1
|
Henderson J, O'Callaghan J, Campbell M. Gene therapy for glaucoma: Targeting key mechanisms. Vision Res 2024; 225:108502. [PMID: 39423611 DOI: 10.1016/j.visres.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Glaucoma is a group of optic neuropathies characterised by progressive retinal ganglion cell (RGC) degeneration and is the leading cause of irreversible blindness worldwide. Current treatments for glaucoma focus on reducing intraocular pressure (IOP) with topical medications. However, many patients do not achieve sufficient IOP reductions with such treatments. Patient compliance to dosing schedules also poses a significant challenge, further limiting their effectiveness. While surgical options exist for resistant cases, these are invasive and carry risks of complications. Thus, there is a critical need for better strategies to prevent irreversible vision loss in glaucoma. Gene therapy holds significant promise in this regard, offering potential long-term solutions by targeting the disease's underlying causes at a molecular level. Gene therapy strategies for glaucoma primarily target the two key hallmarks of the disease: elevated IOP and RGC death. This review explores key mechanisms underlying these hallmarks and discusses the current state of gene therapies targeting them. In terms of IOP reduction, this review covers strategies aimed at enhancing extracellular matrix turnover in the conventional outflow pathway, targeting fibrosis, regulating aqueous humor production, and targeting myocilin for gene-specific therapy. Neuroprotective strategies explored include targeting neurotrophic factors and their receptors, reducing oxidative stress and mitochondrial dysfunction, and preventing Wallerian degeneration. This review also briefly highlights key research priorities for advancing gene therapies for glaucoma through the clinical pipeline, such as refining delivery vectors and improving transgene regulation. Addressing these priorities will be essential for translating advancements from preclinical models into effective clinical therapies for glaucoma.
Collapse
Affiliation(s)
- Jeff Henderson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
2
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
3
|
Cui M, Su Q, Yip M, McGowan J, Punzo C, Gao G, Tai PWL. The AAV2.7m8 capsid packages a higher degree of heterogeneous vector genomes than AAV2. Gene Ther 2024; 31:489-498. [PMID: 39134629 DOI: 10.1038/s41434-024-00477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are currently the only proven vehicles for treating ophthalmological diseases through gene therapy. A wide range of gene therapy programs that target ocular diseases are currently being pursued. Nearly 20 years of research have gone into enhancing the efficacy of targeting retinal tissues and improving transgene delivery to specific cell types. The engineered AAV capsid, AAV2.7m8 is currently among the best capsids for transducing the retina following intravitreal (IVT) injection. However, adverse effects, including intraocular inflammation, have been reported following retinal administration of AAV2.7m8 vectors in clinical trials. Furthermore, we have consistently observed that AAV2.7m8 exhibits low packaging titers irrespective of the vector construct design. In this report, we found that AAV2.7m8 packages vector genomes with a higher degree of heterogeneity than AAV2. We also found that genome-loaded AAV2.7m8 stimulated the infiltration of microglia in mouse retinas following IVT administration, while the response to genome-loaded AAV2 and empty AAV2.7m8 capsids produced much milder responses. This finding suggests that IVT administration of AAV2.7m8 vectors may stimulate retinal immune responses in part because of its penchant to package and deliver non-unit length genomes.
Collapse
Affiliation(s)
- Mengtian Cui
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Qin Su
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Mitchell Yip
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Jackson McGowan
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
| | - Claudio Punzo
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA
- Department of Ophthalmology and Visual Sciences, UMass Chan Medical School, Worcester, MA, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA.
| | - Phillip W L Tai
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA, USA.
- Department of Microbiology, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Kumar B, Mishra M, Cashman S, Kumar-Singh R. Retinal Penetrating Adeno-Associated Virus. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 39172462 PMCID: PMC11346080 DOI: 10.1167/iovs.65.10.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose The most common method of delivery of genes to the outer retina uses recombinant adeno-associated virus (AAV) injected into the subretinal space using a surgical procedure. In contrast, most drugs are delivered to the retina using an intravitreal approach in an office setting. The objective of the current study was to develop AAV vectors that can reach the outer retina via intravitreal injection. Methods Recently, we described a molecular chaperone (Nuc1) that enhanced the penetration of small and large molecules, including AAV, into the retina. The Nuc1 amino acid sequence or a truncated version of Nuc1 (IKV) was genetically incorporated into an exposed loop of AAV2/9 VP1 protein. These novel recombinant AAV vectors expressing green fluorescent protein (GFP) or nuclear factor erythroid 2 p45-related factor 2 (Nrf2) were injected into the vitreous of C57Bl/6J or Nrf2 knockout mice, respectively. The amount of GFP expression or oxidative stress as measured by 8-Hydroxy-2'-deoxyguanosine staining in C57Bl/6J or Nrf2 knockout mice, respectively, was quantified. Results Incorporation of Nuc1 into AAV2/9 did not lead to significant expression of GFP in the murine retina. However, incorporation of IKV into AAV2/9 led to robust expression of GFP in photoreceptors and retinal pigment epithelium (RPE) via the intravitreal and subretinal routes of delivery. Furthermore, expression of Nrf2 using an IKV vector led to a reduction in oxidative stress in the retina of C57Bl/6J and Nrf2 knockout mice. Conclusions We have developed a novel AAV vector that enables delivery of transgenes to the outer retina of mice, including photoreceptors and RPE following intravitreal injection.
Collapse
Affiliation(s)
- Binit Kumar
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Manish Mishra
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Siobhan Cashman
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Rajendra Kumar-Singh
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Zhou X, Zhao L, Wang C, Sun W, Jia B, Li D, Fu J. Diverse functions and pathogenetic role of Crumbs in retinopathy. Cell Commun Signal 2024; 22:290. [PMID: 38802833 PMCID: PMC11129452 DOI: 10.1186/s12964-024-01673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
The Crumbs protein (CRB) family plays a crucial role in maintaining the apical-basal polarity and integrity of embryonic epithelia. The family comprises different isoforms in different animals and possesses diverse structural, localization, and functional characteristics. Mutations in the human CRB1 or CRB2 gene may lead to a broad spectrum of retinal dystrophies. Various CRB-associated experimental models have recently provided mechanistic insights into human CRB-associated retinopathies. The knowledge obtained from these models corroborates the importance of CRB in retinal development and maintenance. Therefore, complete elucidation of these models can provide excellent therapeutic prospects for human CRB-associated retinopathies. In this review, we summarize the current animal models and human-derived models of different CRB family members and describe the main characteristics of their retinal phenotypes.
Collapse
Affiliation(s)
- Xuebin Zhou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Liangliang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Chenguang Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Wei Sun
- College of Basic Medical Sciences, Jilin University, Changchun, 130000, China
| | - Bo Jia
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Dan Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Jinling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
6
|
Chaqour B, Duong TT, Yue J, Liu T, Camacho D, Dine KE, Esteve-Rudd J, Ellis S, Bennett J, Shindler KS, Ross AG. AAV2 vector optimization for retinal ganglion cell-targeted delivery of therapeutic genes. Gene Ther 2024; 31:175-186. [PMID: 38200264 DOI: 10.1038/s41434-023-00436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Recombinant adeno-associated virus (AAV)-2 has significant potential as a delivery vehicle of therapeutic genes to retinal ganglion cells (RGCs), which are key interventional targets in optic neuropathies. Here we show that when injected intravitreally, AAV2 engineered with a reporter gene driven by cytomegalovirus (CMV) enhancer and chicken β-actin (CBA) promoters, displays ubiquitous and high RGC expression, similar to its synthetic derivative AAV8BP2. A novel AAV2 vector combining the promoter of the human RGC-selective γ-synuclein (hSNCG) gene and woodchuck hepatitis post-transcriptional regulatory element (WPRE) inserted upstream and downstream of a reporter gene, respectively, induces widespread transduction and strong transgene expression in RGCs. High transduction efficiency and selectivity to RGCs is further achieved by incorporating in the vector backbone a leading CMV enhancer and an SV40 intron at the 5' and 3' ends, respectively, of the reporter gene. As a delivery vehicle of hSIRT1, a 2.2-kb therapeutic gene with anti-apoptotic, anti-inflammatory and anti-oxidative stress properties, this recombinant vector displayed improved transduction efficiency, a strong, widespread and selective RGC expression of hSIRT1, and increased RGC survival following optic nerve crush. Thus, AAV2 vector carrying hSNCG promoter with additional regulatory sequences may offer strong potential for enhanced effects of candidate gene therapies targeting RGCs.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Thu T Duong
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Jipeng Yue
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tehui Liu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | - David Camacho
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kimberly E Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | | | - Scott Ellis
- Gyroscope Therapeutics Limited, a Novartis Company, London, N7 9AS, UK
| | - Jean Bennett
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Araujo VG, Dias MS, Hauswirth WW, Linden R, Petrs-Silva H. rAAV-compatible human mini promoters enhance transgene expression in rat retinal ganglion cells. Exp Eye Res 2024; 239:109758. [PMID: 38123011 DOI: 10.1016/j.exer.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Recombinant adeno-associated viral vectors (rAAV) are the safest and most effective gene delivery platform to drive the treatment of many inherited eye disorders in well-characterized animal models. The use in rAAV of ubiquitous promoters derived from viral sequences such as CMV/CBA (chicken β-actin promoter with cytomegalovirus enhancer) can lead to unwanted side effects such as pro-inflammatory immune responses and retinal cytotoxicity, thus reducing therapy efficacy. Thus, an advance in gene therapy is the availability of small promoters, that potentiate and direct gene expression to the cell type of interest, with higher safety and efficacy. In this study, we used six human mini-promoters packaged in rAAV2 quadruple mutant (Y-F) to test for transduction of the rat retina after intravitreal injection. After four weeks, immunohistochemical analysis detected GFP-labeled cells in the ganglion cell layer (GCL) for all constructs tested. Among them, Ple25sh1, Ple25sh2 and Ple53 promoted a widespread reporter-transgene expression in the GCL, with an increased number of GFP-expressing retinal ganglion cells when compared with the CMV/CBA vector. Moreover, Ple53 provided the strongest levels of GFP fluorescence in both cell soma and axons of retinal ganglion cells (RGCs) without any detectable adverse effects in retina function. Remarkably, a nearly 50-fold reduction in the number of intravitreally injected vector particles containing Ple53 promoter, still attained levels of transgene expression similar to CMV/CBA. Thus, the tested MiniPs show great potential for protocols of retinal gene therapy in therapeutic applications for retinal degenerations, especially those involving RGC-related disorders such as glaucoma.
Collapse
Affiliation(s)
- Victor G Araujo
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S Dias
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - William W Hauswirth
- Retinal Gene Therapy Group, Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Rafael Linden
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Gurtsieva D, Minskaia E, Zhuravleva S, Subcheva E, Sakhibgaraeva E, Brovin A, Tumaev A, Karabelsky A. Engineered AAV2.7m8 Serotype Shows Significantly Higher Transduction Efficiency of ARPE-19 and HEK293 Cell Lines Compared to AAV5, AAV8 and AAV9 Serotypes. Pharmaceutics 2024; 16:138. [PMID: 38276507 PMCID: PMC10818700 DOI: 10.3390/pharmaceutics16010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The level of transduction efficiency of the target retinal cells affects the choice of AAV serotype and the outcome of gene replacement therapy for inherited retinal diseases. This study focused on the tropism and transduction efficiency of AAV2.7m8-, AAV5-, AAV8-, and AAV9-GFP in ARPE-19 and HEK293 cells. Fluorescence intensity was assessed bi-hourly by means of IncuCyte S3 live imaging microscopy. Within 12 h, AAV2.7m8 demonstrated the highest transduction efficiency at four viral concentrations of 1-, 3-, 6-, and 8 × 104 VG/cell in a dose-dependent manner, followed by AAV5 in ARPE-19 and AAV9 in HEK293 cells. The transduction efficiency of AAV2.7m8 at a dose of 6 × 104 VG/cell was 21, 202, and 323 times higher in ARPE-19 cells and 324, 100, and 52 times higher in HEK293 cells compared to AAV5, AAV8, and AAV9, respectively. This trend remained for 4 days at all viral concentrations, as additionally shown by flow cytometry. At a dose of 6 × 104 VG/cell, AAV2.7m8 (97% GFP-positive cells, GFP +) was nearly two and 10 times as efficient as AAV5 (52% GFP+) and AAV9 or AAV8 (both 9%), respectively, in ARPE-19 cells. In HEK293 cells, 95% of AAV2.7m8-, 26% of AAV9-, 17% of AAV8-, and 12% of AAV5-transduced cells were GFP-positive.
Collapse
|
9
|
Khanani AM, Boyer DS, Wykoff CC, Regillo CD, Busbee BG, Pieramici D, Danzig CJ, Joondeph BC, Major JC, Turpcu A, Kiss S. Safety and efficacy of ixoberogene soroparvovec in neovascular age-related macular degeneration in the United States (OPTIC): a prospective, two-year, multicentre phase 1 study. EClinicalMedicine 2024; 67:102394. [PMID: 38152412 PMCID: PMC10751837 DOI: 10.1016/j.eclinm.2023.102394] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023] Open
Abstract
Background Gene therapy, successfully used in rare, monogenetic disorders, may prove to be a durable management approach for common, polygenetic conditions, including neovascular age-related macular degeneration (nAMD). Repeated injections, oftentimes monthly, and possibly for decades, of vascular endothelial growth factor antagonists (anti-VEGF), is the standard for nAMD. We hypothesised that an in-office, intravitreal administration of ixoberogene soroparvovec (ixo-vec, formerly ADVM-022), a single-dose gene therapy encoding for the proven anti-VEGF protein, aflibercept, would transform retinal cells to continually produce aflibercept to minimise treatment burden in nAMD. Methods In this two-year, open-label, prospective, multicentre phase 1 study, patients with nAMD responding to anti-VEGF were assigned to four cohorts differing by ixo-vec dose (2 × 1011 vs 6 × 1011 vector genomes (vg/eye)) and prophylactic steroids (oral prednisone vs topical difluprednate). The primary outcome was the type, severity, and incidence of ocular and systemic adverse events (AEs); secondary endpoints included vision, central subfield thickness (CST), and the number of supplemental injections. This study was registered with ClinicalTrials.gov, NCT03748784. Findings Thirty patients with nAMD were enrolled between November 14, 2018 and June 30, 2020 at nine study sites in the United States. No systemic ixo-vec related AEs were noted. Across both dose groups the most common adverse event was anterior chamber cell, which was reported in 11 participants in the 6 × 1011 dose group and in 7 participants in the 2 × 1011 dose group; intraocular inflammation was responsive to topical corticosteroids, with no anterior chamber cells or vitreous cells observed in 2 × 1011 vg/eye patients at the end of the study. Vision and CST remained stable throughout two years with annualised anti-VEGF injections reduced by 80% (10.0 mean annualised anti-VEGF injections to 1.9) in 2 × 1011 vg/eye and 98% (9.8 mean annualised anti-VEGF injections to 0.2) in 6 × 1011 vg/eye cohorts. Interpretation Ixo-vec was generally well-tolerated, maintained vision, and improved anatomical outcomes in nAMD, with a substantial reduction in anti-VEGF injections. A single administration of an in-office gene therapy, with vectorised protein with an already established clinical benefit, has the potential to revolutionise the management of common ocular disorders requiring ongoing, frequent therapeutic interventions. Funding Adverum Biotechnologies.
Collapse
Affiliation(s)
- Arshad M. Khanani
- Sierra Eye Associates, Reno, NV, USA
- The University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - David S. Boyer
- Retina Vitreous Associates Medical Group, Beverly Hills, CA, USA
| | - Charles C. Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Carl D. Regillo
- Mid Atlantic Retina, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Carl J. Danzig
- Rand Eye Institute, Deerfield Beach, FL, USA
- Florida Atlantic University, Charles E. Schmidt School of Medicine, Boca Raton, FL, USA
| | | | - James C. Major
- Retina Consultants of Texas, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Adam Turpcu
- Adverum Biotechnologies, Redwood City, CA, USA
| | - Szilárd Kiss
- Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
10
|
Riaz S, Sethna S, Duncan T, Naeem MA, Redmond TM, Riazuddin S, Riazuddin S, Carvalho LS, Ahmed ZM. Dual AAV-based PCDH15 gene therapy achieves sustained rescue of visual function in a mouse model of Usher syndrome 1F. Mol Ther 2023; 31:3490-3501. [PMID: 37864333 PMCID: PMC10727994 DOI: 10.1016/j.ymthe.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023] Open
Abstract
Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a ∼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.
Collapse
Affiliation(s)
- Sehar Riaz
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Saumil Sethna
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Todd Duncan
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhammad A Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - T Michael Redmond
- Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical Research, University of Health Sciences, Lahore 54500, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA 6009, Australia; Retinal Genomics and Therapy Group, Lions Eye Institute Ltd, Nedlands, WA 6009, Australia
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Molecular Biology and Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Isgrig K, Cartagena-Rivera AX, Wang HJ, Grati M, Fernandez KA, Friedman TB, Belyantseva IA, Chien W. Combined AAV-mediated gene replacement therapy improves auditory function in a mouse model of human DFNB42 deafness. Mol Ther 2023; 31:2783-2795. [PMID: 37481704 PMCID: PMC10492026 DOI: 10.1016/j.ymthe.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/30/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023] Open
Abstract
Hearing loss is a common disorder affecting nearly 20% of the world's population. Recently, studies have shown that inner ear gene therapy can improve auditory function in several mouse models of hereditary hearing loss. In most of these studies, the underlying mutations affect only a small number of cell types of the inner ear (e.g., sensory hair cells). Here, we applied inner ear gene therapy to the Ildr1Gt(D178D03)Wrst (Ildr1w-/-) mouse, a model of human DFNB42, non-syndromic autosomal recessive hereditary hearing loss associated with ILDR1 variants. ILDR1 is an integral protein of the tricellular tight junction complex and is expressed by diverse inner ear cell types in the organ of Corti and the cochlear lateral wall. We simultaneously applied two synthetic adeno-associated viruses (AAVs) with different tropism to deliver Ildr1 cDNA to the Ildr1w-/- mouse inner ear: one targeting the organ of Corti (AAV2.7m8) and the other targeting the cochlear lateral wall (AAV8BP2). We showed that combined AAV2.7m8/AAV8BP2 gene therapy improves cochlear structural integrity and auditory function in Ildr1w-/- mice.
Collapse
Affiliation(s)
- Kevin Isgrig
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Hong Jun Wang
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Katharine A Fernandez
- Section on Sensory Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Wade Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA; Department of Otolaryngology - Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH. Bruch's Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med 2023; 12:2870. [PMID: 37109207 PMCID: PMC10145879 DOI: 10.3390/jcm12082870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.
Collapse
Affiliation(s)
- Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nikolaos Tzoumas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| | | | - Ingrid Porpino Meschede
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Katharina Lo
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Claire Harris
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David H. Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| |
Collapse
|
13
|
Chew LA, Iannaccone A. Gene-agnostic approaches to treating inherited retinal degenerations. Front Cell Dev Biol 2023; 11:1177838. [PMID: 37123404 PMCID: PMC10133473 DOI: 10.3389/fcell.2023.1177838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Most patients with inherited retinal degenerations (IRDs) have been waiting for treatments that are "just around the corner" for decades, with only a handful of seminal breakthroughs happening in recent years. Highlighting the difficulties in the quest for curative therapeutics, Luxturna required 16 years of development before finally obtaining United States Food and Drug Administration (FDA) approval and its international equivalents. IRDs are both genetically and phenotypically heterogeneous. While this diversity offers many opportunities for gene-by-gene precision medicine-based approaches, it also poses a significant challenge. For this reason, alternative (or parallel) strategies to identify more comprehensive, across-the-board therapeutics for the genetically and phenotypically diverse IRD patient population are very appealing. Even when gene-specific approaches may be available and become approved for use, many patients may have reached a disease stage whereby these approaches may no longer be viable. Thus, alternate visual preservation or restoration therapeutic approaches are needed at these stages. In this review, we underscore several gene-agnostic approaches that are being developed as therapeutics for IRDs. From retinal supplementation to stem cell transplantation, optogenetic therapy and retinal prosthetics, these strategies would bypass at least in part the need for treating every individual gene or mutation or provide an invaluable complement to them. By considering the diverse patient population and treatment strategies suited for different stages and patterns of retinal degeneration, gene agnostic approaches are very well poised to impact favorably outcomes and prognosis for IRD patients.
Collapse
Affiliation(s)
- Lindsey A. Chew
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Alessandro Iannaccone
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
14
|
Wang L, Zhang H. Ocular barriers as a double-edged sword: preventing and facilitating drug delivery to the retina. Drug Deliv Transl Res 2023; 13:547-567. [PMID: 36129668 DOI: 10.1007/s13346-022-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/30/2022]
Abstract
In recent decades, the growing of the aging population in the world brings increasingly heavy burden of vision-threatening retinal diseases. One of the biggest challenges in the treatment of retinal diseases is the effective drug delivery to the diseased area. Due to the existence of multiple anatomical and physiological barriers of the eye, commonly used oral drugs or topical eye drops cannot effectively reach the retinal lesions. Innovations in new drug formulations and delivery routes have been continuously applied to improve current drug delivery to the back of the eye. Unique ocular anatomical structures or physiological activities on these ocular barriers, in turn, can facilitate drug delivery to the retina if compatible formulations or delivery routes are properly designed or selected. This paper focuses on key barrier structures of the eye and summarizes advances of corresponding drug delivery means to the retina, including various local drug delivery routes by invasive approaches, as well as systemic eye drug delivery by non-invasive approaches.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhang
- Triapex Laboratories Co., Ltd No. 9 Xinglong Road, Jiangbei New Area, Jiangsu, Nanjing, China.
| |
Collapse
|
15
|
Lahlou G, Calvet C, Giorgi M, Lecomte MJ, Safieddine S. Towards the Clinical Application of Gene Therapy for Genetic Inner Ear Diseases. J Clin Med 2023; 12:1046. [PMID: 36769694 PMCID: PMC9918244 DOI: 10.3390/jcm12031046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Hearing loss, the most common human sensory defect worldwide, is a major public health problem. About 70% of congenital forms and 25% of adult-onset forms of deafness are of genetic origin. In total, 136 deafness genes have already been identified and there are thought to be several hundred more awaiting identification. However, there is currently no cure for sensorineural deafness. In recent years, translational research studies have shown gene therapy to be effective against inherited inner ear diseases, and the application of this technology to humans is now within reach. We provide here a comprehensive and practical overview of current advances in gene therapy for inherited deafness, with and without an associated vestibular defect. We focus on the different gene therapy approaches, considering their prospects, including the viral vector used, and the delivery route. We also discuss the clinical application of the various strategies, their strengths, weaknesses, and the challenges to be overcome.
Collapse
Affiliation(s)
- Ghizlene Lahlou
- Institut Pasteur/Institut de l’Audition, Technologie et Thérapie Génique de la Surdité, Sorbonne Université, INSERM, 75012 Paris, France
- Département d’Oto-Rhino-Laryngologie, Unité Fonctionnelle Implants Auditifs, Groupe Hospitalo-Universitaire Pitié-Salpêtrière, APHP Sorbonne Université, 75013 Paris, France
| | - Charlotte Calvet
- Institut Pasteur/Institut de l’Audition, Technologie et Thérapie Génique de la Surdité, Sorbonne Université, INSERM, 75012 Paris, France
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, CH-8057 Zurich, Switzerland
| | - Marie Giorgi
- Institut Pasteur/Institut de l’Audition, Technologie et Thérapie Génique de la Surdité, Sorbonne Université, INSERM, 75012 Paris, France
| | - Marie-José Lecomte
- Institut Pasteur/Institut de l’Audition, Technologie et Thérapie Génique de la Surdité, Sorbonne Université, INSERM, 75012 Paris, France
| | - Saaid Safieddine
- Institut Pasteur/Institut de l’Audition, Technologie et Thérapie Génique de la Surdité, Sorbonne Université, INSERM, 75012 Paris, France
- Centre National de la Recherche Scientifique, 75016 Paris, France
| |
Collapse
|
16
|
Vignal-Clermont C, Yu-Wai-Man P, Newman NJ, Carelli V, Moster ML, Biousse V, Subramanian PS, Wang AG, Donahue SP, Leroy BP, Sadun AA, Klopstock T, Sergott RC, Fernandez R, Chwalisz BK, Banik R, Taiel M, Roux M, Sahel JA. Safety of Lenadogene Nolparvovec Gene Therapy Over 5 Years in 189 Patients With Leber Hereditary Optic Neuropathy. Am J Ophthalmol 2022; 249:108-125. [PMID: 36496192 DOI: 10.1016/j.ajo.2022.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate the safety profile of lenadogene nolparvovec (Lumevoq) in patients with Leber hereditary optic neuropathy. DESIGN Pooled analysis of safety data from 5 clinical studies. METHODS A total of 189 patients received single unilateral or bilateral intravitreal injections of a recombinant adeno-associated virus 2 (rAAV2/2) vector encoding the human wild-type ND4 gene. Adverse events (AEs) were collected throughout the studies, up to 5 years. Intraocular inflammation and increased intraocular pressure (IOP) were ocular AEs of special interest. Other assessments included ocular examinations, vector bio-dissemination, and systemic immune responses against rAAV2/2. RESULTS Almost all patients (95.2%) received 9 × 1010 viral genomes and 87.8% had at least 2 years of follow-up. Most patients (75.1%) experienced at least one systemic AE, but systemic treatment-related AEs occurred in 3 patients; none were serious. Intraocular inflammation was reported in 75.6% of lenadogene nolparvovec-treated eyes. Almost all intraocular inflammations occurred in the anterior chamber (58.8%) or in the vitreous (40.3%), and were of mild (90.3%) or moderate (8.8%) intensity; most resolved with topical corticosteroids alone. All IOP increases were mild to moderate in intensity. No AE led to study discontinuation. Bio-dissemination of lenadogene nolparvovec and systemic immune response were limited. The safety profile was comparable for patients treated bilaterally and unilaterally. CONCLUSIONS Lenadogene nolparvovec had a good overall safety profile with excellent systemic tolerability, consistent with limited bio-dissemination. The product was well tolerated, with mostly mild ocular side effects responsive to conventional ophthalmologic treatments.
Collapse
Affiliation(s)
- Catherine Vignal-Clermont
- From Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France (C.V-C.); Centre Hospitalier National d'Ophtalmologie des Quinze Vingts, Paris, France (C.V-C.).
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK (P.Y-W-M.); Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK (P.Y-W-M.); UCL Institute of Ophthalmology, University College London, London, UK (P.Y-W-M.); Moorfields Eye Hospital, London, UK
| | - Nancy J Newman
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA (P.Y-W-M.)
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy (V.C.); Unit of Neurology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (V.C.)
| | - Mark L Moster
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA (M.L.M.)
| | - Valerie Biousse
- Departments of Ophthalmology, Neurology and Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA (P.Y-W-M.)
| | - Prem S Subramanian
- Sue Anschutz-Rodgers University of Colorado Eye Center, University of Colorado School of Medicine, Aurora, CO, USA (P.S.S.)
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, National Yang Ming Chiao Tung University, Taipei, Taiwan (A-G.W.)
| | - Sean P Donahue
- Department of Ophthalmology, Neurology, and Pediatrics, Vanderbilt University, and Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA (S.P.D.)
| | - Bart P Leroy
- Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital, and Department of Head & Skin, Ghent University, Ghent, Belgium (B.P.L.)
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA (A.A.S.); Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA (A.A.S.)
| | - Thomas Klopstock
- Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Munich, Germany (T.K.); German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (T.K.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (T.K.)
| | - Robert C Sergott
- Departments of Neurology and Ophthalmology, Wills Eye Hospital and Thomas Jefferson University, Philadelphia, PA, USA (M.L.M.)
| | | | - Bart K Chwalisz
- Department of Ophthalmology, Massachusetts Eye & Ear, Harvard Medical School, Boston, MA, USA (B.K.C.); Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston MA, USA (B.K.C.)
| | - Rudrani Banik
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA (R.B.)
| | | | - Michel Roux
- GenSight Biologics, Paris, France (M.T., M.R.)
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France (J-A.S.); Rothschild Foundation Hospital, Paris, France (J-A.S.); Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (J-A.S.); Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC, Paris, France (J-A.S.)
| | | |
Collapse
|
17
|
Lee D, Kwak G, Johnson TV, Suk JS. Formulation and Evaluation of Polymer-Based Nanoparticles for Intravitreal Gene-Delivery Applications. Curr Protoc 2022; 2:e607. [PMID: 36469609 PMCID: PMC9731353 DOI: 10.1002/cpz1.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of the first-ever retinal gene therapy product, involving subretinal administration of a virus-based gene delivery platform, has garnered hope that this state-of-the-art therapeutic modality may benefit a broad spectrum of patients with diverse retinal disorders. On the other hand, clinical studies have revealed limitations of the applied delivery strategy that may restrict its universal use. To this end, intravitreal administration of synthetic gene-delivery platforms, such as polymer-based nanoparticles (PNPs), has emerged as an attractive alternative to the current mainstay. To achieve success, however, it is imperative that synthetic platforms overcome key biological barriers in human eyes encountered following intravitreal administration, including the vitreous gel and inner limiting membrane (ILM). Here, we introduce a series of experiments, from the fabrication of PNPs to a comprehensive evaluation in relevant experimental models, to determine whether PNPs overcome these barriers and efficiently deliver therapeutic gene payloads to retinal cells. We conclude the article by discussing a few important considerations for successful implementation of the strategy. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation and characterization of PNPs Basic Protocol 2: Evaluation of in vitro transfection efficacy Basic Protocol 3: Evaluation of PNP diffusion in vitreous gel Basic Protocol 4: Ex vivo assessment of PNP penetration within vitreoretinal explant culture Basic Protocol 5: Assessment of in vivo transgene expression mediated by intravitreally administered PNPs.
Collapse
Affiliation(s)
- Daiheon Lee
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Gijung Kwak
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- These authors contributed equally to this work
| | - Thomas V. Johnson
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Sakai D, Tomita H, Maeda A. Optogenetic Therapy for Visual Restoration. Int J Mol Sci 2022; 23:15041. [PMID: 36499371 PMCID: PMC9735806 DOI: 10.3390/ijms232315041] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Optogenetics is a recent breakthrough in neuroscience, and one of the most promising applications is the treatment of retinal degenerative diseases. Multiple clinical trials are currently ongoing, less than a decade after the first attempt at visual restoration using optogenetics. Optogenetic therapy has great value in providing hope for visual restoration in late-stage retinal degeneration, regardless of the genotype. This alternative gene therapy consists of multiple elements including the choice of target retinal cells, optogenetic tools, and gene delivery systems. Currently, there are various options for each element, all of which have been developed as a product of technological success. In particular, the performance of optogenetic tools in terms of light and wavelength sensitivity have been improved by engineering microbial opsins and applying human opsins. To provide better post-treatment vision, the optimal choice of optogenetic tools and effective gene delivery to retinal cells is necessary. In this review, we provide an overview of the advancements in optogenetic therapy for visual restoration, focusing on available options for optogenetic tools and gene delivery methods.
Collapse
Affiliation(s)
- Daiki Sakai
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroshi Tomita
- Graduate Course in Biological Sciences, Division of Science and Engineering, Iwate University, Iwate 020-8550, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe 650-0047, Japan
- Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe 650-0047, Japan
| |
Collapse
|
19
|
Zinn E, Unzu C, Schmit PF, Turunen HT, Zabaleta N, Sanmiguel J, Fieldsend A, Bhatt U, Diop C, Merkel E, Gurrala R, Peacker B, Rios C, Messemer K, Santos J, Estelien R, Andres-Mateos E, Wagers AJ, Tipper C, Vandenberghe LH. Ancestral library identifies conserved reprogrammable liver motif on AAV capsid. Cell Rep Med 2022; 3:100803. [PMID: 36327973 PMCID: PMC9729830 DOI: 10.1016/j.xcrm.2022.100803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/18/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
Gene therapy is emerging as a modality in 21st-century medicine. Adeno-associated viral (AAV) gene transfer is a leading technology to achieve efficient and durable expression of a therapeutic transgene. However, the structural complexity of the capsid has constrained efforts to engineer the particle toward improved clinical safety and efficacy. Here, we generate a curated library of barcoded AAVs with mutations across a variety of functionally relevant motifs. We then screen this library in vitro and in vivo in mice and nonhuman primates, enabling a broad, multiparametric assessment of every vector within the library. Among the results, we note a single residue that modulates liver transduction across all interrogated models while preserving transduction in heart and skeletal muscles. Moreover, we find that this mutation can be grafted into AAV9 and leads to profound liver detargeting while retaining muscle transduction-a finding potentially relevant to preventing hepatoxicities seen in clinical studies.
Collapse
Affiliation(s)
- Eric Zinn
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Carmen Unzu
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pauline F Schmit
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Heikki T Turunen
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Nerea Zabaleta
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Julio Sanmiguel
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Allegra Fieldsend
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Urja Bhatt
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Cheikh Diop
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Erin Merkel
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Rakesh Gurrala
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Bryan Peacker
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Rios
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Messemer
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Santos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reynette Estelien
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Amy J Wagers
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA; Joslin Diabetes Center, Boston, MA 02215, USA
| | - Christopher Tipper
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Mass Eye and Ear, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
20
|
Ross M, Obolensky A, Averbukh E, Desrosiers M, Ezra-Elia R, Honig H, Yamin E, Rosov A, Dvir H, Gootwine E, Banin E, Dalkara D, Ofri R. Outer retinal transduction by AAV2-7m8 following intravitreal injection in a sheep model of CNGA3 achromatopsia. Gene Ther 2022; 29:624-635. [PMID: 34853444 DOI: 10.1038/s41434-021-00306-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Sheep carrying a mutated CNGA3 gene exhibit diminished cone function and provide a naturally occurring large animal model of achromatopsia. Subretinal injection of a vector carrying the CNGA3 transgene resulted in long-term recovery of cone function and photopic vision in these sheep. Research is underway to develop efficacious vectors that would enable safer transgene delivery, while avoiding potential drawbacks of subretinal injections. The current study evaluated two modified vectors, adeno-associated virus 2-7m8 (AAV2-7m8) and AAV9-7m8. Intravitreal injection of AAV2-7m8 carrying enhanced green fluorescent protein under a cone-specific promoter resulted in moderate photoreceptor transduction in wild-type sheep, whereas peripheral subretinal delivery of AAV9-7m8 resulted in the radial spread of the vector beyond the point of deposition. Intravitreal injection of AAV2-7m8 carrying human CNGA3 in mutant sheep resulted in mild photoreceptor transduction, but did not lead to the clinical rescue of photopic vision, while day-blind sheep treated with a subretinal injection exhibited functional recovery of photopic vision. Transgene messenger RNA levels in retinas of intravitreally treated eyes amounted to 4-23% of the endogenous CNGA3 levels, indicating that expression levels >23% are needed to achieve clinical rescue. Overall, our results indicate intravitreal injections of AAV2.7m8 transduce ovine photoreceptors, but not with sufficient efficacy to achieve clinical rescue in CNGA3 mutant sheep.
Collapse
Affiliation(s)
- M Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - A Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M Desrosiers
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - H Honig
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Yamin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Rosov
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - H Dvir
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Gootwine
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - D Dalkara
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
21
|
Ren D, Fisson S, Dalkara D, Ail D. Immune Responses to Gene Editing by Viral and Non-Viral Delivery Vectors Used in Retinal Gene Therapy. Pharmaceutics 2022; 14:1973. [PMID: 36145721 PMCID: PMC9502120 DOI: 10.3390/pharmaceutics14091973] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a leading cause of blindness in industrialized countries, and gene therapy is quickly becoming a viable option to treat this group of diseases. Gene replacement using a viral vector has been successfully applied and advanced to commercial use for a rare group of diseases. This, and the advances in gene editing, are paving the way for the emergence of a new generation of therapies that use CRISPR-Cas9 to edit mutated genes in situ. These CRISPR-based agents can be delivered to the retina as transgenes in a viral vector, unpackaged transgenes or as proteins or messenger RNA using non-viral vectors. Although the eye is considered to be an immune-privileged organ, studies in animals, as well as evidence from clinics, have concluded that ocular gene therapies elicit an immune response that can under certain circumstances result in inflammation. In this review, we evaluate studies that have reported on pre-existing immunity, and discuss both innate and adaptive immune responses with a specific focus on immune responses to gene editing, both with non-viral and viral delivery in the ocular space. Lastly, we discuss approaches to prevent and manage the immune responses to ensure safe and efficient gene editing in the retina.
Collapse
Affiliation(s)
- Duohao Ren
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Sylvain Fisson
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
| | - Divya Ail
- Sorbonne Université, INSERM, CNRS, Department of Therapeutics, Institut de la Vision, 75012 Paris, France
- Institut de la Vision, INSERM UMR S968, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
22
|
Abstract
In 2001, the first large animal was successfully treated with a gene therapy that restored its vision. Lancelot, the Briard dog that was treated, suffered from a human childhood blindness called Leber's congenital amaurosis type 2. Sixteen years later, the gene therapy was approved by the U.S. Food and Drug Administration. The success of this gene therapy in dogs led to a fast expansion of the ocular gene therapy field. By now every class of inherited retinal dystrophy has been treated in at least one animal model and many clinical trials have been initiated in humans. In this study, we review the status of viral gene therapies for the retina, with a focus on ongoing human clinical trials. It is likely that in the next decade we will see several new viral gene therapies approved.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- University of Massachusetts Medical School, Ophthalmology, Worcester, Massachusetts, United States;
| | - Claudio Punzo
- University of Massachusetts Medical School, Ophthalmology, 368 Plantation Street, Albert Sherman Center, AS6-2041, Worcester, Massachusetts, United States, 01605;
| |
Collapse
|
23
|
Isgrig K, Ishibashi Y, Lee HJ, Zhu J, Grati M, Bennett J, Griffith AJ, Roux I, Chien WW. AAV8BP2 and AAV8 transduce the mammalian cochlear lateral wall and endolymphatic sac with high efficiency. Mol Ther Methods Clin Dev 2022; 26:371-383. [PMID: 36034771 PMCID: PMC9386391 DOI: 10.1016/j.omtm.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022]
Abstract
Inner ear gene therapy using adeno-associated viruses (AAVs) has been successfully applied to several mouse models of hereditary hearing loss to improve their auditory function. While most inner ear gene therapy studies have focused on the mechanosensory hair cells and supporting cells in the organ of Corti, the cochlear lateral wall and the endolymphatic sac have not garnered much attention. The cochlear lateral wall and the endolymphatic sac play critical roles in inner ear ionic and fluid homeostasis. Mutations in genes expressed in the cochlear lateral wall and the endolymphatic sac are present in a large percentage of patients with hereditary hearing loss. In this study, we examine the transduction patterns and efficiencies of conventional (AAV2 and AAV8) and synthetic (AAV2.7m8, AAV8BP2, and Anc80L65) AAVs in the mouse inner ear. We found that AAV8BP2 and AAV8 are capable of transducing the marginal cells and intermediate cells in the stria vascularis. These two AAVs can also transduce the epithelial cells of the endolymphatic sac. Our data suggest that AAV8BP2 and AAV8 are highly useful viral vectors for gene therapy studies targeting the cochlear lateral wall and the endolymphatic sac.
Collapse
Affiliation(s)
- Kevin Isgrig
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Yasuko Ishibashi
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Hyun Jae Lee
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA
| | - Jianliang Zhu
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Mhamed Grati
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew J. Griffith
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, University of Tennessee College of Medicine, Memphis, TN, USA
| | - Isabelle Roux
- Otolaryngology Branch, NIDCD, National Institutes of Health, Bethesda, MD, USA
| | - Wade W. Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Lewin AS, Smith WC. Gene Therapy for Rhodopsin Mutations. Cold Spring Harb Perspect Med 2022; 12:a041283. [PMID: 35940643 PMCID: PMC9435570 DOI: 10.1101/cshperspect.a041283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in RHO, the gene for rhodopsin, account for a large fraction of autosomal-dominant retinitis pigmentosa (adRP). Patients fall into two clinical classes, those with early onset, pan retinal photoreceptor degeneration, and those who experience slowly progressive disease. The latter class of patients are candidates for photoreceptor-directed gene therapy, while former may be candidates for delivery of light-responsive proteins to interneurons or retinal ganglion cells. Gene therapy for RHO adRP may be targeted to the mutant gene at the DNA or RNA level, while other therapies preserve the viability of photoreceptors without addressing the underlying mutation. Correcting the RHO gene and replacing the mutant RNA show promise in animal models, while sustaining viable photoreceptors has the potential to delay the loss of central vision and may preserve photoreceptors for gene-directed treatments.
Collapse
Affiliation(s)
- Alfred S Lewin
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - W Clay Smith
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
25
|
Ross AG, Chaqour B, McDougald DS, Dine KE, Duong TT, Shindler RE, Yue J, Liu T, Shindler KS. Selective Upregulation of SIRT1 Expression in Retinal Ganglion Cells by AAV-Mediated Gene Delivery Increases Neuronal Cell Survival and Alleviates Axon Demyelination Associated with Optic Neuritis. Biomolecules 2022; 12:830. [PMID: 35740955 PMCID: PMC9221096 DOI: 10.3390/biom12060830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Optic neuritis (ON), the most common ocular manifestation of multiple sclerosis, is an autoimmune inflammatory demyelinating disease also characterized by degeneration of retinal ganglion cells (RGCs) and their axons, which commonly leads to visual impairment despite attempted treatments. Although ON disease etiology is not known, changes in the redox system and exacerbated optic nerve inflammation play a major role in the pathogenesis of the disease. Silent information regulator 1 (sirtuin-1/SIRT1) is a ubiquitously expressed NAD+-dependent deacetylase, which functions to reduce/prevent both oxidative stress and inflammation in various tissues. Non-specific upregulation of SIRT1 by pharmacologic and genetic approaches attenuates RGC loss in experimental ON. Herein, we hypothesized that targeted expression of SIRT1 selectively in RGCs using an adeno-associated virus (AAV) vector as a delivery vehicle is an effective approach to reducing neurodegeneration and preserving vision in ON. We tested this hypothesis through intravitreal injection of AAV7m8.SNCG.SIRT1, an AAV2-derived vector optimized for highly efficient SIRT1 transgene transfer and protein expression into RGCs in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis that recapitulates optic neuritis RGC loss and axon demyelination. Our data show that EAE mice injected with a control vehicle exhibit progressive alteration of visual function reflected by decreasing optokinetic response (OKR) scores, whereas comparatively, AAV7m8.SNCG.SIRT1-injected EAE mice maintain higher OKR scores, suggesting that SIRT1 reduces the visual deficit imparted by EAE. Consistent with this, RGC survival determined by immunolabeling is increased and axon demyelination is decreased in the AAV7m8.SNCG.SIRT1 RGC-injected group of EAE mice compared to the mouse EAE counterpart injected with a vehicle or with control vector AAV7m8.SNCG.eGFP. However, immune cell infiltration of the optic nerve is not significantly different among all EAE groups of mice injected with either vehicle or AAV7m8.SNCG.SIRT1. We conclude that despite minimally affecting the inflammatory response in the optic nerve, AAV7m8-mediated SIRT1 transfer into RGCs has a neuroprotective potential against RGC loss, axon demyelination and vison deficits associated with EAE. Together, these data suggest that SIRT1 exerts direct effects on RGC survival and function.
Collapse
Affiliation(s)
- Ahmara G. Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Devin S. McDougald
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kimberly E. Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Thu T. Duong
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ryan E. Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jipeng Yue
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tehui Liu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kenneth S. Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA; (A.G.R.); (B.C.); (D.S.M.); (K.E.D.); (T.T.D.); (R.E.S.); (J.Y.); (T.L.)
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
He M, Rong R, Ji D, Xia X. From Bench to Bed: The Current Genome Editing Therapies for Glaucoma. Front Cell Dev Biol 2022; 10:879957. [PMID: 35652098 PMCID: PMC9149310 DOI: 10.3389/fcell.2022.879957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Glaucoma is a group of optic neuropathies featured by degeneration of retinal ganglion cells and loss of their axons in the optic nerve. The only currently approved therapies focus on lowering intraocular pressure with medication and surgery. Over the previous few decades, technological advances and research progress regarding pathogenesis has brought glaucomatous gene therapy to the forefront. In this review, we discuss the three current genome editing methods and potential disease mechanisms of glaucoma. We further summarize different genome editing strategies that are being developed to target a number of glaucoma-related genes and pathways from four aspects including strategies to lower intraocular pressure, neuroprotection, RGC and optic nerve neuro-regeneration, and other strategies. In summary, genome therapy is a promising therapy for treating patients with glaucoma and has great potential to be widely applied in clinical practice.
Collapse
Affiliation(s)
- Meihui He
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Ophthalmology, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Ghoraba HH, Akhavanrezayat A, Karaca I, Yavari N, Lajevardi S, Hwang J, Regenold J, Matsumiya W, Pham B, Zaidi M, Mobasserian A, DongChau AT, Or C, Yasar C, Mishra K, Do D, Nguyen QD. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin Ophthalmol 2022; 16:1753-1771. [PMID: 35685379 PMCID: PMC9173725 DOI: 10.2147/opth.s364200] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Hashem H Ghoraba
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Amir Akhavanrezayat
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Irmak Karaca
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Negin Yavari
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Sherin Lajevardi
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Jaclyn Hwang
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Jonathan Regenold
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Wataru Matsumiya
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Brandon Pham
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Moosa Zaidi
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Azadeh Mobasserian
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Anthony Toan DongChau
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Christopher Or
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Cigdem Yasar
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Kapil Mishra
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Diana Do
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Quan Dong Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
- Correspondence: Quan Dong Nguyen, Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA, USA, Tel +1 6507257245, Fax +1 6507368232, Email
| |
Collapse
|
28
|
Nikonov S, Aravand P, Lyubarsky A, Nikonov R, Luo AJ, Wei Z, Maguire AM, Phelps NT, Shpylchak I, Willett K, Aleman TS, Huckfeldt RM, Ramachandran PS, Bennett J. Restoration of Vision and Retinal Responses After Adeno-Associated Virus-Mediated Optogenetic Therapy in Blind Dogs. Transl Vis Sci Technol 2022; 11:24. [PMID: 35604672 PMCID: PMC9145127 DOI: 10.1167/tvst.11.5.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose Optogenetic gene therapy to render remaining retinal cells light-sensitive in end-stage retinal degeneration is a promising strategy for treatment of individuals blind because of a variety of different inherited retinal degenerations. The clinical trials currently in progress focus on delivery of optogenetic genes to ganglion cells. Delivery of optogenetic molecules to cells in the outer neural retina is predicted to be even more advantageous because it harnesses more of the retinal circuitry. However, this approach has not yet been tested in large animal models. For this reason, we evaluated the safety and efficacy of optogenetic therapy targeting remaining diseased cone photoreceptors in the Rcd1 dog model of retinitis pigmentosa. Methods Imaging and measures of retinal function and functional vision were carried out, as well as terminal studies evaluating multi-electrode array recordings and histology. Results Animals remained healthy and active throughout the study and showed improved retinal and visual function as assessed by electroretinography and visual-evoked potentials, improved navigational vision, and improved function of cone photoreceptors and the downstream retinal circuitry. Conclusions The findings demonstrate that an optogenetic approach targeting the outer retina in a blind large animal model can partially restore vision. Translational Relevance This work has translational relevance because the approach could potentially be extrapolated to treat humans who are totally blind because of retinal degenerative disease.
Collapse
Affiliation(s)
- Sergei Nikonov
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Puya Aravand
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Arkady Lyubarsky
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Roman Nikonov
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Angela J. Luo
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Zhangyong Wei
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Albert M. Maguire
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas T. Phelps
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ivan Shpylchak
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Keirnan Willett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Tomas S. Aleman
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel M. Huckfeldt
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Pavitra S. Ramachandran
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT) and F.M. Kirby Center for Molecular Ophthalmology Scheie Eye Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
29
|
Rudnick ND, Kim LA, Comander J. Adeno-associated Viral Vectors in the Retina: Delivering Gene Therapy to the Right Destination. Int Ophthalmol Clin 2022; 62:215-229. [PMID: 35325920 DOI: 10.1097/iio.0000000000000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
30
|
Fajardo-Serrano A, Rico AJ, Roda E, Honrubia A, Arrieta S, Ariznabarreta G, Chocarro J, Lorenzo-Ramos E, Pejenaute A, Vázquez A, Lanciego JL. Adeno-Associated Viral Vectors as Versatile Tools for Neurological Disorders: Focus on Delivery Routes and Therapeutic Perspectives. Biomedicines 2022; 10:biomedicines10040746. [PMID: 35453499 PMCID: PMC9025350 DOI: 10.3390/biomedicines10040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
It is without doubt that the gene therapy field is currently in the spotlight for the development of new therapeutics targeting unmet medical needs. Thus, considering the gene therapy scenario, neurological diseases in general and neurodegenerative disorders in particular are emerging as the most appealing choices for new therapeutic arrivals intended to slow down, stop, or even revert the natural progressive course that characterizes most of these devastating neurodegenerative processes. Since an extensive coverage of all available literature is not feasible in practical terms, here emphasis was made in providing some advice to beginners in the field with a narrow focus on elucidating the best delivery route available for fulfilling any given AAV-based therapeutic approach. Furthermore, it is worth nothing that the number of ongoing clinical trials is increasing at a breath-taking speed. Accordingly, a landscape view of preclinical and clinical initiatives is also provided here in an attempt to best illustrate what is ongoing in this quickly expanding field.
Collapse
Affiliation(s)
- Ana Fajardo-Serrano
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| | - Alberto J. Rico
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elvira Roda
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Adriana Honrubia
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Sandra Arrieta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Goiaz Ariznabarreta
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Julia Chocarro
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Elena Lorenzo-Ramos
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alvaro Pejenaute
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Alfonso Vázquez
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Department of Neurosurgery, Servicio Navarro de Salud, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - José Luis Lanciego
- Centro de Investigación Médica Aplicada (CIMA), Department of Neuroscience, Universidad de Navarra, 31008 Pamplona, Spain; (A.J.R.); (E.R.); (A.H.); (S.A.); (G.A.); (J.C.); (E.L.-R.); (A.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CiberNed), 23038 Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (A.F.-S.); (J.L.L.)
| |
Collapse
|
31
|
Systemic and local immune responses to intraocular AAV vector administration in non-human primates. Mol Ther Methods Clin Dev 2022; 24:306-316. [PMID: 35229004 PMCID: PMC8844404 DOI: 10.1016/j.omtm.2022.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Positive clinical outcomes in adeno-associated virus (AAV)-mediated retinal gene therapy have often been attributed to the low immunogenicity of AAVs and immune privilege of the eye. However, several recent studies have shown potential for inflammatory responses. The current understanding of the factors contributing to inflammation, such as the pre-existence of serum antibodies against AAVs and their contribution to increases in antibody levels post-injection, is incomplete. The parameters that regulate the generation of new antibodies in response to the AAV capsid or transgene after intraocular injections are also insufficiently described. This study is a retrospective analysis of the pre-existing serum antibodies in correlation with changes in antibody levels after intraocular injections of AAV in non-human primates (NHPs) of the species Macaca fascicularis. In NHP serums, we analyzed the binding antibody (BAB) levels and a subset of these called neutralizing antibodies (NABs) that impede AAV transduction. We observed significantly higher pre-existing serum BABs against AAV8 compared with other serotypes and a dose-dependent increase in BABs and NABs in the serums collected post-injection, irrespective of the serotype or the mode of injection. Lastly, we were able to demonstrate a correlation between the serum BAB levels with clinical grading of inflammation and levels of transgene expression.
Collapse
|
32
|
Cui P, Ma J, Zhang H, Qiu L, Zhou S, Wang C, Ni X, Jiang P, Wang J. Small Molecule Modifications Significantly Increase the Transfection Efficiency of Low-Molecular Polymer. J Biomed Nanotechnol 2022; 18:435-445. [PMID: 35484748 DOI: 10.1166/jbn.2022.3252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gene vectors with high biocompatibility and transfection efficiency are critical for successful gene therapy. PEI 25K (Polyethyleneimine 25K) is a common polymeric gene vector that has been employed as a positive control material in gene transfection studies due to its good performance in endosome escape. PEI 25K's indegradability and abundance of positive charges, on the other hand, cause toxicity in cells, limiting its use. In this study, we developed the PEI-ER non-viral vector by adding an endoplasmic reticulum (ER) targeting ligand to low molecular weight PEI 1.8K. These small molecule modifications dramatically improved PEI transfection efficiency while barely interfering with compatibility. PEI-ER/DNA complexes were discovered to enter the cell via caveolin-mediated endocytosis, avoiding destruction in the endosome. We believe that this little chemical alteration is a simple solution to enhance the efficacy of cationic polymer vectors in gene transport, and it has a lot of medicinal applications.
Collapse
Affiliation(s)
- Pengfei Cui
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, P. R. China
| | - Jianhe Ma
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Huihui Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Shuwen Zhou
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, P. R. China
| | - Cheng Wang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, P. R. China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, P. R. China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
33
|
Varin J, Morival C, Maillard N, Adjali O, Cronin T. Risk Mitigation of Immunogenicity: A Key to Personalized Retinal Gene Therapy. Int J Mol Sci 2021; 22:12818. [PMID: 34884622 PMCID: PMC8658027 DOI: 10.3390/ijms222312818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy (GT) for ocular disorders has advanced the most among adeno-associated virus (AAV)-mediated therapies, with one product already approved in the market. The bank of retinal gene mutations carefully compiled over 30 years, the small retinal surface that does not require high clinical vector stocks, and the relatively immune-privileged environment of the eye explain such success. However, adverse effects due to AAV-delivery, though rare in the retina have led to the interruption of clinical trials. Risk mitigation, as the key to safe and efficient GT, has become the focus of 'bedside-back-to-bench' studies. Herein, we overview the inflammatory adverse events described in retinal GT trials and analyze which components of the retinal immunological environment might be the most involved in these immune responses, with a focus on the innate immune system composed of microglial surveillance. We consider the factors that can influence inflammation in the retina after GT such as viral sensors in the retinal tissue and CpG content in promoters or transgene sequences. Finally, we consider options to reduce the immunological risk, including dose, modified capsids or exclusion criteria for clinical trials. A better understanding and mitigation of immune risk factors inducing host immunity in AAV-mediated retinal GT is the key to achieving safe and efficient GT.
Collapse
Affiliation(s)
| | | | | | - Oumeya Adjali
- CHU de Nantes, INSERM UMR1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, F-44200 Nantes, France; (J.V.); (C.M.); (N.M.)
| | - Therese Cronin
- CHU de Nantes, INSERM UMR1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, F-44200 Nantes, France; (J.V.); (C.M.); (N.M.)
| |
Collapse
|
34
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Kalatzis V, Roux AF, Meunier I. Molecular Therapy for Choroideremia: Pre-clinical and Clinical Progress to Date. Mol Diagn Ther 2021; 25:661-675. [PMID: 34661884 DOI: 10.1007/s40291-021-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
Choroideremia is an inherited retinal disease characterised by a degeneration of the light-sensing photoreceptors, supporting retinal pigment epithelium and underlying choroid. Patients present with the same symptoms as those with classic rod-cone dystrophy: (1) night blindness early in life; (2) progressive peripheral visual field loss, and (3) central vision decline with a slow progression to legal blindness. Choroideremia is monogenic and caused by mutations in CHM. Eight clinical trials (three phase 1/2, four phase 2, and one phase 3) have started (four of which are already finished) to evaluate the therapeutic efficacy of gene supplementation mediated by subretinal delivery of an adeno-associated virus serotype 2 (AAV2/2) vector expressing CHM. Furthermore, one phase 1 clinical trial has been initiated to evaluate the efficiency of a novel AAV variant to deliver CHM to the outer retina following intravitreal delivery. Lastly, a non-viral-mediated CHM replacement strategy is currently under development, which could lead to a future clinical trial. Here, we summarise the rationale behind these various studies, as well as any results published to date. The diversity of these trials currently places choroideremia at the forefront of the retinal gene therapy field. As a consequence, the trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for inherited retinal diseases.
Collapse
Affiliation(s)
- Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
36
|
Csaky KG. Gene Therapy in the Treatment of Geographic Atrophy. Int Ophthalmol Clin 2021; 61:241-247. [PMID: 34584060 DOI: 10.1097/iio.0000000000000387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
37
|
Ross M, Ofri R. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen Res 2021; 16:1751-1759. [PMID: 33510064 PMCID: PMC8328774 DOI: 10.4103/1673-5374.306063] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Inherited retinal degenerations are a leading and untreatbale cause of blindness, and as such they are targets for gene therapy. Numerous gene therapy treatments have progressed from laboratory research to clinical trails, and a pioneering gene therapy received the first ever FDA approval for treating patients. However, currently retinal gene therapy mostly involves subretinal injection of the therapeutic agent, which treats a limited area, entails retinal detachment and other potential complications, and requires general anesthesia with consequent risks, costs and prolonged recovery. Therefore there is great impetus to develop safer, less invasive and cheapter methods of gene delivery. A promising method is intravitreal injection, that does not cause retinal detachment, can lead to pan-retinal transduction and can be performed under local anesthesia in out-patient clinics. Intravitreally-injected vectors face several obstacles. First, the vector is diluted by the vitreous and has to overcome a long diffusion distance to the target cells. Second, the vector is exposed to the host's immune response, risking neutralization by pre-existing antibodies and triggering a stronger immune response to the injection. Third, the vector has to cross the inner limiting membrane which is both a physical and a biological barrier as it contains binding sites that could cause the vector's sequestration. Finally, in the target cell the vector is prone to proteasome degradation before delivering the transgene to the nucleus. Strategies to overcome these obstacles include modifications of the viral capsid, through rational design or directed evolution, which allow resistance to the immune system, enhancement of penetration through the inner limiting membrane or reduced degradation by intracellular proteasomes. Furthermore, physical and chemical manipulations of the inner limiting membrane and vitreous aim to improve vector penetration. Finally, compact non-viral vectors that can overcome the immunological, physical and anatomical and barriers have been developed. This paper reviews ongoing efforts to develop novel, safe and efficacious methods for intravitreal delivery of therapeutic genes for inherited retinal degenerations. To date, the most promising results are achieved in rodents with robust, pan-retinal transduction following intravitreal delivery. Trials in larger animal models demonstrate transduction mostly of inner retinal layers. Despite ongoing efforts, currently no intravitreally-injected vector has demonstrated outer retinal transduction efficacy comparable to that of subretinal delivery. Further work is warranted to test promising new viral and non-viral vectors on large animal models of inherited retinal degenerations. Positive results will pave the way to development of the next generation of treatments for inherited retinal degeneration.
Collapse
Affiliation(s)
- Maya Ross
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
38
|
Sahu B, Chug I, Khanna H. The Ocular Gene Delivery Landscape. Biomolecules 2021; 11:1135. [PMID: 34439800 PMCID: PMC8394578 DOI: 10.3390/biom11081135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The eye is at the forefront of developing therapies for genetic diseases. With the FDA approval of the first gene-therapy drug for a form of congenital blindness, numerous studies have been initiated to develop gene therapies for other forms of eye diseases. These examinations have revealed new information about the benefits as well as restrictions to using drug-delivery routes to the different parts of the eye. In this article, we will discuss a brief history of gene therapy and its importance to the eye and ocular delivery landscape that is currently being investigated, and provide insights into their advantages and disadvantages. Efficient delivery routes and vehicle are crucial for an effective, safe, and longer-lasting therapy.
Collapse
Affiliation(s)
| | | | - Hemant Khanna
- Department of Ophthalmology & Visual Sciences, UMass Medical School, Worcester, MA 01655, USA; (B.S.); (I.C.)
| |
Collapse
|
39
|
Chan YK, Wang SK, Chu CJ, Copland DA, Letizia AJ, Costa Verdera H, Chiang JJ, Sethi M, Wang MK, Neidermyer WJ, Chan Y, Lim ET, Graveline AR, Sanchez M, Boyd RF, Vihtelic TS, Inciong RGCO, Slain JM, Alphonse PJ, Xue Y, Robinson-McCarthy LR, Tam JM, Jabbar MH, Sahu B, Adeniran JF, Muhuri M, Tai PWL, Xie J, Krause TB, Vernet A, Pezone M, Xiao R, Liu T, Wang W, Kaplan HJ, Gao G, Dick AD, Mingozzi F, McCall MA, Cepko CL, Church GM. Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci Transl Med 2021; 13:13/580/eabd3438. [PMID: 33568518 DOI: 10.1126/scitranslmed.abd3438] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Nucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome. The engineered vectors elicited markedly reduced innate immune and T cell responses and enhanced gene expression in clinically relevant mouse and pig models across different tissues, including liver, muscle, and retina. Subretinal administration of higher-dose AAV in pigs resulted in photoreceptor pathology with microglia and T cell infiltration. These adverse findings were avoided in the contralateral eyes of the same animals that were injected with the engineered vectors. However, intravitreal injection of higher-dose AAV in macaques, a more immunogenic route of administration, showed that the engineered vector delayed but did not prevent clinical uveitis, suggesting that other immune factors in addition to TLR9 may contribute to intraocular inflammation in this model. Our results demonstrate that linking specific immunomodulatory noncoding sequences to much longer therapeutic nucleic acids can "cloak" the vector from inducing unwanted immune responses in multiple, but not all, models. This "coupled immunomodulation" strategy may widen the therapeutic window for AAV therapies as well as other DNA-based gene transfer methods.
Collapse
Affiliation(s)
- Ying Kai Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Ally Therapeutics, Cambridge, MA 02139, USA
| | - Sean K Wang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Colin J Chu
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Alexander J Letizia
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Helena Costa Verdera
- Inserm U974, Sorbonne Universite, Paris 75651, France.,Inserm S951 and Genethon, Evry 91000, France
| | - Jessica J Chiang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Ally Therapeutics, Cambridge, MA 02139, USA
| | - Meher Sethi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Ally Therapeutics, Cambridge, MA 02139, USA
| | - May K Wang
- Ally Therapeutics, Cambridge, MA 02139, USA
| | | | - Yingleong Chan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Elaine T Lim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda R Graveline
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Melinda Sanchez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ryan F Boyd
- Ophthalmology, Charles River Laboratories, Mattawan, MI 49071, USA
| | | | | | - Jared M Slain
- Statistics and Data Science, Charles River Laboratories, Mattawan, MI 49071, USA
| | - Priscilla J Alphonse
- Inserm U974, Sorbonne Universite, Paris 75651, France.,Inserm S951 and Genethon, Evry 91000, France
| | - Yunlu Xue
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsey R Robinson-McCarthy
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jenny M Tam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Maha H Jabbar
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Janelle F Adeniran
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tyler B Krause
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andyna Vernet
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Matthew Pezone
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ru Xiao
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02115, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Tina Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Ally Therapeutics, Cambridge, MA 02139, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA.,Ocular Sciences LLC, St. Louis, MO 63112, USA.,Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol BS8 1TD, UK.,Institute of Ophthalmology and the National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital and University College London, London EC1V 9EL, UK
| | - Federico Mingozzi
- Inserm U974, Sorbonne Universite, Paris 75651, France.,Inserm S951 and Genethon, Evry 91000, France
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Constance L Cepko
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
40
|
Croze RH, Kotterman M, Burns CH, Schmitt CE, Quezada M, Schaffer D, Kirn D, Francis P. Viral Vector Technologies and Strategies: Improving on Nature. Int Ophthalmol Clin 2021; 61:59-89. [PMID: 34196318 PMCID: PMC8253506 DOI: 10.1097/iio.0000000000000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Xu D, Khan MA, Klufas MA, Ho AC. Administration of Ocular Gene Therapy. Int Ophthalmol Clin 2021; 61:131-149. [PMID: 34196321 DOI: 10.1097/iio.0000000000000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Mehta N, Robbins DA, Yiu G. Ocular Inflammation and Treatment Emergent Adverse Events in Retinal Gene Therapy. Int Ophthalmol Clin 2021; 61:151-177. [PMID: 34196322 PMCID: PMC8259781 DOI: 10.1097/iio.0000000000000366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neesurg Mehta
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Deborah Ahn Robbins
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| |
Collapse
|
43
|
Rodríguez-Bocanegra E, Wozar F, Seitz IP, Reichel FFL, Ochakovski A, Bucher K, Wilhelm B, Bartz-Schmidt KU, Peters T, Fischer MD. Longitudinal Evaluation of Hyper-Reflective Foci in the Retina Following Subretinal Delivery of Adeno-Associated Virus in Non-Human Primates. Transl Vis Sci Technol 2021; 10:15. [PMID: 34111260 PMCID: PMC8114007 DOI: 10.1167/tvst.10.6.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose The purpose of this study was to evaluate whether clinical grade recombinant adeno-associated virus serotype 8 (rAAV8) leads to increased appearance of hyper-reflective foci (HRF) in the retina of non-human primates (NHPs) following subretinal gene therapy injection. Methods Different doses of rAAV8 vector (rAAV8. human phosphodiesterase 6A subunit (hPDE6A) at low dose: 1 × 1011 vector genomes (vg), medium dose: 5 × 1011 vg, or high dose: 1 × 1012 vg) were injected subretinally into the left eyes of NHPs in a formal toxicology study in preparation of a clinical trial. Right eyes received sham-injection. After 3 months of in vivo, follow-up retinal sections were obtained and analyzed. The number of HRF on spectral domain-optical coherence tomography (SD-OCT) volume scans were counted from both eyes at 30 and 90 days. Results Animals from the high-dose group showed more HRF than in the low (P = 0.03) and medium (P = 0.01) dose groups at 90 days. There was a significant increase in the mean number of HRF in rAAV8-treated eyes compared with sham-treated eyes at 90 days (P = 0.02). Sham-treated eyes demonstrated a nonsignificant reduction of HRF numbers over time. In contrast, a significant increase over time was observed in the rAAV8-treated eyes of the high dose group (P = 0.001). The presence of infiltrating B- and T-cells and microglia activation were detected in rAAV8-treated eyes. Conclusions Some HRF in the retina appear to be related to the surgical trauma of subretinal injection. Although HRF in sham-treated retina tends to become less frequent over time, they accumulate in the high-dose rAAV8-treated eyes. This may suggest a sustained immunogenicity when subretinal injections of higher doses of rAAV8 vectors are applied, but it has lower impact when using more clinically relevant doses (low and medium groups). Translational Relevance An increase or persistence of HRFs following retinal gene therapy may indicate the need for immunomodulatory treatment.
Collapse
Affiliation(s)
- Eduardo Rodríguez-Bocanegra
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Fabian Wozar
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Immanuel P Seitz
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Felix F L Reichel
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Alex Ochakovski
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Kirsten Bucher
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Barbara Wilhelm
- STZ Eye Trial at the Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - K Ulrich Bartz-Schmidt
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Tobias Peters
- STZ Eye Trial at the Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,STZ Eye Trial at the Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany.,Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford, UK.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
44
|
Peters CW, Maguire CA, Hanlon KS. Delivering AAV to the Central Nervous and Sensory Systems. Trends Pharmacol Sci 2021; 42:461-474. [PMID: 33863599 DOI: 10.1016/j.tips.2021.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
As gene therapy enters mainstream medicine, it is more important than ever to have a grasp of exactly how to leverage it for maximum benefit. The development of new targeting strategies and tools makes treating patients with genetic diseases possible. Many Mendelian disorders are amenable to gene replacement or correction. These often affect post-mitotic tissues, meaning that a single stably expressing therapy can be applied. Recent years have seen the development of a large number of novel viral vectors for delivering specific therapies. These new vectors - predominately recombinant adeno-associated virus (AAV) variants - target nervous tissues with differing efficiencies. This review gives an overview of current gene therapies in the brain, ear, and eye, and describes the optimal approaches, depending on cell type and transgene. Overall, this work aims to serve as a primer for gene therapy in the central nervous and sensory systems.
Collapse
Affiliation(s)
- Cole W Peters
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
45
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
46
|
Mishra A, Vijayasarathy C, Cukras CA, Wiley HE, Sen HN, Zeng Y, Wei LL, Sieving PA. Immune function in X-linked retinoschisis subjects in an AAV8-RS1 phase I/IIa gene therapy trial. Mol Ther 2021; 29:2030-2040. [PMID: 33601057 DOI: 10.1016/j.ymthe.2021.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
This study explored systemic immune changes in 11 subjects with X-linked retinoschisis (XLRS) in a phase I/IIa adeno-associated virus 8 (AAV8)-RS1 gene therapy trial (ClinicalTrials.gov: NCT02317887). Immune cell proportions and serum analytes were compared to 12 healthy male controls. At pre-dosing baseline the mean CD4/CD8 ratio of XLRS subjects was elevated. CD11c+ myeloid dendritic cells (DCs) and the serum epidermal growth factor (EGF) level were decreased, while CD123+ plasmacytoid DCs and serum interferon (IFN)-γ and tumor necrosis factor (TNF)-α were increased, indicating that the XLRS baseline immune status differs from that of controls. XLRS samples 14 days after AAV8-RS1 administration were compared with the XLRS baseline. Frequency of CD11b+CD11c+ DCc was decreased in 8 of 11 XLRS subjects across all vector doses (1e9-3e11 vector genomes [vg]/eye). CD8+human leukocyte antigen-DR isotype (HLA-DR)+ cytotoxic T cells and CD68+CD80+ macrophages were upregulated in 10 of 11 XLRS subjects, along with increased serum granzyme B in 8 of 11 XLRS subjects and elevated IFN-γ in 9 of 11 XLRS subjects. The six XLRS subjects with ocular inflammation after vector application gave a modestly positive correlation of inflammation score to their respective baseline CD4/CD8 ratios. This exploratory study indicates that XLRS subjects may exhibit a proinflammatory, baseline immune phenotype, and that intravitreal dosing with AAV8-RS1 leads to systemic immune activation with an increase of activated lymphocytes, macrophages, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Alaknanda Mishra
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Catherine A Cukras
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry E Wiley
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zeng
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa L Wei
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Ophthalmology, University of California Davis, Davis, CA 95817, USA.
| |
Collapse
|
47
|
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, Boye SL, Boye SE, George LA, Salabarria S, Corti M, Byrne BJ, Tremblay JP. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol Ther 2020; 29:464-488. [PMID: 33309881 PMCID: PMC7854298 DOI: 10.1016/j.ymthe.2020.12.007] [Citation(s) in RCA: 382] [Impact Index Per Article: 95.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.
Collapse
Affiliation(s)
- Jerry R Mendell
- Center of Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | | | | | - Kimberly Goodspeed
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Division of Cellular and Molecular Therapeutics, University of Florida, Gainesville, FL, USA
| | - Lindsey A George
- Division of Hematology and the Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie Salabarria
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Manuela Corti
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA; Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
48
|
Woodburn KW, Vijay S, Blumenkranz MS. Sight of Action: the Rationale and Evolution of Gene Therapy Approaches to the Treatment of Retinal Diseases. CURRENT OPHTHALMOLOGY REPORTS 2020. [DOI: 10.1007/s40135-020-00255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Fischer MD. Immune responses to retinal gene therapy using adeno-associated viral vectors - Implications for treatment success and safety. Prog Retin Eye Res 2020; 83:100915. [PMID: 33069860 DOI: 10.1016/j.preteyeres.2020.100915] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated virus (AAV) is the leading vector for gene therapy in the retina. As non-pathogenic, non-integrating, replication deficient vector, the recombinant virus efficiently transduces all key retinal cell populations. Successful testing of AAV vectors in clinical trials of inherited retinal diseases led to the recent approval of voretigene neparvovec (Luxturna) for the treatment of RPE65 mutation-associated retinal dystrophies. However, studies applying AAV-mediated retinal gene therapy independently reported intraocular inflammation and/or loss of efficacy after initial functional improvements. Both observations might be explained by targeted removal of transduced cells via anti-viral defence mechanisms. AAV has been shown to activate innate pattern recognition receptors (PRRs) such as toll-like receptor (TLR)-2 and TLR-9 resulting in the release of inflammatory cytokines and type I interferons. The vector can also induce capsid-specific and transgene-specific T cell responses and neutralizing anti-AAV antibodies which both limit the therapeutic effect. However, the target organ of retinal gene therapy, the eye, is known as an immune-privileged site. It is characterized by suppression of inflammation and promotion of immune tolerance which might prevent AAV-induced immune responses. This review evaluates AAV-related immune responses, toxicity and inflammation in studies of retinal gene therapy, identifies influencing variables of these responses and discusses potential strategies to modulate immune reactions to AAV vectors to increase the safety and efficacy of ocular gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Eduardo Rodríguez-Bocanegra
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Daniyar Dauletbekov
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
50
|
Millington-Ward S, Chadderton N, Berkeley M, Finnegan LK, Hanlon KS, Carrigan M, Humphries P, Kenna PF, Palfi A, Farrar GJ. Novel 199 base pair NEFH promoter drives expression in retinal ganglion cells. Sci Rep 2020; 10:16515. [PMID: 33020509 PMCID: PMC7536420 DOI: 10.1038/s41598-020-73257-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
Retinal ganglion cells (RGCs) are known to be involved in several ocular disorders, including glaucoma and Leber hereditary optic neuropathy (LHON), and hence represent target cells for gene therapies directed towards these diseases. Restricting gene therapeutics to the target cell type in many situations may be preferable compared to ubiquitous transgene expression, stimulating researchers to identify RGC-specific promoters, particularly promoter sequences that may also be appropriate in size to fit readily into recombinant adeno associated viral (AAV) vectors, the vector of choice for many ocular gene therapies. In the current study we analysed EGFP expression driven by various sequences of the putative human NEFH promoter in order to define sequences required for preferential expression in RGCs. EGFP expression profiles from four different potential NEFH promoter constructs were compared in vivo in mice using retinal histology and mRNA expression analysis. Notably, two efficient promoter sequences, one comprising just 199 bp, are presented in the study.
Collapse
Affiliation(s)
| | - Naomi Chadderton
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Megan Berkeley
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Laura K Finnegan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Killian S Hanlon
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Matthew Carrigan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Peter Humphries
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.,The Research Foundation, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Arpad Palfi
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - G Jane Farrar
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|