1
|
Muhuri M, Levy DI, Schulz M, McCarty D, Gao G. Durability of transgene expression after rAAV gene therapy. Mol Ther 2022; 30:1364-1380. [PMID: 35283274 PMCID: PMC9077371 DOI: 10.1016/j.ymthe.2022.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/09/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) gene therapy has the potential to transform the lives of patients with certain genetic disorders by increasing or restoring function to affected tissues. Following the initial establishment of transgene expression, it is unknown how long the therapeutic effect will last, although animal and emerging human data show that expression can be maintained for more than 10 years. The durability of therapeutic response is key to long-term treatment success, especially since immune responses to rAAV vectors may prevent re-dosing with the same therapy. This review explores the non-immunological and immunological processes that may limit or improve durability and the strategies that can be used to increase the duration of the therapeutic effect.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Keeler AM. Immune Responses to Adeno-Associated Virus-Mediated CRISPR Therapy. Hum Gene Ther 2021; 32:1430-1432. [PMID: 34935453 DOI: 10.1089/hum.2021.29193.amk] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Macdonald J, Marx J, Büning H. Capsid-Engineering for Central Nervous System-Directed Gene Therapy with Adeno-Associated Virus Vectors. Hum Gene Ther 2021; 32:1096-1119. [PMID: 34662226 DOI: 10.1089/hum.2021.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Closing the gap in knowledge on the cause of neurodegenerative disorders is paving the way toward innovative treatment strategies, among which gene therapy has emerged as a top candidate. Both conventional gene therapy and genome editing approaches are being developed, and a great number of human clinical trials are ongoing. Already 2 years ago, the first gene therapy for a neurodegenerative disease, spinal muscular atrophy type 1 (SMA1), obtained market approval. To realize such innovative strategies, gene therapy delivery tools are key assets. Here, we focus on recombinant adeno-associated virus (AAV) vectors and report on strategies to improve first-generation vectors. Current efforts focus on the viral capsid to modify the host-vector interaction aiming at increasing the efficacy of target cell transduction, at simplifying vector administration, and at reducing the risk of vector dose-related side effects.
Collapse
Affiliation(s)
- Josephine Macdonald
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jennifer Marx
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Patton KS, Harrison MT, Long BR, Lau K, Holcomb J, Owen R, Kasprzyk T, Janetzki S, Zoog SJ, Vettermann C. Monitoring cell-mediated immune responses in AAV gene therapy clinical trials using a validated IFN-γ ELISpot method. Mol Ther Methods Clin Dev 2021; 22:183-195. [PMID: 34485604 PMCID: PMC8399379 DOI: 10.1016/j.omtm.2021.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV)-based gene therapies have recently shown promise as a novel treatment for hereditary diseases. Due to the viral origin of the vector capsid, however, cellular immune response may be elicited that could eliminate transduced target cells. To monitor cellular immune responses in clinical trials, we optimized and bioanalytically validated a sensitive, robust, and reliable interferon-γ (IFN-γ) enzyme-linked immunospot (ELISpot) assay. For method performance validation, human peripheral blood mononuclear cells (PBMCs) were stimulated with peptides derived from AAV5 capsid proteins and the encoded transgene product, human blood clotting factor VIII (FVIII), in addition to positive controls, such as peptides from the 65-kDa phosphoprotein of cytomegalovirus. We statistically assessed the limit of detection and confirmatory cutpoint, evaluated precision and linearity, and confirmed specificity using HIV peptides. Robustness parameter ranges and sample stability periods were established. The validated IFN-γ ELISpot assay was then implemented in an AAV5-FVIII gene therapy clinical trial. Cellular immune responses against the AAV5 capsid were observed in most participants as soon as 2 weeks following dose administration; only limited responses against the transgene product were detected. These data underscore the value of using validated methods for monitoring cellular immunity in AAV gene therapy trials.
Collapse
Affiliation(s)
- Kathryn S. Patton
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - M. Travis Harrison
- Immunology, Precision for Medicine, 2686 Middlefield Road, Redwood City, CA 94063, USA
| | - Brian R. Long
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Kelly Lau
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Jennifer Holcomb
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Rachel Owen
- Immunology, Precision for Medicine, 2686 Middlefield Road, Redwood City, CA 94063, USA
| | - Theresa Kasprzyk
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Sylvia Janetzki
- ZellNet Consulting, 555 North Avenue, Suite 25-S, Fort Lee, NJ 07024, USA
| | - Stephen J. Zoog
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Christian Vettermann
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| |
Collapse
|
6
|
Colon-Cortes Y, Hasan MA, Aslanidi G. Intra-tracheal delivery of AAV6 vectors results in sustained transduction in murine lungs without genomic integration. Gene 2021; 763S:100037. [PMID: 32904225 PMCID: PMC7452375 DOI: 10.1016/j.gene.2020.100037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/20/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022]
Abstract
Despite the progress made in AAV-based gene therapy targeting different organ systems, lung-targeted gene therapy using AAV vectors has not been effective, mostly due to the poor transduction and un-sustained gene expression in airway epithelium. Furthermore, concerns over possible harmful insertional mutagenesis seen in other cell types, particularly hepatocytes, raised a question about AAV safety. In this study, we evaluate the long-term persistence of this vector in mouse lungs and any possible harmful integration of these vectors into the host genome. AAV6 vectors expressing reporter gene (firefly luciferase) were delivered to the lungs of C57BL/6 mice through intra-tracheal intubation. Despite the large variation among individual animals, most animals had high and sustained luciferase activity with a peak from 2 to 3 weeks post-transduction before a significant decline between 15 and 19 weeks post-transduction. More importantly, even after its decline, most animals maintained detectable luciferase expression for 150 days or more, which was confirmed by post-necropsy qPCR analysis of luciferase gene expression. At the termination point of experiments, an average of one copy of AAV expression cassette per mouse genome was detected. We also found that partial overlaps between the AAV6 expression cassette and the mouse genome were distributed broadly with no apparent systematic preference in any mouse chromosomal map location. In summary, our data suggest that AAV6 mediated long-term gene expression in the lungs with no evidence of genomic integration, and thus, any insertional mutagenesis.
Collapse
Affiliation(s)
| | | | - George Aslanidi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States of America.
| |
Collapse
|
7
|
Doyle BM, Singer ML, Fleury-Curado T, Rana S, Benevides ES, Byrne BJ, Polotsky VY, Fuller DD. Gene delivery to the hypoglossal motor system: preclinical studies and translational potential. Gene Ther 2021; 28:402-412. [PMID: 33574581 PMCID: PMC8355248 DOI: 10.1038/s41434-021-00225-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022]
Abstract
Dysfunction and/or reduced activity in the tongue muscles contributes to conditions such as dysphagia, dysarthria, and sleep disordered breathing. Current treatments are often inadequate, and the tongue is a readily accessible target for therapeutic gene delivery. In this regard, gene therapy specifically targeting the tongue motor system offers two general strategies for treating lingual disorders. First, correcting tongue myofiber and/or hypoglossal (XII) motoneuron pathology in genetic neuromuscular disorders may be readily achieved by intralingual delivery of viral vectors. The retrograde movement of viral vectors such as adeno-associated virus (AAV) enables targeted distribution to XII motoneurons via intralingual viral delivery. Second, conditions with impaired or reduced tongue muscle activation can potentially be treated using viral-driven chemo- or optogenetic approaches to activate or inhibit XII motoneurons and/or tongue myofibers. Further considerations that are highly relevant to lingual gene therapy include (1) the diversity of the motoneurons which control the tongue, (2) the patterns of XII nerve branching, and (3) the complexity of tongue muscle anatomy and biomechanics. Preclinical studies show considerable promise for lingual directed gene therapy in neuromuscular disease, but the potential of such approaches is largely untapped.
Collapse
Affiliation(s)
- Brendan M Doyle
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Michele L Singer
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Thomaz Fleury-Curado
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Ethan S Benevides
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Rehabilitation Science PhD Program, University of Florida, Gainesville, FL, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Vsevolod Y Polotsky
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Lisowski L, Staber JM, Wright JF, Valentino LA. The intersection of vector biology, gene therapy, and hemophilia. Res Pract Thromb Haemost 2021; 5:e12586. [PMID: 34485808 PMCID: PMC8410952 DOI: 10.1002/rth2.12586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy is at the forefront of the drive to bring the potential of cure to patients with genetic diseases. Multiple mechanisms of effective and efficient gene therapy delivery (eg, lentiviral, adeno-associated) for transgene expression as well as gene editing have been explored to improve vector and construct attributes and achieve therapeutic success. Recent clinical research has focused on recombinant adeno-associated viral (rAAV) vectors as a preferred method owing to their naturally occurring vector biology characteristics, such as serotypes with specific tissue tropisms, facilitated in vivo delivery, and stable physicochemical properties. For those living with hereditary diseases like hemophilia, this potential curative approach is balanced against the need to provide safe, predictable, effective, and durable factor expression. While in vivo studies of rAAV gene therapy have demonstrated amelioration of the bleeding phenotype in adults, long-term safety and effectiveness remain to be established. This review discusses vector biology in the context of rAAV-based liver-directed gene therapy for hemophilia and provides an overview of the types of viral vectors and vector components that are under investigation, as well as an assessment of the challenges associated with gene therapy delivery and durability of expression.
Collapse
Affiliation(s)
- Leszek Lisowski
- Translational Vectorology Research UnitFaculty of Medicine and HealthChildren's Medical Research InstituteThe University of SydneyWestmeadAustralia
- Laboratory of Molecular Oncology and Innovative TherapiesMilitary Institute of MedicineWarsawPoland
| | - Janice M. Staber
- Stead Family Department of PediatricsUniversity of IowaIowa CityIAUSA
- Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - J. Fraser Wright
- Department of PediatricsDivision of Hematology, OncologyStem Cell Transplantation and Regenerative MedicineCenter for Definitive and Curative MedicineStanford University School of MedicineStanfordCAUSA
| | | |
Collapse
|
9
|
Mehta N, Robbins DA, Yiu G. Ocular Inflammation and Treatment Emergent Adverse Events in Retinal Gene Therapy. Int Ophthalmol Clin 2021; 61:151-177. [PMID: 34196322 PMCID: PMC8259781 DOI: 10.1097/iio.0000000000000366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Neesurg Mehta
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Deborah Ahn Robbins
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA
| |
Collapse
|
10
|
Hordeaux J, Buza EL, Jeffrey B, Song C, Jahan T, Yuan Y, Zhu Y, Bell P, Li M, Chichester JA, Calcedo R, Wilson JM. MicroRNA-mediated inhibition of transgene expression reduces dorsal root ganglion toxicity by AAV vectors in primates. Sci Transl Med 2021; 12:12/569/eaba9188. [PMID: 33177182 DOI: 10.1126/scitranslmed.aba9188] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/07/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
Delivering adeno-associated virus (AAV) vectors into the central nervous system of nonhuman primates (NHPs) via the blood or cerebral spinal fluid is associated with dorsal root ganglion (DRG) toxicity. Conventional immune-suppression regimens do not prevent this toxicity, possibly because it may be caused by high transduction rates, which can, in turn, cause cellular stress due to an overabundance of the transgene product in target cells. To test this hypothesis and develop an approach to eliminate DRG toxicity, we exploited endogenous expression of microRNA (miR) 183 complex, which is largely restricted to DRG neurons, to specifically down-regulate transgene expression in these cells. We introduced sequence targets for miR183 into the vector genome within the 3' untranslated region of the corresponding transgene messenger RNA and injected vectors into the cisterna magna of NHPs. Administration of unmodified AAV vectors resulted in robust transduction of target tissues and toxicity in DRG neurons. Consistent with the proposal that immune system activity does not mediate this neuronal toxicity, we found that steroid administration was ineffective in alleviating this pathology. However, including miR183 targets in the vectors reduced transgene expression in, and toxicity of, DRG neurons without affecting transduction elsewhere in the primate's brain. This approach might be useful in reducing DRG toxicity and the associated morbidity and should facilitate the development of AAV-based gene therapies for many central nervous system diseases.
Collapse
Affiliation(s)
- Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth L Buza
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brianne Jeffrey
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chunjuan Song
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tahsin Jahan
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuan Yuan
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Zhu
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter Bell
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Li
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Chichester
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Calcedo
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Whitehead M, Osborne A, Yu-Wai-Man P, Martin K. Humoral immune responses to AAV gene therapy in the ocular compartment. Biol Rev Camb Philos Soc 2021; 96:1616-1644. [PMID: 33837614 DOI: 10.1111/brv.12718] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Viral vectors can be utilised to deliver therapeutic genes to diseased cells. Adeno-associated virus (AAV) is a commonly used viral vector that is favoured for its ability to infect a wide range of tissues whilst displaying limited toxicity and immunogenicity. Most humans harbour anti-AAV neutralising antibodies (NAbs) due to subclinical infections by wild-type virus during infancy and these pre-existing NAbs can limit the efficiency of gene transfer depending on the target cell type, route of administration and choice of serotype. Vector administration can also result in de novo NAb synthesis that could limit the opportunity for repeated gene transfer to diseased sites. A number of strategies have been described in preclinical models that could circumvent NAb responses in humans, however, the successful translation of these innovations into the clinical arena has been limited. Here, we provide a comprehensive review of the humoral immune response to AAV gene therapy in the ocular compartment. We cover basic AAV biology and clinical application, the role of pre-existing and induced NAbs, and possible approaches to overcoming antibody responses. We conclude with a framework for a comprehensive strategy for circumventing humoral immune responses to AAV in the future.
Collapse
Affiliation(s)
- Michael Whitehead
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K
| | - Andrew Osborne
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K
| | - Patrick Yu-Wai-Man
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K.,NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, U.K
| | - Keith Martin
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K.,Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, U.K.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Gernoux G, Guilbaud M, Devaux M, Journou M, Pichard V, Jaulin N, Léger A, Le Duff J, Deschamps JY, Le Guiner C, Moullier P, Cherel Y, Adjali O. AAV8 locoregional delivery induces long-term expression of an immunogenic transgene in macaques despite persisting local inflammation. Mol Ther Methods Clin Dev 2021; 20:660-674. [PMID: 33718516 PMCID: PMC7907542 DOI: 10.1016/j.omtm.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022]
Abstract
Adeno-associated virus (AAV) vectors are considered efficient vectors for gene transfer, as illustrated by recent successful clinical trials targeting retinal or neurodegenerative disorders. However, limitations as host immune responses to AAV capsid or transduction of limited regions must still be overcome. Here, we focused on locoregional (LR) intravenous perfusion vector delivery that allows transduction of large muscular areas and is considered to be less immunogenic than intramuscular (IM) injection. To confirm this hypothesis, we injected 6 cynomolgus monkeys with an AAV serotype 8 (AAV8) vector encoding for the highly immunogenic GFP driven by either a muscle-specific promoter (n = 3) or a cytomegalovirus (CMV) promoter (n = 3). We report that LR delivery allows long-term GFP expression in the perfused limb (up to 1 year) despite the initiation of a peripheral transgene-specific immune response. The analysis of the immune status of the perfused limb shows that LR delivery induces persisting inflammation. However, this inflammation is not sufficient to result in transgene clearance and is balanced by resident regulatory T cells. Overall, our results suggest that LR delivery promotes persisting transgene expression by induction of Treg cells in situ and might be a safe alternative to IM route to target large muscle territories for the expression of secreted therapeutic factors.
Collapse
Affiliation(s)
- Gwladys Gernoux
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Mickaël Guilbaud
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Marie Devaux
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Malo Journou
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Virginie Pichard
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Nicolas Jaulin
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Adrien Léger
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Johanne Le Duff
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | | | - Caroline Le Guiner
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Philippe Moullier
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| | - Yan Cherel
- INRA UMR 703, PAnTher, ONIRIS, 44307 Nantes, France
| | - Oumeya Adjali
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, 44200 Nantes, France
| |
Collapse
|
13
|
Cheah PS, Prabhakar S, Yellen D, Beauchamp RL, Zhang X, Kasamatsu S, Bronson RT, Thiele EA, Kwiatkowski DJ, Stemmer-Rachamimov A, György B, Ling KH, Kaneki M, Tannous BA, Ramesh V, Maguire CA, Breakefield XO. Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin. SCIENCE ADVANCES 2021; 7:eabb1703. [PMID: 33523984 PMCID: PMC7793581 DOI: 10.1126/sciadv.abb1703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/18/2020] [Indexed: 05/06/2023]
Abstract
Tuberous sclerosis complex (TSC) results from loss of a tumor suppressor gene - TSC1 or TSC2, encoding hamartin and tuberin, respectively. These proteins formed a complex to inhibit mTORC1-mediated cell growth and proliferation. Loss of either protein leads to overgrowth lesions in many vital organs. Gene therapy was evaluated in a mouse model of TSC2 using an adeno-associated virus (AAV) vector carrying the complementary for a "condensed" form of human tuberin (cTuberin). Functionality of cTuberin was verified in culture. A mouse model of TSC2 was generated by AAV-Cre recombinase disruption of Tsc2-floxed alleles at birth, leading to a shortened lifespan (mean 58 days) and brain pathology consistent with TSC. When these mice were injected intravenously on day 21 with AAV9-cTuberin, the mean survival was extended to 462 days with reduction in brain pathology. This demonstrates the potential of treating life-threatening TSC2 lesions with a single intravenous injection of AAV9-cTuberin.
Collapse
Affiliation(s)
- Pike-See Cheah
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shilpa Prabhakar
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Yellen
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Roberta L Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuan Zhang
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Shingo Kasamatsu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Roderick T Bronson
- Rodent Histopathology Core Facility, Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Thiele
- Herscot Center for Tuberous Sclerosis Complex, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Pediatric Epilepsy Program, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Bence György
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - King-Hwa Ling
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Bakhos A Tannous
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Vijaya Ramesh
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Ivanov MF, Balmasova IP, Zhestkov AV. Immunopathogenetic features and prognostic criteria for severe hemorrhagic fever with renal syndrome. RUDN JOURNAL OF MEDICINE 2020. [DOI: 10.22363/2313-0245-2020-24-3-207-217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. Assessment of the features of cellular immunological mechanisms at the early stage of HFRS of varying severity and development of prognostic criteria for the risk of a severe course of the infectious process. Materials and methods. An immunological blood test (flow cytofluorimetry method) was performed in 12 patients with severe HFRS and 53 patients with moderate course in the dynamics of the disease. Statistical data processing was performed based on the SPSS software package. Results. At the initial stages of HFRS, immunological features of the severe course of the disease were established in the form of a higher content of T-helper and regulatory T-cells in the blood and a reduced number of CTL, including their activated pool. Based on these changes, an immunological prognostic coefficient of HFRS was developed, which allows determining the risk of severe course in the early days (febrile period) of the disease with high prognostic accuracy. Conclusion. The results obtained allowed us to identify previously unknown features of the immune process at the initial stages of HFRS development, which allowed us to propose a new approach to predicting the severe course of the disease.
Collapse
|
15
|
Orefice NS. Development of New Strategies Using Extracellular Vesicles Loaded with Exogenous Nucleic Acid. Pharmaceutics 2020; 12:E705. [PMID: 32722622 PMCID: PMC7464422 DOI: 10.3390/pharmaceutics12080705] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is a therapeutic strategy of delivering foreign genetic material (encoding for an important protein) into a patient's target cell to replace a defective gene. Nucleic acids are embedded within the adeno-associated virus (AAVs) vectors; however, preexisting immunity to AAVs remains a significant concern that impairs their clinical application. Extracellular vesicles (EVs) hold great potential for therapeutic applications as vectors of nucleic acids due to their endogenous intercellular communication functions through their cargo delivery, including lipids and proteins. So far, small RNAs (siRNA and micro (mi)RNA) have been mainly loaded into EVs to treat several diseases, but the potential use of EVs to load and deliver exogenous plasmid DNA has not been thoroughly described. This review provides a comprehensive overview of the principal methodologies currently employed to load foreign genetic material into EVs, highlighting the need to find the most effective strategies for their successful clinical translations.
Collapse
Affiliation(s)
- Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; or ; Tel.: +1-608-262-21-89
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Costa Verdera H, Kuranda K, Mingozzi F. AAV Vector Immunogenicity in Humans: A Long Journey to Successful Gene Transfer. Mol Ther 2020; 28:723-746. [PMID: 31972133 PMCID: PMC7054726 DOI: 10.1016/j.ymthe.2019.12.010] [Citation(s) in RCA: 369] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors has demonstrated safety and long-term efficacy in a number of trials across target organs, including eye, liver, skeletal muscle, and the central nervous system. Since the initial evidence that AAV vectors can elicit capsid T cell responses in humans, which can affect the duration of transgene expression, much progress has been made in understanding and modulating AAV vector immunogenicity. It is now well established that exposure to wild-type AAV results in priming of the immune system against the virus, with development of both humoral and T cell immunity. Aside from the neutralizing effect of antibodies, the impact of pre-existing immunity to AAV on gene transfer is still poorly understood. Herein, we review data emerging from clinical trials across a broad range of gene therapy applications. Common features of immune responses to AAV can be found, suggesting, for example, that vector immunogenicity is dose-dependent, and that innate immunity plays an important role in the outcome of gene transfer. A range of host-specific factors are also likely to be important, and a comprehensive understanding of the mechanisms driving AAV vector immunogenicity in humans will be key to unlocking the full potential of in vivo gene therapy.
Collapse
Affiliation(s)
- Helena Costa Verdera
- Genethon and INSERM U951, 91000 Evry, France; Sorbonne Université and INSERM U974, 75013 Paris, France
| | | | - Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; Spark Therapeutics, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Gernoux G, Gruntman AM, Blackwood M, Zieger M, Flotte TR, Mueller C. Muscle-Directed Delivery of an AAV1 Vector Leads to Capsid-Specific T Cell Exhaustion in Nonhuman Primates and Humans. Mol Ther 2020; 28:747-757. [PMID: 31982038 PMCID: PMC7054721 DOI: 10.1016/j.ymthe.2020.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
With the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) approvals for Zolgensma, Luxturna, and Glybera, recombinant adeno-associated viruses (rAAVs) are considered efficient tools for gene transfer. However, studies in animals and humans demonstrate that intramuscular (IM) AAV delivery can trigger immune responses to AAV capsids and/or transgenes. IM delivery of rAAV1 in humans has also been described to induce tolerance to rAAV characterized by the presence of capsid-specific regulatory T cells (Tregs) in periphery. To understand mechanisms responsible for tolerance and parameters involved, we tested 3 muscle-directed administration routes in rhesus monkeys: IM delivery, venous limb perfusion, and the intra-arterial push and dwell method. These 3 methods were well tolerated and led to transgene expression. Interestingly, gene transfer in muscle led to Tregs and exhausted T cell infiltrates in situ at both day 21 and day 60 post-injection. In human samples, an in-depth analysis of the functionality of these cells demonstrates that capsid-specific exhausted T cells are detected after at least 5 years post-vector delivery and that the exhaustion can be reversed by blocking the checkpoint pathway. Overall, our study shows that persisting transgene expression after gene transfer in muscle is mediated by Tregs and exhausted T cells.
Collapse
Affiliation(s)
- Gwladys Gernoux
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alisha M Gruntman
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA; Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, N. Grafton, MA, USA
| | - Meghan Blackwood
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marina Zieger
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
18
|
Krotova K, Day A, Aslanidi G. An Engineered AAV6-Based Vaccine Induces High Cytolytic Anti-Tumor Activity by Directly Targeting DCs and Improves Ag Presentation. Mol Ther Oncolytics 2019; 15:166-177. [PMID: 31720373 PMCID: PMC6838889 DOI: 10.1016/j.omto.2019.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
We have previously shown that an AAV6-based vaccine generates high levels of antigen-specific CD8+ T cells. Further modifications described here led to significantly increased levels of antigen-specific CD8+ and CD4+ T cells, enhanced formation of memory cells, and superior antigen-specific killing capacity in a murine model. By tracking reporter-gene-positive dendritic cells, we showed that they were directly targeted with modified AAV6 in vivo. Our vaccine's anti-cancer potential was evaluated with the antigen ovalbumin against a B16F10 melanoma cell line stably expressing ovalbumin. The vaccination showed superior protection in a murine model of metastatic melanoma. The vaccination significantly delayed solid tumor growth but did not completely prevent tumor development. We show that tumors in immunized mice escaped vaccine-induced killing by losing ovalbumin expression. The vaccine induced massive tumor infiltration with NK and CD8+ T cells with upregulated PD-1 expression. Thus, a vaccination of a combination of anti-PD-1 antibodies demonstrated significant improvement in the treatment efficacy. To summarize, we showed that a bioengineered AAV6-based vaccine elicits strong and long-lasting cellular and humoral responses against an encoded antigen. To increase AAV vaccine efficiency and mitigate tumor escape through antigen loss, we intended to target several antigens in combination with treatments targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Karina Krotova
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Andrew Day
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - George Aslanidi
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
19
|
Borel F, Gernoux G, Sun H, Stock R, Blackwood M, Brown RH, Mueller C. Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Sci Transl Med 2019; 10:10/465/eaau6414. [PMID: 30381409 DOI: 10.1126/scitranslmed.aau6414] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 07/01/2018] [Accepted: 10/11/2018] [Indexed: 01/15/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease caused by degeneration of motor neurons leading to rapidly progressive paralysis. About 10% of cases are caused by gain-of-function mutations that are transmitted as dominant traits. A potential therapy for these cases is to suppress the expression of the mutant gene. Here, we investigated silencing of SOD1, a gene commonly mutated in familial ALS, using an adeno-associated virus (AAV) encoding an artificial microRNA (miRNA) that targeted SOD1 In a superoxide dismutase 1 (SOD1)-mediated mouse model of ALS, we have previously demonstrated that SOD1 silencing delayed disease onset, increased survival time, and reduced muscle loss and motor and respiratory impairments. Here, we describe the preclinical characterization of this approach in cynomolgus macaques (Macaca fascicularis) using an AAV serotype for delivery that has been shown to be safe in clinical trials. We optimized AAV delivery to the spinal cord by preimplantation of a catheter and placement of the subject with head down at 30° during intrathecal infusion. We compared different promoters for the expression of artificial miRNAs directed against mutant SOD1 Results demonstrated efficient delivery and effective silencing of the SOD1 gene in motor neurons. These results support the notion that gene therapy with an artificial miRNA targeting SOD1 is safe and merits further development for the treatment of mutant SOD1-linked ALS.
Collapse
Affiliation(s)
- Florie Borel
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.,Shire, 125 Binney Street, Cambridge, MA 02142, USA
| | - Gwladys Gernoux
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Huaming Sun
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Rachel Stock
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Meghan Blackwood
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA. .,Department of Pediatrics, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
20
|
Pouzolles M, Machado A, Guilbaud M, Irla M, Gailhac S, Barennes P, Cesana D, Calabria A, Benedicenti F, Sergé A, Raman I, Li QZ, Montini E, Klatzmann D, Adjali O, Taylor N, Zimmermann VS. Intrathymic adeno-associated virus gene transfer rapidly restores thymic function and long-term persistence of gene-corrected T cells. J Allergy Clin Immunol 2019; 145:679-697.e5. [PMID: 31513879 DOI: 10.1016/j.jaci.2019.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.
Collapse
Affiliation(s)
- Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mickaël Guilbaud
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Magali Irla
- Center of Immunology Marseille-Luminy (CIML), INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, France
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Arnauld Sergé
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Indu Raman
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Oumeya Adjali
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
21
|
Immune-orthogonal orthologues of AAV capsids and of Cas9 circumvent the immune response to the administration of gene therapy. Nat Biomed Eng 2019; 3:806-816. [PMID: 31332341 PMCID: PMC6783354 DOI: 10.1038/s41551-019-0431-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/16/2019] [Indexed: 12/19/2022]
Abstract
Protein-based therapeutics can activate the adaptive immune system and lead to the production of neutralizing antibodies and to cytotoxic-T-cell-mediated clearance of the treated cells. Here, we show that the sequential use of immune-orthogonal orthologues of the CRISPR-associated protein 9 (Cas9) and of adeno-associated viruses (AAVs) eludes adaptive immune responses and enables effective gene editing from repeated dosing. We compared total sequence similarities and predicted binding strengths to class-I and class-II major-histocompatibility-complex proteins for 284 DNA-targeting and 84 RNA-targeting CRISPR effectors, and for 167 AAV VP1-capsid-protein orthologues. We predict the absence of cross-reactive immune responses for 79% of the DNA-targeting Cas orthologs, which we validate for three Cas9 orthologs in mice, yet anticipate broad immune cross-reactivity among the AAV serotypes. We also show that efficacious in vivo gene editing is uncompromised when using multiple dosing with orthologues of AAVs and Cas9 in mice previously immunized against the AAV vector and the Cas9 payload. Multiple dosing with protein orthologues may allow for sequential regimens of protein therapeutics that circumvent pre-existing immunity or induced immunity.
Collapse
|
22
|
Guilbaud M, Devaux M, Couzinié C, Le Duff J, Toromanoff A, Vandamme C, Jaulin N, Gernoux G, Larcher T, Moullier P, Le Guiner C, Adjali O. Five Years of Successful Inducible Transgene Expression Following Locoregional Adeno-Associated Virus Delivery in Nonhuman Primates with No Detectable Immunity. Hum Gene Ther 2019; 30:802-813. [PMID: 30808235 PMCID: PMC6648187 DOI: 10.1089/hum.2018.234] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/21/2019] [Indexed: 01/28/2023] Open
Abstract
Anti-transgene immune responses elicited after intramuscular (i.m.) delivery of recombinant adeno-associated virus (rAAV) have been shown to hamper long-term transgene expression in large-animal models of rAAV-mediated gene transfer. To overcome this hurdle, an alternative mode of delivery of rAAV vectors in nonhuman primate muscles has been described: the locoregional (LR) intravenous route of administration. Using this injection mode, persistent inducible transgene expression for at least 1 year under the control of the tetracycline-inducible Tet-On system was previously reported in cynomolgus monkeys, with no immunity against the rtTA transgene product. The present study shows the long-term follow-up of these animals. It is reported that LR delivery of a rAAV2/1 vector allows long-term inducible expression up to at least 5 years post gene transfer, with no any detectable host immune response against the transactivator rtTA, despite its immunogenicity following i.m. gene transfer. This study shows for the first time a long-term regulation of muscle gene expression using a Tet-On-inducible system in a large-animal model. Moreover, these findings further confirm that the rAAV LR delivery route is efficient and immunologically safe, allowing long-term skeletal muscle gene transfer.
Collapse
Affiliation(s)
- Mickaël Guilbaud
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Marie Devaux
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Celia Couzinié
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Johanne Le Duff
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Alice Toromanoff
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Céline Vandamme
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Nicolas Jaulin
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Gwladys Gernoux
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | | | - Philippe Moullier
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Caroline Le Guiner
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| |
Collapse
|
23
|
Ellsworth JL, O'Callaghan M, Rubin H, Seymour A. Low Seroprevalence of Neutralizing Antibodies Targeting Two Clade F AAV in Humans. HUM GENE THER CL DEV 2019; 29:60-67. [PMID: 29624457 DOI: 10.1089/humc.2017.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To assess the therapeutic utility of AAVHSC15 and AAVHSC17, two recently described Clade F adeno-associated viruses (AAVs), the seroprevalence of neutralizing antibodies (NAbs) to these AAVs was assessed in a representative human population and compared to that of AAV9. NAb levels were measured in 100 unique human sera of different races (34, Black, 33 Caucasian, and 33 Hispanic) and sex (49% female, 51% male) collected within the United States. Fifty-six sera were tested in Huh7 cells and 44 sera were tested in 2V6.11 cells with vectors packaged with either a CMV-promoter upstream of LacZ or a CBA-promoter upstream of Firefly Luciferase, respectively. For AAVHSC15, AAVHSC17, and AAV9, 24/100 (24%), 21/100 (21%), and 17/100 (17%), respectively, of all sera tested were seropositive for NAbs using 50% inhibition of cellular transduction at a 1/16 dilution of serum as cutoff for seropositivity. Only 6% of positive sera had titers of 1/150 to 1/340, indicating that the majority of positive sera were of low titer. Significant cross-reactivity of NAbs across all three AAV serotypes was observed. These data show that approximately 80% of humans evaluated were seronegative for pre-existing NAbs to the AAV serotypes tested, suggesting that the vast majority of human subjects would be amenable to therapeutic intervention with Clade F AAVs.
Collapse
|
24
|
Vandamme C, Adjali O, Mingozzi F. Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial. Hum Gene Ther 2018; 28:1061-1074. [PMID: 28835127 PMCID: PMC5649404 DOI: 10.1089/hum.2017.150] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Over the past decade, vectors derived from adeno-associated virus (AAV) have established themselves as a powerful tool for in vivo gene transfer, allowing long-lasting and safe transgene expression in a variety of human tissues. Nevertheless, clinical trials demonstrated how B and T cell immune responses directed against the AAV capsid, likely arising after natural infection with wild-type AAV, might potentially impact gene transfer safety and efficacy in patients. Seroprevalence studies have evidenced that most individuals carry anti-AAV neutralizing antibodies that can inhibit recombinant AAV transduction of target cells following in vivo administration of vector particles. Likewise, liver- and muscle-directed clinical trials have shown that capsid-reactive memory CD8+ T cells could be reactivated and expanded upon presentation of capsid-derived antigens on transduced cells, potentially leading to loss of transgene expression and immune-mediated toxicities. In celebration of the 25th anniversary of the European Society of Gene and Cell Therapy, this review article summarizes progress made during the past decade in understanding and modulating AAV vector immunogenicity. While the knowledge generated has contributed to yield impressive clinical results, several important questions remain unanswered, making the study of immune responses to AAV a priority for the field of in vivo transfer.
Collapse
Affiliation(s)
- Céline Vandamme
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| | - Oumeya Adjali
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| | - Federico Mingozzi
- Genethon and IMSERM U951, Evry, France
- University Pierre and Marie Curie and INSERM U974, Paris, France
- Correspondence: Dr. Céline Vandamme, Faculty of Health Sciences, Department of Clinical Microbiology, Yliopistonranta 1, 70210 Kuopio, Finland. E-mail:; Dr. Oumeya Adjali, IRS2 Nantes Biotech, 22, bd Bénoni Goullin, 44200 Nantes, France. E-mail:; Dr. Federico Mingozzi, 1 rue de l'Internationale, 91000 Evry, France. E-mail:
| |
Collapse
|
25
|
An Adeno-Associated Viral Vector Capable of Penetrating the Mucus Barrier to Inhaled Gene Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:296-304. [PMID: 30038933 PMCID: PMC6054694 DOI: 10.1016/j.omtm.2018.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 01/08/2023]
Abstract
Diffusion of the viral vectors evaluated in inhaled gene therapy clinical trials to date are largely hindered within airway mucus, which limits their access to, and transduction of, the underlying airway epithelium prior to clearance from the lung. Here, we discovered that adeno-associated virus (AAV) serotype 6 was able to rapidly diffuse through mucus collected from cystic fibrosis (CF) patients, unlike previously tested AAV serotypes. A point mutation of the AAV6 capsid suggests a potential mechanism by which AAV6 avoids adhesion to the mucus mesh. Significantly greater transgene expression was achieved with AAV6 compared to a mucoadhesive serotype, AAV1, in air-liquid interface cultures of human CF bronchial epithelium with naturally secreted mucus or induced mucus hypersecretion. In addition, AAV6 achieved superior distribution and overall level of transgene expression compared to AAV1 in the airways and whole lungs, respectively, of transgenic mice with airway mucus obstruction. Our findings motivate further evaluation and clinical development of AAV6 for inhaled gene therapy.
Collapse
|
26
|
Prieve MG, Harvie P, Monahan SD, Roy D, Li AG, Blevins TL, Paschal AE, Waldheim M, Bell EC, Galperin A, Ella-Menye JR, Houston ME. Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency. Mol Ther 2018; 26:801-813. [PMID: 29433939 PMCID: PMC5910669 DOI: 10.1016/j.ymthe.2017.12.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
We describe a novel, two-nanoparticle mRNA delivery system and show that it is highly effective as a means of intracellular enzyme replacement therapy (i-ERT) using a murine model of ornithine transcarbamylase deficiency (OTCD). Our Hybrid mRNA Technology delivery system (HMT) comprises an inert lipid nanoparticle that protects the mRNA from nucleases in the blood as it distributes to the liver and a polymer micelle that targets hepatocytes and triggers endosomal release of mRNA. This results in high-level synthesis of the desired protein specifically in the liver. HMT delivery of human OTC mRNA normalizes plasma ammonia and urinary orotic acid levels, and leads to a prolonged survival benefit in the murine OTCD model. HMT represents a unique, non-viral mRNA delivery method that allows multi-dose, systemic administration for treatment of single-gene inherited metabolic diseases.
Collapse
Affiliation(s)
- Mary G Prieve
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA.
| | - Pierrot Harvie
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Sean D Monahan
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Debashish Roy
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Allen G Li
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Teri L Blevins
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Amber E Paschal
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Matt Waldheim
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Eric C Bell
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | - Anna Galperin
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| | | | - Michael E Houston
- PhaseRx, Inc., 410 W. Harrison Street, Suite 300, Seattle, WA 98119, USA
| |
Collapse
|
27
|
Ellsworth JL, OCallaghan M, Rubin H, Seymour A. Low Seroprevalence of Neutralizing Antibodies Targeting Two Clade F AAV in Humans. HUM GENE THER CL DEV 2018. [DOI: 10.1089/hum.2017.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jeff L Ellsworth
- Homology Medicines, Inc., 45 Wiggins Ave, Bedford, Massachusetts, United States, 01730,
| | | | - Hillard Rubin
- Homology Medicines, Inc., Bedford, Massachusetts, United States,
| | - Albert Seymour
- Homology Medicines, Inc., Bedford, Massachusetts, United States,
| |
Collapse
|
28
|
Khabou H, Garita-Hernandez M, Chaffiol A, Reichman S, Jaillard C, Brazhnikova E, Bertin S, Forster V, Desrosiers M, Winckler C, Goureau O, Picaud S, Duebel J, Sahel JA, Dalkara D. Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight 2018; 3:96029. [PMID: 29367457 DOI: 10.1172/jci.insight.96029] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/12/2017] [Indexed: 01/02/2023] Open
Abstract
Intraocular injection of adeno-associated viral (AAV) vectors has been an evident route for delivering gene drugs into the retina. However, gaps in our understanding of AAV transduction patterns within the anatomically unique environments of the subretinal and intravitreal space of the primate eye impeded the establishment of noninvasive and efficient gene delivery to foveal cones in the clinic. Here, we establish new vector-promoter combinations to overcome the limitations associated with AAV-mediated cone transduction in the fovea with supporting studies in mouse models, human induced pluripotent stem cell-derived organoids, postmortem human retinal explants, and living macaques. We show that an AAV9 variant provides efficient foveal cone transduction when injected into the subretinal space several millimeters away from the fovea, without detaching this delicate region. An engineered AAV2 variant provides gene delivery to foveal cones with a well-tolerated dose administered intravitreally. Both delivery modalities rely on a cone-specific promoter and result in high-level transgene expression compatible with optogenetic vision restoration. The model systems described here provide insight into the behavior of AAV vectors across species to obtain safety and efficacy needed for gene therapy in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hanen Khabou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Antoine Chaffiol
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Sacha Reichman
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Céline Jaillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Elena Brazhnikova
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Stéphane Bertin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Valérie Forster
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Mélissa Desrosiers
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Céline Winckler
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Olivier Goureau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jens Duebel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deniz Dalkara
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
29
|
Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10. [PMID: 29083112 DOI: 10.1002/wsbm.1408] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/27/2022]
Abstract
Genome-editing therapeutics are poised to treat human diseases. As we enter clinical trials with the most promising CRISPR-Cas9 and CRISPR-Cas12a (Cpf1) modalities, the risks associated with administering these foreign biomolecules into human patients become increasingly salient. Preclinical discovery with CRISPR-Cas9 and CRISPR-Cas12a systems and foundational gene therapy studies indicate that the host immune system can mount undesired responses against the administered proteins and nucleic acids, the gene-edited cells, and the host itself. These host defenses include inflammation via activation of innate immunity, antibody induction in humoral immunity, and cell death by T-cell-mediated cytotoxicity. If left unchecked, these immunological reactions can curtail therapeutic benefits and potentially lead to mortality. Ways to assay and reduce the immunogenicity of Cas9 and Cas12a proteins are therefore critical for ensuring patient safety and treatment efficacy, and for bringing us closer to realizing the vision of permanent genetic cures. WIREs Syst Biol Med 2018, 10:e1408. doi: 10.1002/wsbm.1408 This article is categorized under: Laboratory Methods and Technologies > Genetic/Genomic Methods Translational, Genomic, and Systems Medicine > Translational Medicine Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Wei Leong Chew
- Synthetic Biology, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Rastall DPW, Amalfitano A. Current and Future Treatments for Lysosomal Storage Disorders. Curr Treat Options Neurol 2017; 19:45. [PMID: 29101575 DOI: 10.1007/s11940-017-0481-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose of review Lysosomal storage disorders (LSDs) are a class of genetic disorders that are a testing ground for the invention of novel therapeutics including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), gene therapy, and hematopoietic stem cell transplant (HSCT). This review summarizes recently approved drugs, then examines the successful clinical trials in gene therapy and HSCT. Recent findings The FDA has recently approved a second SRT by reversing an earlier FDA decision, suggesting a favorable regulatory landscape going forward. Adeno-associated virus therapies, adenovirus therapies, and HSCT have overcome limitations of earlier clinical and preclinical trials, suggesting that gene therapy may be a reality for LSDs in the near future. At the same time, the first EU-approved gene therapy drug, Glybera, has been discontinued, and other ex vivo-based therapies although approved for clinical use have failed to be widely adapted and are no longer economically viable. Summary There are now 11 ERTs and two SRTs approved for LSDs in the USA. Gene therapy approaches and HSCT have also demonstrated promising clinical trial results suggesting that these therapies are on the frontier. Challenges that remain include navigating immune responses, developing drugs capable of crossing the blood-brain barrier (BBB), developing therapies that can reverse end-organ damage, and achieving these goals in a safe, ethical, and financially sustainable manner. The amount of active development and a track record of iterative progress suggest that treatments for LSDs will continue to be a field of innovation, problem solving, and success.
Collapse
Affiliation(s)
- David P W Rastall
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
31
|
Therapeutic advances in musculoskeletal AAV targeting approaches. Curr Opin Pharmacol 2017; 34:56-63. [PMID: 28743034 DOI: 10.1016/j.coph.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/24/2017] [Accepted: 07/07/2017] [Indexed: 12/11/2022]
Abstract
The use of recombinant adeno-associated viruses (rAAVs) is highly prevalent in musculoskeletal gene therapies due to their versatility, high transduction efficiency, natural tropism and vector genome persistence for years. As the largest organ in the body, treatment of skeletal muscle for widespread and sufficient therapeutic gene expression is highly challenging. In addition to disease-specific hurdles, vector genome loss, off-target gene transfer and immune responses to treatment can diminish the overall benefit of rAAV therapies. A variety of approaches have been developed to overcome these challenges and improve musculoskeletal targeting of rAAVs. This review focuses on recent advancements and remaining obstacles in creating optimal rAAV-based therapies for musculoskeletal application.
Collapse
|
32
|
Sun J, Hua B, Chen X, Samulski RJ, Li C. Gene Delivery of Activated Factor VII Using Alternative Adeno-Associated Virus Serotype Improves Hemostasis in Hemophiliac Mice with FVIII Inhibitors and Adeno-Associated Virus Neutralizing Antibodies. Hum Gene Ther 2017; 28:654-666. [PMID: 28478688 DOI: 10.1089/hum.2017.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
While therapeutic expression of coagulation factors from adeno-associated virus (AAV) vectors has been successfully achieved in patients with hemophilia, neutralizing antibodies to the vector and inhibitory antibodies to the transgene severely limit efficacy. Indeed, approximately 40% of mice transduced with human factor VIII using the AAV8 serotype developed inhibitory antibodies to factor VIII (FVIII inhibitor), as well as extremely high titers (≥1:500) of neutralizing antibodies to AAV8. To correct hemophilia in these mice, AAV9, a serotype with low in vitro cross-reactivity (≤1:5) to anti-AAV8, was used to deliver mouse-activated factor VII (mFVIIa). It was found that within 6 weeks of systemic administration of 2 × 1013 particles/kg of AAV9/mFVIIa, hemophiliac mice with FVIII inhibitors and neutralizing antibodies (NAb) to AAV8 achieved hemostasis comparable to that in wild-type mice, as measured by rotational thromboelastometry. A level of 737 ng/mL mFVIIa was achieved after AAV9/mFVIIa adminstration compared to around 150 ng/mL without vector treatment, and concomitantly prothrombin time was shortened. Tissues collected after intra-articular hemorrhage from FVIII-deficient mice and mice with FVIII inhibitors were scored 4.7 and 5.5, respectively, on a scale of 0-10, indicating significant pathological damage. However, transduction with AAV9/mFVIIa decreased pathology scores to 3.6 and eliminated hemosiderin iron deposition in the synovium in most mice. Collectively, these results suggest that application of alternative serotypes of AAV vector to deliver bypassing reagents has the potential to correct hemophilia and prevent hemoarthrosis, even in the presence of FVIII inhibitor and neutralizing antibodies to AAV.
Collapse
Affiliation(s)
- Junjiang Sun
- 1 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina.,2 Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | - Baolai Hua
- 3 Department of Hematology, Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,4 Department of Hematology, Northern Jiangsu People's Hospital , Yangzhou, Jiangsu, China
| | - Xiaojing Chen
- 1 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina
| | - Richard J Samulski
- 1 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina.,5 Department of Pharmacology, University of North Carolina , Chapel Hill, North Carolina
| | - Chengwen Li
- 1 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina.,6 Department of Pediatrics, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
33
|
Abstract
AAV has been studied for 55 years and has been developed as a vector for about 35 years. By now, there is a fairly good idea of the dimensions of what would be useful to know to employ AAV optimally as a vector, but there are still many unanswered questions within the system. As with all biological systems, each good experiment raises further questions to answer. This article provides an overview of those areas in which unknown information can be identified and of those questions that have not yet been recognized. Some of these are touched on in the six review articles in this issue of Human Gene Therapy.
Collapse
Affiliation(s)
- Kenneth I Berns
- Guest Co-Editors, Department of Molecular Genetics and Microbiology, University of Florida College of Medicine , Gainesville, Florida
| | - Nicholas Muzyczka
- Guest Co-Editors, Department of Molecular Genetics and Microbiology, University of Florida College of Medicine , Gainesville, Florida
| |
Collapse
|