1
|
Airavaara M, Saarma M. Viral and nonviral approaches. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:83-97. [PMID: 39341664 DOI: 10.1016/b978-0-323-90120-8.00008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Neurodegenerative diseases pose a substantial unmet medical need, and no disease-modifying treatments exist. Neurotrophic factors have been studied for decades as a therapy to slow down or stop the progression of these diseases. In this chapter, we focus on Parkinson disease, the second most common neurodegenerative disorder, and on studies carried out with neurotrophic factors. We explore the routes of administration, how the invasive intracranial administration is the challenge, and different ways to deliver the therapeutic proteins, for example, gene therapy and protein therapy. This therapy concept has been developed to mostly work on the restoration of the lost nigrostriatal dopaminergic neuronal connectivity in the brain. However, in recent years, the center of attention of neurotrophic factors has been on maintaining proteostasis and dissolving and preventing protein inclusions called Lewy bodies. We describe the most studied neurotrophic factor families and compare different preclinical experiments that have been carried out. We also analyze several clinical trials and describe their challenges and breakthroughs and discuss the prospects and challenges of neurotrophic support as a therapy for neurodegenerative diseases. In this chapter, we discuss why they still do and why it is essential to continue to work with this area of neurorestorative research around neurotrophic factors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Azevedo MD, Prince N, Humbert-Claude M, Mesa-Infante V, Jeanneret C, Golzne V, De Matos K, Jamot BB, Magara F, Gonzalez-Hernandez T, Tenenbaum L. Oxidative stress induced by sustained supraphysiological intrastriatal GDNF delivery is prevented by dose regulation. Mol Ther Methods Clin Dev 2023; 31:101106. [PMID: 37766790 PMCID: PMC10520444 DOI: 10.1016/j.omtm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Despite its established neuroprotective effect on dopaminergic neurons and encouraging phase I results, intraputaminal GDNF administration failed to demonstrate significant clinical benefits in Parkinson's disease patients. Different human GDNF doses were delivered in the striatum of rats with a progressive 6-hydroxydopamine lesion using a sensitive doxycycline-regulated AAV vector. GDNF treatment was applied either continuously or intermittently (2 weeks on/2 weeks off) during 17 weeks. Stable reduction of motor impairments as well as increased number of dopaminergic neurons and striatal innervation were obtained with a GDNF dose equivalent to 3- and 10-fold the rat endogenous level. In contrast, a 20-fold increased GDNF level only temporarily provided motor benefits and neurons were not spared. Strikingly, oxidized DNA in the substantia nigra increased by 50% with 20-fold, but not 3-fold GDNF treatment. In addition, only low-dose GDNF allowed to preserve dopaminergic neuron cell size. Finally, aberrant dopaminergic fiber sprouting was observed with 20-fold GDNF but not at lower doses. Intermittent 20-fold GDNF treatment allowed to avoid toxicity and spare dopaminergic neurons but did not restore their cell size. Our data suggest that maintaining GDNF concentration under a threshold generating oxidative stress is a pre-requisite to obtain significant symptomatic relief and neuroprotection.
Collapse
Affiliation(s)
- Marcelo Duarte Azevedo
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Naika Prince
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Marie Humbert-Claude
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Virginia Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Cheryl Jeanneret
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Valentine Golzne
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Kevin De Matos
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Benjamin Boury Jamot
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Fulvio Magara
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| |
Collapse
|
3
|
Lutfi Ismaeel G, Makki AlHassani OJ, S Alazragi R, Hussein Ahmed A, H Mohamed A, Yasir Jasim N, Hassan Shari F, Almashhadani HA. Genetically engineered neural stem cells (NSCs) therapy for neurological diseases; state-of-the-art. Biotechnol Prog 2023; 39:e3363. [PMID: 37221947 DOI: 10.1002/btpr.3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023]
Abstract
Neural stem cells (NSCs) are multipotent stem cells with remarkable self-renewal potential and also unique competencies to differentiate into neurons, astrocytes, and oligodendrocytes (ODCs) and improve the cellular microenvironment. In addition, NSCs secret diversity of mediators, including neurotrophic factors (e.g., BDNF, NGF, GDNF, CNTF, and NT-3), pro-angiogenic mediators (e.g., FGF-2 and VEGF), and anti-inflammatory biomolecules. Thereby, NSCs transplantation has become a reasonable and effective treatment for various neurodegenerative disorders by their capacity to induce neurogenesis and vasculogenesis and dampen neuroinflammation and oxidative stress. Nonetheless, various drawbacks such as lower migration and survival and less differential capacity to a particular cell lineage concerning the disease pathogenesis hinder their application. Thus, genetic engineering of NSCs before transplantation is recently regarded as an innovative strategy to bypass these hurdles. Indeed, genetically modified NSCs could bring about more favored therapeutic influences post-transplantation in vivo, making them an excellent option for neurological disease therapy. This review for the first time offers a comprehensive review of the therapeutic capability of genetically modified NSCs rather than naïve NSCs in neurological disease beyond brain tumors and sheds light on the recent progress and prospect in this context.
Collapse
Affiliation(s)
- Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | - Reem S Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar Hussein Ahmed
- Department of Radiology and Sonar, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Nisreen Yasir Jasim
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Falah Hassan Shari
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
4
|
Que M, Li Y, Wang X, Zhan G, Luo X, Zhou Z. Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders? Front Cell Neurosci 2023; 17:1188306. [PMID: 37435045 PMCID: PMC10330732 DOI: 10.3389/fncel.2023.1188306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Sleep plays an essential role in all studied animals with a nervous system. However, sleep deprivation leads to various pathological changes and neurobehavioral problems. Astrocytes are the most abundant cells in the brain and are involved in various important functions, including neurotransmitter and ion homeostasis, synaptic and neuronal modulation, and blood-brain barrier maintenance; furthermore, they are associated with numerous neurodegenerative diseases, pain, and mood disorders. Moreover, astrocytes are increasingly being recognized as vital contributors to the regulation of sleep-wake cycles, both locally and in specific neural circuits. In this review, we begin by describing the role of astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and (v) astrocyte-microglia cross-talk. Moreover, we review the role of astrocytes in sleep deprivation comorbidities and sleep deprivation-related brain disorders. Finally, we discuss potential interventions targeting astrocytes to prevent or treat sleep deprivation-related brain disorders. Pursuing these questions would pave the way for a deeper understanding of the cellular and neural mechanisms underlying sleep deprivation-comorbid brain disorders.
Collapse
Affiliation(s)
- Mengxin Que
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Saunders GRB, Wang X, Chen F, Jang SK, Liu M, Wang C, Gao S, Jiang Y, Khunsriraksakul C, Otto JM, Addison C, Akiyama M, Albert CM, Aliev F, Alonso A, Arnett DK, Ashley-Koch AE, Ashrani AA, Barnes KC, Barr RG, Bartz TM, Becker DM, Bielak LF, Benjamin EJ, Bis JC, Bjornsdottir G, Blangero J, Bleecker ER, Boardman JD, Boerwinkle E, Boomsma DI, Boorgula MP, Bowden DW, Brody JA, Cade BE, Chasman DI, Chavan S, Chen YDI, Chen Z, Cheng I, Cho MH, Choquet H, Cole JW, Cornelis MC, Cucca F, Curran JE, de Andrade M, Dick DM, Docherty AR, Duggirala R, Eaton CB, Ehringer MA, Esko T, Faul JD, Fernandes Silva L, Fiorillo E, Fornage M, Freedman BI, Gabrielsen ME, Garrett ME, Gharib SA, Gieger C, Gillespie N, Glahn DC, Gordon SD, Gu CC, Gu D, Gudbjartsson DF, Guo X, Haessler J, Hall ME, Haller T, Harris KM, He J, Herd P, Hewitt JK, Hickie I, Hidalgo B, Hokanson JE, Hopfer C, Hottenga J, Hou L, Huang H, Hung YJ, Hunter DJ, Hveem K, Hwang SJ, Hwu CM, Iacono W, Irvin MR, Jee YH, Johnson EO, Joo YY, Jorgenson E, Justice AE, Kamatani Y, Kaplan RC, Kaprio J, Kardia SLR, Keller MC, Kelly TN, Kooperberg C, Korhonen T, Kraft P, Krauter K, Kuusisto J, Laakso M, Lasky-Su J, Lee WJ, Lee JJ, Levy D, Li L, Li K, Li Y, Lin K, Lind PA, Liu C, Lloyd-Jones DM, Lutz SM, Ma J, Mägi R, Manichaikul A, Martin NG, Mathur R, Matoba N, McArdle PF, McGue M, McQueen MB, Medland SE, Metspalu A, Meyers DA, Millwood IY, Mitchell BD, Mohlke KL, Moll M, Montasser ME, Morrison AC, Mulas A, Nielsen JB, North KE, Oelsner EC, Okada Y, Orrù V, Palmer ND, Palviainen T, Pandit A, Park SL, Peters U, Peters A, Peyser PA, Polderman TJC, Rafaels N, Redline S, Reed RM, Reiner AP, Rice JP, Rich SS, Richmond NE, Roan C, Rotter JI, Rueschman MN, Runarsdottir V, Saccone NL, Schwartz DA, Shadyab AH, Shi J, Shringarpure SS, Sicinski K, Skogholt AH, Smith JA, Smith NL, Sotoodehnia N, Stallings MC, Stefansson H, Stefansson K, Stitzel JA, Sun X, Syed M, Tal-Singer R, Taylor AE, Taylor KD, Telen MJ, Thai KK, Tiwari H, Turman C, Tyrfingsson T, Wall TL, Walters RG, Weir DR, Weiss ST, White WB, Whitfield JB, Wiggins KL, Willemsen G, Willer CJ, Winsvold BS, Xu H, Yanek LR, Yin J, Young KL, Young KA, Yu B, Zhao W, Zhou W, Zöllner S, Zuccolo L, Batini C, Bergen AW, Bierut LJ, David SP, Gagliano Taliun SA, Hancock DB, Jiang B, Munafò MR, Thorgeirsson TE, Liu DJ, Vrieze S. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 2022; 612:720-724. [PMID: 36477530 PMCID: PMC9771818 DOI: 10.1038/s41586-022-05477-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/25/2022] [Indexed: 12/12/2022]
Abstract
Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury1-4. These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries5. Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.
Collapse
Affiliation(s)
| | - Xingyan Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fang Chen
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Seon-Kyeong Jang
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Chen Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Shuang Gao
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Yu Jiang
- Department of Epidemiology & Population Health at Stanford University, Stanford, CA, USA
| | | | - Jacqueline M Otto
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Clifton Addison
- Jackson Heart Study (JHS) Graduate Training and Education Center (GTEC), Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS, USA
| | - Masato Akiyama
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Ocular Pathology and Imaging Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Christine M Albert
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fazil Aliev
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Donna K Arnett
- Dean's Office and Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Allison E Ashley-Koch
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Aneel A Ashrani
- Division of Hematology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Kathleen C Barnes
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Tempus, Chicago, IL, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Emelia J Benjamin
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | | | - Jason D Boardman
- Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dorret I Boomsma
- Netherlands Twin Register, Dept Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Meher Preethi Boorgula
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sameer Chavan
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Cheng
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hélène Choquet
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - John W Cole
- Department of Neurology, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
- Division of Vascular Neurology, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Mariza de Andrade
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Danielle M Dick
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Anna R Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Virginia, USA
- Huntsman Mental Health Institute, Salt Lake City, UT, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Charles B Eaton
- Department of Family Medicine, Brown University, Providence, RI, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Department of Internal Medicine-Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Melanie E Garrett
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nathan Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Virginia, USA
| | - David C Glahn
- Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital & Harvard Medical School, Boston, MA, USA
| | - Scott D Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Charles C Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Dongfeng Gu
- Department of Epidemiology and Key Laboratory of Cardiovascular Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeffrey Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Toomas Haller
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kathleen Mullan Harris
- Department of Sociology and the Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
- Translational Sciences Institute, Tulane University, New Orleans, LA, USA
| | - Pamela Herd
- McCourt School of Public Policy, Georgetown University, Washington, DC, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department Of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ian Hickie
- Youth Mental Health & Technology Team, Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Bertha Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Center, Denver, CO, USA
| | - JoukeJan Hottenga
- Netherlands Twin Register, Dept Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongyan Huang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yi-Jen Hung
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - William Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yon Ho Jee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Yoonjung Y Joo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Institute of Data Science, Korea University, Seoul, South Korea
| | | | - Anne E Justice
- Department of Population Health Sciences, Geisinger, Danville, PA, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Robert C Kaplan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department Of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
- Translational Sciences Institute, Tulane University, New Orleans, LA, USA
| | - Charles Kooperberg
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kenneth Krauter
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Center for Medicine and Clinical Research, Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Jessica Lasky-Su
- Brigham and Women's Hospital, Department of Medicine, Channing Division of Network Medicine, Boston, MA, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - James J Lee
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Kevin Li
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Yuqing Li
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Donald M Lloyd-Jones
- Departments of Preventive Medicine, Medicine, and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sharon M Lutz
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Department of Biostatics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jiantao Ma
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Reedik Mägi
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ravi Mathur
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Nana Matoba
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Genetics, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick F McArdle
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew B McQueen
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - May E Montasser
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Jonas B Nielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yukinori Okada
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Anita Pandit
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - S Lani Park
- Population Sciences of the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig Maximilians University Munich, Munich, Germany
- German Centre for Cardiovascular Research, DZHK, Partner Site Munich, Munich, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tinca J C Polderman
- Department of Clinical Developmental Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nicholas Rafaels
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Robert M Reed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alex P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - John P Rice
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nicole E Richmond
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carol Roan
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael N Rueschman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Nancy L Saccone
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine; Department of Medicine and Immunology, University of Colorado, Aurora, CO, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Kamil Sicinski
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department Of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | | | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Xiao Sun
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Moin Syed
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - Amy E Taylor
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- National Institute for Health Research Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University School of Medicine, Durham, NC, USA
| | - Khanh K Thai
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Hemant Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Tamara L Wall
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Scott T Weiss
- Brigham and Women's Hospital, Department of Medicine, Channing Division of Network Medicine, Boston, MA, USA
| | - Wendy B White
- Jackson Heart Study Undergraduate Training and Education Center, Tougaloo College, Tougaloo, MS, USA
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gonneke Willemsen
- Netherlands Twin Register, Dept Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Bendik S Winsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Yin
- Kaiser Permanente Northern California (KPNC), Division of Research, Oakland, CA, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastian Zöllner
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Luisa Zuccolo
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Health Data Science Centre, Fondazione Human Technopole, Milan, Italy
| | - Chiara Batini
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Andrew W Bergen
- Oregon Research Institute, Springfield, OR, USA
- BioRealm, LLC, Walnut, CA, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P David
- Outcomes Research Network & Department of Family Medicine, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Family Medicine, University of Chicago, Chicago, IL, USA
| | - Sarah A Gagliano Taliun
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada
- Research Centre, Montréal Heart Institute, Montréal, Québec, Canada
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- National Institute for Health Research Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | | | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
7
|
Shaburova EV, Lanshakov DA. Effective Transduction of Brain Neurons with Lentiviral Vectors Purified via Ion-Exchange Chromatography. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821080044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Cheng S, van Gaalen MM, Bähr M, Garea-Rodriguez E, Kügler S. Optimized pharmacological control over the AAV-Gene-Switch vector for regulable gene therapy. Mol Ther Methods Clin Dev 2021; 23:1-10. [PMID: 34552998 PMCID: PMC8426472 DOI: 10.1016/j.omtm.2021.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022]
Abstract
Gene therapy in its current design is an irreversible process. It cannot be stopped in case of unwanted side effects, nor can expression levels of therapeutics be adjusted to individual patient’s needs. Thus, the Gene-Switch (GS) system for pharmacologically regulable neurotrophic factor expression was established for treatment of parkinsonian patients. Mifepristone, the synthetic steroid used to control transgene expression of the GS vector, is an approved clinical drug. However, pharmacokinetics and -dynamics of mifepristone vary considerably between different experimental animal species and depend on age and gender. In humans, but not in any other species, mifepristone binds to a high-affinity plasma carrier protein. We now demonstrate that the formulation of mifepristone can have robust impact on its ability to activate the GS system. Furthermore, we show that a pharmacological booster, ritonavir (Rtv), robustly enhances the pharmacological effect of mifepristone, and allows it to overcome gender- and species-specific pharmacokinetic and -dynamic issues. Most importantly, we demonstrate that the GS vector can be efficiently controlled by mifepristone in the presence of its human plasma carrier protein, α1-acid glycoprotein, in a “humanized” rat model. Thus, we have substantially improved the applicability of the GS vector toward therapeutic use in patients.
Collapse
|
9
|
Therapeutic potential of neurotrophic factors in Alzheimer's Disease. Mol Biol Rep 2021; 49:2345-2357. [PMID: 34826049 DOI: 10.1007/s11033-021-06968-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly population. AD is accompanied with the dysregulation of specific neurotrophic factors (NTFs) and their receptors, which plays a critical role in neuronal degeneration. NTFs are small proteins with therapeutic potential for human neurodegenerative diseases. These growth factors are categorized into four families: neurotrophins, neurokines, the glial cell line-derived NTF family of ligands, and the newly discovered cerebral dopamine NTF/mesencephalic astrocyte-derived NTF family. NTFs are capable of preventing cell death in degenerative conditions and can increase the neuronal growth and function in these disorders. Nevertheless, the adverse side effects of NTFs delivery and poor diffusion of these factors in the brain restrict the efficacy of NTFs therapy in clinical situations. MATERIALS AND METHODS In this review, we focus on the current advances in the use of NTFs to treat AD and summarize previous experimental and clinical studies for supporting the protective and therapeutic effects of these factors. CONCLUSION Based on reports, NTFs are considered as new and promising candidates for treating AD and AD-associated cognitive impairment.
Collapse
|
10
|
Walkowicz L, Krzeptowski W, Krzeptowska E, Warzecha K, Sałek J, Górska-Andrzejak J, Pyza E. Glial expression of DmMANF is required for the regulation of activity, sleep and circadian rhythms in the visual system of Drosophila melanogaster. Eur J Neurosci 2021; 54:5785-5797. [PMID: 33666288 DOI: 10.1111/ejn.15171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/31/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
DmMANF, Drosophila melanogaster mesencephalic astrocyte-derived neurotrophic factor (DmMANF) is an evolutionarily conserved orthologue of mammalian MANF. This neurotrophic factor exerts many functions in the Drosophila brain, particularly those dependent on glial cells. As we found in our earlier study, downregulation of DmMANF in glia induces degeneration of glial cells in the first optic neuropil (lamina) where DmMANF abundance is especially high. In the present study, we observed that changes in the level of DmMANF in two types of glia, astrocyte-like glia (AlGl) and ensheathing glia (EnGl), affect activity and sleep of flies. Interestingly, a proper level of DmMANF in AlGl seems to be important in guiding processes of pigment dispersing factor (PDF)-expressing clock neurons. This is supported by our finding that DmMANF overexpression in AlGl leads to structural changes in the architecture of the PDF-positive arborization in the brain. Finally, we detected that DmMANF also affects rhythms in glia themselves, as circadian oscillations in expression of the catalytic α subunit of the sodium pump in the lamina epithelial glia were abolished after DmMANF silencing. DmMANF expressed in AlGl and EnGl seems to affect the activity of neurons leading to changes in behaviour.
Collapse
Affiliation(s)
- Lucyna Walkowicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Ewelina Krzeptowska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Karolina Warzecha
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Joanna Sałek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
11
|
Krishnan UM. Biomaterials in the treatment of Parkinson's disease. Neurochem Int 2021; 145:105003. [PMID: 33657427 DOI: 10.1016/j.neuint.2021.105003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease is a neurodegenerative disease, the treatment of which is mainly centred around supplementation of dopamine. Additional targets have been identified and newer chemotherapeutic agents have been introduced but their clinical efficacy is limited due to solubility, bioavailability issues and inability to cross the blood-brain barrier (BBB). A wide range of biomaterials ranging from biomolecules, polymers, inorganic metal and metal oxide nanoparticles have been employed to assist the delivery of these therapeutic agents into the brain. Additionally, strategies to deliver cells to restore the dopaminergic neurons also have shown promise due to the integration of biocompatible materials that aid neurogenesis through a combination of topographical, chemical and mechanical cues. Neuroprosthetics is an area that may become significant in treatment of motor deficits associated with Parkinson's disease, and involves development of highly conductive and robust electrode materials with excellent cytocompatibility. This review summarizes the major role played by biomaterials in design of novel strategies and in the improvement of existing therapeutic methods as well as the emerging trends in this domain.
Collapse
Affiliation(s)
- Uma Maheswari Krishnan
- School of Arts, Science & Humanities, Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, 613 401, India.
| |
Collapse
|
12
|
Zhang J, Li H, Yang H, Lin J, Wang Y, Zhang Q, Gao WQ, Xu H. Human Amniotic Epithelial Cells Alleviate a Mouse Model of Parkinson's Disease Mainly by Neuroprotective, Anti-Oxidative and Anti-Inflammatory Factors. J Neuroimmune Pharmacol 2020; 16:620-633. [PMID: 33164162 DOI: 10.1007/s11481-020-09969-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Human amniotic epithelial cells (hAECs) have been reported to have neuroprotective roles in Parkinson's disease (PD) animal models. However, the molecular mechanism is not fully understood. The present study was designed to explore the possible mechanism by which hAECs ameliorate PD symptoms and the important paracrine factors produced by hAECs that attribute to the recovery of dopaminergic neurons. Thus, we performed in vivo and in vitro experiments with hAECs in PD models or lesioned dopaminergic neurons, respectively. First, hAECs were transplanted into the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice and motor deficits were significantly attenuated. Second, the grafts prevented the loss of nigral dopaminergic neurons and promoted the outgrowth of neurites and striatal axon fibers in PD mice. In addition, decreased microglial activation, inflammatory factor levels and MPTP-induced excessive reactive oxygen species (ROS) levels were also observed in hAEC-treated PD mice. In vitro, we found that the conditioned medium (CM) from hAECs promoted the survival of mesencephalic dopaminergic neurons stimulated with 1-methyl-4-phenylpyridine (MPP+) and induced neurite outgrowth. Next, analysis of hAEC-CM with an antibody array of 507 soluble target proteins revealed that the levels of many neurotrophic factors, growth factors, neuronal cell adhesion molecule (NrCAM) and anti-inflammatory factors were evidently high. In addition, antibody neutralization experiments showed that many of these factors contributed to the survival and growth of dopaminergic neurons and neurite outgrowth. More importantly, we found that the anti-inflammatory factor interleukin-1 receptor antagonist (IL-1ra) also augmented the survival of dopaminergic neurons, demonstrating for the first time an anti-oxidative and anti-inflammatory role of hAECs in PD mice, which represents a novel molecular mechanism of hAECs in the treatment of PD. The molecular mechanism of hAECs recovering lesioned dopaminergic neurons and attenuating PD symptoms. First, hAECs secret many neurotrophic factors, growth factors, and neuronal cell adhesion molecule (NrCAM) which promote the growth of the damaged dopaminergic neurons and their neurites. Second, hAECs produce many anti-inflammatory factors and other factors contributing to reducing the activation of microglia and suppressing the neuroinflammation. Third, hAECs reduce the excessive ROS levels by upregulating some anti-oxidative signals.
Collapse
Affiliation(s)
- Jiaofei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, 200127, Shanghai, China
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, 200127, Shanghai, China
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xian Jiao Tong University, Xian, 710054, China
| | - Jianhua Lin
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - You Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qianjun Zhang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, 200127, Shanghai, China.
- Med-X Research Institute and School of Biological Medical Engineering, Shanghai Jiao Tong University, 1594 Huashan Road, Shanghai, 200030, China.
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, 200127, Shanghai, China.
| |
Collapse
|
13
|
Airavaara M, Parkkinen I, Konovalova J, Albert K, Chmielarz P, Domanskyi A. Back and to the Future: From Neurotoxin-Induced to Human Parkinson's Disease Models. ACTA ACUST UNITED AC 2020; 91:e88. [PMID: 32049438 DOI: 10.1002/cpns.88] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by motor symptoms such as tremor, slowness of movement, rigidity, and postural instability, as well as non-motor features like sleep disturbances, loss of ability to smell, depression, constipation, and pain. Motor symptoms are caused by depletion of dopamine in the striatum due to the progressive loss of dopamine neurons in the substantia nigra pars compacta. Approximately 10% of PD cases are familial arising from genetic mutations in α-synuclein, LRRK2, DJ-1, PINK1, parkin, and several other proteins. The majority of PD cases are, however, idiopathic, i.e., having no clear etiology. PD is characterized by progressive accumulation of insoluble inclusions, known as Lewy bodies, mostly composed of α-synuclein and membrane components. The cause of PD is currently attributed to cellular proteostasis deregulation and mitochondrial dysfunction, which are likely interdependent. In addition, neuroinflammation is present in brains of PD patients, but whether it is the cause or consequence of neurodegeneration remains to be studied. Rodents do not develop PD or PD-like motor symptoms spontaneously; however, neurotoxins, genetic mutations, viral vector-mediated transgene expression and, recently, injections of misfolded α-synuclein have been successfully utilized to model certain aspects of the disease. Here, we critically review the advantages and drawbacks of rodent PD models and discuss approaches to advance pre-clinical PD research towards successful disease-modifying therapy. © 2020 The Authors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilmari Parkkinen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Chmielarz P, Er Ş, Konovalova J, Bandres L, Hlushchuk I, Albert K, Panhelainen A, Luk K, Airavaara M, Domanskyi A. GDNF/RET Signaling Pathway Activation Eliminates Lewy Body Pathology in Midbrain Dopamine Neurons. Mov Disord 2020; 35:2279-2289. [PMID: 32964492 DOI: 10.1002/mds.28258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is associated with proteostasis disturbances and accumulation of misfolded α-synuclein (α-syn), a cytosolic protein present in high concentrations at pre-synaptic neuronal terminals. It is a primary constituent of intracellular protein aggregates known as Lewy neurites or Lewy bodies. Progression of Lewy pathology caused by the prion-like self-templating properties of misfolded α-syn is a characteristic feature in the brains of PD patients. Glial cell line-derived neurotrophic factor (GDNF) promotes survival of mature dopamine (DA) neurons in vitro and in vivo. However, the data on its effect on Lewy pathology is controversial. OBJECTIVES We studied the effects of GDNF on misfolded α-syn accumulation in DA neurons. METHODS Lewy pathology progression was modeled by the application of α-syn preformed fibrils in cultured DA neurons and in the adult mice. RESULTS We discovered that GDNF prevented accumulation of misfolded α-syn in DA neurons in culture and in vivo. These effects were abolished by deletion of receptor tyrosine kinase rearranged during transfection (RET) or by inhibitors of corresponding signaling pathway. Expression of constitutively active RET protected DA neurons from fibril-induced α-syn accumulation. CONCLUSIONS For the first time, we have shown the neurotrophic factor-mediated protection against the misfolded α-syn propagation in DA neurons, uncovered underlying receptors, and investigated the involved signaling pathways. These results demonstrate that activation of GDNF/RET signaling can be an effective therapeutic approach to prevent Lewy pathology spread at early stages of PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Piotr Chmielarz
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna, Poland
| | - Şafak Er
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Laura Bandres
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Irena Hlushchuk
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katrina Albert
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Mallah K, Couch C, Borucki DM, Toutonji A, Alshareef M, Tomlinson S. Anti-inflammatory and Neuroprotective Agents in Clinical Trials for CNS Disease and Injury: Where Do We Go From Here? Front Immunol 2020; 11:2021. [PMID: 33013859 PMCID: PMC7513624 DOI: 10.3389/fimmu.2020.02021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological disorders are major contributors to death and disability worldwide. The pathology of injuries and disease processes includes a cascade of events that often involve molecular and cellular components of the immune system and their interaction with cells and structures within the central nervous system. Because of this, there has been great interest in developing neuroprotective therapeutic approaches that target neuroinflammatory pathways. Several neuroprotective anti-inflammatory agents have been investigated in clinical trials for a variety of neurological diseases and injuries, but to date the results from the great majority of these trials has been disappointing. There nevertheless remains great interest in the development of neuroprotective strategies in this arena. With this in mind, the complement system is being increasingly discussed as an attractive therapeutic target for treating brain injury and neurodegenerative conditions, due to emerging data supporting a pivotal role for complement in promoting multiple downstream activities that promote neuroinflammation and degeneration. As we move forward in testing additional neuroprotective and immune-modulating agents, we believe it will be useful to review past trials and discuss potential factors that may have contributed to failure, which will assist with future agent selection and trial design, including for complement inhibitors. In this context, we also discuss inhibition of the complement system as a potential neuroprotective strategy for neuropathologies of the central nervous system.
Collapse
Affiliation(s)
- Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Davis M. Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, United States
| | - Mohammed Alshareef
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Neurological Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
16
|
Chmielarz P, Saarma M. Neurotrophic factors for disease-modifying treatments of Parkinson's disease: gaps between basic science and clinical studies. Pharmacol Rep 2020; 72:1195-1217. [PMID: 32700249 PMCID: PMC7550372 DOI: 10.1007/s43440-020-00120-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Abstract Background Neurotrophic factors are endogenous proteins promoting the survival of different neural cells. Therefore, they elicited great interest as a possible treatment for neurodegenerative disorders, including Parkinson’s Disease (PD). PD is the second most common neurodegenerative disorder, scientifically characterized more than 200 years ago and initially linked with motor abnormalities. Currently, the disease is viewed as a highly heterogeneous, progressive disorder with a long presymptomatic phase, and both motor and non-motor symptoms. Presently only symptomatic treatments for PD are available. Neurohistopathological changes of PD affected brains have been described more than 100 years ago and characterized by the presence of proteinaceous inclusions known as Lewy bodies and degeneration of dopamine neurons. Despite more than a century of investigations, it has remained unclear why dopamine neurons die in PD. Methods This review summarizes literature data from preclinical studies and clinical trials of neurotrophic factor based therapies for PD and discuss it from the perspective of the current understanding of PD biology. Results Newest data point towards dysfunctions of mitochondria, autophagy-lysosomal pathway, unfolded protein response and prion protein-like spreading of misfolded alpha-synuclein that is the major component of Lewy bodies. Yet, the exact chain of events leading to the demise of dopamine neurons is unclear and perhaps different in subpopulations of patients. Conclusions Gaps in our understanding of underlying disease etiology have hindered our attempts to find treatments able to slow down the progression of PD. Graphic abstract ![]()
Collapse
Affiliation(s)
- Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
17
|
MANF Ablation Causes Prolonged Activation of the UPR without Neurodegeneration in the Mouse Midbrain Dopamine System. eNeuro 2020; 7:ENEURO.0477-19.2019. [PMID: 32005751 PMCID: PMC7053174 DOI: 10.1523/eneuro.0477-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) localized protein that regulates ER homeostasis and unfolded protein response (UPR). The biology of endogenous MANF in the mammalian brain is unknown and therefore we studied the brain phenotype of MANF-deficient female and male mice at different ages focusing on the midbrain dopamine system and cortical neurons. We show that a lack of MANF from the brain led to the chronic activation of UPR by upregulation of the endoribonuclease activity of the inositol-requiring enzyme 1α (IRE1α) pathway. Furthermore, in the aged MANF-deficient mouse brain in addition the protein kinase-like ER kinase (PERK) and activating transcription factor 6 (ATF6) branches of the UPR pathways were activated. Neuronal loss in neurodegenerative diseases has been associated with chronic ER stress. In our mouse model, increased UPR activation did not lead to neuronal cell loss in the substantia nigra (SN), decrease of striatal dopamine or behavioral changes of MANF-deficient mice. However, cortical neurons lacking MANF were more vulnerable to chemical induction of additional ER stress in vitro. We conclude that embryonic neuronal deletion of MANF does not cause the loss of midbrain dopamine neurons in mice. However, endogenous MANF is needed for maintenance of neuronal ER homeostasis both in vivo and in vitro.
Collapse
|
18
|
Cembran A, Bruggeman KF, Williams RJ, Parish CL, Nisbet DR. Biomimetic Materials and Their Utility in Modeling the 3-Dimensional Neural Environment. iScience 2020; 23:100788. [PMID: 31954980 PMCID: PMC6970178 DOI: 10.1016/j.isci.2019.100788] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/30/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The brain is a complex 3-dimensional structure, the organization of which provides a local environment that directly influences the survival, proliferation, differentiation, migration, and plasticity of neurons. To probe the effects of damage and disease on these cells, a synthetic environment is needed. Three-dimensional culturing of stem cells, neural progenitors, and neurons within fabricated biomaterials has demonstrated superior biomimetic properties over conventional 2-dimensional cultureware, offering direct recapitulation of both cell-cell and cell-extracellular matrix interactions. Within this review we address the benefits of deploying biomaterials as advanced cell culture tools capable of influencing neuronal fate and as in vitro models of the native in vivo microenvironment. We highlight recent and promising biomaterials approaches toward understanding neural network and their function relevant to neurodevelopment and provide our perspective on how these materials can be engineered and programmed to study both the healthy and diseased nervous system.
Collapse
Affiliation(s)
- Arianna Cembran
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia
| | | | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
19
|
Abstract
Parkinson's disease (PD) is an aging-related neurodegenerative disorder characterized by progressive motor impairment.The etiology of PD is poorly understood but likely involves both genetic and environmental factors; the management of the disease is still with symptomatic therapy without any interference on the progression of neurodegeneration. In the past two decades, the results of a series of prospective cohort studies suggested that lifestyle factors likely modify the risk of developing PD. Among these, physical activity is known to reduce the risk of a wide range of diseases and conditions, including cardiovascular disease, stroke, and diabetes.Recently, a growing body of evidence has suggested that increased physical activity may also reduce the risk of PD and partly improve motor and non-motor symptoms during the disease course.Here we report the main findings on the effect of physical activity on both mobility and cognition either in animal models of PD or in people with PD. We also highlighted the structural and functional links between gait and cognition by reporting evidence from neuroimaging studies.
Collapse
Affiliation(s)
- Simona Bonavita
- II Clinic of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
20
|
Xi G, Esfandiary R, Sacramento CB, Jouihan H, Sharma A, Roth R, Linke T. Refolding and purification of cGMP-grade recombinant human neurturin from Escherichia coli inclusion bodies. Protein Expr Purif 2019; 168:105552. [PMID: 31866372 DOI: 10.1016/j.pep.2019.105552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
Neurturin is a potent neurotrophic factor that has been investigated as a potential therapeutic agent for the treatment of neurodegenerative diseases, including Parkinson's disease, and, more recently, for the treatment of type II diabetes. However, purification of neurturin for clinical applications has been hampered by its low solubility in aqueous solutions. Here we describe the development of a scalable manufacturing process for recombinant neurturin from E. coli. inclusion bodies. Neurturin was refolded from solubilized inclusion bodies by fed-batch dilution refolding with a titer of 90 mg per liter refold and a refold yield of 89%. A two-step purification process using cation exchange and hydrophobic interaction chromatography, followed by formulation using tangential flow filtration resulted in an overall process yield of about 56 mg purified neurturin per liter refold. Solubility of neurturin during the purification process was maintained by the addition of 15% (w/v) glycerol to all buffers. For clinical applications and parenteral administration glycerol was replaced by 15% (w/v) sulfobutyl ether-beta-cyclodextrin (i.e. Captisol) in the drug substance formulation buffer. The final purified product had low or undetectable levels of product-related impurities and concentrations of process-related contaminants such as host cell proteins, host cell DNA, endotoxins and Triton X-100 were reduced more than 10,000-fold or below the limit of detection. Bioactivity of purified recombinant neurturin was demonstrated in a cell-based assay by activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Guoling Xi
- Department of Purification Process Sciences, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Reza Esfandiary
- Department of Dosage Form Design and Development, AstraZeneca, Gaithersburg, MD, 20878, USA
| | | | - Hani Jouihan
- Department of Cardiovascular and Metabolic Diseases, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Arun Sharma
- Department of Cardiovascular and Metabolic Diseases, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Robert Roth
- Discovery Biology, Discovery Sciences, AstraZeneca, Gothenburg, 43183, Sweden
| | - Thomas Linke
- Department of Purification Process Sciences, AstraZeneca, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
21
|
Salamon A, Zádori D, Szpisjak L, Klivényi P, Vécsei L. Neuroprotection in Parkinson's disease: facts and hopes. J Neural Transm (Vienna) 2019; 127:821-829. [PMID: 31828513 PMCID: PMC7242234 DOI: 10.1007/s00702-019-02115-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide. Behind the symptoms there is a complex pathological mechanism which leads to a dopaminergic cell loss in the substantia nigra pars compacta. Despite the strong efforts, curative treatment has not been found yet. To prevent a further cell death, numerous molecules were tested in terms of neuroprotection in preclinical (in vitro, in vivo) and in clinical studies as well. The aim of this review article is to summarize our knowledge about the extensively tested neuroprotective agents (Search period: 1991–2019). We detail the underlying pathological mechanism and summarize the most important results of the completed animal and clinical trials. Although many positive results have been reported in the literature, there is still no evidence that any of them should be used in clinical practice (Cochrane analysis was performed). Therefore, further studies are needed to better understand the pathomechanism of PD and to find the optimal neuroprotective agent(s).
Collapse
Affiliation(s)
- András Salamon
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary
| | - László Szpisjak
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Interdisciplinary Excellence Centre, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| |
Collapse
|
22
|
Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20236055. [PMID: 31801298 PMCID: PMC6929013 DOI: 10.3390/ijms20236055] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs are post-transcriptional regulators of gene expression, crucial for neuronal differentiation, survival, and activity. Age-related dysregulation of microRNA biogenesis increases neuronal vulnerability to cellular stress and may contribute to the development and progression of neurodegenerative diseases. All major neurodegenerative disorders are also associated with oxidative stress, which is widely recognized as a potential target for protective therapies. Albeit often considered separately, microRNA networks and oxidative stress are inextricably entwined in neurodegenerative processes. Oxidative stress affects expression levels of multiple microRNAs and, conversely, microRNAs regulate many genes involved in an oxidative stress response. Both oxidative stress and microRNA regulatory networks also influence other processes linked to neurodegeneration, such as mitochondrial dysfunction, deregulation of proteostasis, and increased neuroinflammation, which ultimately lead to neuronal death. Modulating the levels of a relatively small number of microRNAs may therefore alleviate pathological oxidative damage and have neuroprotective activity. Here, we review the role of individual microRNAs in oxidative stress and related pathways in four neurodegenerative conditions: Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD) disease, and amyotrophic lateral sclerosis (ALS). We also discuss the problems associated with the use of oversimplified cellular models and highlight perspectives of studying microRNA regulation and oxidative stress in human stem cell-derived neurons.
Collapse
Affiliation(s)
- Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Dmytro Gerasymchuk
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Institute of Molecular Biology and Genetics, NASU, Kyiv 03143, Ukraine
| | - Ilmari Parkkinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (D.G.); (I.P.)
- Correspondence: ; Tel.: +358-50-448-4545
| |
Collapse
|
23
|
Albert K, Airavaara M. Neuroprotective and reparative effects of endoplasmic reticulum luminal proteins - mesencephalic astrocyte-derived neurotrophic factor and cerebral dopamine neurotrophic factor. Croat Med J 2019. [PMID: 31044581 PMCID: PMC6509620 DOI: 10.3325/cmj.2019.60.99] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) are proteins that have received increasing attention in the last decades. Although they are called neurotrophic factors they are drastically different from neurotrophic factors in their expression and physiological actions. They are located in the lumen of the endoplasmic reticulum (ER) and their basal secretion from neurons is very low. However their secretion is stimulated upon ER calcium depletion by chemical probes such as thapsigargin, a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor. Exogenous MANF and CDNF possess therapeutic properties in several neurological disease models, including Parkinson’s disease and stroke. Endogenous MANF expression has been shown to be neuroprotective, as well as administration of either CDNF or MANF into the extracellular space. In this review, we focus on their therapeutic effects, regulation of expression and secretion, comparison of their mechanisms of action, and their application to the brain parenchyma as recombinant proteins.
Collapse
Affiliation(s)
| | - Mikko Airavaara
- Mikko Airavaara, Neuroscience Center, HiLIFE, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland,
| |
Collapse
|
24
|
Chen Y, Wu Z, Zhu X, Zhang M, Zang X, Li X, Xu Y. OCT4B-190 protects against ischemic stroke by modulating GSK-3β/HDAC6. Exp Neurol 2019; 316:52-62. [DOI: 10.1016/j.expneurol.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023]
|
25
|
Anttila JE, Pöyhönen S, Airavaara M. Secondary Pathology of the Thalamus after Focal Cortical Stroke in Rats is not Associated with Thermal or Mechanical Hypersensitivity and is Not Alleviated by Intra-Thalamic Post-Stroke Delivery of Recombinant CDNF or MANF. Cell Transplant 2019; 28:425-438. [PMID: 31037983 PMCID: PMC6628565 DOI: 10.1177/0963689719837915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A stroke affecting the somatosensory pathway can trigger central post-stroke pain
syndrome (CPSP). The symptoms often include hyperalgesia, which has also been described in
rodents after the direct damage of the thalamus. Previous studies have shown that
hemorrhagic stroke or ischemia caused by vasoconstriction in the thalamus induces
increased pain sensitivity. We investigated whether inducing secondary damage in the
thalamus by a cortical stroke causes similar pain hypersensitivity as has previously been
reported with direct ischemic injury. We induced a focal cortical ischemia-reperfusion
injury in male rats, quantified the amount of secondary neurodegeneration in the thalamus,
and measured whether the thalamic neurodegeneration is associated with thermal or
mechanical hypersensitivity. After one month, we observed extensive neuronal degeneration
and found approximately 40% decrease in the number of NeuN+ cells in the ipsilateral
thalamus. At the same time, there was a massive accumulation—a 30-fold increase—of
phagocytic cells in the ipsilateral thalamus. However, despite the evident damage in the
thalamus, we did not observe thermal or mechanical sensitization. Thus, thalamic
neurodegeneration after cortical ischemia-reperfusion does not induce CPSP-like symptoms
in rats, and these results suggest that direct ischemic damage is needed for CPSP
induction. Despite not observing hyperalgesia, we investigated whether administration of
cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived
neurotrophic factor (MANF) into the ipsilateral thalamus would reduce the secondary
damage. We gave a single injection (10 µg) of recombinant CDNF or MANF protein into the
thalamus at 7 days post-stroke. Both CDNF and MANF treatment promoted the functional
recovery but had no effect on the neuronal loss or the amount of phagocytic cells in the
thalamus.
Collapse
Affiliation(s)
- Jenni E. Anttila
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki,
Finland
| | - Suvi Pöyhönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki,
Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki,
Finland
- Mikko Airavaara, Institute of Biotechnology, HiLIFE,
University of Helsinki, P.O. Box 56, Helsinki 00014, Finland.
| |
Collapse
|
26
|
Paul G, Sullivan AM. Trophic factors for Parkinson's disease: Where are we and where do we go from here? Eur J Neurosci 2019; 49:440-452. [DOI: 10.1111/ejn.14102] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 07/22/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Gesine Paul
- Translational Neurology GroupDepartment of Clinical ScienceLund University Lund Sweden
- Wallenberg Center for Molecular MedicineLund University Lund Sweden
- Department of NeurologyScania University Hospital Lund Sweden
| | - Aideen M. Sullivan
- Department of Anatomy and NeuroscienceUniversity College Cork Cork Ireland
| |
Collapse
|
27
|
Fan LW, Carter K, Bhatt A, Pang Y. Rapid transport of insulin to the brain following intranasal administration in rats. Neural Regen Res 2019; 14:1046-1051. [PMID: 30762017 PMCID: PMC6404510 DOI: 10.4103/1673-5374.250624] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We previously reported that intranasal insulin protects substantia nigra dopaminergic neurons against 6-hydroxydopamine neurotoxicity in rats. This study aimed to assess insulin pharmacokinetics in the rat brain following intranasal application. Recombinant human insulin (rh-Ins) or phosphate buffer solution was administered to both nostrils of rats. Animals were sacrificed at 15 minutes, 1, 2, and 6 hours to determine insulin levels in different brain regions by an ultrasensitive, human-specific enzyme-linked immunosorbent assay kit. For fluorescence tracing study, rats were administered with intranasal florescence-tagged insulin (Alex546-Ins), and brains were fixed at 10 and 30 minutes to prepare sagittal sections. rh-Ins was detected in all brain regions examined except the cerebral cortex. The highest levels were detected in the brainstem, followed by the cerebellum, substantia nigra/ventral tegmental area, olfactory bulb, striatum, hippocampus, and thalamus/hypothalamus. Insulin levels reached a peak at 15 minutes and then declined gradually overtime, but remained significantly higher than baseline levels at 6 hours in most regions. Consistently, widespread Alex546-Ins-binding cells were detected in the brain at 10 and 30 minutes, with the olfactory bulb and brainstem showing the highest while the cerebral cortex showing lowest fluorescence signals. Double-immunostaining showed that Alex546-Ins-bindings were primarily co-localized with neuronal nuclei-positive neurons. In the subtantia nigra, phospho-Akt was found to be activated in a subset of Alex546-Ins and tyrosine hydroxylase double-labeled cells, suggesting activation of the Akt/PI3K pathway in these dopaminergic neurons. Data from this study suggest that intranasal insulin could effectively reach deep brain structures including the nigrostriatal pathways, where it binds to dopaminergic neurons and activates intracellular cell survival signaling. This study was approved by the Institutional Animal Care Committee at the University of Mississippi Medical Center (protocol 1333A) on June 29, 2015.
Collapse
Affiliation(s)
- Lir-Wan Fan
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kathleen Carter
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Abhay Bhatt
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
28
|
Liu H, Huang Y, Li J. Bioinformatic analysis for the identification of key candidate genes and pathways in the substantia nigra in Parkinson's disease. J Integr Neurosci 2018; 17:619-631. [PMID: 30010140 DOI: 10.3233/jin-180091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is one of the most common diseases in the elderly population, and the substantia nigra is generally involved in the disease process; however, the signaling pathways and related genes underlying Parkinson's disease remain unclear. This study integrated three cohorts of profile datasets to elucidate the potential key candidate genes and pathways in Parkinson's disease. The expression profiles of GSE8397, GSE20186 and GSE49036 were included 55 available substantia nigra tissue samples from individuals diagnosed with Parkinson's disease and 33 substantia nigra tissue samples from healthy controls. These samples were integrated and thoroughly analyzed. Differentially expressed genes (DEGs) were sorted, and candidate genes and pathway enrichments were analyzed. A DEG-associated protein-protein interaction network analysis was performed. 27 shared downregulated DEGs were identified from the three GSE datasets. The DEGs were clustered based on function and signaling pathway with significant enrichment analysis. 52 edges were identified from the DEG protein-protein interaction network complex, which included dopamine metabolism, nerve conduction, reduced neuronal toxicity and proliferation pathways. Using integrated bioinformatic analysis, we identified candidate genes and pathways in Parkinson's disease that could improve our understanding of underlying molecular events, which could be potential therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Hongbin Liu
- The Department of Internal Neurology, Beijing Geriatric Hospital, Beijing, China
| | - Yongjun Huang
- The Department of Internal Neurology, Beijing Geriatric Hospital, Beijing, China
| | - Jinyi Li
- The Department of Urology, Mount Sinai Hospital, New York, US
| |
Collapse
|
29
|
Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco-Prieto MJ. Micro- and nanotechnology approaches to improve Parkinson's disease therapy. J Control Release 2018; 295:201-213. [PMID: 30579984 DOI: 10.1016/j.jconrel.2018.12.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
Abstract
Current therapies for Parkinson's disease are symptomatic and unable to regenerate the brain tissue. In recent years, the therapeutic potential of a wide variety of neuroprotective and neuroregenerative molecules such as neurotrophic factors, antioxidants and RNA-based therapeutics has been explored. However, drug delivery to the brain is still a challenge and the therapeutic efficacy of many drugs is limited. In the last decade, micro- and nanoparticles have proved to be powerful tools for the administration of these molecules to the brain, enabling the development of new strategies against Parkinson's disease. The list of encapsulated drugs and the nature of the particles used is long, and numerous studies have been carried out supporting their efficacy in treating this pathology. This review aims to give an overview of the latest advances and emerging frontiers in micro- and nanomedical approaches for repairing dopaminergic neurons. Special emphasis will be placed on offering a new perspective to link these advances with the most relevant clinical trials and with the real possibility of transferring micro- and nanoformulations to industrial scale-up processes. This review is intended as a contribution towards facing the challenges that still exist in the clinical translation of micro- and nanotechnologies to administer therapeutic agents in Parkinson's disease.
Collapse
Affiliation(s)
- Pablo Vicente Torres-Ortega
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Laura Saludas
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Amira Sayed Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria (PUA), Alexandria, Egypt
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| | - María José Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
30
|
Crowley EK, Nolan YM, Sullivan AM. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol 2018; 172:2-22. [PMID: 30481560 DOI: 10.1016/j.pneurobio.2018.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/25/2018] [Accepted: 11/23/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterised by degeneration of dopaminergic neurons of the nigrostriatal pathway, which leads to the cardinal motor symptoms of the disease - tremor, rigidity and postural instability. A number of non-motor symptoms are also associated with PD, including cognitive impairment, mood disturbances and dysfunction of gastrointestinal and autonomic systems. Current therapies provide symptomatic relief but do not halt the disease process, so there is an urgent need for preventative strategies. Lifestyle interventions such as aerobic exercise have shown potential to lower the risk of developing PD and to alleviate both motor and non-motor symptoms. However, there is a lack of large-scale randomised clinical trials that have employed exercise in PD patients. This review will focus on the evidence from studies on rodent models of PD, for employing exercise as an intervention for both motor and non-motor symptoms.
Collapse
Affiliation(s)
- E K Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - A M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
31
|
Murphy K, Llewellyn K, Wakser S, Pontasch J, Samanich N, Flemer M, Hensley K, Kim DS, Park J. Mini-GAGR, an intranasally applied polysaccharide, activates the neuronal Nrf2-mediated antioxidant defense system. J Biol Chem 2018; 293:18242-18269. [PMID: 30282635 PMCID: PMC6254342 DOI: 10.1074/jbc.ra117.001245] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 09/12/2018] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress triggers and exacerbates neurodegeneration in Alzheimer's disease (AD). Various antioxidants reduce oxidative stress, but these agents have little efficacy due to poor blood-brain barrier (BBB) permeability. Additionally, single-modal antioxidants are easily overwhelmed by global oxidative stress. Activating nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) and its downstream antioxidant system are considered very effective for reducing global oxidative stress. Thus far, only a few BBB-permeable agents activate the Nrf2-dependent antioxidant system. Here, we discovered a BBB-bypassing Nrf2-activating polysaccharide that may attenuate AD pathogenesis. Mini-GAGR, a 0.7-kDa cleavage product of low-acyl gellan gum, increased the levels and activities of Nrf2-dependent antioxidant enzymes, decreased reactive oxygen species (ROS) under oxidative stress in mouse cortical neurons, and robustly protected mitochondria from oxidative insults. Moreover, mini-GAGR increased the nuclear localization and transcriptional activity of Nrf2 similarly to known Nrf2 activators. Mechanistically, mini-GAGR increased the dissociation of Nrf2 from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), and induced phosphorylation and nuclear translocation of Nrf2 in a protein kinase C (PKC)- and fibroblast growth factor receptor (FGFR1)-dependent manner. Finally, 20-day intranasal treatment of 3xTg-AD mice with 100 nmol of mini-GAGR increased nuclear p-Nrf2 and growth-associated protein 43 (GAP43) levels in hippocampal neurons, reduced p-tau and β-amyloid (Aβ) peptide-stained neurons, and improved memory. The BBB-bypassing Nrf2-activating polysaccharide reported here may be effective in reducing oxidative stress and neurodegeneration in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kenneth Hensley
- Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio 43614 and
| | - Dong-Shik Kim
- the Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, Ohio 43607
| | | |
Collapse
|
32
|
Troncoso-Escudero P, Parra A, Nassif M, Vidal RL. Outside in: Unraveling the Role of Neuroinflammation in the Progression of Parkinson's Disease. Front Neurol 2018; 9:860. [PMID: 30459700 PMCID: PMC6232883 DOI: 10.3389/fneur.2018.00860] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is one of the most important processes involved in the pathogenesis of Parkinson's disease (PD). The current concept of neuroinflammation comprises an inflammation process, which occurs in the central nervous system due to molecules released from brain-resident and/or blood-derived immune cells. Furthermore, the evidence of the contribution of systemic delivered molecules to the disease pathogenesis, such as the gut microbiota composition, has been increasing during the last years. Under physiological conditions, microglia and astrocytes support the well-being and well-function of the brain through diverse functions, including neurotrophic factor secretion in both intact and injured brain. On the other hand, genes that cause PD are expressed in astrocytes and microglia, shifting their neuroprotective role to a pathogenic one, contributing to disease onset and progression. In addition, growth factors are a subset of molecules that promote cellular survival, differentiation and maturation, which are critical signaling factors promoting the communication between cells, including neurons and blood-derived immune cells. We summarize the potential targeting of astrocytes and microglia and the systemic contribution of the gut microbiota in neuroinflammation process archived in PD.
Collapse
Affiliation(s)
- Paulina Troncoso-Escudero
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Alejandra Parra
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Melissa Nassif
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Rene L Vidal
- Faculty of Sciences, Center for Integrative Biology, Universidad Mayor, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile.,Neurounion Biomedical Foundation, Santiago, Chile
| |
Collapse
|
33
|
Widmer HR. Combination of cell transplantation and glial cell line-derived neurotrophic factor-secreting encapsulated cells in Parkinson's disease. Brain Circ 2018; 4:114-117. [PMID: 30450417 PMCID: PMC6187948 DOI: 10.4103/bc.bc_19_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 12/04/2022] Open
Abstract
A major limitation of cell transplantation for Parkinson's disease (PD) is the mediocre survival of the grafted cells. Facilitating graft survival may improve the functional outcomes of the transplanted cells. Here, we discuss our observations that combination of rat fetal ventral mesencephalic (VM) tissue and encapsulated cells that secrete glial cell line-derived neurotrophic factor (GDNF) enhanced graft function in an animal model of PD. We described significant 2-fold increase in the number of tyrosine hydroxylase immunoreactive (TH-ir) cells per graft, as well as 1.7-fold and 9-fold increments in TH-ir fiber outgrowth into the host brain and toward the capsule with combined transplants and GDNF capsules as opposed to the VM transplants and mock-capsule group. These findings demonstrate that encapsulated GDNF-secreting cells improve graft survival that may optimize functional benefits for the treatment of PD.
Collapse
Affiliation(s)
- Hans R Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, University of Bern, CH-3010 Bern, Switzerland
| |
Collapse
|
34
|
Penttinen AM, Parkkinen I, Blom S, Kopra J, Andressoo JO, Pitkänen K, Voutilainen MH, Saarma M, Airavaara M. Implementation of deep neural networks to count dopamine neurons in substantia nigra. Eur J Neurosci 2018; 48:2354-2361. [PMID: 30144349 PMCID: PMC6585833 DOI: 10.1111/ejn.14129] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/24/2018] [Accepted: 08/10/2018] [Indexed: 12/04/2022]
Abstract
Unbiased estimates of neuron numbers within substantia nigra are crucial for experimental Parkinson's disease models and gene‐function studies. Unbiased stereological counting techniques with optical fractionation are successfully implemented, but are extremely laborious and time‐consuming. The development of neural networks and deep learning has opened a new way to teach computers to count neurons. Implementation of a programming paradigm enables a computer to learn from the data and development of an automated cell counting method. The advantages of computerized counting are reproducibility, elimination of human error and fast high‐capacity analysis. We implemented whole‐slide digital imaging and deep convolutional neural networks (CNN) to count substantia nigra dopamine neurons. We compared the results of the developed method against independent manual counting by human observers and validated the CNN algorithm against previously published data in rats and mice, where tyrosine hydroxylase (TH)‐immunoreactive neurons were counted using unbiased stereology. The developed CNN algorithm and fully cloud‐embedded Aiforia™ platform provide robust and fast analysis of dopamine neurons in rat and mouse substantia nigra.
Collapse
Affiliation(s)
- Anna-Maija Penttinen
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Ilmari Parkkinen
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Sami Blom
- Biomedicum, Fimmic Oy, Helsinki, Finland
| | - Jaakko Kopra
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | | | - Merja H Voutilainen
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE Unit, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Perez-Bouza A, Di Santo S, Seiler S, Meyer M, Andereggen L, Huber A, Guzman R, Widmer HR. Simultaneous Transplantation of Fetal Ventral Mesencephalic Tissue and Encapsulated Genetically Modified Cells Releasing GDNF in a Hemi-Parkinsonian Rat Model of Parkinson's Disease. Cell Transplant 2018; 26:1572-1581. [PMID: 29113462 PMCID: PMC5680950 DOI: 10.1177/0963689717721202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transplantation of fetal ventral mesencephalic (VM) neurons for Parkinson’s disease (PD) is limited by poor survival and suboptimal integration of grafted tissue into the host brain. In a 6-hydroxydopamine rat model of PD, we investigated the feasibility of simultaneous transplantation of rat fetal VM tissue and polymer-encapsulated C2C12 myoblasts genetically modified to produce glial cell line–derived neurotrophic factor (GDNF) or mock-transfected myoblasts on graft function. Amphetamine-induced rotations were assessed prior to transplantation and 2, 4, 6 and 9 wk posttransplantation. We found that rats grafted with VM transplants and GDNF capsules showed a significant functional recovery 4 wk after implantation. In contrast, rats from the VM transplant and mock-capsule group did not improve at any time point analyzed. Moreover, we detected a significantly higher number of tyrosine hydroxylase immunoreactive (TH-ir) cells per graft (2-fold), a tendency for a larger graft volume and an overall higher TH-ir fiber outgrowth into the host brain (1.7-fold) in the group with VM transplants and GDNF capsules as compared to the VM transplant and mock-capsule group. Most prominent was the TH-ir fiber outgrowth toward the capsule (9-fold). Grafting of GDNF-pretreated VM transplants in combination with the implantation of GDNF capsules resulted in a tendency for a higher TH-ir fiber outgrowth into the host brain (1.7-fold) as compared to the group transplanted with untreated VM transplants and GDNF capsules. No differences between groups were observed for the number of surviving TH-ir neurons or graft volume. In conclusion, our findings demonstrate that simultaneous transplantation of fetal VM tissue and encapsulated GDNF-releasing cells is feasible and support the graft survival and function. Pretreatment of donor tissue with GDNF may offer a way to further improve cell transplantation approaches for PD.
Collapse
Affiliation(s)
- Alberto Perez-Bouza
- 1 Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefano Di Santo
- 1 Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefanie Seiler
- 1 Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Morten Meyer
- 2 Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lukas Andereggen
- 1 Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexander Huber
- 1 Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raphael Guzman
- 1 Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland.,3 Present address: Departments of Neurosurgery and Biomedicine, University Hospital of Basel, Basel, Switzerland
| | - Hans R Widmer
- 1 Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
36
|
Torra A, Parent A, Cuadros T, Rodríguez-Galván B, Ruiz-Bronchal E, Ballabio A, Bortolozzi A, Vila M, Bové J. Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson's Disease-Related Neurodegeneration. Mol Ther 2018; 26:1552-1567. [PMID: 29628303 DOI: 10.1016/j.ymthe.2018.02.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/16/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
The possible implication of transcription factor EB (TFEB) as a therapeutic target in Parkinson's disease has gained momentum since it was discovered that TFEB controls lysosomal biogenesis and autophagy and that its activation might counteract lysosomal impairment and protein aggregation. However, the majority of putative direct targets of TFEB described to date is linked to a range of biological processes that are not related to the lysosomal-autophagic system. Here, we assessed the effect of overexpressing TFEB with an adeno-associated viral vector in mouse substantia nigra dopaminergic neurons. We demonstrate that TFEB overexpression drives a previously unknown bona fide neurotrophic effect, giving rise to cell growth, higher tyrosine hydroxylase levels, and increased dopamine release in the striatum. TFEB overexpression induces the activation of the mitogen-activated protein kinase 1/3 (MAPK1/3) and AKT pro-survival pathways, phosphorylation of mTORC1 effectors 4E-binding protein 1 (4E-BP1) and S6 kinase B1 (S6K1), and increased protein synthesis. We show that TFEB overexpression prevents dopaminergic cell loss and counteracts atrophy and the associated protein synthesis decline in the MPTP mouse model of Parkinson's disease. Our results suggest that increasing TFEB activity might prevent neuronal death and restore neuronal function in Parkinson's disease and other neurodegenerative diseases through different mechanisms.
Collapse
Affiliation(s)
- Albert Torra
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Esther Ruiz-Bronchal
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Center for Networked Biomedical Research on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Analía Bortolozzi
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Center for Networked Biomedical Research on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain.
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
37
|
Human Neural Stem Cells with GDNF Site-Specific Integration at AAVS1 by Using AAV Vectors Retained Their Stemness. Neurochem Res 2018; 43:930-937. [PMID: 29435804 DOI: 10.1007/s11064-018-2498-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/05/2018] [Accepted: 02/07/2018] [Indexed: 01/30/2023]
Abstract
The neural stem cells (NSCs) have the ability to self-renew, and to migrate to pathologically altered regions of the central nervous system. Glial cell derived neurotrophic factor (GDNF) could protect dopamine neurons and rescue motor neurons in vivo, which has been proposed as a promising candidate for the treatments of degenerative neurological diseases. In order to combine the advantages of neurotrophic factors and stem cells in clinical therapy, we established the modified hNSCs that has site-specific integration of GDNF gene by using recombinant adeno-associated virus (rAAV) vectors. The hNSCs were co-infected by rAAV2-EGFP-GDNF and rAAV2-SVAV2 which provide integrase to specifically integrate GDNF gene into AAVS1 site. The GDNF-hNSCs maintained their original stem cell characteristics and the ability to differentiate into neurons in vitro. In the animal model, the GDNF-hNSCs were specifically transplanted into CA1 area of hippocampi and could migrate to the dentate gyrus region and differentiate into neuronal cells while maintaining GDNF expression. hNSCs with GDNF gene site-specific integration at AAVS1 by using AAV vectors retained their stemness and effectively expressed GDNF, which indicates the potential of employing transplanted hNPCs for treatment of brain injuries and degenerative neurological diseases.
Collapse
|
38
|
Combination of CDNF and Deep Brain Stimulation Decreases Neurological Deficits in Late-stage Model Parkinson's Disease. Neuroscience 2018; 374:250-263. [PMID: 29408408 DOI: 10.1016/j.neuroscience.2018.01.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/22/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Several neurotrophic factors (NTF) are shown to be neuroprotective and neurorestorative in pre-clinical animal models for Parkinson's disease (PD), particularly in models where striatal dopamine neuron innervation partially exists. The results of clinical trials on late-stage patients have been modest. Subthalamic deep brain stimulation (STN DBS) is a proven treatment for a selected group of advanced PD patients. The cerebral dopamine neurotrophic factor (CDNF) is a promising therapeutic protein, but its effects in animal models of late-stage PD have remained under-researched. The interactions of NTF and STN DBS treatments have not been studied before. We found that a nigral CDNF protein alone had only a marginal effect on the behavioral deficits in a late-stage hemiparkinsonian rat model (6-OHDA MFB). However, CDNF improved the effect of acute STN DBS on front limb use asymmetry at 2 and 3 weeks after CDNF injection. STN lesion-modeling chronic stimulation-had an additive effect in reducing front limb use in the cylinder test and apomorphine-induced rotation. The combination of CDNF and acute STN DBS had a favorable effect on striatal tyrosine hydroxylase. This study presents a novel additive beneficial effect of NTF and STN DBS, which might be explained by the interaction of DBS-induced endogenous NTFs and exogenously injected CDNF. SNpc can be reached via similar trajectories used in clinical STN DBS, and this interaction is an important area for future studies.
Collapse
|
39
|
Ivanova L, Tammiku-Taul J, Sidorova Y, Saarma M, Karelson M. Small-Molecule Ligands as Potential GDNF Family Receptor Agonists. ACS OMEGA 2018; 3:1022-1030. [PMID: 30023796 PMCID: PMC6045390 DOI: 10.1021/acsomega.7b01932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 06/02/2023]
Abstract
To find out potential GDNF family receptor α1 (GFRα1) agonists, small molecules were built up by molecular fragments according to the structure-based drug design approach. Molecular docking was used to identify their binding modes to the biological target GFRα1 in GDNF-binding pocket. Thereafter, commercially available compounds based on the best predicted structures were searched from ZINC and MolPort databases (similarity ≥ 80%). Five compounds from the ZINC library were tested in phosphorylation and luciferase assays to study their ability to activate GFRα1-RET. A bidental compound with two carboxyl groups showed the highest activity in molecular modeling and biological studies. However, the relative position of these groups was important. The meta-substituted structure otherwise identical to the most active compound 2-[4-(5-carboxy-1H-1,3-benzodiazol-2-yl)phenyl]-1H-1,3-benzodiazole-5-carboxylic acid was inactive. A weaker activity was detected for a compound with a single carboxyl group, that is, 4-(1,3-benzoxazol-2-yl)benzoic acid. The substitution of the carboxyl group by the amino or acetamido group also led to the loss of the activity.
Collapse
Affiliation(s)
- Larisa Ivanova
- Institute
of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Jaana Tammiku-Taul
- Institute
of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Yulia Sidorova
- Laboratory
of Molecular Neuroscience, Institute of
Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014 Helsinki, Finland
| | - Mart Saarma
- Laboratory
of Molecular Neuroscience, Institute of
Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014 Helsinki, Finland
| | - Mati Karelson
- Institute
of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| |
Collapse
|
40
|
Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep 2018; 8:383. [PMID: 29321620 PMCID: PMC5762685 DOI: 10.1038/s41598-017-18786-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of Parkinson’s disease (PD) and other neurodegenerative disorders. We show that lack of PINK1- a mitochondrial kinase linked to recessive familial PD – leads to glia type-specific abnormalities of innate immunity. PINK1 loss enhances LPS/IFN-γ stimulated pro-inflammatory phenotypes of mixed astrocytes/microglia (increased iNOS, nitric oxide and COX-2, reduced IL-10) and pure astrocytes (increased iNOS, nitric oxide, TNF-α and IL-1β), while attenuating expression of both pro-inflammatory (TNF-α, IL-1β) and anti-inflammatory (IL-10) cytokines in microglia. These abnormalities are associated with increased inflammation-induced NF-κB signaling in astrocytes, and cause enhanced death of neurons co-cultured with inflamed PINK1−/− mixed glia and neuroblastoma cells exposed to conditioned medium from LPS/IFN-γ treated PINK1−/− mixed glia. Neuroblastoma cell death is prevented with an iNOS inhibitor, implicating increased nitric oxide production as the cause for enhanced death. Finally, we show for the first time that lack of a recessive PD gene (PINK1) increases α-Synuclein-induced nitric oxide production in all glia types (mixed glia, astrocytes and microglia). Our results describe a novel pathogenic mechanism in recessive PD, where PINK1 deficiency may increase neuron death via exacerbation of inflammatory stimuli-induced nitric oxide production and abnormal innate immune responses in glia cells.
Collapse
|
41
|
Abstract
The neurotrophins are a family of closely related proteins that were first identified as survival factors for sympathetic and sensory neurons and have since been shown to control a number of aspects of survival, development, and function of neurons in both the central and peripheral nervous systems. Limiting quantities of neurotrophins during development control the numbers of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. Biological effects of each of the four mammalian neurotrophins are mediated through activation of one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB, and TrkC). In addition, all neurotrophins activate the p75 neurotrophin receptor (p75NTR), a member of the tumor necrosis factor receptor superfamily. Neurotrophin engagement of Trk receptors leads to activation of Ras, phosphatidylinositol 3-kinase, phospholipase C-γ1, and signaling pathways controlled through these proteins, including the mitogen-activated protein kinases. Neurotrophin availability is required into adulthood, where they control synaptic function and plasticity and sustain neuronal cell survival, morphology, and differentiation. This article will provide an overview of neurotrophin biology, their receptors, and signaling pathways.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
42
|
Goes AT, Jesse CR, Antunes MS, Lobo Ladd FV, Lobo Ladd AA, Luchese C, Paroul N, Boeira SP. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson's disease: Involvement of neuroinflammation and neurotrophins. Chem Biol Interact 2018; 279:111-120. [DOI: 10.1016/j.cbi.2017.10.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/15/2017] [Accepted: 10/16/2017] [Indexed: 01/28/2023]
|
43
|
Walkowicz L, Kijak E, Krzeptowski W, Górska-Andrzejak J, Stratoulias V, Woznicka O, Chwastek E, Heino TI, Pyza EM. Downregulation of DmMANF in Glial Cells Results in Neurodegeneration and Affects Sleep and Lifespan in Drosophila melanogaster. Front Neurosci 2017; 11:610. [PMID: 29163014 PMCID: PMC5673640 DOI: 10.3389/fnins.2017.00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
In Drosophila melanogaster, mesencephalic astrocyte-derived neurotrophic factor (DmMANF) is an evolutionarily conserved ortholog of mammalian MANF and cerebral dopamine neurotrophic factor (CDNF), which have been shown to promote the survival of dopaminergic neurons in the brain. We observed especially high levels of DmMANF in the visual system of Drosophila, particularly in the first optic neuropil (lamina). In the lamina, DmMANF was found in glial cells (surface and epithelial glia), photoreceptors and interneurons. Interestingly, silencing of DmMANF in all neurons or specifically in photoreceptors or L2 interneurons had no impact on the structure of the visual system. However, downregulation of DmMANF in glial cells induced degeneration of the lamina. Remarkably, this degeneration in the form of holes and/or tightly packed membranes was observed only in the lamina epithelial glial cells. Those membranes seem to originate from the endoplasmic reticulum, which forms autophagosome membranes. Moreover, capitate projections, the epithelial glia invaginations into photoreceptor terminals that are involved in recycling of the photoreceptor neurotransmitter histamine, were less numerous after DmMANF silencing either in neurons or glial cells. The distribution of the alpha subunit of Na+/K+-ATPase protein in the lamina cell membranes was also changed. At the behavioral level, silencing of DmMANF either in neurons or glial cells affected the daily activity/sleep pattern, and flies showed less activity during the day but higher activity during the night than did controls. In the case of silencing in glia, the lifespan of flies was also shortened. The obtained results showed that DmMANF regulates many functions in the brain, particularly those dependent on glial cells.
Collapse
Affiliation(s)
- Lucyna Walkowicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ewelina Kijak
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Jolanta Górska-Andrzejak
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | | | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Elzbieta Chwastek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Tapio I. Heino
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Elzbieta M. Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
44
|
Wiener CD, Molina ML, Moreira FP, Dos Passos MB, Jansen K, da Silva RA, de Mattos Souza LD, Oses JP. Brief psychoeducation for bipolar disorder: Evaluation of trophic factors serum levels in young adults. Psychiatry Res 2017; 257:367-371. [PMID: 28803094 DOI: 10.1016/j.psychres.2017.07.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/13/2017] [Accepted: 07/29/2017] [Indexed: 02/06/2023]
Abstract
The aim of this study was to evaluate the impact of psychoeducation in serum levels of BDNF, NGF and GDNF in young adults presenting bipolar disorder (BD). This is a randomized clinical trial including 39 young adults (18-29 years) diagnosed with BD through the Structured Clinical Interview for DSM-IV (SCID-CV). Participants were randomized in two treatment groups: usual treatment (medication) and combined intervention (medication plus psychoeducation). Depressive symptoms were assessed using the Hamilton Depression Rating Scale (HDRS) and severity of manic and hypomanic symptoms was evaluated through the Young Mania Rating Scale (YMRS). The serum levels of trophic factors were measured with an ELISA kit. In both intervention groups, there was an improvement in depressive symptoms significantly between baseline and post-intervention. In the combined intervention, GDNF serum levels increased significantly from baseline to post-intervention. However, there were no differences in BDNF and NGF serum levels. In the usual treatment group, no changes were observed in serum levels of GDNF, BDNF, and NGF the post-intervention in individuals. Our data suggests that only combined intervention was effective in improving depressive symptoms and increasing GDNF levels in a sample of young adults with bipolar disorder.
Collapse
Affiliation(s)
- Carolina David Wiener
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil; Department of Epidemiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Mariane Lopez Molina
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil; Department of Psychology, Anhanguera College of Rio Grande, RS, Brazil.
| | - Fernanda Pedrotti Moreira
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Miguel Bezerra Dos Passos
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Karen Jansen
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Ricardo Azevedo da Silva
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Luciano Dias de Mattos Souza
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Jean Pierre Oses
- Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil; Technology Application in Neurosciences, Department of Electronic Engineering and Computing, Catholic University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
45
|
Wang L, Wang Z, Zhu R, Bi J, Feng X, Liu W, Wu J, Zhang H, Wu H, Kong W, Yu B, Yu X. Therapeutic efficacy of AAV8-mediated intrastriatal delivery of human cerebral dopamine neurotrophic factor in 6-OHDA-induced parkinsonian rat models with different disease progression. PLoS One 2017. [PMID: 28622392 PMCID: PMC5473573 DOI: 10.1371/journal.pone.0179476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive and age-associated neurodegenerative disorder. Patients at different stages of the disease course have distinguished features, mainly in the number of dopaminergic neurons. Cerebral dopamine neurotrophic factor (CDNF) is a recently discovered neurotrophic factor, being deemed as a hopeful candidate for PD treatment. Here, we evaluated the efficacy of CDNF in protecting dopaminergic function using the 6-OHDA-induced PD rat model suffering from different levels of neuronal loss and the recombinant adeno-associated virus 8 (AAV8) as a carrier for the CDNF gene. The results showed that AAV8-CDNF administration significantly improved the motor function and increased the tyrosine hydroxylase (TH) levels in PD rats with mild lesions (2 weeks post lesion), but it had limited therapeutic effects in rats with severe lesions (5 weeks post lesion). To better improve the recovery of motor function in severely lesioned PD rats, we employed a strategy using the CDNF gene along with the aromatic amino acid decarboxylase (AADC) gene. This combination therapeutic strategy indeed showed an enhanced benefit in restoring the motor function of severely lesioned PD rats by providing the neuroprotective effect of CDNF and dopamine enhancing effect of AADC as expected. This study may provide a basis for future clinical application of CDNF in PD patients at different stages and offer a new alternative strategy of joint use of CDNF and AADC for advanced PD patients in clinical trials.
Collapse
Affiliation(s)
- Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Zixuan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Rui Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jinpeng Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xinyao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- * E-mail: (BY); (XY)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
- * E-mail: (BY); (XY)
| |
Collapse
|
46
|
Chmielarz P, Konovalova J, Najam SS, Alter H, Piepponen TP, Erfle H, Sonntag KC, Schütz G, Vinnikov IA, Domanskyi A. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis 2017; 8:e2813. [PMID: 28542144 PMCID: PMC5520729 DOI: 10.1038/cddis.2017.214] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRs) are important post-transcriptional regulators of gene expression implicated in neuronal development, differentiation, aging and neurodegenerative diseases, including Parkinson’s disease (PD). Several miRs have been linked to PD-associated genes, apoptosis and stress response pathways, suggesting that deregulation of miRs may contribute to the development of the neurodegenerative phenotype. Here, we investigate the cell-autonomous role of miR processing RNAse Dicer in the functional maintenance of adult dopamine (DA) neurons. We demonstrate a reduction of Dicer in the ventral midbrain and altered miR expression profiles in laser-microdissected DA neurons of aged mice. Using a mouse line expressing tamoxifen-inducible CreERT2 recombinase under control of the DA transporter promoter, we show that a tissue-specific conditional ablation of Dicer in DA neurons of adult mice led to decreased levels of striatal DA and its metabolites without a reduction in neuronal body numbers in hemizygous mice (DicerHET) and to progressive loss of DA neurons with severe locomotor deficits in nullizygous mice (DicerCKO). Moreover, we show that pharmacological stimulation of miR biosynthesis promoted survival of cultured DA neurons and reduced their vulnerability to thapsigargin-induced endoplasmic reticulum stress. Our data demonstrate that Dicer is crucial for maintenance of adult DA neurons, whereas a stimulation of miR production can promote neuronal survival, which may have direct implications for PD treatment.
Collapse
Affiliation(s)
- Piotr Chmielarz
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Institute of Pharmacology, Polish Academy of Sciences, Department of Brain Biochemistry, Krakow, Poland
| | - Julia Konovalova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Syeda Sadia Najam
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Heike Alter
- Molecular Biology of the Cell I Division, German Cancer Research Center, Heidelberg, Germany
| | | | - Holger Erfle
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Kai C Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, USA
| | - Günther Schütz
- Molecular Biology of the Cell I Division, German Cancer Research Center, Heidelberg, Germany
| | - Ilya A Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Molecular Biology of the Cell I Division, German Cancer Research Center, Heidelberg, Germany
| | - Andrii Domanskyi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Molecular Biology of the Cell I Division, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
47
|
Tang T, Li Y, Jiao Q, Du X, Jiang H. Cerebral Dopamine Neurotrophic Factor: A Potential Therapeutic Agent for Parkinson's Disease. Neurosci Bull 2017; 33:568-575. [PMID: 28337696 DOI: 10.1007/s12264-017-0123-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/18/2016] [Indexed: 11/27/2022] Open
Abstract
The application of neurotrophic factors (NTFs) is a promising therapeutic strategy for neurodegenerative disorders such as Parkinson's disease (PD). Many NTFs have been reported to enhance the survival, regeneration, and differentiation of neurons and to induce synaptic plasticity. However, because of their potential side-effects and low efficacy after clinical administration, more potent treatments for neurodegenerative disorders are being sought. Cerebral dopamine neurotrophic factor (CDNF), a newly-identified NTF homologous to mesencephalic astrocyte-derived NTF, is structurally and functionally different from other NTFs, providing new hope especially for PD patients. In various animal models of PD, CDNF is efficient in protecting and repairing dopaminergic neurons, and it inhibits endoplasmic reticulum stress, neuroinflammation, and apoptosis. Recent progress in all facets of CDNF research has enabled researchers to better understand its beneficial effects in the treatment of PD.
Collapse
Affiliation(s)
- Tingting Tang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China
| | - Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
48
|
Albert K, Voutilainen MH, Domanskyi A, Airavaara M. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models. Genes (Basel) 2017; 8:genes8020063. [PMID: 28208742 PMCID: PMC5333052 DOI: 10.3390/genes8020063] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson’s disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson’s disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson’s disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson’s disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-α-synuclein (α-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia nigra.
Collapse
Affiliation(s)
- Katrina Albert
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Merja H Voutilainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Andrii Domanskyi
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Mikko Airavaara
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
49
|
Vinnikov IA, Domanskyi A. Can we treat neurodegenerative diseases by preventing an age-related decline in microRNA expression? Neural Regen Res 2017; 12:1602-1604. [PMID: 29171418 PMCID: PMC5696834 DOI: 10.4103/1673-5374.217328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ilya A Vinnikov
- Laboratory of Molecular Neurobiology, Sheng Yushou Center of Cell Biology and Immunology, Department of Genetics and Developmental Biology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| |
Collapse
|
50
|
Wang H, Li X, Shan L, Zhu J, Chen R, Li Y, Yuan W, Yang L, Huang J. Recombinant hNeuritin Promotes Structural and Functional Recovery of Sciatic Nerve Injury in Rats. Front Neurosci 2016; 10:589. [PMID: 28066172 PMCID: PMC5177646 DOI: 10.3389/fnins.2016.00589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/08/2016] [Indexed: 01/29/2023] Open
Abstract
Neuritin is a new neurotropic factor implicated in nervous system development and plasticity. Studies have shown that Neuritin is upregulated in injured nerves, suggesting that it is involved in nerve repair. To test this hypothesis, we investigated whether recombinant human Neuritin could restore nerve structure and function in a rat model of sciatic nerve injury. Neuritin treatment had a dose-dependent effect on functional recovery 4 weeks after injury, as determined by the walking-track test. Similar trends were observed for gastrocnemius muscular strength and nerve conduction velocity. Additionally, sciatic nerve fiber density and organization as well as degree of remyelination were increased, while growth-associated protein 43 and neurofilament 200 expression was upregulated upon treatment with Neuritin. These findings demonstrate that Neuritin stimulates nerve regeneration and functional recovery and thus promotes the repair of injured sciatic nerves.
Collapse
Affiliation(s)
- Haiyan Wang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine Shihezi, China
| | - Xinli Li
- Laboratory Medicine Department of Sixth People's Hospital of Chengdu, Chengdu, China
| | - Liya Shan
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine Shihezi, China
| | - Jingling Zhu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine Shihezi, China
| | - Rong Chen
- Occupational and Environmental Health, Department of Preventive Medicine, School of Medicine, Hangzhou Normal University Hangzhou, China
| | - Yuan Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Hangzhou Normal University Hangzhou, China
| | - Wumei Yuan
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine Shihezi, China
| | - Lei Yang
- Occupational and Environmental Health, Department of Preventive Medicine, School of Medicine, Hangzhou Normal University Hangzhou, China
| | - Jin Huang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine Shihezi, China
| |
Collapse
|