1
|
Hamada M, Varkoly KS, Riyadh O, Beladi R, Munuswamy-Ramanujam G, Rawls A, Wilson-Rawls J, Chen H, McFadden G, Lucas AR. Urokinase-Type Plasminogen Activator Receptor (uPAR) in Inflammation and Disease: A Unique Inflammatory Pathway Activator. Biomedicines 2024; 12:1167. [PMID: 38927374 PMCID: PMC11201033 DOI: 10.3390/biomedicines12061167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a unique protease binding receptor, now recognized as a key regulator of inflammation. Initially, uPA/uPAR was considered thrombolytic (clot-dissolving); however, recent studies have demonstrated its predominant immunomodulatory functions in inflammation and cancer. The uPA/uPAR complex has a multifaceted central role in both normal physiological and also pathological responses. uPAR is expressed as a glycophosphatidylinositol (GPI)-linked receptor interacting with vitronectin, integrins, G protein-coupled receptors, and growth factor receptors within a large lipid raft. Through protein-to-protein interactions, cell surface uPAR modulates intracellular signaling, altering cellular adhesion and migration. The uPA/uPAR also modifies extracellular activity, activating plasminogen to form plasmin, which breaks down fibrin, dissolving clots and activating matrix metalloproteinases that lyse connective tissue, allowing immune and cancer cell invasion and releasing growth factors. uPAR is now recognized as a biomarker for inflammatory diseases and cancer; uPAR and soluble uPAR fragments (suPAR) are increased in viral sepsis (COVID-19), inflammatory bowel disease, and metastasis. Here, we provide a comprehensive overview of the structure, function, and current studies examining uPAR and suPAR as diagnostic markers and therapeutic targets. Understanding uPAR is central to developing diagnostic markers and the ongoing development of antibody, small-molecule, nanogel, and virus-derived immune-modulating treatments that target uPAR.
Collapse
Affiliation(s)
- Mostafa Hamada
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Kyle Steven Varkoly
- Department of Internal Medicine, McLaren Macomb Hospital, Michigan State University College of Human Medicine, 1000 Harrington St., Mt Clemens, MI 48043, USA
| | - Omer Riyadh
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Roxana Beladi
- Department of Neurosurgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, 16001 W Nine Mile Rd, Southfield, MI 48075, USA;
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Alan Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Hao Chen
- Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Grant McFadden
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| |
Collapse
|
2
|
Ridley RB, Bowman BM, Lee J, Walsh E, Massengill MT, Lewin AS, Ildefonso CJ. Modulation of Retinal Inflammation Delays Degeneration in a Mouse Model of Geographic Atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527757. [PMID: 36798403 PMCID: PMC9934704 DOI: 10.1101/2023.02.08.527757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The advanced form of AMD, geographic atrophy, is associated with increased RPE oxidative stress and chronic inflammation. Here we evaluated the effects of delivering an anti-inflammatory viral gene by an AAV-vector in a mouse model of geographic atrophy. We measured changes in retinal function, structure, and morphology over nine months with electroretinography, optical coherence tomography, and fundoscopy, respectively. In addition, we used retinal tissue to quantify changes in markers of inflammation by multiplex ELISA, RT-qPCR, and immunofluorescence staining. Our AAV significantly delayed the loss of retinal function and structure and decreased retinal inflammation compared to the control AAV treatment. Our results suggest that modulating retinal inflammation could significantly slow the progression of geographic atrophy.
Collapse
|
3
|
Xiao X, Liu Z, Su G, Liu H, Yin W, Guan Y, Jing S, Du L, Li F, Li N, Yang P. A novel uveitis model induced by lipopolysaccharide in zebrafish. Front Immunol 2022; 13:1042849. [PMID: 36532084 PMCID: PMC9751191 DOI: 10.3389/fimmu.2022.1042849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Endotoxin-induced uveitis (EIU) is an important tool for human uveitis study. This study was designed to develop a novel EIU model in zebrafish. Methods An EIU model in zebrafish was induced by intravitreal lipopolysaccharide (LPS) injection and was assessed dynamically. Optical coherence tomography (OCT) was used to assess infiltrating cells in the vitreous body. The histological changes wereevaluated using HE staining and immune cells were measured by immunofluorescence. The retinal RNA Sequencing (RNA-Seq) was used to explore the transcriptional changes during inflammation. RNA-Seq data were analyzed using time-course sequencing data analysis (TCseq), ClueGO plugin in Cytoscape, and Gene Set Enrichment Analysis (GSEA) software. Flow cytometry and retinal flat mounts were used to dynamically quantify the immune cells. Results EIU was successfully induced in zebrafish following intravitreal LPS injection. Inflammation appeared at 4 hours post injection (hpi), reached its peak at 24 hpi, and then resolved at 72 hpi. Immunofluorescence confirmed that massive influx ofneutrophils into the iris and vitreous body, and activation of microglia as evidenced by ameboid-shaped appearance in the retina. Retinal RNA-seq during the EIU course identified four gene clusters with distinct expression characteristics related to Toll-likereceptor signaling pathway, cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and extracellular matrix (ECM)-receptor interaction, respectively. Prednisone immersion inhibited the inflammatory response of EIU in zebrafish, whichwas confirmed by decreased neutrophils detected in flow cytometry and retinal flat mounts. Conclusions We developed a novel EIU model in zebrafish, which may be particularly useful for gene-editing and high-throughput screening of new drugs for the prevention and treatment of uveitis.
Collapse
Affiliation(s)
- Xiao Xiao
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangluxi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Huan Liu
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhui Yin
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxuan Guan
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixiang Jing
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Du
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuzhen Li
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Li
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peizeng Yang
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China,*Correspondence: Peizeng Yang,
| |
Collapse
|
4
|
Chen M, Rong R, Xia X. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation 2022; 19:183. [PMID: 35836195 PMCID: PMC9281180 DOI: 10.1186/s12974-022-02547-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pyroptosis is a programmed cell death characterized by swift plasma membrane disruption and subsequent release of cellular contents and pro-inflammatory mediators (cytokines), including IL‐1β and IL‐18. It differs from other types of programmed cell death such as apoptosis, autophagy, necroptosis, ferroptosis, and NETosis in terms of its morphology and mechanism. As a recently discovered form of cell death, pyroptosis has been demonstrated to be involved in the progression of multiple diseases. Recent studies have also suggested that pyroptosis is linked to various ocular diseases. In this review, we systematically summarized and discussed recent scientific discoveries of the involvement of pyroptosis in common ocular diseases, including diabetic retinopathy, age-related macular degeneration, AIDS-related human cytomegalovirus retinitis, glaucoma, dry eye disease, keratitis, uveitis, and cataract. We also organized new and emerging evidence suggesting that pyroptosis signaling pathways may be potential therapeutic targets in ocular diseases, hoping to provide a summary of overall intervention strategies and relevant multi-dimensional evaluations for various ocular diseases, as well as offer valuable ideas for further research and development from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Meini Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Mugisho OO, Green CR. The NLRP3 inflammasome in age-related eye disease: Evidence-based connexin hemichannel therapeutics. Exp Eye Res 2021; 215:108911. [PMID: 34958779 DOI: 10.1016/j.exer.2021.108911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022]
Abstract
The inflammasome pathway is a fundamental component of the innate immune system, playing a key role especially in chronic age-related eye diseases (AREDs). The inflammasome is of particular interest because it is a common disease pathway that once instigated, can amplify and perpetuate itself leading to chronic inflammation. With aging, it becomes more difficult to shut down inflammation after an insult but the common pathway means that a shared solution may be feasible that could be effective across multiple disease indications. This review focusses on the NLRP3 inflammasome, the most studied and characterized inflammasome in the eye. It describes the two-step signalling required for NLRP3 inflammasome complex activation, and provides evidence for its role in AREDs. In the final section, the article gives an overview of potential NLRP3 inflammasome targeting therapies, before presenting evidence for connexin hemichannel regulators as upstream blockers of inflammasome activation. These have shown therapeutic efficacy in multiple ocular disease models.
Collapse
Affiliation(s)
- Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| | - Colin R Green
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
6
|
Croze RH, Kotterman M, Burns CH, Schmitt CE, Quezada M, Schaffer D, Kirn D, Francis P. Viral Vector Technologies and Strategies: Improving on Nature. Int Ophthalmol Clin 2021; 61:59-89. [PMID: 34196318 PMCID: PMC8253506 DOI: 10.1097/iio.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Xu Q, Zhang J, Qin T, Bao J, Dong H, Zhou X, Hou S, Mao L. The role of the inflammasomes in the pathogenesis of uveitis. Exp Eye Res 2021; 208:108618. [PMID: 33989670 DOI: 10.1016/j.exer.2021.108618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/05/2021] [Accepted: 05/05/2021] [Indexed: 01/01/2023]
Abstract
Uveitis is a diverse group of sight-threatening intraocular inflammatory diseases usually causing eye redness, pain, blurred vision, and sometimes blindness. Although the exact pathogenesis of uveitis is not yet clear, accumulating evidences have shown that an imbalanced regulation of immune responses caused by a combination of genetic and environmental factors are implicated in the pathogenesis of this disease. As critical regulators of inflammation, inflammasomes have been assumed to play a role in the pathogenesis of uveitis. Recent studies have reported the association between a number of genetic variants in inflammasome related genes (such as NLRP3, NLRP1, NLRC4 and AIM2) with increased risk to uveitis. Mounting evidence have shown an aberrant activation of the NLRP3 inflammasome in both uveitis patients and murine models of uveitis. Some studies explored the intervention of uveitis via modulating inflammasome activity in the eye. This review aims at summarizing the main findings of these studies, proposing the possible mechanism whereby inflammasomes affect the susceptibility to develop uveitis, and giving a perspective for future studies, which may further improve our understanding about the role of inflammasomes and related cytokines in the pathogenesis of uveitis, and may hopefully lead to new therapeutics by targeting inflammasomes.
Collapse
Affiliation(s)
- Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Tingyu Qin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Jingyin Bao
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, 226001, China
| | - Hongtao Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China.
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Eye Institute, Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, China.
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, China; Basic Medical Research Center, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Abstract
Viral diseases, whether of animals or humans, are normally considered as problems to be managed. However, in Australia, two viruses have been used as landscape-scale therapeutics to control European rabbits (Oryctolagus cuniculus), the preeminent invasive vertebrate pest species. Rabbits have caused major environmental and agricultural losses and contributed to extinction of native species. It was not until the introduction of Myxoma virus that effective control of this pest was obtained at a continental scale. Subsequent coevolution of rabbit and virus saw a gradual reduction in the effectiveness of biological control that was partially ameliorated by the introduction of the European rabbit flea to act as an additional vector for the virus. In 1995, a completely different virus, Rabbit hemorrhagic disease virus (RHDV), escaped from testing and spread through the Australian rabbit population and again significantly reduced rabbit numbers and environmental impacts. The evolutionary pressures on this virus appear to be producing quite different outcomes to those that occurred with myxoma virus and the emergence and invasion of a novel genotype of RHDV in 2014 have further augmented control. Molecular studies on myxoma virus have demonstrated multiple proteins that manipulate the host innate and adaptive immune response; however the molecular basis of virus attenuation and reversion to virulence are not yet understood.
Collapse
|
9
|
Xu B, Tang J, Lyu C, Wandu WS, Stumpo DJ, Mattapallil MJ, Horai R, Gery I, Blackshear PJ, Caspi RR. Regulated Tristetraprolin Overexpression Dampens the Development and Pathogenesis of Experimental Autoimmune Uveitis. Front Immunol 2021; 11:583510. [PMID: 33569048 PMCID: PMC7868398 DOI: 10.3389/fimmu.2020.583510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Non-infectious uveitis, a common cause of blindness in man, is often mediated by autoimmunity, a process in which cytokines play major roles. The biosynthesis and secretion of pro-inflammatory cytokines are regulated in part by tristetraprolin (TTP), an endogenous anti-inflammatory protein that acts by binding directly to specific sequence motifs in the 3'-untranslated regions of target mRNAs, promoting their turnover, and inhibiting synthesis of their encoded proteins. We recently developed a TTP-overexpressing mouse (TTPΔARE) by deleting an AU-rich element (ARE) instability motif from the TTP mRNA, resulting in increased accumulation of TTP mRNA and protein throughout the animal. Here, we show that homozygous TTPΔARE mice are resistant to the induction of experimental autoimmune uveitis (EAU) induced by interphotoreceptor retinoid-binding protein (IRBP), an established model for human autoimmune (noninfectious) uveitis. Lymphocytes from TTPΔARE mice produced lower levels of the pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and TNFα than wild type (WT) mice. TTPΔARE mice also produced lower titers of antibodies against the uveitogenic protein. In contrast, TTPΔARE mice produced higher levels of the anti-inflammatory cytokine IL-10, and had higher frequencies of regulatory T-cells, which, moreover, displayed a moderately higher per-cell regulatory ability. Heterozygous mice developed EAU and associated immunological responses at levels intermediate between homozygous TTPΔARE mice and WT controls. TTPΔARE mice were able, however, to develop EAU following adoptive transfer of activated WT T-cells specific to IRBP peptide 651-670, and naïve T-cells from TTPΔARE mice could be activated by antibodies to CD3/CD28. Importantly, TTPΔARE antigen presenting cells were significantly less efficient compared to WT in priming naïve T cells, suggesting that this feature plays a major role in the dampened immune responses of the TTPΔARE mice. Our observations demonstrate that elevated systemic levels of TTP can inhibit the pathogenic processes involved in EAU, and suggest the possible use of TTP-based treatments in humans with uveitis and other autoimmune conditions.
Collapse
Affiliation(s)
- Biying Xu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Jihong Tang
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Cancan Lyu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Wambui S Wandu
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Igal Gery
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.,Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
10
|
Raman KS, Matsubara JA. Dysregulation of the NLRP3 Inflammasome in Diabetic Retinopathy and Potential Therapeutic Targets. Ocul Immunol Inflamm 2020; 30:470-478. [PMID: 33026924 DOI: 10.1080/09273948.2020.1811350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Diabetic Retinopathy (DR) is an insidious neurovascular disorder secondary to chronic glycemic dysregulation in elderly diabetic patients. In the later stages of DR, the disease manifests as fluid infiltrating the macula, culminating in the leading cause of irreversible visual impairment in working age adults. With the current mainstay treatments preoccupied with slowing down the progression of DR, this presents an unsustainable solution from both an economic and quality of life perspective. Although the exact mechanisms by which hyperglycemia leads to retinal tissue insult are unknown, the evidence suggests that chronic low-grade inflammation in diabetic eye is in part driving the constellation of symptoms present in DR. Of the innate immune system within the eye, the NLR Family Pyrin Domain Containing 3 Inflammasome (NLRP3) has been identified in retinal cells as a causal factor in the pathogenesis of DR. Multiple pathways appear to be present in the diabetic eye that instigate prolonged activation of the NLRP3 which subsequently exerts its deleterious effects by upregulating the release of Interleukin-1Beta and Interleukin-18. In this review, we highlight the current understanding of the pathophysiology of DR, the dysregulation of the NLRP3 secondary to hyperglycemic stress in retinal cells, and novel therapeutic targets to alleviate overactivation of the inflammasome.
Collapse
Affiliation(s)
- Karanvir S Raman
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, Eye Care Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Yaron JR, Zhang L, Guo Q, Burgin M, Schutz LN, Awo E, Wise L, Krause KL, Ildefonso CJ, Kwiecien JM, Juby M, Rahman MM, Chen H, Moyer RW, Alcami A, McFadden G, Lucas AR. Deriving Immune Modulating Drugs from Viruses-A New Class of Biologics. J Clin Med 2020; 9:E972. [PMID: 32244484 PMCID: PMC7230489 DOI: 10.3390/jcm9040972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Viruses are widely used as a platform for the production of therapeutics. Vaccines containing live, dead and components of viruses, gene therapy vectors and oncolytic viruses are key examples of clinically-approved therapeutic uses for viruses. Despite this, the use of virus-derived proteins as natural sources for immune modulators remains in the early stages of development. Viruses have evolved complex, highly effective approaches for immune evasion. Originally developed for protection against host immune responses, viral immune-modulating proteins are extraordinarily potent, often functioning at picomolar concentrations. These complex viral intracellular parasites have "performed the R&D", developing highly effective immune evasive strategies over millions of years. These proteins provide a new and natural source for immune-modulating therapeutics, similar in many ways to penicillin being developed from mold or streptokinase from bacteria. Virus-derived serine proteinase inhibitors (serpins), chemokine modulating proteins, complement control, inflammasome inhibition, growth factors (e.g., viral vascular endothelial growth factor) and cytokine mimics (e.g., viral interleukin 10) and/or inhibitors (e.g., tumor necrosis factor) have now been identified that target central immunological response pathways. We review here current development of virus-derived immune-modulating biologics with efficacy demonstrated in pre-clinical or clinical studies, focusing on pox and herpesviruses-derived immune-modulating therapeutics.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Qiuyun Guo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Michelle Burgin
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Enkidia Awo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lyn Wise
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | - Kurt L. Krause
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | | | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Michael Juby
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China;
| | - Richard W. Moyer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA;
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain;
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
- St Joseph Hospital, Dignity Health, Creighton University, Phoenix, AZ 85013, USA
| |
Collapse
|
12
|
Yaron JR, Ambadapadi S, Zhang L, Chavan RN, Tibbetts SA, Keinan S, Varsani A, Maldonado J, Kraberger S, Tafoya AM, Bullard WL, Kilbourne J, Stern-Harbutte A, Krajmalnik-Brown R, Munk BH, Koppang EO, Lim ES, Lucas AR. Immune protection is dependent on the gut microbiome in a lethal mouse gammaherpesviral infection. Sci Rep 2020; 10:2371. [PMID: 32047224 PMCID: PMC7012916 DOI: 10.1038/s41598-020-59269-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Immunopathogenesis in systemic viral infections can induce a septic state with leaky capillary syndrome, disseminated coagulopathy, and high mortality with limited treatment options. Murine gammaherpesvirus-68 (MHV-68) intraperitoneal infection is a gammaherpesvirus model for producing severe vasculitis, colitis and lethal hemorrhagic pneumonia in interferon gamma receptor-deficient (IFNγR-/-) mice. In prior work, treatment with myxomavirus-derived Serp-1 or a derivative peptide S-7 (G305TTASSDTAITLIPR319) induced immune protection, reduced disease severity and improved survival after MHV-68 infection. Here, we investigate the gut bacterial microbiome in MHV-68 infection. Antibiotic suppression markedly accelerated MHV-68 pathology causing pulmonary consolidation and hemorrhage, increased mortality and specific modification of gut microbiota. Serp-1 and S-7 reduced pulmonary pathology and detectable MHV-68 with increased CD3 and CD8 cells. Treatment efficacy was lost after antibiotic treatments with associated specific changes in the gut bacterial microbiota. In summary, transkingdom host-virus-microbiome interactions in gammaherpesvirus infection influences gammaherpesviral infection severity and reduces immune modulating therapeutic efficacy.
Collapse
Affiliation(s)
- Jordan R Yaron
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sriram Ambadapadi
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Liqiang Zhang
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ramani N Chavan
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shahar Keinan
- Cloud Pharmaceuticals, Research Triangle Park (RTP), North Carolina, USA
| | - Arvind Varsani
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center of Evolution and Medicine Arizona State University, Tempe, Arizona, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Juan Maldonado
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- KED Genomics Core, Arizona State University, Tempe, Arizona, USA
| | - Simona Kraberger
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Amanda M Tafoya
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Whitney L Bullard
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jacquelyn Kilbourne
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Alison Stern-Harbutte
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rosa Krajmalnik-Brown
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Barbara H Munk
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erling O Koppang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Efrem S Lim
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
13
|
Ridley RB, Young BM, Lee J, Walsh E, Ahmed CM, Lewin AS, Ildefonso CJ. AAV Mediated Delivery of Myxoma Virus M013 Gene Protects the Retina against Autoimmune Uveitis. J Clin Med 2019; 8:jcm8122082. [PMID: 31795515 PMCID: PMC6947576 DOI: 10.3390/jcm8122082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Uveoretinitis is an ocular autoimmune disease caused by the activation of autoreactive T- cells targeting retinal antigens. The myxoma M013 gene is known to block NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) and inflammasome activation, and its gene delivery has been demonstrated to protect the retina against lipopolysaccharide (LPS)-induced uveitis. In this report we tested the efficacy of M013 in an experimental autoimmune uveoretinitis (EAU) mouse model. B10RIII mice were injected intravitreally with AAV (adeno associated virus) vectors delivering either secreted GFP (sGFP) or sGFP-TatM013. Mice were immunized with interphotorecptor retinoid binding protein residues 161–180 (IRBP161–180) peptide in complete Freund’s adjuvant a month later. Mice were evaluated by fundoscopy and spectral domain optical coherence tomography (SD-OCT) at 14 days post immunization. Eyes were evaluated by histology and retina gene expression changes were measured by reverse transcribed quantitative PCR (RT-qPCR). No significant difference in ERG or retina layer thickness was observed between sGFP and sGFP-TatM013 treated non-uveitic mice, indicating safety of the vector. In EAU mice, expression of sGFP-TatM013 strongly lowered the clinical score and number of infiltrative cells within the vitreous humor when compared to sGFP treated eyes. Retina structure was protected, and pro-inflammatory genes expression was significantly decreased. These results indicate that gene delivery of myxoma M013 could be of clinical benefit against autoimmune diseases.
Collapse
Affiliation(s)
- Raela B. Ridley
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Brianna M. Young
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Jieun Lee
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Erin Walsh
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Chulbul M. Ahmed
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Alfred S. Lewin
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Cristhian J. Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
- Correspondence: ; Tel.: +1-352-273-8786
| |
Collapse
|
14
|
Massengill MT, Ahmed CM, Lewin AS, Ildefonso CJ. Neuroinflammation in Retinitis Pigmentosa, Diabetic Retinopathy, and Age-Related Macular Degeneration: A Minireview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1074:185-191. [PMID: 29721943 DOI: 10.1007/978-3-319-75402-4_23] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The eye is an immuno-privileged organ. However, certain diseases such as uveitis are intrinsically linked to inflammation. In several retinal degenerative diseases, there is a unique damage at the onset of the disease, but evidence suggests that chronic and low-grade inflammatory processes play an important role in their progression. Studies have identified similar signaling pathways and changes in resident immune cells within the retina among these diseases. Herein, we will discuss some of these studies and propose how understanding this inflammatory response could aid in the development of therapies.
Collapse
Affiliation(s)
- Michael T Massengill
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Chulbul M Ahmed
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Alfred S Lewin
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Cristhian J Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
15
|
Garg RR, Jackson CB, Rahman MM, Khan AR, Lewin AS, McFadden G. Myxoma virus M013 protein antagonizes NF-κB and inflammasome pathways via distinct structural motifs. J Biol Chem 2019; 294:8480-8489. [PMID: 30940649 DOI: 10.1074/jbc.ra118.006040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Among the repertoire of immunoregulatory proteins encoded by myxoma virus, M013 is a viral homologue of the viral pyrin domain-only protein (vPOP) family. In myeloid cells, M013 protein has been shown to inhibit both the inflammasome and NF-κB signaling pathways by direct binding to ASC1 and NF-κB1, respectively. In this study, a three-dimensional homology model of the M013 pyrin domain (PYD) was built based on similarities to known PYD structures. A distinctive feature of the deduced surface electrostatic map of the M013 PYD is the presence of a negatively region consisting of numerous aspartate and glutamate residues in close proximity. Single-site mutations of aspartate and glutamate residues reveal their role in interactions with ASC-1. The biological significance of charge complementarity in the M013-ASC-1 interaction was further confirmed by functional assays of caspase-1 activation and subsequent secretion of cytokines. M013 also has a unique 33-residue C-terminal tail that follows the N-terminal PYD, and it is enriched in positively charged residues. Deletion of the tail of M013 significantly inhibited the interactions between M013 and NF-κB1, thus compromising the ability of the viral protein to suppress the secretion of pro-inflammatory cytokines. These results demonstrate that vPOP M013 exploits distinct structural motifs to regulate both the inflammasome and NF-κB pathways.
Collapse
Affiliation(s)
- Rekha R Garg
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32611
| | - Cody B Jackson
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32611
| | - Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32611; Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona 85281
| | - Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32611.
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32611; Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute, Arizona State University, Tempe, Arizona 85281.
| |
Collapse
|
16
|
Santiago CP, Keuthan CJ, Boye SL, Boye SE, Imam AA, Ash JD. A Drug-Tunable Gene Therapy for Broad-Spectrum Protection against Retinal Degeneration. Mol Ther 2018; 26:2407-2417. [PMID: 30078764 PMCID: PMC6171322 DOI: 10.1016/j.ymthe.2018.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022] Open
Abstract
Retinal degenerations are a large cluster of diseases characterized by the irreversible loss of light-sensitive photoreceptors that impairs the vision of 9.1 million people in the US. An attractive treatment option is to use gene therapy to deliver broad-spectrum neuroprotective factors. However, this approach has had limited clinical translation because of the inability to control transgene expression. To address this problem, we generated an adeno-associated virus vector named RPF2 that was engineered to express domains of leukemia inhibitory factor fused to the destabilization domain of bacterial dihydrofolate reductase. Fusion proteins containing the destabilization domain are degraded in mammalian cells but can be stabilized with the binding of the drug trimethoprim. Our data show that expression levels of RPF2 are tightly regulated by the dose of trimethoprim and can be reversed by trimethoprim withdrawal. We further show that stabilized RPF2 can protect photoreceptors and prevent blindness in treated mice.
Collapse
Affiliation(s)
- Clayton P Santiago
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Casey J Keuthan
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Aisha A Imam
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - John D Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Di H, Morantz EK, Sadhwani H, Madden JC, Brinton MA. Insertion position as well as the inserted TRS and gene sequences differentially affect the retention of foreign gene expression by simian hemorrhagic fever virus (SHFV). Virology 2018; 525:150-160. [PMID: 30286427 DOI: 10.1016/j.virol.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
Abstract
Recombinant SHFV infectious cDNA clones expressing a foreign gene from an additional sg mRNA were constructed. Two 3' genomic region sites, between ORF4' and ORF2b and between ORF4 and ORF5, were utilized for insertion of the myxoma M013 gene with a C-terminal V5 tag followed by one of the three inserted transcription regulatory sequences (TRS), TRS2', TRS4' or TRS7. M013 insertion at the ORF4'/ORF2b site but not the ORF4/ORF5 site generated progeny virus but only the recombinant virus with an inserted TRS2' retained the entire M013 gene through passage four. Insertion of an auto-fluorescent protein gene, iLOV, with an inserted TRS2' at the ORF4'/ORF2b site, generated viable progeny virus. iLOV expression was maintained through passage eight. Although regulation of SHFV subgenomic RNA synthesis is complex, the ORF4'/ORF2b site, which is located between the two sets of minor structural proteins, is able to tolerate foreign gene insertion.
Collapse
Affiliation(s)
- Han Di
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Esther K Morantz
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Heena Sadhwani
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Joseph C Madden
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
18
|
Kumar B, Cashman SM, Kumar-Singh R. Complement-Mediated Activation of the NLRP3 Inflammasome and Its Inhibition by AAV-Mediated Delivery of CD59 in a Model of Uveitis. Mol Ther 2018; 26:1568-1580. [PMID: 29678656 DOI: 10.1016/j.ymthe.2018.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/01/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
Uveitis is an inflammatory disorder of the eye responsible for approximately 10%-15% of blindness in the US. In this study, we examined the role of the complement membrane attack complex (MAC) and the NLRP3 inflammasome in the pathogenesis of experimental autoimmune uveitis (EAU) in normal and C9-/- mice that are incapable of assembling the MAC. We discovered that the MAC and the NLRP3 inflammasome and associated production of IL-1β are elevated in EAU mice and that MAC may be involved in regulation of Th1 and Th17 cell differentiation. In contrast, MAC and the NLRP3 inflammasome were not elevated in C9-/- mice. However, EAU-associated pathophysiology including retinal structure and function were not rescued in C9-/- mice. Unexpectedly, AAV-mediated delivery of sCD59, an inhibitor of C9 incorporation into the MAC, successfully attenuated activation of the NLRP3 inflammasome and EAU pathology as well as MAC. Our studies provide an improved understanding of the role of the MAC and the NLRP3 inflammasome in EAU as well as suggest a novel approach for the treatment of uveitis.
Collapse
Affiliation(s)
- Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Siobhan M Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
19
|
Eshaq RS, Aldalati AMZ, Alexander JS, Harris NR. Diabetic retinopathy: Breaking the barrier. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:229-241. [PMID: 28732591 PMCID: PMC5711541 DOI: 10.1016/j.pathophys.2017.07.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
Diabetic retinopathy (DR) remains a major complication of diabetes and a leading cause of blindness among adults worldwide. DR is a progressive disease affecting both type I and type II diabetic patients at any stage of the disease, and targets the retinal microvasculature. DR results from multiple biochemical, molecular and pathophysiological changes to the retinal vasculature, which affect both microcirculatory functions and ultimately photoreceptor function. Several neural, endothelial, and support cell (e.g., pericyte) mechanisms are altered in a pathological fashion in the hyperglycemic environment during diabetes that can disturb important cell surface components in the vasculature producing the features of progressive DR pathophysiology. These include loss of the glycocalyx, blood-retinal barrier dysfunction, increased expression of inflammatory cell markers and adhesion of blood leukocytes and platelets. Included in this review is a discussion of modifications that occur at or near the surface of the retinal vascular endothelial cells, and the consequences of these alterations on the integrity of the retina.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Alaa M Z Aldalati
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center -Shreveport, 1501 Kings Highway, Shreveport, LA 71130, United States.
| |
Collapse
|
20
|
Li GY, Li ZB, Li F, Dong LP, Tang L, Xiang J, Li JM, Bao MH. Meta-Analysis on the Association of ALDH2 Polymorphisms and Type 2 Diabetic Mellitus, Diabetic Retinopathy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020165. [PMID: 28208752 PMCID: PMC5334719 DOI: 10.3390/ijerph14020165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/08/2017] [Accepted: 01/31/2017] [Indexed: 11/16/2022]
Abstract
Type 2 diabetic mellitus (T2DM) is a disease with high prevalence and a major cause for death worldwide. Diabetic retinopathy (DR) is one of the major manifestation of diabetes. Aldehyde dehydrogenease 2 (ALDH2) detoxifies aldehyde produced during ethanol metabolism and oxidative stress. It has been found that the polymorphism in ALDH2 rs671 is probably associated with the risk of T2DM and DR. However, a lot of inconsistency and controversy still exists. In order to get a more precise and comprehensive estimation for the association between ALDH2 polymorphism with the risk of T2DM and DR, we conducted the present meta-analysis. A comprehensive literature search was conducted using databases, such as Pubmed, Embase, Cochrane Central Register of Controlled Trials, Chinese National Knowledge Infrastructure, and Chinese Biomedical Literature Database, for all related studies. The included studies met the inclusion criteria, such as being case-control studies about the association of ALDH2 polymorphism and T2DM or DR susceptibility, with sufficient data for the present analysis. Eight studies with 2374 cases and 6694 controls were involved in the present meta-analysis. The results indicated a significant lower risk of T2DM for *1/*1 genotype in homozygous models (*1/*1 vs. *2/*2, OR = 0.31, 95% CI = 0.11–0.89, p = 0.03) and in the dominant model (*1/*1 vs. *2/*2 + *1/*2, OR = 0.61, 95% CI = 0.37–1.00, p = 0.05). Subgroup analysis by ethnicity found a significant lower risk of T2DM in Chinese in all genotype models. No significant relation was found between ALDH2 rs671 and DR. In conclusion, the current meta-analysis indicated that ALDH2 rs671 was significantly related with T2DM. The ALDH2 rs671 might be able to be used as a predictor for the risk of T2DM. However, due to the existence of heterogeneity and publication bias in the involved studies, our results should be interpreted with caution.
Collapse
Affiliation(s)
- Guang-Yi Li
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Zi-Bo Li
- Department of Medical Laboratory, Changsha Medical University, Changsha 410219, China.
| | - Fang Li
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Li-Ping Dong
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Liang Tang
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Ju Xiang
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Jian-Ming Li
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| | - Mei-Hua Bao
- Department of Anatomy, Histology and Embryology, Institute of Neuroscience, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
21
|
Tan HY, Agarwal A, Lee CS, Chhablani J, Gupta V, Khatri M, Nirmal J, Pavesio C, Agrawal R. Management of noninfectious posterior uveitis with intravitreal drug therapy. Clin Ophthalmol 2016; 10:1983-2020. [PMID: 27789936 PMCID: PMC5068474 DOI: 10.2147/opth.s89341] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Uveitis is an important cause of vision loss worldwide due to its sight-threatening complications, especially cystoid macular edema, as well as choroidal neovascularization, macular ischemia, cataract, and glaucoma. Systemic corticosteroids are the mainstay of therapy for noninfectious posterior uveitis; however, various systemic side effects can occur. Intravitreal medication achieves a therapeutic level in the vitreous while minimizing systemic complications and is thus used as an exciting alternative. Corticosteroids, antivascular endothelial growth factors, immunomodulators such as methotrexate and sirolimus, and nonsteroidal anti-inflammatory drugs are currently available for intravitreal therapy. This article reviews the existing literature for efficacy and safety of these various options for intravitreal drug therapy for the management of noninfectious uveitis (mainly intermediate, posterior, and panuveitis).
Collapse
Affiliation(s)
- Hui Yi Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aniruddha Agarwal
- Department of Vitreoretina, Stanley M Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE
| | - Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Jay Chhablani
- Department of Vitreoretina, L V Prasad Eye Institute, Hyderabad, Telangana
| | - Vishali Gupta
- Department of Retina and Uvea, Post Graduate Institute of Medical Education and Research, Chandigarh
| | - Manoj Khatri
- Department of Retina, Rajan Eye Care Hospital, Chennai, Tamil Nadu, India
| | - Jayabalan Nirmal
- School of Material Science and Engineering, Nanyang Technological University, Singapore
| | - Carlos Pavesio
- Department of Medical Retina, Moorfields Eye Hospital, NHS Foundation Trust, London, UK
| | - Rupesh Agrawal
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Material Science and Engineering, Nanyang Technological University, Singapore; Department of Medical Retina, Moorfields Eye Hospital, NHS Foundation Trust, London, UK; Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
22
|
Ildefonso CJ, Jaime H, Brown EE, Iwata RL, Ahmed CM, Massengill MT, Biswal MR, Boye SE, Hauswirth WW, Ash JD, Li Q, Lewin AS. Targeting the Nrf2 Signaling Pathway in the Retina With a Gene-Delivered Secretable and Cell-Penetrating Peptide. Invest Ophthalmol Vis Sci 2016; 57:372-86. [PMID: 26842755 PMCID: PMC5110262 DOI: 10.1167/iovs.15-17703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Oxidative stress has been linked to several ocular diseases, initiating an inflammatory response that increases tissue injury. The Nrf2 transcription factor regulates expression of antioxidant genes and is tightly regulated by Kelch-Like ECH-Associated Protein 1 (Keap-1). We evaluate the antioxidant and anti-inflammatory properties of an adeno-associated virus (AAV) vector delivering an Nrf2-derived peptide that binds Keap-1. METHODS The sequence of the Nrf2 peptide was fused to a cell-penetrating peptide (Tat-peptide) sequence (TatNrf2mer). The effects of lentiviral-delivered TatNrf2mer were studied in vitro. Transcript (quantitative [q] RT-PCR) and protein levels (ELISA and immunofluorescence) were quantified. Cell viability was measured by MTT and Cell Titer assays. The AAV vectors were packaged with the TatNrf2mer fused to secretable green fluorescent protein (GFP) under the control of the small chicken β actin promoter. The protective effects of this vector were evaluated in a model of RPE oxidative injury and in a mouse model of uveitis after intravitreal injection. RESULTS Expression of TatNrf2mer peptide induced antioxidant gene expression, blocked IL-1β secretion, and protected cells from oxidative injury. In mice, TatNrf2mer expression partially protected photoreceptor function based on ERG responses and optical coherence tomography measurements in the sodium iodate (NaIO3) model. Furthermore, sGFP-TatNrf2mer expression decreased IL-1β and IL-6 in the NaIO3-treated mice, and resulted in a 54% decrease in the number of inflammatory cells in the vitreous body of the endotoxin-induced uveitis mouse model. CONCLUSIONS The intravitreally delivered AAV-TatNrf2mer has antioxidant and anti-inflammatory effects in widely-used models of ocular injury, suggesting it also could be useful in ocular diseases associated with oxidative stress and inflammasome activation.
Collapse
Affiliation(s)
- Cristhian J. Ildefonso
- Department of Molecular Genetics & Microbiology University of Florida College of Medicine, Gainesville, Florida, United States
| | - Henrique Jaime
- Department of Biology, University of Florida College of Liberal Arts and Sciences, Gainesville, Florida, United States
| | - Emily E. Brown
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Ryo L. Iwata
- Department of Molecular Genetics & Microbiology University of Florida College of Medicine, Gainesville, Florida, United States
| | - Chulbul M. Ahmed
- Department of Molecular Genetics & Microbiology University of Florida College of Medicine, Gainesville, Florida, United States
| | - Michael T. Massengill
- Department of Molecular Genetics & Microbiology University of Florida College of Medicine, Gainesville, Florida, United States
| | - Manas R. Biswal
- Department of Molecular Genetics & Microbiology University of Florida College of Medicine, Gainesville, Florida, United States
| | - Shannon E. Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - William W. Hauswirth
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - John D. Ash
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Qiuhong Li
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - Alfred S. Lewin
- Department of Molecular Genetics & Microbiology University of Florida College of Medicine, Gainesville, Florida, United States
| |
Collapse
|
23
|
Agarwal A, Ingham SA, Harkins KA, Do DV, Nguyen QD. The role of pharmacogenetics and advances in gene therapy in the treatment of diabetic retinopathy. Pharmacogenomics 2016; 17:309-20. [PMID: 26807609 DOI: 10.2217/pgs.15.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) and its complications such as diabetic macular edema continue to remain a major cause for legal blindness in the developed world. While the introduction of anti-tVEGF agents has significantly improved visual outcomes of patients with DR, unpredictable response, largely due to genetic polymorphisms, appears to be a challenge with this therapy. With advances in identification of various genetic biomarkers, novel therapeutic strategies consisting of gene transfer are being developed and tested for patients with DR. Application of pharmacogenetic principles appears to be a promising futuristic strategy to attenuate diabetes-mediated retinal vasculopathy. In this comprehensive review, data from recent studies in the field of pharmacogenomics for the treatment of DR have been provided.
Collapse
Affiliation(s)
- Aniruddha Agarwal
- Ocular Imaging Research & Reading Center (OIRRC), Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Sally A Ingham
- College of Medicine, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Keegan A Harkins
- Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Diana V Do
- Ocular Imaging Research & Reading Center (OIRRC), Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA.,Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Quan Dong Nguyen
- Ocular Imaging Research & Reading Center (OIRRC), Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA.,Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| |
Collapse
|