1
|
Lutsenko S, Roy S, Tsvetkov P. Mammalian copper homeostasis: physiological roles and molecular mechanisms. Physiol Rev 2025; 105:441-491. [PMID: 39172219 DOI: 10.1152/physrev.00011.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, evidence for the numerous roles of copper (Cu) in mammalian physiology has grown exponentially. The discoveries of Cu involvement in cell signaling, autophagy, cell motility, differentiation, and regulated cell death (cuproptosis) have markedly extended the list of already known functions of Cu, such as a cofactor of essential metabolic enzymes, a protein structural component, and a regulator of protein trafficking. Novel and unexpected functions of Cu transporting proteins and enzymes have been identified, and new disorders of Cu homeostasis have been described. Significant progress has been made in the mechanistic studies of two classic disorders of Cu metabolism, Menkes disease and Wilson's disease, which paved the way for novel approaches to their treatment. The discovery of cuproptosis and the role of Cu in cell metastatic growth have markedly increased interest in targeting Cu homeostatic pathways to treat cancer. In this review, we summarize the established concepts in the field of mammalian Cu physiology and discuss how new discoveries of the past decade expand and modify these concepts. The roles of Cu in brain metabolism and in cell functional speciation and a recently discovered regulated cell death have attracted significant attention and are highlighted in this review.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, Maryland, United States
| | - Peter Tsvetkov
- Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Chaturvedi A, Sharma S, Shukla R. Nano-Mediated Molecular Targeting in Diagnosis and Mitigation of Wilson Disease. Mol Neurobiol 2024; 61:4240-4258. [PMID: 38066399 DOI: 10.1007/s12035-023-03816-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/18/2023] [Indexed: 07/11/2024]
Abstract
Wilson disease, a rare genetic disorder resulting from mutations in the ATP7B gene disrupts copper metabolism, leading to its harmful accumulation in hepatocytes, the brain, and other organs. It affects roughly 1 in 30,000 individuals, with 1 in 90 being gene carriers. Beyond gene mutations, the disease involves complex factors contributing to copper imbalance. Ongoing research seeks to unravel intricate molecular pathways, offering fresh insights into the disease's mechanisms. Simultaneously, there is a dedicated effort to develop effective therapeutic strategies. Nanotechnology-driven formulations are showing promise for both treatment and early diagnosis of Wilson disease. This comprehensive review covers the entire spectrum of the condition, encompassing pathophysiology, potential biomarkers, established and emerging therapies, ongoing clinical trials, and innovative nanotechnology applications. This multifaceted approach holds the potential to improve our understanding, diagnosis, and management of Wilson's disease, which remains a challenging and potentially life-threatening disorder.
Collapse
Affiliation(s)
- Akanksha Chaturvedi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
3
|
Baruteau J, Brunetti-Pierri N, Gissen P. Liver-directed gene therapy for inherited metabolic diseases. J Inherit Metab Dis 2024; 47:9-21. [PMID: 38171926 DOI: 10.1002/jimd.12709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Gene therapy clinical trials are rapidly expanding for inherited metabolic liver diseases whilst two gene therapy products have now been approved for liver based monogenic disorders. Liver-directed gene therapy has recently become an option for treatment of haemophilias and is likely to become one of the favoured therapeutic strategies for inherited metabolic liver diseases in the near future. In this review, we present the different gene therapy vectors and strategies for liver-targeting, including gene editing. We highlight the current development of viral and nonviral gene therapy for a number of inherited metabolic liver diseases including urea cycle defects, organic acidaemias, Crigler-Najjar disease, Wilson disease, glycogen storage disease Type Ia, phenylketonuria and maple syrup urine disease. We describe the main limitations and open questions for further gene therapy development: immunogenicity, inflammatory response, genotoxicity, gene therapy administration in a fibrotic liver. The follow-up of a constantly growing number of gene therapy treated patients allows better understanding of its benefits and limitations and provides strategies to design safer and more efficacious treatments. Undoubtedly, liver-targeting gene therapy offers a promising avenue for innovative therapies with an unprecedented potential to address the unmet needs of patients suffering from inherited metabolic diseases.
Collapse
Affiliation(s)
- Julien Baruteau
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Paul Gissen
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| |
Collapse
|
4
|
Dooley JS. The history of Wilson disease. Clin Liver Dis (Hoboken) 2024; 23:e0238. [PMID: 38974753 PMCID: PMC11227348 DOI: 10.1097/cld.0000000000000238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 07/09/2024] Open
|
5
|
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Scott Ayton
- The Florey Neuroscience Institute, The University of Melbourne, Melbourne VIC 3052, Australia.
| |
Collapse
|
6
|
Affiliation(s)
- Eve A Roberts
- From the Departments of Paediatrics, Medicine, and Pharmacology and Toxicology, University of Toronto, and the Hospital for Sick Children Research Institute - both in Toronto; and the History of Science and Technology Programme, University of King's College, Halifax, NS, Canada (E.A.R.); and the Departments of Medicine and Surgery, Yale University School of Medicine, New Haven, CT (M.L.S.)
| | - Michael L Schilsky
- From the Departments of Paediatrics, Medicine, and Pharmacology and Toxicology, University of Toronto, and the Hospital for Sick Children Research Institute - both in Toronto; and the History of Science and Technology Programme, University of King's College, Halifax, NS, Canada (E.A.R.); and the Departments of Medicine and Surgery, Yale University School of Medicine, New Haven, CT (M.L.S.)
| |
Collapse
|
7
|
Kipker N, Alessi K, Bojkovic M, Padda I, Parmar MS. Neurological-Type Wilson Disease: Epidemiology, Clinical Manifestations, Diagnosis, and Management. Cureus 2023; 15:e38170. [PMID: 37252588 PMCID: PMC10224700 DOI: 10.7759/cureus.38170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Wilson disease (WD) is a complex metabolic disorder caused by disruptions to copper regulation within the body, leading to an unregulated accumulation of copper within various tissues. A less understood organ affected by the collection of copper is the brain, which further leads to the generation of oxygen-free radicals and resultant demyelination. Healthcare providers must keep the neurological form of WD in their list of differentials when patients present with diverse neurological manifestations. The initial step to diagnosis will be to distinguish the characteristic disease presentation with a thorough history and physical and neurological examination. A high clinical disease suspicion of WD should warrant further investigation by laboratory workup and imaging modalities to support the clinical findings and confirm the diagnosis of WD. Once a WD diagnosis is established, the healthcare provider should treat the underlying biological process of WD symptomatically. This review article discusses the epidemiology and pathogenesis of the neurological form of WD, its clinical and behavioral implications, diagnostic features, and treatment modalities (current and emerging therapies), further aiding healthcare professionals in early diagnosis and management strategies.
Collapse
Affiliation(s)
- Nathaniel Kipker
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Kaitlyn Alessi
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | | | - Inderbir Padda
- Internal Medicine, Richmond University Medical Center, New York, USA
| | - Mayur S Parmar
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| |
Collapse
|
8
|
Dev S, Kruse RL, Hamilton JP, Lutsenko S. Wilson Disease: Update on Pathophysiology and Treatment. Front Cell Dev Biol 2022; 10:871877. [PMID: 35586338 PMCID: PMC9108485 DOI: 10.3389/fcell.2022.871877] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Wilson disease (WD) is a potentially fatal genetic disorder with a broad spectrum of phenotypic presentations. Inactivation of the copper (Cu) transporter ATP7B and Cu overload in tissues, especially in the liver, are established causes of WD. However, neither specific ATP7B mutations nor hepatic Cu levels, alone, explain the diverse clinical presentations of WD. Recently, the new molecular details of WD progression and metabolic signatures of WD phenotypes began to emerge. Studies in WD patients and animal models revealed the contributions of non-parenchymal liver cells and extrahepatic tissues to the liver phenotype, and pointed to dysregulation of nuclear receptors (NR), epigenetic modifications, and mitochondria dysfunction as important hallmarks of WD pathogenesis. This review summarizes recent advances in the characterization of WD pathophysiology and discusses emerging targets for improving WD diagnosis and treatment.
Collapse
Affiliation(s)
- Som Dev
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, United States
| | - Robert L. Kruse
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - James P. Hamilton
- Department of Medicine, Johns Hopkins Medical Institutes, Baltimore, MD, United States
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, United States
- *Correspondence: Svetlana Lutsenko,
| |
Collapse
|
9
|
Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects. Int J Mol Sci 2022; 23:ijms23031800. [PMID: 35163726 PMCID: PMC8836693 DOI: 10.3390/ijms23031800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
Optogenetics is emerging as an ideal method for controlling cellular activity. It overcomes some notable shortcomings of conventional methods in the elucidation of neural circuits, promotion of neuroregeneration, prevention of cell death and treatment of neurological disorders, although it is not without its own limitations. In this review, we narratively review the latest research on the improvement and existing challenges of optogenetics, with a particular focus on the field of brain injury, aiming at advancing optogenetics in the study of brain injury and collating the issues that remain. Finally, we review the most current examples of research, applying photostimulation in clinical treatment, and we explore the future prospects of these technologies.
Collapse
|
10
|
Yang L, Du W, Zheng Z, Wang L, Xiao L, Yang Q, Hao Q, Zhou J, Du J, Li J, Valencia CA, Dong B, Chow HY, Fu X, Dong B. Optimization of miR-22 expression cassette for rAAV delivery on diabetes. MOLECULAR BIOMEDICINE 2022; 3:1. [PMID: 34984525 PMCID: PMC8727650 DOI: 10.1186/s43556-021-00063-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNA-22 (miR-22) was suggested to be important for type 2 diabetes but its functions for this disease remained unclear. Recombinant adeno-associated virus (rAAV)-mediated miR delivery is a powerful approach to study miR functions in vivo, however, the overexpression of miR-22 by rAAV remains challenging because it is one of the most abundant miRs in the liver. In this study, a series of expression cassettes were designed and compared. It was shown that different lengths of primary miR-22 were overexpressed in HEK293 and HeLa cells but the longer ones were more efficiently expressed. miR-22 may be placed in either introns or the 3′ UTR of a transgene for efficient overexpression. RNA polymerase III or II promoters were successfully utilized for miR expression but the latter showed higher expression levels in cell lines. Specifically, miR-22 was expressed efficiently together with an EGFP gene. After screening, a liver-specific TTR promoter was chosen to overexpress miR-22 in diabetic mice fed a high-fat diet. It was shown that miR-22 was overexpressed 2-3 folds which improved the insulin sensitivity significantly. The approach utilized in this study to optimize miR overexpression is a powerful tool for the creation of efficient rAAV vectors for the other miRs.
Collapse
Affiliation(s)
- Li Yang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenya Du
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhaoyue Zheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Wang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lin Xiao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingzhe Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiukui Hao
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiao Zhou
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jintao Du
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jun Li
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - C Alexander Valencia
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Birong Dong
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hoi Yee Chow
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Biao Dong
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China. .,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
11
|
Song Z, Shao W, Song L, Pei X, Li C. Human Hepatocyte Transduction with Adeno-Associated Virus Vector. Methods Mol Biol 2022; 2544:83-93. [PMID: 36125711 DOI: 10.1007/978-1-0716-2557-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As the adeno-associated virus (AAV) vectors hold unique advantages over other viral vectors, AAV gene therapy has accumulated rapid progress and development. Liver-targeted gene therapy by AAV vectors has been successfully applied in clinical trials for many diseases. Low transduction efficiency and high prevalence of neutralizing antibodies (Nabs), however, are the major obstacles to further translate this therapeutic strategy into clinical trials. Pre-clinical evaluation on hepatocytes could help to elucidate the tropism of AAV serotypes for liver-targeted gene therapy, and could also provide a test model to develop novel AAV mutants with Nabs evasion and high liver tropism. Here, we described the basic laboratory procedure to apply the AAV vector to transduce human hepatocytes in vitro and in vivo with some tips gained from our own experience.
Collapse
Affiliation(s)
- Zhenwei Song
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Liujiang Song
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xieolei Pei
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chengwen Li
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Wilson's Disease: An Update on the Diagnostic Workup and Management. J Clin Med 2021; 10:jcm10215097. [PMID: 34768617 PMCID: PMC8584493 DOI: 10.3390/jcm10215097] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023] Open
Abstract
Wilson's disease (WD) is a rare autosomal recessive disorder of hepatocellular copper deposition. The diagnostic approach to patients with WD may be challenging and is based on a complex set of clinical findings that derive from patient history, physical examination, as well as laboratory and imaging testing. No single examination can unequivocally confirm or exclude the disease. Timely identification of signs and symptoms using novel biomarkers and modern diagnostic tools may help to reduce treatment delays and improve patient prognosis. The proper way of approaching WD management includes, firstly, early diagnosis and prompt treatment introduction; secondly, careful and lifelong monitoring of patient compliance and strict adherence to the treatment; and, last but not least, screening for adverse effects and evaluation of treatment efficacy. Liver transplantation is performed in about 5% of WD patients who present with acute liver failure at first disease presentation or with signs of decompensation in the course of liver cirrhosis. Increasing awareness of this rare inherited disease among health professionals, emphasizing their training to consider early signs and symptoms of the illness, and strict monitoring are vital strategies for the patient safety and efficacy of WD therapy.
Collapse
|
13
|
Muchenditsi A, Talbot CC, Gottlieb A, Yang H, Kang B, Boronina T, Cole R, Wang L, Dev S, Hamilton JP, Lutsenko S. Systemic deletion of Atp7b modifies the hepatocytes' response to copper overload in the mouse models of Wilson disease. Sci Rep 2021; 11:5659. [PMID: 33707579 PMCID: PMC7952580 DOI: 10.1038/s41598-021-84894-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/09/2021] [Indexed: 02/03/2023] Open
Abstract
Wilson disease (WD) is caused by inactivation of the copper transporter Atp7b and copper overload in tissues. Mice with Atp7b deleted either globally (systemic inactivation) or only in hepatocyte recapitulate various aspects of human disease. However, their phenotypes vary, and neither the common response to copper overload nor factors contributing to variability are well defined. Using metabolic, histologic, and proteome analyses in three Atp7b-deficient mouse strains, we show that global inactivation of Atp7b enhances and specifically modifies the hepatocyte response to Cu overload. The loss of Atp7b only in hepatocytes dysregulates lipid and nucleic acid metabolisms and increases the abundance of respiratory chain components and redox balancing enzymes. In global knockouts, independently of their background, the metabolism of lipid, nucleic acid, and amino acids is inhibited, respiratory chain components are down-regulated, inflammatory response and regulation of chromosomal replication are enhanced. Decrease in glucokinase and lathosterol oxidase and elevation of mucin-13 and S100A10 are observed in all Atp7b mutant strains and reflect the extent of liver injury. The magnitude of proteomic changes in Atp7b-/- animals inversely correlates with the metallothioneins levels rather than liver Cu content. These findings facilitate identification of WD-specific metabolic and proteomic changes for diagnostic and treatment.
Collapse
Affiliation(s)
- Abigael Muchenditsi
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - C Conover Talbot
- Core Analysis Unit, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Aline Gottlieb
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - Haojun Yang
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - Byunghak Kang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Robert Cole
- Mass Spectrometry and Proteomics Facility, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Li Wang
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - Som Dev
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - James P Hamilton
- Department of Medicine, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Xu X, Mee T, Jia X. New era of optogenetics: from the central to peripheral nervous system. Crit Rev Biochem Mol Biol 2020; 55:1-16. [PMID: 32070147 DOI: 10.1080/10409238.2020.1726279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optogenetics has recently gained recognition as a biological technique to control the activity of cells using light stimulation. Many studies have applied optogenetics to cell lines in the central nervous system because it has the potential to elucidate neural circuits, treat neurological diseases and promote nerve regeneration. There have been fewer studies on the application of optogenetics in the peripheral nervous system. This review introduces the basic principles and approaches of optogenetics and summarizes the physiology and mechanism of opsins and how the technology enables bidirectional control of unique cell lines with superior spatial and temporal accuracy. Further, this review explores and discusses the therapeutic potential for the development of optogenetics and its capacity to revolutionize treatment for refractory epilepsy, depression, pain, and other nervous system disorders, with a focus on neural regeneration, especially in the peripheral nervous system. Additionally, this review synthesizes the latest preclinical research on optogenetic stimulation, including studies on non-human primates, summarizes the challenges, and highlights future perspectives. The potential of optogenetic stimulation to optimize therapy for peripheral nerve injuries (PNIs) is also highlighted. Optogenetic technology has already generated exciting, preliminary evidence, supporting its role in applications to several neurological diseases, including PNIs.
Collapse
Affiliation(s)
- Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas Mee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|