this vaccine induces protective efficacy in a murine model of rabies challenge and elicits strong and durable neutralizing antibody responses in vaccinated non-human primates. Importantly, we demonstrate that one dose of a commercial rabies vaccine effectively boosts the neutralizing antibody responses induced by ChAd155-RG in vaccinated monkeys, showing the compatibility of the novel vectored vaccine with the current post-exposure prophylaxis in the event of rabies virus exposure. Finally, we demonstrate that antibodies induced by ChAd155-RG can also neutralize European bat lyssaviruses 1 and 2 (EBLV-1 and EBLV-2) found in bat reservoirs.
Collapse
Affiliation(s)
| | | | | | | | - Emma Horncastle
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | | | | - Joshua D. Duncan
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jospeh Hinds
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard A. Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | - Jonathan K. Ball
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Benjamin Wizel
- GSK Vaccines, Rockville, Maryland, United States of America
| | | | | |
Collapse
|
25
|
Moreira AS, Silva AC, Sousa MFQ, Hagner-McWhirterc Å, Ahlénc G, Lundgren M, Coroadinha AS, Alves PM, Peixoto C, Carrondo MJT. Establishing Suspension Cell Cultures for Improved Manufacturing of Oncolytic Adenovirus. Biotechnol J 2020; 15:e1900411. [PMID: 31950598 DOI: 10.1002/biot.201900411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/08/2019] [Indexed: 12/28/2022]
Abstract
Recent clinical trials have shown the potential of oncolytic adenoviruses as a cancer immunotherapy. A successful transition of oncolytic adenovirus to clinical applications requires efficient and good manufacturing practice compatible production and purification bioprocesses. Suspension cultures are preferable for virus production as they can reduce process costs and increase product quality and consistency. This work describes the adaptation of the A549 cell line to suspension culture in serum-reduced medium validated by oncolytic adenovirus production in stirred tank bioreactor. Cell concentrations up to 3 × 106 cells mL-1 are obtained during the production process. At harvest 1.4 × 1010 infectious particles mL-1 and 6.9 ± 1.1 × 1010 viral genome mL-1 are obtained corresponding to a viral genome: infectious particles ratio of 5.2 (± 1.9): 1 confirming the virus quality. Overall, the suspension characteristics of these A549 cells support an easily scalable, less time-consuming, and more cost-effective process for expanded success in the use of oncolytic viruses for cancer therapy.
Collapse
Affiliation(s)
- Ana Sofia Moreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| | - Ana Carina Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal
| | - Marcos F Q Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| | | | - Gustaf Ahlénc
- GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84, Uppsala, Sweden
| | - Mats Lundgren
- GE Healthcare Bio-Sciences AB, Björkgatan 30, 751 84, Uppsala, Sweden
| | - Ana S Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Oeiras, 2780-157, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2775-412, Portugal
| |
Collapse
|
26
|
Arjmand B, Alavi-Moghadam S, Payab M, Goodarzi P, Sheikh Hosseini M, Tayanloo-Beik A, Rezaei-Tavirani M, Larijani B. GMP-Compliant Adenoviral Vectors for Gene Therapy. Methods Mol Biol 2020; 2286:237-250. [PMID: 32504293 DOI: 10.1007/7651_2020_284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recently, gene therapy as one of the most promising treatments can apply genes for incurable diseases treatment. In this context, vectors as gene delivery systems play a pivotal role in gene therapy procedure. Hereupon, viral vectors have been increasingly introduced as a hyper-efficient tools for gene therapy. Adenoviral vectors as one of the most common groups which are used in gene therapy have a high ability for humans. Indeed, they are not integrated into host genome. In other words, they can be adapted for direct transduction of recombinant proteins into targeted cells. Moreover, they have large packaging capacity and high levels of efficiency and expression. In accordance with translational pathways from the basic to the clinic, recombinant adenoviral vectors packaging must be managed under good manufacturing practice (GMP) principles before applying in clinical trials. Therein, in this chapter standard methods for manufacturing of GMP-compliant Adenoviral vectors for gene therapy have been introduced.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Motahareh Sheikh Hosseini
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Adenovectors encoding RSV-F protein induce durable and mucosal immunity in macaques after two intramuscular administrations. NPJ Vaccines 2019; 4:54. [PMID: 31885877 PMCID: PMC6925274 DOI: 10.1038/s41541-019-0150-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) can cause severe respiratory disease, yet a licensed vaccine is not available. We determined the immunogenicity of two homologous and one heterologous intramuscular prime-boost vaccination regimens using replication-incompetent adenoviral vectors of human serotype 26 and 35 (Ad26 and Ad35), expressing a prototype antigen based on the wild-type fusion (F) protein of RSV strain A2 in adult, RSV-naive cynomolgus macaques. All regimens induced substantial, boostable antibody responses that recognized the F protein in pre- and postfusion conformation, neutralized multiple strains of RSV, and persisted for at least 80 weeks. Vaccination induced durable systemic RSV-F-specific T-cell responses characterized mainly by CD4+ T cells expressing Th1-type cytokines, as well as RSV-F-specific CD4+ and CD8+ T cells, IgG, and IgA in the respiratory tract. Intramuscular immunization with Ad26 and 35 vectors thus is a promising approach for the development of an optimized RSV vaccine expected to induce long-lasting humoral and cellular immune responses that distribute systemically and to mucosal sites.
Collapse
|
28
|
Fooks AR, Banyard AC, Ertl HCJ. New human rabies vaccines in the pipeline. Vaccine 2019; 37 Suppl 1:A140-A145. [PMID: 30153997 PMCID: PMC6863069 DOI: 10.1016/j.vaccine.2018.08.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/17/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022]
Abstract
Rabies remains endemic in more than 150 countries. In 99% of human cases, rabies virus is transmitted by dogs. The disease, which is nearly always fatal, is preventable by vaccines given either before and/or after exposure to a rabid animal. Numerous factors including the high cost of vaccines, the relative complexity of post-exposure vaccination protocols requiring multiple doses of vaccine, which in cases of severe exposure have to be combined with a rabies immune globulin, lack of access to health care, and insufficient surveillance contribute to the estimated 59,000 human deaths caused by rabies each year. New, less expensive and more immunogenic rabies vaccines are needed together with improved surveillance and dog rabies control to reduce the death toll of human rabies. Here, we discuss new rabies vaccines that are in clinical and pre-clinical testing and evaluate their potential to replace current vaccines.
Collapse
|
29
|
Moleirinho MG, Rosa S, Carrondo MJT, Silva RJS, Hagner-McWhirter Å, Ahlén G, Lundgren M, Alves PM, Peixoto C. Clinical-Grade Oncolytic Adenovirus Purification Using Polysorbate 20 as an Alternative for Cell Lysis. Curr Gene Ther 2019; 18:366-374. [PMID: 30411681 PMCID: PMC6327138 DOI: 10.2174/1566523218666181109141257] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023]
Abstract
Introduction: Oncolytic virus therapy is currently considered as a promising therapeutic ap-proach for cancer treatment. Adenovirus is well-known and extensively characterized as an oncolytic agent. The increasing number of clinical trials using this virus generates the demand for the development of a well-established purification approach. Triton X-100 is commonly used in cell lysis buffer prepara-tions. The addition of this surfactant in the list of substances with the very high concern of the Registra-tion, Evaluation, Authorization and Restriction of Chemicals (REACH) regulation promoted the research for effective alternatives. Methods: In this work, a purification strategy for oncolytic adenovirus compatible with phase I clinical trials, using an approved surfactant – Polysorbate 20 was developed. The proposed downstream train, composed by clarification, concentration using tangential flow filtration, intermediate purification with anion exchange chromatography, followed by a second concentration and a final polishing step was evaluated for both Triton X-100 and Polysorbate 20 processes. The impact of cell lysis with Polysorb-ate20 and Triton X-100 for each downstream step was evaluated in terms of product recovery and impu-rities removal. Overall, 61 ± 4% of infectious viral particles were recovered. Depletion of host cell pro-teins and ds-DNA was 99.9% and 97.1%, respectively. Results & Conclusion: The results indicated that Polysorbate 20 can be used as a replacement for Triton X-100 during cell lysis with no impact on product recovery, potency, and purity. Moreover, the devel-oped process is scalable and able to provide a highly purified product to be used in phase I and II clinical trials.
Collapse
Affiliation(s)
- Mafalda G Moleirinho
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara Rosa
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal
| | - Ricardo J S Silva
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Gustaf Ahlén
- GE Healthcare Bio-Sciences AB, Bjorkgatan 30, 751 84 Uppsala, Sweden
| | - Mats Lundgren
- GE Healthcare Bio-Sciences AB, Bjorkgatan 30, 751 84 Uppsala, Sweden
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
30
|
Poorebrahim M, Sadeghi S, Fakhr E, Abazari MF, Poortahmasebi V, Kheirollahi A, Askari H, Rajabzadeh A, Rastegarpanah M, Linē A, Cid-Arregui A. Production of CAR T-cells by GMP-grade lentiviral vectors: latest advances and future prospects. Crit Rev Clin Lab Sci 2019; 56:393-419. [PMID: 31314617 DOI: 10.1080/10408363.2019.1633512] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) T-cells represent a paradigm shift in cancer immunotherapy and a new milestone in the history of oncology. In 2017, the Food and Drug Administration approved two CD19-targeted CAR T-cell therapies (Kymriah™, Novartis, and Yescarta™, Kite Pharma/Gilead Sciences) that have remarkable efficacy in some B-cell malignancies. The CAR approach is currently being evaluated in multiple pivotal trials designed for the immunotherapy of hematological malignancies as well as solid tumors. To generate CAR T-cells ex vivo, lentiviral vectors (LVs) are particularly appealing due to their ability to stably integrate relatively large DNA inserts, and to efficiently transduce both dividing and nondividing cells. This review discusses the latest advances and challenges in the design and production of CAR T-cells, and the good manufacturing practices (GMP)-grade production process of LVs used as a gene transfer vehicle. New developments in the application of CAR T-cell therapy are also outlined with particular emphasis on next-generation allogeneic CAR T-cells.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Solmaz Sadeghi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR , Tehran , Iran
| | - Elham Fakhr
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences , Tehran , Iran
| | - Vahdat Poortahmasebi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,Faculty of Medicine, Department of Bacteriology and Virology, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran , Tehran , Iran
| | - Hassan Askari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Rajabzadeh
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Malihe Rastegarpanah
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Aija Linē
- Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Angel Cid-Arregui
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR , Tehran , Iran.,Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
31
|
New Rabies Vaccines for Use in Humans. Vaccines (Basel) 2019; 7:vaccines7020054. [PMID: 31226750 PMCID: PMC6631309 DOI: 10.3390/vaccines7020054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Abstract
Although vaccines are available, rabies still claims more than 55,000 human lives each year. In most cases, rabies vaccines are given to humans after their exposure to a rabid animal; pre-exposure vaccination is largely reserved for humans at high risk for contacts with the virus. Most cases of human rabies are transmitted by dogs. Dog rabies control by mass canine vaccination campaigns combined with intensive surveillance programs has led to a decline of human rabies in many countries but has been unsuccessful in others. Animal vaccination programs are also not suited to control human rabies caused by bat transmission, which is common in some Central American countries. Alternatively, or in addition, more widespread pre-exposure vaccination, especially in highly endemic remote areas, could be implemented. With the multiple dose regimens of current vaccines, pre-exposure vaccination is not cost effective for most countries and this warrants the development of new rabies vaccines, which are as safe as current vaccines, but achieve protective immunity after a single dose, and most importantly, are less costly. This chapter discusses novel rabies vaccines that are in late stage pre-clinical testing or have undergone clinical testing and their potential for replacing current vaccines.
Collapse
|
32
|
Kawka K, Madadkar P, Umatheva U, Shoaebargh S, Medina MFC, Lichty BD, Ghosh R, Latulippe DR. Purification of therapeutic adenoviruses using laterally-fed membrane chromatography. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Thorne B, Takeya R, Vitelli F, Swanson X. Gene Therapy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:351-399. [PMID: 28289769 DOI: 10.1007/10_2016_53] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.
Collapse
Affiliation(s)
- Barb Thorne
- Thorne Bio-Consulting LLC, Sammamish, WA, USA
| | | | | | | |
Collapse
|
34
|
Fedosyuk S, Merritt T, Peralta-Alvarez MP, Morris SJ, Lam A, Laroudie N, Kangokar A, Wright D, Warimwe GM, Angell-Manning P, Ritchie AJ, Gilbert SC, Xenopoulos A, Boumlic A, Douglas AD. Simian adenovirus vector production for early-phase clinical trials: A simple method applicable to multiple serotypes and using entirely disposable product-contact components. Vaccine 2019; 37:6951-6961. [PMID: 31047679 PMCID: PMC6949866 DOI: 10.1016/j.vaccine.2019.04.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022]
Abstract
A variety of Good Manufacturing Practice (GMP) compliant processes have been reported for production of non-replicating adenovirus vectors, but important challenges remain. Most clinical development of adenovirus vectors now uses simian adenoviruses or rare human serotypes, whereas reported manufacturing processes mainly use serotypes such as AdHu5 which are of questionable relevance for clinical vaccine development. Many clinically relevant vaccine transgenes interfere with adenovirus replication, whereas most reported process development uses selected antigens or even model transgenes such as fluorescent proteins which cause little such interference. Processes are typically developed for a single adenovirus serotype - transgene combination, requiring extensive further optimization for each new vaccine. There is a need for rapid production platforms for small GMP batches of non-replicating adenovirus vectors for early-phase vaccine trials, particularly in preparation for response to emerging pathogen outbreaks. Such platforms must be robust to variation in the transgene, and ideally also capable of producing adenoviruses of more than one serotype. It is also highly desirable for such processes to be readily implemented in new facilities using commercially available single-use materials, avoiding the need for development of bespoke tools or cleaning validation, and for them to be readily scalable for later-stage studies. Here we report the development of such a process, using single-use stirred-tank bioreactors, a transgene-repressing HEK293 cell - promoter combination, and fully single-use filtration and ion exchange components. We demonstrate applicability of the process to candidate vaccines against rabies, malaria and Rift Valley fever, each based on a different adenovirus serotype. We compare performance of a range of commercially available ion exchange media, including what we believe to be the first published use of a novel media for adenovirus purification (NatriFlo® HD-Q, Merck). We demonstrate the need for minimal process individualization for each vaccine, and that the product fulfils regulatory quality expectations. Cell-specific yields are at the upper end of those previously reported in the literature, and volumetric yields are in the range 1 × 1013 - 5 × 1013 purified virus particles per litre of culture, such that a 2-4 L process is comfortably adequate to produce vaccine for early-phase trials. The process is readily transferable to any GMP facility with the capability for mammalian cell culture and aseptic filling of sterile products.
Collapse
Affiliation(s)
- Sofiya Fedosyuk
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Thomas Merritt
- Clinical Biomanufacturing Facility, University of Oxford, Roosevelt Drive, Oxford OX3 7JT, UK
| | | | - Susan J Morris
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Ada Lam
- Millipore (UK) Ltd. Bedfont Cross, Stanwell Road, TW14 8NX Feltham, UK
| | - Nicolas Laroudie
- Millipore SAS, 39 Route Industrielle de la Hardt, Molsheim 67120, France
| | | | - Daniel Wright
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - George M Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; KEMRI-Wellcome Trust Research Programme, P.O. 230-80108 Kilifi, Kenya
| | - Phillip Angell-Manning
- Clinical Biomanufacturing Facility, University of Oxford, Roosevelt Drive, Oxford OX3 7JT, UK
| | - Adam J Ritchie
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sarah C Gilbert
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Alex Xenopoulos
- EMD Millipore Corporation, 80 Ashby Road, Bedford, MA 01730, USA
| | - Anissa Boumlic
- Millipore SAS, 39 Route Industrielle de la Hardt, Molsheim 67120, France
| | - Alexander D Douglas
- Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
35
|
Turnbull J, Wright B, Green NK, Tarrant R, Roberts I, Hardick O, Bracewell DG. Adenovirus 5 recovery using nanofiber ion‐exchange adsorbents. Biotechnol Bioeng 2019; 116:1698-1709. [DOI: 10.1002/bit.26972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/29/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jordan Turnbull
- Department of Biochemical EngineeringUniversity College LondonLondon United Kingdom
| | - Bernice Wright
- Department of Biochemical EngineeringUniversity College LondonLondon United Kingdom
| | - Nicola K. Green
- Clinical BioManufacturing FacilityUniversity of OxfordOxford United Kingdom
| | - Richard Tarrant
- Clinical BioManufacturing FacilityUniversity of OxfordOxford United Kingdom
| | - Iwan Roberts
- Puridify, Stevenage Bioscience CatalystStevenage United Kingdom
| | - Oliver Hardick
- Puridify, Stevenage Bioscience CatalystStevenage United Kingdom
| | - Daniel G. Bracewell
- Department of Biochemical EngineeringUniversity College LondonLondon United Kingdom
| |
Collapse
|
36
|
Optimization of Early Steps in Oncolytic Adenovirus ONCOS-401 Production in T-175 and HYPERFlasks. Int J Mol Sci 2019; 20:ijms20030621. [PMID: 30709038 PMCID: PMC6387112 DOI: 10.3390/ijms20030621] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Oncolytic adenoviruses can trigger lysis of tumor cells, induce an antitumor immune response, bypass classical chemotherapeutic resistance strategies of tumors, and provide opportunities for combination strategies. A major challenge is the development of scalable production methods for viral seed stocks and sufficient quantities of clinical grade viruses. Because of promising clinical signals in a compassionate use program (Advanced Therapy Access Program) which supported further development, we chose the oncolytic adenovirus ONCOS-401 as a testbed for a new approach to scale up. We found that the best viral production conditions in both T-175 flasks and HYPERFlasks included A549 cells grown to 220,000 cells/cm² (80% confluency), with ONCOS-401 infection at 30 multiplicity of infection (MOI), and an incubation period of 66 h. The Lysis A harvesting method with benzonase provided the highest viral yield from both T-175 and HYPERFlasks (10,887 ± 100 and 14,559 ± 802 infectious viral particles/cell, respectively). T-175 flasks and HYPERFlasks produced up to 2.1 × 10⁸ ± 0.2 and 1.75 × 10⁸ ± 0.08 infectious particles of ONCOS-401 per cm² of surface area, respectively. Our findings suggest a suitable stepwise process that can be applied to optimizing the initial production of other oncolytic viruses.
Collapse
|
37
|
Lau CH, Suh Y. In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Res 2018; 27:489-509. [PMID: 30284145 PMCID: PMC6261694 DOI: 10.1007/s11248-018-0096-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/25/2018] [Indexed: 01/11/2023]
Abstract
The rapid advancement of CRISPR technology has enabled targeted epigenome editing and transcriptional modulation in the native chromatin context. However, only a few studies have reported the successful editing of the epigenome in adult animals in contrast to the rapidly growing number of in vivo genome editing over the past few years. In this review, we discuss the challenges facing in vivo epigenome editing and new strategies to overcome the huddles. The biggest challenge has been the difficulty in packaging dCas9 fusion proteins required for manipulation of epigenome into the adeno-associated virus (AAV) delivery vehicle. We review the strategies to address the AAV packaging issue, including small dCas9 orthologues, truncated dCas9 mutants, a split-dCas9 system, and potent truncated effector domains. We discuss the dCas9 conjugation strategies to recruit endogenous chromatin modifiers and remodelers to specific genomic loci, and recently developed methods to recruit multiple copies of the dCas9 fusion protein, or to simultaneous express multiple gRNAs for robust epigenome editing or synergistic transcriptional modulation. The use of Cre-inducible dCas9-expressing mice or a genetic cross between dCas9- and sgRNA-expressing flies has also helped overcome the transgene delivery issue. We provide perspective on how a combination use of these strategies can facilitate in vivo epigenome editing and transcriptional modulation.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
38
|
Duplisea JJ, Mokkapati S, Plote D, Schluns KS, McConkey DJ, Yla-Herttuala S, Parker NR, Dinney CP. The development of interferon-based gene therapy for BCG unresponsive bladder cancer: from bench to bedside. World J Urol 2018; 37:2041-2049. [PMID: 30415317 DOI: 10.1007/s00345-018-2553-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE BCG unresponsive bladder cancer is an inherently resistant disease state for which the preferred treatment is radical cystectomy. To date, no effective intravesical therapies exist for patients who possess these resistant tumors. For this reason, many research groups are actively investigating/testing novel therapeutic agents to aid in bladder preservation for this patient population. This review article describes our 15-year experience developing and testing IFN-based gene therapy. METHODS A comprehensive review was performed of all studies pertaining to IFN-based gene therapy for non-muscle invasive bladder cancer from 2003 to 2018. RESULTS AND CONCLUSIONS Over the past two decades, gene therapy has evolved into a powerful tool in our fight against cancer. After overcoming the initial barriers associated with gene delivery to the bladder, we have made significant strides forward in developing this novel therapeutic strategy for the treatment of this inherently resistant disease state. Our results to date are very encouraging; however, much work lies ahead to better understand and optimize this novel approach for treating non-muscle invasive bladder.
Collapse
Affiliation(s)
- Jonathan J Duplisea
- Department of Urology, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd Floor 7, Houston, TX, 77030, USA
| | - Sharada Mokkapati
- Department of Urology, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd Floor 7, Houston, TX, 77030, USA
| | - Devin Plote
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimberly S Schluns
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David J McConkey
- James Buchanan Brady Urological Institute, Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Seppo Yla-Herttuala
- A.I.Virtanen Institute, University of Eastern Finland and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | | | - Colin P Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, 1220 Holcombe Blvd Floor 7, Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Wang C, Dulal P, Zhou X, Xiang Z, Goharriz H, Banyard A, Green N, Brunner L, Ventura R, Collin N, Draper SJ, Hill AVS, Ashfield R, Fooks AR, Ertl HC, Douglas AD. A simian-adenovirus-vectored rabies vaccine suitable for thermostabilisation and clinical development for low-cost single-dose pre-exposure prophylaxis. PLoS Negl Trop Dis 2018; 12:e0006870. [PMID: 30372438 PMCID: PMC6224154 DOI: 10.1371/journal.pntd.0006870] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Estimates of current global rabies mortality range from 26,000 to 59,000 deaths per annum. Although pre-exposure prophylaxis using inactivated rabies virus vaccines (IRVs) is effective, it requires two to three doses and is regarded as being too expensive and impractical for inclusion in routine childhood immunization programmes. METHODOLOGY/ PRINCIPAL FINDINGS Here we report the development of a simian-adenovirus-vectored rabies vaccine intended to enable cost-effective population-wide pre-exposure prophylaxis against rabies. ChAdOx2 RabG uses the chimpanzee adenovirus serotype 68 (AdC68) backbone previously shown to achieve pre-exposure protection against rabies in non-human primates. ChAdOx2 differs from AdC68 in that it contains the human adenovirus serotype 5 (AdHu5) E4 orf6/7 region in place of the AdC68 equivalents, enhancing ease of manufacturing in cell lines which provide AdHu5 E1 proteins in trans. We show that immunogenicity of ChAdOx2 RabG in mice is comparable to that of AdC68 RabG and other adenovirus serotypes expressing rabies virus glycoprotein. High titers of rabies virus neutralizing antibody (VNA) are elicited after a single dose. The relationship between levels of VNA activity and rabies virus glycoprotein monomer-binding antibody differs after immunization with adenovirus-vectored vaccines and IRV vaccines, suggesting routes to further enhancement of the efficacy of the adenovirus-vectored candidates. We also demonstrate that ChAdOx2 RabG can be thermostabilised using a low-cost method suitable for clinical bio-manufacture and ambient-temperature distribution in tropical climates. Finally, we show that a dose-sparing effect can be achieved by formulating ChAdOx2 RabG with a simple chemical adjuvant. This approach could lower the cost of ChAdOx2 RabG and other adenovirus-vectored vaccines. CONCLUSIONS/ SIGNIFICANCE ChAdOx2 RabG may prove to be a useful tool to reduce the human rabies death toll. We have secured funding for Good Manufacturing Practice- compliant bio-manufacture and Phase I clinical trial of this candidate.
Collapse
Affiliation(s)
- Chuan Wang
- Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Pawan Dulal
- Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Xiangyang Zhou
- Wistar Institute of Anatomy & Biology, Philadelphia, Pennsylvania, United States of America
| | - Zhiquan Xiang
- Wistar Institute of Anatomy & Biology, Philadelphia, Pennsylvania, United States of America
| | - Hooman Goharriz
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector-borne Diseases Research Group, New Haw, Surrey, United Kingdom
| | - Ashley Banyard
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector-borne Diseases Research Group, New Haw, Surrey, United Kingdom
| | - Nicky Green
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Livia Brunner
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Roland Ventura
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Simon J. Draper
- Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Adrian V. S. Hill
- Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Rebecca Ashfield
- Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Anthony R. Fooks
- Animal and Plant Health Agency (APHA), Wildlife Zoonoses and Vector-borne Diseases Research Group, New Haw, Surrey, United Kingdom
| | - Hildegund C. Ertl
- Wistar Institute of Anatomy & Biology, Philadelphia, Pennsylvania, United States of America
| | - Alexander D. Douglas
- Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| |
Collapse
|
40
|
Adenoviral vector type 26 encoding Zika virus (ZIKV) M-Env antigen induces humoral and cellular immune responses and protects mice and nonhuman primates against ZIKV challenge. PLoS One 2018; 13:e0202820. [PMID: 30142207 PMCID: PMC6108497 DOI: 10.1371/journal.pone.0202820] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023] Open
Abstract
In 2015, there was a large outbreak of Zika virus (ZIKV) in Brazil. Despite its relatively mild impact on healthy adults, ZIKV infection during pregnancy has been associated with severe birth defects. Currently, there is no ZIKV vaccine available, but several vaccine candidates based on the ZIKV membrane (M) and envelope (Env) structural proteins showed promising results in preclinical and clinical studies. Here, the immunogenicity and protective efficacy of a non-replicating adenoviral vector type 26 (Ad26) that encodes the ZIKV M-Env antigens (Ad26.ZIKV.M-Env) was evaluated in mice and non-human primates (NHP). Ad26.ZIKV.M-Env induced strong and durable cellular and humoral immune responses in preclinical models. Humoral responses were characterized by Env-binding and ZIKV neutralizing antibody responses while cellular responses were characterized by ZIKV reactive CD4+ and CD8+ T cells. Importantly, a single immunization with a very low dose of 4x107 vp of Ad26.ZIKV.M-Env protected mice from ZIKV challenge. In NHP, a single immunization with a typical human dose of 1x1011 vp of Ad26.ZIKV.M-Env also induced Env-binding and ZIKV neutralizing antibodies and Env and M specific cellular immune responses that associated with complete protection against viremia from ZIKV challenge as measured in plasma and other body fluids. Together these data provide the rationale to progress the Ad26.ZIKV.M-Env candidate vaccine to clinical testing.
Collapse
|
41
|
Progress in Adenoviral Capsid-Display Vaccines. Biomedicines 2018; 6:biomedicines6030081. [PMID: 30049954 PMCID: PMC6165093 DOI: 10.3390/biomedicines6030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Adenoviral vectored vaccines against infectious diseases are currently in clinical trials due to their capacity to induce potent antigen-specific B- and T-cell immune responses. Heterologous prime-boost vaccination with adenoviral vector and, for example, adjuvanted protein-based vaccines can further enhance antigen-specific immune responses. Although leading to potent immune responses, these heterologous prime-boost regimens may be complex and impact manufacturing costs limiting efficient implementation. Typically, adenoviral vectors are engineered to genetically encode a transgene in the E1 region and utilize the host cell machinery to express the encoded antigen and thereby induce immune responses. Similarly, adenoviral vectors can be engineered to display foreign immunogenic peptides on the capsid-surface by insertion of antigens in capsid proteins hexon, fiber and protein IX. The ability to use adenoviral vectors as antigen-display particles, with or without using the genetic vaccine function, greatly increases the versatility of the adenoviral vector for vaccine development. This review describes the application of adenoviral capsid antigen-display vaccine vectors by focusing on their distinct advantages and possible limitations in vaccine development.
Collapse
|
42
|
Adenovirus based HPV L2 vaccine induces broad cross-reactive humoral immune responses. Vaccine 2018; 36:4462-4470. [DOI: 10.1016/j.vaccine.2018.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/06/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022]
|
43
|
Sharon D, Kamen A. Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol Bioeng 2017; 115:25-40. [PMID: 28941274 DOI: 10.1002/bit.26461] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 01/22/2023]
Abstract
The last 10 years have seen a rapid expansion in the use of viral gene transfer vectors, with approved therapies and late stage clinical trials underway for the treatment of genetic disorders, and multiple forms of cancer, as well as prevention of infectious diseases through vaccination. With this increased interest and widespread adoption of viral vectors by clinicians and biopharmaceutical industries, there is an imperative to engineer safer and more efficacious vectors, and develop robust, scalable and cost-effective production platforms for industrialization. This review will focus on major innovations in viral vector design and production systems for three of the most widely used viral vectors: Adenovirus, Adeno-Associated Virus, and Lentivirus.
Collapse
Affiliation(s)
- David Sharon
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Vujadinovic M, Wunderlich K, Callendret B, Koning M, Vermeulen M, Sanders B, van der Helm E, Gecgel A, Spek D, de Boer K, Stalknecht M, Serroyen J, Grazia Pau M, Schuitemaker H, Zahn R, Custers J, Vellinga J. Adenoviral Type 35 and 26 Vectors with a Bidirectional Expression Cassette in the E1 Region Show an Improved Genetic Stability Profile and Potent Transgene-Specific Immune Response. Hum Gene Ther 2017; 29:337-351. [PMID: 28816084 DOI: 10.1089/hum.2017.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic vaccines based on replication-incompetent adenoviral (AdV) vectors are currently in clinical development. Monovalent AdV vectors express one antigen from an expression cassette placed in most cases in the E1 region. For many vaccines, inclusion of several antigens is necessary in order to raise protective immunity and/or target more than one pathogen or pathogen strain. On the basis of the current technology, a mix of several monovalent vectors can be employed. However, a mix of the standard monovalent AdV vectors may not be optimal with respect to manufacturing costs and the final dose per vector in humans. Alternatively, a variety of bivalent recombinant AdV vector approaches is described in the literature. It remains unclear whether all strategies are equally suitable for clinical development while preserving all the beneficial properties of the monovalent AdV (e.g., immunogenic potency). Therefore, a thorough assessment of different bivalent AdV strategies was performed in a head-to-head fashion compared with the monovalent benchmark. The vectors were tested for rescue efficiency, genetic stability, transgene expression, and potency to induce transgene-specific immune responses. We report that the vector expressing multiple antigens from a bidirectional expression cassette in E1 shows a better genetic stability profile and a potent transgene-specific immune response compared with the other tested bivalent vectors.
Collapse
Affiliation(s)
- Marija Vujadinovic
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Kerstin Wunderlich
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Benoit Callendret
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Marina Koning
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Mark Vermeulen
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Barbara Sanders
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Esmeralda van der Helm
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Adile Gecgel
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Dirk Spek
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Karin de Boer
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Masha Stalknecht
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Maria Grazia Pau
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Hanneke Schuitemaker
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Roland Zahn
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jerome Custers
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| | - Jort Vellinga
- Janssen Vaccines and Prevention, Janssen Pharmaceutical Companies of Johnson & Johnson , Leiden, the Netherlands
| |
Collapse
|
45
|
Khan S, Oosterhuis K, Wunderlich K, Bunnik EM, Bhaggoe M, Boedhoe S, Karia S, Steenbergen RDM, Bosch L, Serroyen J, Janssen S, Schuitemaker H, Vellinga J, Scheper G, Zahn R, Custers J. Development of a replication-deficient adenoviral vector-based vaccine candidate for the interception of HPV16- and HPV18-induced infections and disease. Int J Cancer 2017; 141:393-404. [PMID: 28263390 DOI: 10.1002/ijc.30679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 01/02/2023]
Abstract
High-risk Human papilloma virus (HPV) types are the causative agents of cervical cancer and several other anogenital malignancies. The viral proteins expressed in the (pre)malignant cells are considered ideal targets for immunological intervention. Many approaches have been evaluated for this purpose, mostly aiming at the induction of HPV16 E7- and/or E6-specific cellular immunogenicity. As clinical success has so far been limited, novel approaches are required. We describe the development and pre-clinical testing of a vaccine candidate consisting of replication-deficient adenovirus type 26 and 35 based vectors for the interception of HPV16- and HPV18-related disease. We developed HPV16- and HPV18-specific antigens consisting of fusion proteins of E2, E6 and E7. The vaccine will be suitable for every disease stage, from incident and persistent infections where E2 is predominantly expressed up to late stages where E6 and E7 expression are upregulated. Importantly E6 and E7 are present as reordered fragments to abrogate the transforming activity of these two proteins. Loss of transforming activity was demonstrated in different in vitro models. Robust T-cell immunogenicity was induced upon immunization of mice with the vaccine candidate. Finally, the developed vaccine vectors showed considerable therapeutic efficacy in the TC-1 mouse model. The absence of transforming activity of the antigens and the favorable immunogenicity profile of the adenovirus based vectors along with the fact that these vectors can be readily produced on a large scale makes this approach attractive for clinical evaluation.
Collapse
Affiliation(s)
- Selina Khan
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Koen Oosterhuis
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | | | - Evelien M Bunnik
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Melissa Bhaggoe
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Satish Boedhoe
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Santusha Karia
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | | | - Leontien Bosch
- Department of Pathology, VU University Medical Center Amsterdam, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Sarah Janssen
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | | | - Jort Vellinga
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Gert Scheper
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| | - Jerome Custers
- Janssen Vaccines and Preventions BV, CA, Leiden, The Netherlands
| |
Collapse
|
46
|
Ruščić J, Ambriović-Ristov A, Majhen D, Kolundžija S, Barut M, Benihoud K, Krajačić M. Manipulating adenoviral vector ion-exchange chromatography: Hexon versus fiber. J Sep Sci 2016; 39:4299-4304. [DOI: 10.1002/jssc.201600829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jelena Ruščić
- Department of Biology, Faculty of Science; University of Zagreb; Zagreb Croatia
| | - Andreja Ambriović-Ristov
- Division of Molecular Biology, Laboratory for Cell Biology and Signaling; Ruđer Bošković Institute; Zagreb Croatia
| | - Dragomira Majhen
- Division of Molecular Biology, Laboratory for Cell Biology and Signaling; Ruđer Bošković Institute; Zagreb Croatia
| | - Sandra Kolundžija
- Department of Biology, Faculty of Science; University of Zagreb; Zagreb Croatia
| | | | - Karim Benihoud
- Univ Paris-Sud; Orsay Cedex France
- CNRS UMR 8203, Vectorologie et thérapeutiques anticancéreuses; Gustave Roussy; Villejuif Cedex France
| | - Mladen Krajačić
- Department of Biology, Faculty of Science; University of Zagreb; Zagreb Croatia
| |
Collapse
|
47
|
Ewer KJ, Lambe T, Rollier CS, Spencer AJ, Hill AVS, Dorrell L. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr Opin Immunol 2016; 41:47-54. [DOI: 10.1016/j.coi.2016.05.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
|
48
|
Allen AB, Butts EB, Copland IB, Stevens HY, Guldberg RE. Human platelet lysate supplementation of mesenchymal stromal cell delivery: issues of xenogenicity and species variability. J Tissue Eng Regen Med 2016; 11:2876-2884. [PMID: 27339032 DOI: 10.1002/term.2191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 01/10/2023]
Abstract
Immunogenicity of fetal bovine serum (FBS) poses a problem for its use in the propagation of autologous mesenchymal stromal cells (MSCs) for cell therapy. Human platelet lysate (hPL), an enriched growth factor solution containing mitogenic and angiogenic cues, has potential utility in replacing FBS for human MSC (hMSC) delivery strategies. Despite its potentiation of hMSC number in vitro, little is known concerning its capacity to supplement implanted hMSC-seeded constructs and promote tissue regeneration in vivo. In this study, we tested the effects of incorporating hPL in cell-seeded constructs implanted subcutaneously into immunocompromised rats, investigated in vitro interactions between hPL and rat MSCs (rMSCs) and determined interspecies variability in the PL product [hPL vs rat PL (rPL)] and its effect on cultured MSCs (hPL/hMSCs vs rPL/rMSCs). The overarching aim was to determine the utility of hPL to foster MSC survival in preclinical rodent models. Exposure to hPL-supplemented media resulted in rMSC death, by a process attributable to heat-labile proteins, but not membrane attack complex formation. In the in vitro syngeneic model, the rodent product proved fundamentally distinct from the human product, with rPL having substantially lower growth factor content than hPL. Moreover, contrary to the positive effects of hPL on hMSC expansion, rPL did not reduce rMSC doubling time for the serum concentrations examined. When tested in vivo, hPL did not improve cell survival within hydrogel constructs through 2 weeks postimplantation. In summary, this study highlights the many facets of xenogenicity and interspecies variability that must be considered in the preclinical evaluation of hPL. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ashley B Allen
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emily B Butts
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ian B Copland
- Department of Haematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hazel Y Stevens
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
49
|
Lesch HP, Heikkilä KM, Lipponen EM, Valonen P, Müller A, Räsänen E, Tuunanen T, Hassinen MM, Parker N, Karhinen M, Shaw R, Ylä-Herttuala S. Process Development of Adenoviral Vector Production in Fixed Bed Bioreactor: From Bench to Commercial Scale. Hum Gene Ther 2016; 26:560-71. [PMID: 26176404 DOI: 10.1089/hum.2015.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Large-scale vector manufacturing for phase III and beyond has proven to be challenging. Upscaling the process with suspension cells is increasingly feasible, but many viral production applications are still applicable only in adherent settings. Scaling up the adherent system has proven to be troublesome. The iCELLis(®) disposable fixed-bed bioreactors offer a possible option for viral vector manufacturing in large quantities in an adherent environment. In this study, we have optimized adenovirus serotype 5 manufacturing using iCELLis Nano with a cultivation area up to 4 m(2). HEK293 cell cultivation, infection, and harvest of the virus (by lysing the cells inside the bioreactor) proved possible, reaching total yield of up to 1.6×10(14) viral particles (vp)/batch. The iCELLis 500 is designed to satisfy demand for large-scale requirements. Inoculating a large quantity of cell mass into the iCELLis 500 was achieved by first expanding the cell mass in suspension. Upscaling the process into an iCELLis 500/100 m(2) cultivation area cassette was practical and produced up to 6.1×10(15) vp. Flask productivity per cm(2) in iCELLis Nano and iCELLis 500 was in the same range. As a conclusion, we showed for the first time that iCELLis 500 equipment has provided an effective way to manufacture large batches of adenoviral vectors.
Collapse
Affiliation(s)
- Hanna P Lesch
- 1 FKD Therapies, Kuopio, Finland.,2 FinVector Vision Therapies, Kuopio, Finland.,3 A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland , Kuopio, Finland
| | | | - Eevi M Lipponen
- 1 FKD Therapies, Kuopio, Finland.,2 FinVector Vision Therapies, Kuopio, Finland
| | | | | | - Eva Räsänen
- 2 FinVector Vision Therapies, Kuopio, Finland
| | | | - Minna M Hassinen
- 1 FKD Therapies, Kuopio, Finland.,2 FinVector Vision Therapies, Kuopio, Finland
| | - Nigel Parker
- 1 FKD Therapies, Kuopio, Finland.,2 FinVector Vision Therapies, Kuopio, Finland
| | | | - Robert Shaw
- 1 FKD Therapies, Kuopio, Finland.,2 FinVector Vision Therapies, Kuopio, Finland.,3 A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland , Kuopio, Finland
| | - Seppo Ylä-Herttuala
- 3 A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland , Kuopio, Finland.,4 Science Service Center and Gene Therapy Unit, Kuopio University Hospital , Kuopio, Finland
| |
Collapse
|
50
|
Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16018. [PMID: 27088104 PMCID: PMC4822647 DOI: 10.1038/mtm.2016.18] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/13/2022]
Abstract
Oncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation. Thus, manufacturing processes and regulatory approval paths need to be established for each OV individually. This review provides an overview of clinical-grade manufacturing procedures for OVs using six virus families as examples, and key challenges are discussed individually. For example, different virus features with respect to particle size, presence/absence of an envelope, and host species imply specific requirements for measures to ensure sterility, for handling, and for determination of appropriate animal models for toxicity testing, respectively. On the other hand, optimization of serum-free culture conditions, increasing virus yields, development of scalable purification strategies, and formulations guaranteeing long-term stability are challenges common to several if not all OVs. In light of the recent marketing approval of the first OV in the Western world, strategies for further upscaling OV manufacturing and optimizing product characterization will receive increasing attention.
Collapse
|