1
|
Shemilt JD, Horsley A, Wild JM, Jensen OE, Thompson AB, Whitfield CA. Non-local impact of distal airway constrictions on patterns of inhaled particle deposition. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241108. [PMID: 39508002 PMCID: PMC11539137 DOI: 10.1098/rsos.241108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Airway constriction and blockage in obstructive lung diseases cause ventilation heterogeneity and create barriers to effective drug deposition. Established computational particle-deposition models have not accounted for these impacts of disease. We present a new particle-deposition model that calculates ventilation based on the resistance of each airway, such that ventilation responds to airway constriction. The model incorporates distal airway constrictions representative of cystic fibrosis, allowing us to investigate the resulting impact on patterns of deposition. Unlike previous models, our model predicts how constrictions affect deposition in airways throughout the lungs, not just in the constricted airways. Deposition is reduced in airways directly distal and proximal to constrictions. When constrictions are clustered together, central-airways deposition can increase significantly in regions away from constrictions, but distal-airways deposition in those regions remains largely unchanged. We use our model to calculate lung clearance index (LCI), a clinical measure of ventilation heterogeneity, after applying constrictions of varying severities in one lobe. We find an increase in LCI coinciding with significantly reduced deposition in the affected lobe. Our results show how the model provides a framework for development of computational tools that capture the impacts of airway disease, which could significantly affect predictions of regional dosing.
Collapse
Affiliation(s)
- James D. Shemilt
- Department of Mathematics, University of Manchester, Manchester, UK
| | - Alex Horsley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Jim M. Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Oliver E. Jensen
- Department of Mathematics, University of Manchester, Manchester, UK
| | | | - Carl A. Whitfield
- Department of Mathematics, University of Manchester, Manchester, UK
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Mathew Thevarkattil A, Yousaf S, Houacine C, Khan W, Bnyan R, Elhissi A, Khan I. Anticancer drug delivery: Investigating the impacts of viscosity on lipid-based formulations for pulmonary targeting. Int J Pharm 2024; 664:124591. [PMID: 39168287 DOI: 10.1016/j.ijpharm.2024.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Pulmonary drug delivery via aerosolization is a non-intrusive method for achieving localized and systemic effects. The aim of this study was to establish the impact of viscosity as a novel aspect (i.e., low, medium and high) using various lipid-based formulations (including liposomes (F1-F3), transfersomes (F4-F6), micelles (F7-F9) and nanostructured lipid carriers (NLCs; F10-F12)) as well as to investigate their impact on in-vitro nebulization performance using Trans-resveratrol (TRES) as a model anticancer drug. Based on the physicochemical properties, micelles (F7-F9) elicited the smallest particle size (12-174 nm); additionally, all formulations tested exhibited high entrapment efficiency (>89 %). Through measurement using capillary viscometers, NLC formulations exhibited the highest viscosity (3.35-10.04 m2/sec). Upon using a rotational rheometer, formulations exhibited shear-thinning (non-Newtonian) behaviour. Air jet and vibrating mesh nebulizers were subsequently employed to assess nebulization performance using an in-vitro model. Higher viscosity formulations elicited a prolonged nebulization time. The vibrating mesh nebulizer exhibited significantly higher emitted dose (ED), fine particle fraction (FPF) and fine particle dose (FPD) (up to 97 %, 90 % and 64 µg). Moreover, the in-vitro release of TRES was higher at pH 5, demonstrating an alignment of the release profile with the Korsmeyer-Peppas model. Thus, formulations with higher viscosity paired with a vibrating mesh nebulizer were an ideal combination for delivering and targeting peripheral lungs.
Collapse
Affiliation(s)
- Anila Mathew Thevarkattil
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Wasiq Khan
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Ruba Bnyan
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, London, United Kingdom
| | - Abdelbary Elhissi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
3
|
Stucki AO, Sauer UG, Allen DG, Kleinstreuer NC, Perron MM, Yozzo KL, Lowit AB, Clippinger AJ. Differences in the anatomy and physiology of the human and rat respiratory tracts and impact on toxicological assessments. Regul Toxicol Pharmacol 2024; 150:105648. [PMID: 38772524 PMCID: PMC11198871 DOI: 10.1016/j.yrtph.2024.105648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Inhalation is a critical route through which substances can exert adverse effects in humans; therefore, it is important to characterize the potential effects that inhaled substances may have on the human respiratory tract by using fit for purpose, reliable, and human relevant testing tools. In regulatory toxicology testing, rats have primarily been used to assess the effects of inhaled substances as they-being mammals-share similarities in structure and function of the respiratory tract with humans. However, questions about inter-species differences impacting the predictability of human effects have surfaced. Disparities in macroscopic anatomy, microscopic anatomy, or physiology, such as breathing mode (e.g., nose-only versus oronasal breathing), airway structure (e.g., complexity of the nasal turbinates), cell types and location within the respiratory tract, and local metabolism may impact inhalation toxicity testing results. This review shows that these key differences describe uncertainty in the use of rat data to predict human effects and supports an opportunity to harness modern toxicology tools and a detailed understanding of the human respiratory tract to develop testing approaches grounded in human biology. Ultimately, as the regulatory purpose is protecting human health, there is a need for testing approaches based on human biology and mechanisms of toxicity.
Collapse
Affiliation(s)
| | - Ursula G Sauer
- Scientific Consultancy - Animal Welfare, Neubiberg, Germany
| | - David G Allen
- International Collaboration on Cosmetics Safety (ICCS), Mount Royal, NJ, USA
| | - Nicole C Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences, NC, USA
| | - Monique M Perron
- US Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Krystle L Yozzo
- US Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Anna B Lowit
- US Environmental Protection Agency, Office of Pollution Prevention and Toxics, Washington, DC, USA
| | | |
Collapse
|
4
|
Ivone R, Karabots A, Meenach SA. Development of Aerosol Dry Powder Chemotherapeutic-Loaded Microparticles for the Treatment of Lung Cancer. AAPS PharmSciTech 2024; 25:42. [PMID: 38366056 DOI: 10.1208/s12249-024-02751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, resulting in the highest mortality rates among both men and women with respect to all other types of cancer. Difficulties in treating lung cancer arise from late-stage diagnoses and tumor heterogeneity and current treatment involves a combination of chemotherapeutics, surgery, and radiation. Chemotherapeutics administered systemically can lead to undesirable side effects and severe off-site toxicity. For example, chronic administration of the chemotherapeutic doxorubicin (DOX) leads to cardiotoxicity, thereby limiting its long-term use. Systemic administration of the highly lipophilic molecule paclitaxel (PTX) is hindered by its water solubility, necessitating the use of solubilizing agents, which can induce side effects. Thus, in this investigation, formulations consisting of spray-dried microparticles (MP) containing DOX and PTX were produced to be administered as dry powder aerosols directly to the lungs. Acetalated dextran (Ac-Dex) was used as the polymer in these formulations, as it is a biocompatible and biodegradable polymer that exhibits pH-responsive degradation. Solid-state characterization revealed that DOX and PTX remained in solubility favoring amorphous states in the MP formulations and that both drugs remained thermally stable throughout the spray drying process. In vitro release studies demonstrated the pH sensitivity of the formulations due to the use of Ac-Dex, as well as the release of both therapeutics over the course of at least 48 h. In vitro aerosol dispersion studies demonstrated that both formulations exhibited suitable aerosol dispersion properties for deep lung delivery.
Collapse
Affiliation(s)
- Ryan Ivone
- Department of Chemical Engineering, University of Rhode Island, 360 Fascitelli Center for Advanced Engineering, 2 Upper College Road, Kingston, Rhode Island, 02881, USA
| | - Ana Karabots
- Department of Chemical Engineering, University of Rhode Island, 360 Fascitelli Center for Advanced Engineering, 2 Upper College Road, Kingston, Rhode Island, 02881, USA
| | - Samantha A Meenach
- Department of Chemical Engineering, University of Rhode Island, 360 Fascitelli Center for Advanced Engineering, 2 Upper College Road, Kingston, Rhode Island, 02881, USA.
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, 02881, USA.
| |
Collapse
|
5
|
Venegas JG. Measuring Anatomical Distributions of Ventilation and Aerosol Deposition with PET-CT. J Aerosol Med Pulm Drug Deliv 2023; 36:210-227. [PMID: 37585546 PMCID: PMC10623465 DOI: 10.1089/jamp.2023.29086.jgv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
In disease, lung function and structure are heterogeneous, and aerosol transport and local deposition vary significantly among parts of the lung. Understanding such heterogeneity is relevant to aerosol medicine and for quantifying mucociliary clearance from different parts of the lung. In this chapter, we describe positron emission tomography (PET) imaging methods to quantitatively assess the deposition of aerosol and ventilation distribution within the lung. The anatomical information from computed tomography (CT) combined with the PET-deposition data allows estimates of airway surface concentration and peripheral tissue dosing in bronchoconstricted asthmatic subjects. A theoretical framework is formulated to quantify the effects of heterogeneous ventilation, uneven aerosol ventilation distribution in bifurcations, and varying escape from individual airways along a path of the airway tree. The framework is applied to imaging data from bronchoconstricted asthmatics to assess the contributions of these factors to the unevenness in lobar deposition. Results from this analysis show that the heterogeneity of ventilation contributes on average to more than one-third of the variability in interlobar deposition. Actual contribution of ventilation in individual lungs was variable and dependent on the breathing rate used by the subject during aerosol inhalation; the highest contribution was in patients breathing slowly. In subjects breathing faster, contribution of ventilation was reduced, with more expanded lobes showing lower deposition per unit ventilation than less expanded ones in these subjects. The lobar change in expansion measured from two static CT scans, which is commonly used as a surrogate for ventilation, did not correlate with aerosol deposition or with PET-measured ventilation. This suggests that dynamic information is needed to provide proper estimates of ventilation for asthmatic subjects. We hope that the enhanced understanding of the causes of heterogeneity in airway and tissue dosing using the tools presented here will help to optimize therapeutic effectiveness of inhalation therapy while minimizing toxicity.
Collapse
Affiliation(s)
- Jose G. Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Research Institute, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Tanprasert S, Kampeewichean C, Shiratori S, Piemjaiswang R, Chalermsinsuwan B. Non-spherical drug particle deposition in human airway using computational fluid dynamics and discrete element method. Int J Pharm 2023; 639:122979. [PMID: 37100258 DOI: 10.1016/j.ijpharm.2023.122979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Currently, the air pollution and the respiratory disease problems that affect human health are increasing rapidly. Hence, there is attention for trend prediction of the located deposition of inhaled particles. In this study, Weibel's based human airway model (G0-G5) was employed. The computational fluid dynamics and discrete element method (CFD-DEM) simulation was successfully validated by comparison to the previous research studies. The CFD-DEM achieves a better balance between numerical accuracy and computational requirement when comparing with the other methods. Then, the model was used to analyze the non-spherical drug transport with different drug particle sizes, shapes, density, and concentrations. The results found that all the studied factors affected the drug deposition and particle out-mass percentage except the drug concentration. The drug deposition was increased with the increasing of particle size and particle density due to the influence of particle inertia. The Tomahawk-shaped drug deposited easier than the cylindrical drug shape because of the different drag behavior. For the effect of airway geometries, G0 was the maximum deposited zone and G3 was the minimum deposited zone. The boundary layer was found around bifurcation due to the shear force at the wall. Finally, the knowledge can give an essential recommendation for curing patients with pharmaceutical aerosol. The design suggestion of a proper drug delivery device can be summarized.
Collapse
Affiliation(s)
- Sorathan Tanprasert
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Chanida Kampeewichean
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Shuichi Shiratori
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ratchanon Piemjaiswang
- Environmental Research Institute, Chulalongkorn University, Institute Building 2, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Benjapon Chalermsinsuwan
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand; Advanced Computational Fluid Dynamics Research Unit, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Hye T, Moinuddin SM, Sarkar T, Nguyen T, Saha D, Ahsan F. An evolving perspective on novel modified release drug delivery systems for inhalational therapy. Expert Opin Drug Deliv 2023; 20:335-348. [PMID: 36720629 PMCID: PMC10699164 DOI: 10.1080/17425247.2023.2175814] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Drugs delivered via the lungs are predominantly used to treat various respiratory disorders, including asthma, chronic obstructive pulmonary diseases, respiratory tract infections and lung cancers, and pulmonary vascular diseases such as pulmonary hypertension. To treat respiratory diseases, targeted, modified or controlled release inhalation formulations are desirable for improved patient compliance and superior therapeutic outcome. AREAS COVERED This review summarizes the important factors that have an impact on the inhalable modified release formulation approaches with a focus toward various formulation strategies, including dissolution rate-controlled systems, drug complexes, site-specific delivery, drug-polymer conjugates, and drug-polymer matrix systems, lipid matrix particles, nanosystems, and formulations that can bypass clearance via mucociliary system and alveolar macrophages. EXPERT OPINION Inhaled modified release formulations can potentially reduce dosing frequency by extending drug's residence time in the lungs. However, inhalable modified or controlled release drug delivery systems remain unexplored and underdeveloped from the commercialization perspective. This review paper addresses the current state-of-the-art of inhaled controlled release formulations, elaborates on the avenues for developing newer technologies for formulating various drugs with tailored release profiles after inhalational delivery and explains the challenges associated with translational feasibility of modified release inhalable formulations.
Collapse
Affiliation(s)
- Tanvirul Hye
- Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, 48309, Rochester, MI, USA
| | - Sakib M. Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Tanoy Sarkar
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Trieu Nguyen
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Dipongkor Saha
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
- MedLuidics, 95757, Elk Grove, CA, USA
| |
Collapse
|
8
|
Ciloglu D, Karaman A. A Numerical Simulation of the Airflow and Aerosol Particle Deposition in a Realistic Airway Model of a Healthy Adult. J Pharm Sci 2022; 111:3130-3140. [PMID: 35948158 DOI: 10.1016/j.xphs.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
Determining the behavior of aerosol drug particles is of vital importance in the treatment of respiratory tract diseases. Despite the development of imaging techniques in the pulmonary region in recent years, current imaging techniques are insufficient to detect particle deposition. Computational fluid dynamics (CFD) methods can fill the gap in this field as they take into account the very different physical processes that occur during aerosol transport. This study aims to numerically investigate the airflow and the aerosol particle dynamics on a realistic human respiratory tract model during multiple breathing cycles. The simulations were conducted on the different breathing conditions for people under light, normal, and heavy physical activities, and the aerosol particles with different aerodynamic diameters (i.e., dp=2, 5, and 7 µm). The numerical results were validated by comparing extensively with experimental and numerical results. The results indicated that the airflow during inspiration and expiration was characteristically different from each other and changed with the inspiration flow rate. It was determined that small-sized particles followed the streamlines and moved towards the distal of the lung under low respiratory conditions. On the other hand, larger particles tended to deposit in higher generations due to the higher inertia. It was found that with the increase of inspiration flow rate the deposition of particles increased for all particles during multiple breaths. For light breathing conditions, low deposition efficiencies were obtained because the particles followed the streamlines and moved towards the distal part of the lung. The particle deposition efficiency under heavy breathing conditions was 28.2% for 2 µm, 33.05% for 5 µm, and 38.4% for 7 µm particles. The results showed that inertial impaction plays an active role in particle deposition.
Collapse
Affiliation(s)
- Dogan Ciloglu
- Vocational College of Technical Sciences, Ataturk University, Erzurum, Turkey.
| | - Adem Karaman
- Department of Radiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
9
|
Abstract
Traditionally, empirical correlations for predicting respiratory tract deposition of inhaled aerosols have been developed using limited available in vivo data. More recently, advances in medical image segmentation and additive manufacturing processes have allowed researchers to conduct extensive in vitro deposition experiments in realistic replicas of the upper and central branching airways. This work has led to a collection of empirical equations for predicting regional aerosol deposition, especially in the upper, nasal and oral airways. The present section reviews empirical correlations based on both in vivo and in vitro data, which may be used to predict total and regional deposition. Equations are presented for predicting total respiratory deposition fraction, mouth-throat fraction, nasal, and nose-throat fractions for a large variety of aerosol sizes, subject age groups, and breathing maneuvers. Use of these correlations to estimate total lung deposition is also described.
Collapse
Affiliation(s)
- Andrew R Martin
- Department of Mechanical Engineering, 10-324 Donadeo Innovation Center for Engineering, University of Alberta, Edmonton, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Affiliation(s)
- Andrew R. Martin
- 10-324 Donadeo Innovation Center for Engineering, University of Alberta, Alberta, Canada
| |
Collapse
|
11
|
Shahid M, Dumat C, Niazi NK, Xiong TT, Farooq ABU, Khalid S. Ecotoxicology of Heavy Metal(loid)-Enriched Particulate Matter: Foliar Accumulation by Plants and Health Impacts. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:65-113. [PMID: 31897760 DOI: 10.1007/398_2019_38] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atmospheric contamination by heavy metal-enriched particulate matter (metal-PM) is highly topical nowadays because of its high persistence and toxic nature. Metal-PMs are emitted to the atmosphere by various natural and anthropogenic activities, the latter being the major source. After being released into the atmosphere, metal-PM can travel over a long distance and can deposit on the buildings, water, soil, and plant canopy. In this way, these metal-PMs can contaminate different parts of the ecosystem. In addition, metal-PMs can be directly inhaled by humans and induce several health effects. Therefore, it is of great importance to understand the fate and behavior of these metal-PMs in the environment. In this review, we highlighted the atmospheric contamination by metal-PMs, possible sources, speciation, transport over a long distance, and deposition on soil, plants, and buildings. This review also describes the foliar deposition and uptake of metal-PMs by plants. Moreover, the inhalation of these metal-PMs by humans and the associated health risks have been critically discussed. Finally, the article proposed some key management strategies and future perspectives along with the summary of the entire review. The abovementioned facts about the biogeochemical behavior of metal-PMs in the ecosystem have been supported with well-summarized tables (total 14) and figures (4), which make this review article highly informative and useful for researchers, scientists, students, policymakers, and the organizations involved in development and management. It is proposed that management strategies should be developed and adapted to cope with atmospheric release and contamination of metal-PM.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, Toulouse, Cedex 9, France.
- Université de Toulouse, INP-ENSAT, Auzeville-Tolosane, France.
- Association Réseau-Agriville, Toulouse, France.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Tian Tian Xiong
- School of Life Science, South China Normal University, Guangzhou, P. R. China
| | - Abu Bakr Umer Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
12
|
Häussermann S, Sommerer K, Scheuch G. Regional Lung Deposition: In Vivo Data. J Aerosol Med Pulm Drug Deliv 2020; 33:291-299. [PMID: 33021414 DOI: 10.1089/jamp.2020.29032.sh] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The method section of this chapter on in vivo regional lung deposition highlights a nonradioactive method to measure regional deposition, which uses a photometer to quantify inhaled and exhaled particles and in that way is able to estimate the lung region from which the particles are exhaled and to what amount. The radioactive methods cover the measurement of clearance of the deposited particles as well as different imaging techniques to determine regional deposition. The result section reviews in vivo trials in human subjects. It also addresses different parameters that influence the regional deposition in the lungs: particle size, inhalation maneuver, carrier gas, disease, and inhalation device. All of these factors can affect regional deposition significantly. By choosing specific values of these parameters, it should be feasible to target different regions of the lungs for the therapy of different diseases.
Collapse
|
13
|
Douafer H, Andrieu V, Brunel JM. Scope and limitations on aerosol drug delivery for the treatment of infectious respiratory diseases. J Control Release 2020; 325:276-292. [PMID: 32652109 DOI: 10.1016/j.jconrel.2020.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/24/2023]
Abstract
The rise of antimicrobial resistance has created an urgent need for the development of new methods for antibiotics delivery to patients with pulmonary infections in order to mainly increase the effectiveness of the drugs administration, to minimize the risk of emergence of resistant strains, and to prevent patients reinfection. Since bacterial resistance is often related to antibiotic concentration, their pulmonary administration could eradicate strains resistant to the same drug at the concentration achieved through the systemic circulation. Pulmonary administration offers several advantages; it directly targets the site of the infection which allows the inhaled dose of the drug to be reduced compared to that administered orally or parenterally while keeping the same local effect. The review article is made with an objective to compile information about various existing modern technologies developed to provide greater patient compliance and reduce the undesirable side effect of the drugs. In conclusion, aerosol antibiotic delivery appears as one of the best technologies for the treatment of pulmonary infectious diseases and able to limit the systemic adverse effects related to the high drug dose and to make life easier for the patients.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France
| | - Véronique Andrieu
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, 13385 Marseille, France
| | | |
Collapse
|
14
|
Ishau S, Reichard JF, Maier A, Niang M, Yermakov M, Grinshpun SA. Estimated dermal exposure to nebulized pharmaceuticals for a simulated home healthcare worker scenario. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:193-205. [PMID: 32134702 DOI: 10.1080/15459624.2020.1724297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The duties of home healthcare workers are extensive. One important task that is frequently performed by home healthcare workers is administration of nebulized medications, which may lead to significant dermal exposure. In this simulation study conducted in an aerosol exposure chamber, we administered a surrogate of nebulizer-delivered medications (dispersed sodium chloride, NaCl) to a patient mannequin. We measured the amount of NaCl deposited on the exposed surface of the home healthcare worker mannequin, which represented the exposed skin of a home healthcare worker. Factors such as distance and position of the home healthcare worker, room airflow rate and patient's inspiratory rate were varied to determine their effects on dermal exposure. There was a 2.78% reduction in dermal deposition for every centimeter the home healthcare worker moved away from the patient. Increasing the room's air exchange rate by one air change per hour increased dermal deposition by about 2.93%, possibly due to a decrease in near field particle settling. For every 10-degrees of arc the home healthcare worker is positioned from the left side of the patient toward the right and thus moving into the ventilation airflow direction, dermal deposition increased by about 4.61%. An increase in the patient's inspiratory rate from 15-30 L/min resulted in an average of 14.06% reduction in dermal deposition for the home healthcare worker, reflecting a relative increase in the aerosol fraction inhaled by the patient. The findings of this study elucidate the interactions among factors that contribute to dermal exposure to aerosolized pharmaceuticals administered by home healthcare workers. The results presented in this paper will help develop recommendations on mitigating the health risks related to dermal exposure of home healthcare workers.
Collapse
Affiliation(s)
- Simileoluwa Ishau
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - John F Reichard
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | - Mamadou Niang
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Michael Yermakov
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sergey A Grinshpun
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
15
|
Abstract
Drug delivery to the respiratory tract locally has become an increasingly effective and important therapeutic method for treating a variety of pulmonary disorders, including chronic abstractive disease, asthma, bronchitis, pneumonia, and cystic fibrosis. Increase in prevalence respiratory disorders is a major factor driving the growth of global respiratory inhaler devices market. The effectiveness of pharmaceutical aerosols therapeutic performance is affected by various factors such as type and characteristics of propellants, whose properties are vapor pressure of propellants, viscosity and density flash point and also other factors such as type and characteristics of active ingredients, containers, valves, and actuators, along with percentage of moisture content and mechanism of emitted dose deposition, spray pattern, efficiency of valve crimping, and measurement of particle size aerosols. The purpose of this book chapter is to discuss the in-process and finished product quality control tests for pharmaceutical aerosols based on pharmacopeia standards and specifications.
Collapse
|
16
|
Park JY, Park S, Lee TS, Hwang YH, Kim JY, Kang WJ, Key J. Biodegradable micro-sized discoidal polymeric particles for lung-targeted delivery system. Biomaterials 2019; 218:119331. [PMID: 31299455 DOI: 10.1016/j.biomaterials.2019.119331] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
Abstract
Various types of particle-based drug delivery systems have been explored for the treatment of pulmonary diseases; however, bio-distribution and elimination of the particles should be monitored for better understanding of their therapeutic efficacy and safety. This study aimed to characterize the biological properties of micro-sized discoidal polymeric particles (DPPs) as lung-targeted drug delivery carriers. DPPs were prepared using a top-down fabrication approach and characterized by assessing size and zeta potential. They were labeled with zirconium-89 (89Zr), and bio-distribution studies and PET imaging were performed for 7 days after intravenous administration. Their hydrodynamic size was 2.8 ± 6.1 μm and average zeta potential was -39.9 ± 5.39 mV. At doses of 5, 12.5, and 25 mg/kg, they showed no acute toxicity in nude mice. Desferrioxamine (DFO)-functionalized 89Zr-labeled DPPs gave a decay-corrected radiochemical yield of 82.1 ± 0.2%. Furthermore, 89Zr-DPPs, from chelate-free labeling methods, showed a yield of 48.5 ± 0.9%. Bio-distribution studies and PET imaging showed 89Zr-DFO-DPPs to be mainly accumulated in the lungs and degraded within 3 d of injection. However, 89Zr-DFO-DPPs showed significantly low uptake in the bone. Overall, our results suggested micro-sized DPPs as promising drug delivery carriers for the targeted treatment of various pulmonary diseases.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sanghyo Park
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Tae Sup Lee
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Yong Hwa Hwang
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Jung Young Kim
- Division of RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, Gangwon-do, 26493, Republic of Korea.
| |
Collapse
|
17
|
Poorbahrami K, Oakes JM. Regional flow and deposition variability in adult female lungs: A numerical simulation pilot study. Clin Biomech (Bristol, Avon) 2019; 66:40-49. [PMID: 29395490 DOI: 10.1016/j.clinbiomech.2017.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the promise of respiratory simulations improving diagnosis and treatment of pulmonary diseases, model predictions have yet to be translated into the clinical setting. Current state-of-the-art in silico models have not yet incorporated subject variability in their predictions of airflow distributions and extent of deposited particles. Until inter-subject variability is accounted for in lung modeling, it will remain impossible to translate model predictions into clinical practice. METHODS Airflow and particle trajectories (dp=1,3,5μm) are calculated in three subject-specific female adults by performing physiologically-based simulations. The computation framework features the ability to track air and particles throughout the respiration cycle and in the entire lung. Airway resistances, air velocities, and local deposition sites are correlated to airway anatomical features. FINDINGS Smaller airway diameters are correlated to larger airway resistances and pressure gradients in one subject compared to the other two. Irregular shape of the airway and flow direction (e.g. inspiration or expiration) correspond with peak velocities and secondary flow motions. Largest subject variability in deposition between conducting and respiratory zones is seen for 1 μm diameter particles. Little difference in total deposition is found among subjects. Localized deposited particle concentration hotspots are linked to airway anatomy and flow motion. INTERPRETATION Simulation predictions provide a first look into the correlation of anatomical features with airflow characteristics and deposited particle concentrations. Global deposition percentages ranged (at most, by 20%) between subjects and variances in localized deposition hotspots are correlated to variances in flow characteristics.
Collapse
Affiliation(s)
- Kamran Poorbahrami
- Department of Mechanical and Industrial Engineering, Northeastern University, USA.
| | | |
Collapse
|
18
|
Legionella spp. Risk Assessment in Recreational and Garden Areas of Hotels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040598. [PMID: 29587446 PMCID: PMC5923640 DOI: 10.3390/ijerph15040598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Several Travel-associated Legionnaires’ disease (TALD) cases occur annually in Europe. Except from the most obvious sites (cooling towers and hot water systems), infections can also be associated with recreational, water feature, and garden areas of hotels. This argument is of great interest to better comprehend the colonization and to calculate the risk to human health of these sites. From July 2000–November 2017, the public health authorities of the Island of Crete (Greece) inspected 119 hotels associated with TALD, as reported through the European Legionnaires’ Disease Surveillance Network. Five hundred and eighteen samples were collected from decorative fountain ponds, showers near pools and spas, swimming pools, spa pools, garden sprinklers, drip irrigation systems (reclaimed water) and soil. Of those, 67 (12.93%), originating from 43 (35.83%) hotels, tested positive for Legionella (Legionella pneumophila serogroups 1, 2, 3, 6, 7, 8, 13, 14, 15 and non-pneumophila species (L. anisa, L. erythra, L. taurinensis, L. birminghamensis, L. rubrilucens). A Relative Risk (R.R.) > 1 (p < 0.0001) was calculated for chlorine concentrations of less than 0.2 mg/L (R.R.: 54.78), star classification (<4) (R.R.: 4.75) and absence of Water Safety Plan implementation (R.R.: 3.96). High risk (≥104 CFU/L) was estimated for pool showers (16.42%), garden sprinklers (7.46%) and pool water (5.97%).
Collapse
|
19
|
Yang MY, Chan HK. Monitoring the Inhalation Flow Rate of Nebulized Aerosols Using an Ultrasonic Flow Meter: In Vitro Assessment. J Aerosol Med Pulm Drug Deliv 2016; 30:173-181. [PMID: 27849432 DOI: 10.1089/jamp.2016.1346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The measurement of aerosol flow rates without obscuration of the flow is of particular concern with in vivo lung deposition studies, where precise knowledge of aerosol particle size distributions is a necessary requirement for the development of predictive correlations. This study examines the utility of an ultrasonic flow meter for such measurements and determines if a valved system can be attached to the flow meter for sampling exhaled aerosols. METHODS The flow rate across a D-30 flow meter was compared with and without nebulization of 0.9% saline aerosols from a PARI LC Sprint nebulizer. Particle size distributions of the nebulized aerosol before and after adding the D-30 flow meter and duckbill valve were measured using a Spraytec laser diffraction system. Finally, the ability of the Thor D-30 to capture a realistic breathing profile was assessed. RESULTS The mean ± standard error flow rates measured by the D-30 flow meter with and without nebulization were 10.4 ± 0.1 versus 10.4 ± 0.1 L/min, 66.4 ± 0.1 versus 67.2 ± 0.1 L/min, and 89.9 ± 0.1 versus 91.4 ± 0.1 L/min. The D-30 flow meter did not considerably affect the volumetric median diameter (VMD) of the aerosols, while the VMD reduced slightly by 0.65 μm at 10 L/min and 0.69 μm at 72 L/min upon the inclusion of a duckbill valve. Time-weighted average inhalation flow rates measured by D-30 flow meters placed upstream and downstream of the one-way valve agreed well, 31.9 versus 32.6 L/min, respectively. CONCLUSIONS The D-30 flow meter can be used to accurately measure inhalation flow rates of nebulized aerosols without significantly impacting particle size distributions, and one-way duckbill valves can be used to isolate the inhalation portion of a breathing pattern to facilitate collection of exhaled doses.
Collapse
Affiliation(s)
- Michael Y Yang
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney , Sydney, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, University of Sydney , Sydney, Australia
| |
Collapse
|
20
|
Darquenne C, Lamm WJ, Fine JM, Corley RA, Glenny RW. Total and regional deposition of inhaled aerosols in supine healthy subjects and subjects with mild-to-moderate COPD. JOURNAL OF AEROSOL SCIENCE 2016; 99:27-39. [PMID: 27493296 PMCID: PMC4968943 DOI: 10.1016/j.jaerosci.2016.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite substantial development of sophisticated subject-specific computational models of aerosol transport and deposition in human lungs, experimental validation of predictions from these new models is sparse. We collected aerosol retention and exhalation profiles in seven healthy volunteers and six subjects with mild-to-moderate COPD (FEV1 = 50-80%predicted) in the supine posture. Total deposition was measured during continuous breathing of 1 and 2.9 μm-diameter particles (tidal volume of 1 L, flow rate of 0.3 L/s and 0.75 L/s). Bolus inhalations of 1 μm particles were performed to penetration volumes of 200, 500 and 800 mL (flow rate of 0.5 L/s). Aerosol bolus dispersion (H), deposition, and mode shift (MS) were calculated from these data. There was no significant difference in total deposition between healthy subjects and those with COPD. Total deposition increased with increasing particle size and also with increasing flow rate. Similarly, there was no significant difference in aerosol bolus deposition between subject groups. Yet, the rate of increase in dispersion and of decrease in MS with increasing penetration volume was higher in subjects with COPD than in healthy volunteers (H: 0.798 ± 0.205 vs. 0.527 ± 0.122 mL/mL, p=0.01; MS: -0.271±0.129 vs. -0.145 ± 0.076 mL/mL, p=0.05) indicating larger ventilation inhomogeneities (based on H) and increased flow sequencing (based on MS) in the COPD than in the healthy group. In conclusion, in the supine posture, deposition appears to lack sensitivity for assessing the effect of lung morphology and/or ventilation distribution alteration induced by mild-to-moderate lung disease on the fate of inhaled aerosols. However, other parameters such as aerosol bolus dispersion and mode shift may be more sensitive parameters for evaluating models of lungs with moderate disease.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wayne J. Lamm
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Janelle M. Fine
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robb W. Glenny
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Darquenne C, Fleming JS, Katz I, Martin AR, Schroeter J, Usmani OS, Venegas J, Schmid O. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung. J Aerosol Med Pulm Drug Deliv 2016; 29:107-26. [PMID: 26829187 DOI: 10.1089/jamp.2015.1270] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy.
Collapse
Affiliation(s)
- Chantal Darquenne
- 1 Department of Medicine, University of California , San Diego, La Jolla, California
| | - John S Fleming
- 2 National Institute of Health Research Biomedical Research Unit in Respiratory Disease , Southampton, United Kingdom .,3 Department of Medical Physics and Bioengineering, University Hospital Southampton NHS Foundation Trust , Southampton, United Kingdom
| | - Ira Katz
- 4 Medical R&D, Air Liquide Santé International, Centre de Recherche Paris-Saclay , Jouy-en-Josas, France .,5 Department of Mechanical Engineering, Lafayette College , Easton, Pennsylvania
| | - Andrew R Martin
- 6 Department of Mechanical Engineering, University of Alberta , Edmonton, Alberta, Canada
| | | | - Omar S Usmani
- 8 Airway Disease Section, National Heart and Lung Institute , Imperial College London and Royal Brompton Hospital, London, United Kingdom
| | - Jose Venegas
- 9 Department of Anesthesia (Bioengineering), MGH/Harvard, Boston, Massachusetts
| | - Otmar Schmid
- 10 Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research , Munich, Germany .,11 Institute of Lung Biology and Disease, Helmholtz Zentrum München-German Research Center for Environmental Health , Neuherberg, Germany
| |
Collapse
|
22
|
Greenblatt EE, Winkler T, Harris RS, Kelly VJ, Kone M, Katz I, Martin A, Caillibotte G, Hess DR, Venegas JG. Regional Ventilation and Aerosol Deposition with Helium-Oxygen in Bronchoconstricted Asthmatic Lungs. J Aerosol Med Pulm Drug Deliv 2016; 29:260-72. [PMID: 26824777 DOI: 10.1089/jamp.2014.1204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Theoretical models suggest that He-O2 as carrier gas may lead to more homogeneous ventilation and aerosol deposition than air. However, these effects have not been clinically consistent and it is unclear why subjects may or may not respond to the therapy. Here we present 3D-imaging data of aerosol deposition and ventilation distributions from subjects with asthma inhaling He-O2 as carrier gas. The data are compared with those that we previously obtained from a similar group of subjects inhaling air. METHODS Subjects with mild-to-moderate asthma were bronchoconstricted with methacholine and imaged with PET-CT while inhaling aerosol carried with He-O2. Mean-normalized-values of lobar specific ventilation sV* and deposition sD* were derived and the factors affecting the distribution of sD* were evaluated along with the effects of breathing frequency (f) and regional expansion (FVOL). RESULTS Lobar distributions of sD* and sV* with He-O2 were not statistically different from those previously measured with air. However, with He-O2 there was a larger number of lobes having sV* and sD* closer to unity and, in those subjects with uneven deposition distributions, the correlation of sD* with sV* was on average higher (p < 0.05) in He-O2 (0.84 ± 0.8) compared with air (0.55 ± 0.28). In contrast with air, where the frequency of breathing during nebulization was associated with the degree of sD*-sV* correlation, with He-O2 there was no association. Also, the modulation of f on the correlation between FVOL and sD*/sV* in air, was not observed in He-O2. CONCLUSION There were no differences in the inter-lobar heterogeneity of sD* or sV* in this group of mild asthmatic subjects breathing He-O2 compared with patients previously breathing air. Future studies, using these personalized 3D data sets as input to CFD models, are needed to understand if, and for whom, breathing He-O2 during aerosol inhalation may be beneficial.
Collapse
Affiliation(s)
- Elliot Eliyahu Greenblatt
- 1 Massachusetts Institute of Technology , Boston, Massachusetts.,2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Tilo Winkler
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Robert Scott Harris
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Vanessa Jane Kelly
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Mamary Kone
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Ira Katz
- 3 R & D Medical, Air Liquide Santé International , Les-Loges-en-Josas, France .,4 Department of Mechanical Engineering, Lafayette College , Easton, Pennsylvania
| | - Andrew Martin
- 5 Delaware Research and Technology Center , American Air Liquide, Newark, Delaware.,6 Department of Mechanical Engineering, University of Alberta , Edmonton, Alberta, Canada
| | - George Caillibotte
- 3 R & D Medical, Air Liquide Santé International , Les-Loges-en-Josas, France
| | - Dean R Hess
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Jose G Venegas
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
23
|
Yonis H, Richard JC. Place du magnésium et de l’hélium dans la prise en charge de l’asthme aigu grave. MEDECINE INTENSIVE REANIMATION 2016. [DOI: 10.1007/s13546-015-1146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Abstract
PURPOSE OF REVIEW The purpose of this study is to highlight some of the recent findings related with the management of acute exacerbations in the context of the emergency department setting. RECENT FINDINGS β₂-agonist heliox-driven nebulization significantly increased by 17% [95% confidence interval (CI) 5.2-29.4] peak expiratory flow, and decreased the rate of hospital admissions (risk ratio 0.77, 95% CI 0.62-0.98), compared with oxygen-driven nebulization. Other findings indicate that there is no robust evidence to support the use of intravenous or nebulized magnesium sulphate in adults with severe acute asthma, and that levalbuterol was not superior to albuterol regarding efficacy and safety in individuals with acute asthma. Finally, hyperlactatemia developed during the first hours of acute asthma treatment has a high prevalence, is related with the use of β₂-agonists and had no clinical consequences. SUMMARY After a comprehensive review of the best quality pieces of literature published in the last year, it is possible to conclude that the goals of acute asthma management remain almost unchanged.
Collapse
Affiliation(s)
- Gustavo J Rodrigo
- Departamento de Emergencia, Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| |
Collapse
|
25
|
Corley RA, Kabilan S, Kuprat AP, Carson JP, Jacob RE, Minard KR, Teeguarden JG, Timchalk C, Pipavath S, Glenny R, Einstein DR. Comparative Risks of Aldehyde Constituents in Cigarette Smoke Using Transient Computational Fluid Dynamics/Physiologically Based Pharmacokinetic Models of the Rat and Human Respiratory Tracts. Toxicol Sci 2015; 146:65-88. [PMID: 25858911 PMCID: PMC4476461 DOI: 10.1093/toxsci/kfv071] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Computational fluid dynamics (CFD) modeling is well suited for addressing species-specific anatomy and physiology in calculating respiratory tissue exposures to inhaled materials. In this study, we overcame prior CFD model limitations to demonstrate the importance of realistic, transient breathing patterns for predicting site-specific tissue dose. Specifically, extended airway CFD models of the rat and human were coupled with airway region-specific physiologically based pharmacokinetic (PBPK) tissue models to describe the kinetics of 3 reactive constituents of cigarette smoke: acrolein, acetaldehyde and formaldehyde. Simulations of aldehyde no-observed-adverse-effect levels for nasal toxicity in the rat were conducted until breath-by-breath tissue concentration profiles reached steady state. Human oral breathing simulations were conducted using representative aldehyde yields from cigarette smoke, measured puff ventilation profiles and numbers of cigarettes smoked per day. As with prior steady-state CFD/PBPK simulations, the anterior respiratory nasal epithelial tissues received the greatest initial uptake rates for each aldehyde in the rat. However, integrated time- and tissue depth-dependent area under the curve (AUC) concentrations were typically greater in the anterior dorsal olfactory epithelium using the more realistic transient breathing profiles. For human simulations, oral and laryngeal tissues received the highest local tissue dose with greater penetration to pulmonary tissues than predicted in the rat. Based upon lifetime average daily dose comparisons of tissue hot-spot AUCs (top 2.5% of surface area-normalized AUCs in each region) and numbers of cigarettes smoked/day, the order of concern for human exposures was acrolein > formaldehyde > acetaldehyde even though acetaldehyde yields were 10-fold greater than formaldehyde and acrolein.
Collapse
Affiliation(s)
- Richard A Corley
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Senthil Kabilan
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Andrew P Kuprat
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - James P Carson
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Richard E Jacob
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Kevin R Minard
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Justin G Teeguarden
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Charles Timchalk
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Sudhakar Pipavath
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Robb Glenny
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Daniel R Einstein
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
26
|
Greenblatt EE, Winkler T, Harris RS, Kelly VJ, Kone M, Katz I, Martin AR, Caillibotte G, Venegas J. What Causes Uneven Aerosol Deposition in the Bronchoconstricted Lung? A Quantitative Imaging Study. J Aerosol Med Pulm Drug Deliv 2015; 29:57-75. [PMID: 25977979 DOI: 10.1089/jamp.2014.1197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A previous PET-CT imaging study of 14 bronchoconstricted asthmatic subjects showed that peripheral aerosol deposition was highly variable among subjects and lobes. The aim of this work was to identify and quantify factors responsible for this variability. METHODS A theoretical framework was formulated to integrate four factors affecting aerosol deposition: differences in ventilation, in how air vs. aerosol distribute at each bifurcation, in the fraction of aerosol escaping feeding airways, and in the fraction of aerosol reaching the periphery that is exhaled. These factors were quantified in 12 of the subjects using PET-CT measurements of relative specific deposition sD*, relative specific ventilation sV* (measured with dynamic PET or estimated as change in expansion between two static HRCTs), average lobar expansion FVOL, and breathing frequency measured during aerosol inhalation fN. RESULTS The fraction of the variance of sD* explained by sV* (0.38), by bifurcation effects (0.38), and by differences in deposition along feeding airways (0.31) were similar in magnitude. We could not directly estimate the contribution of aerosol that was exhaled. Differences in expansion did not explain any fraction of the variability in sD* among lobes. The dependence of sD* on sV* was high in subjects breathing with low fN, but weakened among those breathing faster. Finally, sD*/sV* showed positive dependence on FVOL among low fN subjects, while the dependence was negative among high fN subjects. CONCLUSION The theoretical framework allowed us to analyze experimentally measured aerosol deposition imaging data. When considering bronchoconstricted asthmatic subjects, a dynamic measurement of ventilation is required to evaluate its effect on aerosol transport. The mechanisms behind the identified effects of fN and FVOL on aerosol deposition need further study and may have important implications for aerosol therapy in subjects with heterogeneous ventilation.
Collapse
Affiliation(s)
- Elliot Eliyahu Greenblatt
- 1 Department of Mechanical Engineering, Massachusetts Institute of Technology , Boston, Massachusetts.,2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Tilo Winkler
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Robert Scott Harris
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Vanessa Jane Kelly
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Mamary Kone
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Ira Katz
- 3 R&D Medical , Air Liquide Santé International, Les-Loges-en-Josas, France .,4 Department of Mechanical Engineering, Lafayette College , Easton, Pennsylvania
| | - Andrew R Martin
- 5 Department of Mechanical Engineering, University of Alberta , Edmonton, Alberta, Canada
| | - George Caillibotte
- 3 R&D Medical , Air Liquide Santé International, Les-Loges-en-Josas, France
| | - Jose Venegas
- 2 Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
27
|
Abstract
INTRODUCTION Nebulizers are the oldest modern method of delivering aerosols to the lungs for the purpose of respiratory drug delivery. While use of nebulizers remains widespread in the hospital and home setting, certain newer nebulization technologies have enabled more portable use. Varied fundamental processes of droplet formation and breakup are used in modern nebulizers, and these processes impact device performance and suitability for nebulization of various formulations. AREAS COVERED This review first describes basic aspects of nebulization technologies, including jet nebulizers, various high-frequency vibration techniques, and the use of colliding liquid jets. Nebulizer use in hospital and home settings is discussed next. Complications in aerosol droplet size measurement owing to the changes in nebulized droplet diameters due to evaporation or condensation are discussed, as is nebulization during mechanical ventilation. EXPERT OPINION While the limelight may often appear to be focused on other delivery devices, such as pressurized metered dose and dry powder inhalers, the ease of formulating many drugs in water and delivering them as aqueous aerosols ensures that nebulizers will remain as a viable and relevant method of respiratory drug delivery. This is particularly true given recent improvements in nebulizer droplet production technology.
Collapse
Affiliation(s)
- Andrew R Martin
- University of Alberta, Department of Mechanical Engineering , Edmonton, Alberta, T6G 2G8 , Canada
| | | |
Collapse
|
28
|
Darquenne C. Aerosol deposition in the human lung in reduced gravity. J Aerosol Med Pulm Drug Deliv 2014; 27:170-7. [PMID: 24870702 PMCID: PMC4088354 DOI: 10.1089/jamp.2013.1079] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/12/2013] [Indexed: 10/25/2022] Open
Abstract
The deposition of aerosol in the human lung occurs mainly through a combination of inertial impaction, gravitational sedimentation, and diffusion. For 0.5- to 5-μm-diameter particles and resting breathing conditions, the primary mechanism of deposition in the intrathoracic airways is sedimentation, and therefore the fate of these particles is markedly affected by gravity. Studies of aerosol deposition in altered gravity have mostly been performed in humans during parabolic flights in both microgravity (μG) and hypergravity (~1.6G), where both total deposition during continuous aerosol mouth breathing and regional deposition using aerosol bolus inhalations were performed with 0.5- to 3-μm particles. Although total deposition increased with increasing gravity level, only peripheral deposition as measured by aerosol bolus inhalations was strongly dependent on gravity, with central deposition (lung depth<200 mL) being similar between gravity levels. More recently, the spatial distribution of coarse particles (mass median aerodynamic diameter≈5 μm) deposited in the human lung was assessed using planar gamma scintigraphy. The absence of gravity caused a smaller portion of 5-μm particles to deposit in the lung periphery than in the central region, where deposition occurred mainly in the airways. Indeed, 5-μm-diameter particles deposit either by inertial impaction, a mechanism most efficient in the large and medium-sized airways, or by gravitational sedimentation, which is most efficient in the distal lung. On the contrary, for fine particles (~1 μm), both aerosol bolus inhalations and studies in small animals suggest that particles deposit more peripherally in μG than in 1G, beyond the reach of the mucociliary clearance system.
Collapse
Affiliation(s)
- Chantal Darquenne
- Department of Medicine, University of California , San Diego, La Jolla, CA
| |
Collapse
|
29
|
El-Khatib MF, Jamaleddine G, Kanj N, Zeineddine S, Chami H, Bou-Akl I, Husari A, Alawieh M, Bou-Khalil P. Effect of heliox- and air-driven nebulized bronchodilator therapy on lung function in patients with asthma. Lung 2014; 192:377-83. [PMID: 24643901 DOI: 10.1007/s00408-014-9570-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND This study compares the effect of heliox-driven to that of air-driven bronchodilator therapy on the pulmonary function test (PFT) in patients with different levels of asthma severity. METHODS One-hundred thirty-two participants were included in the study. Participants underwent spirometry twice with bronchodilator testing on two consecutive days. Air-driven nebulization was used one day and heliox-driven nebulization the other day in random order crossover design. After a baseline PFT, each participant received 2.5 mg of albuterol sulfate nebulized with the randomized driving gas. Post bronchodilator PFT was repeated after 30 min. The next day, the exact same protocol was repeated, except that the other driving gas was used to nebulize the drug. Participants were subgrouped and analyzed according to their baseline FEV(1) on day 1: Group I, FEV(1) ≥80 %; Group II, 80 % > FEV(1) > 50 %; Group III, FEV(1) ≤50 %. The proportion of participants with greater than 12 % and 200-mL increases from their baseline FEV(1) and the changes from baseline in PFT variables were compared between heliox-driven versus air-driven bronchodilation therapy. RESULTS The proportion of participants with >12 % and 200-mL increases from their baseline FEV(1) with air- or heliox-driven bronchodilation was not different with respect to the proportion of participants with baseline FEV(1) ≥80 % (20 vs. 18 %, respectively) and 80 % > FEV(1) > 50 % (36 vs. 43 %, respectively), but it was significantly greater with heliox-driven bronchodilation in participants with FEV(1) ≤50 % (43 vs. 73 %, respectively; p = 0.01). Changes from baseline FVC, FEV(1), FEV(1)/FVC, FEF(25-75) %, FEF(max), FEF(25) %, FEF(50) %, and FEF(75) % were significantly larger with heliox-driven versus air-driven bronchodilation in participants with baseline FEV(1) ≤50 %. CONCLUSION Improvements in PFT variables are more frequent and profound with heliox-driven compared to air-driven bronchodilator therapy only in asthmatic patients with baseline FEV(1) ≤50 %.
Collapse
Affiliation(s)
- Mohamad F El-Khatib
- Department of Anesthesiology, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Katz I, Pichelin M, Montesantos S, Majoral C, Martin A, Conway J, Fleming J, Venegas J, Greenblatt E, Caillibotte G. Using helium-oxygen to improve regional deposition of inhaled particles: mechanical principles. J Aerosol Med Pulm Drug Deliv 2014; 27:71-80. [PMID: 24383961 DOI: 10.1089/jamp.2013.1072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Helium-oxygen has been used for decades as a respiratory therapy conjointly with aerosols. It has also been shown under some conditions to be a means to provide more peripheral, deeper, particle deposition for inhalation therapies. Furthermore, we can also consider deposition along parallel paths that are quite different, especially in a heterogeneous pathological lung. It is in this context that it is hypothesized that helium-oxygen can improve regional deposition, leading to more homogeneous deposition by increasing deposition in ventilation-deficient lung regions. METHODS Analytical models of inertial impaction, sedimentation, and diffusion are examined to illustrate the importance of gas property values on deposition distribution through both fluid mechanics- and particle mechanics-based mechanisms. Also considered are in vitro results from a bench model for a heterogeneously obstructed lung. In vivo results from three-dimensional (3D) imaging techniques provide visual examples of changes in particle deposition patterns in asthmatics that are further analyzed using computational fluid dynamics (CFD). RESULTS AND CONCLUSIONS Based on analytical modeling, it is shown that deeper particle deposition is expected when breathing helium-oxygen, as compared with breathing air. A bench model has shown that more homogeneous ventilation distribution is possible breathing helium-oxygen in the presence of heterogeneous obstructions representative of central airway obstructions. 3D imaging of asthmatics has confirmed that aerosol delivery with a helium-oxygen carrier gas results in deeper and more homogeneous deposition distributions. CFD results are consistent with the in vivo imaging and suggest that the mechanics of gas particle interaction are the source of the differences seen in deposition patterns. However, intersubject variability in response to breathing helium-oxygen is expected, and an example of a nonresponder is shown where regional deposition is not significantly changed.
Collapse
Affiliation(s)
- I Katz
- 1 R&D Medical Gases Group , Air Liquide Santé International, Les-Loges-en-Josas, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Heliox-driven β2-agonists nebulization for children and adults with acute asthma: a systematic review with meta-analysis. Ann Allergy Asthma Immunol 2013; 112:29-34. [PMID: 24331390 DOI: 10.1016/j.anai.2013.09.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/17/2013] [Accepted: 09/27/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND The effect of heliox as a nebulizer β2-agonist driving gas in acute asthma remains controversial. OBJECTIVE To perform a systematic review with a meta-analysis of randomized trials designed to evaluate the efficacy of heliox versus oxygen in driving β2-agonist nebulization in patients with acute asthma. METHODS A search was conducted of all randomized controlled trials published before August 2013. Primary outcomes were change in spirometric measurements and severity composite score (pediatric studies); secondary outcomes were hospitalizations and serious adverse effects. RESULTS Eleven trials from 10 studies (697 participants) met the inclusion criteria (7 included adults and 3 included children). The mean duration of heliox therapy was 120 minutes and the most common helium-oxygen mixture used was 70:30. Patients receiving heliox presented a statistically significant difference for mean percentage of change in peak expiratory flow (17.2%; 95% confidence interval 5.2-29.2, P = .005). Post hoc subgroup analysis showed that patients with severe and very severe asthma showed a significant improvement in peak expiratory flow compared with those with mild to moderate acute asthma. Heliox-driven nebulization also produced significant decreases in the risk of hospitalizations (odds ratio 0.49, 95% confidence interval 0.31-0.79, P = .003) and severity of exacerbations (pediatric studies; standard mean difference -0.74, 95%% confidence interval -1.45 to -0.03, P = .04). There were no group differences for serious adverse effects. CONCLUSION This review suggests that heliox benefits in airflow limitation and hospital admissions could be considered clinically significant. Data support the use of heliox as a nebulizing β2-agonist driving gas in the routine care of patients with acute asthma.
Collapse
|
32
|
Darquenne C, Zeman KL, Sá RC, Cooper TK, Fine JM, Bennett WD, Prisk GK. Removal of sedimentation decreases relative deposition of coarse particles in the lung periphery. J Appl Physiol (1985) 2013; 115:546-55. [PMID: 23743403 DOI: 10.1152/japplphysiol.01520.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung deposition of >0.5-μm particles is strongly influenced by gravitational sedimentation, with deposition being reduced in microgravity (μG) compared with normal gravity (1G). Gravity not only affects total deposition, but may also alter regional deposition. Using gamma scintigraphy, we measured the distribution of regional deposition and retention of radiolabeled particles ((99m)Tc-labeled sulfur colloid, 5-μm diameter) in five healthy volunteers. Particles were inhaled in a controlled fashion (0.5 l/s, 15 breaths/min) during multiple periods of μG aboard the National Aeronautics and Space Administration Microgravity Research Aircraft and in 1G. In both cases, deposition scans were obtained immediately postinhalation and at 1 h 30 min, 4 h, and 22 h postinhalation. Regional deposition was characterized by the central-to-peripheral ratio and by the skew of the distribution of deposited particles on scans acquired directly postinhalation. Relative distribution of deposition between the airways and the alveolar region was derived from data acquired at the various time points. Compared with inhalation in 1G, subjects show an increase in central-to-peripheral ratio (P = 0.043), skew (P = 0.043), and tracheobronchial deposition (P < 0.001) when particles were inhaled in μG. The absence of gravity caused fewer particles to deposit in the lung periphery than in the central region where deposition occurred mainly in the airways in μG. Furthermore, the increased skew observed in μG likely illustrates the presence of localized areas of deposition, i.e., "hot spots", resulting from inertial impaction. In conclusion, gravity has a significant effect on deposition patterns of coarse particles, with most of deposition occurring in the alveolar region in 1G but in the large airways in μG.
Collapse
Affiliation(s)
- C Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0623, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Evaluation of lung function and deposition of aerosolized bronchodilators carried by heliox associated with positive expiratory pressure in stable asthmatics: a randomized clinical trial. Respir Med 2013; 107:1178-85. [PMID: 23664767 DOI: 10.1016/j.rmed.2013.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 11/23/2022]
Abstract
While administration of medical aerosols with heliox and positive airway pressure are both used clinically to improve aerosol delivery, few studies have differentiated their separate roles in treatment of asthmatics. The aim of this randomized, double blinded study is to differentiate the effect of heliox and oxygen with and without positive expiratory pressure (PEP), on delivery of radiotagged inhaled bronchodilators on pulmonary function and deposition in asthmatics. 32 patients between 18 and 65 years of age diagnosed with stable moderate to severe asthma were randomly assigned into four groups: (1) Heliox + PEP (n = 6), (2) Oxygen + PEP (n = 6), (3) Heliox (n = 11) and (4) Oxygen without PEP (n = 9). Each group received 1 mg of fenoterol and 2 mg of ipratropium bromide combined with 25 mCi (955 Mbq) of Technetium-99m and 0.9% saline to a total dose volume of 3 mL placed in a Venticis II nebulizer attached to a closed, valved mask with PEP of 0 or 10 cm H2O. Both gas type and PEP level were blinded to the investigators. Images were acquired with a single-head scintillation camera with the longitudinal and transverse division of the right lung as regions of interest (ROIs). While all groups responded to bronchodilators, only group 1 showed increase in FEV1%predicted and IC compared to the other groups (p < 0.04). When evaluating the ROI in the vertical gradient we observed higher deposition in the middle and lower third in groups 1 (p = 0.02) and 2 (p = 0.01) compared to group 3. In the horizontal gradient, a higher deposition in the central region in groups 1 (p = 0.03) and 2 (p = 0.02) compared to group 3 and intermediate region of group 2 compared to group 3. We conclude that aerosol deposition was higher in groups with PEP independent of gas used, while bronchodilator response with Heliox + PEP improved FEV1 % and IC compared to administration with Oxygen, Oxygen with PEP and Heliox alone. Trial registration NCT01268462.
Collapse
|
34
|
Patel B, Gauvin R, Absar S, Gupta V, Gupta N, Nahar K, Khademhosseini A, Ahsan F. Computational and bioengineered lungs as alternatives to whole animal, isolated organ, and cell-based lung models. Am J Physiol Lung Cell Mol Physiol 2012; 303:L733-47. [PMID: 22886505 DOI: 10.1152/ajplung.00076.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Development of lung models for testing a drug substance or delivery system has been an intensive area of research. However, a model that mimics physiological and anatomical features of human lungs is yet to be established. Although in vitro lung models, developed and fine-tuned over the past few decades, were instrumental for the development of many commercially available drugs, they are suboptimal in reproducing the physiological microenvironment and complex anatomy of human lungs. Similarly, intersubject variability and high costs have been major limitations of using animals in the development and discovery of drugs used in the treatment of respiratory disorders. To address the complexity and limitations associated with in vivo and in vitro models, attempts have been made to develop in silico and tissue-engineered lung models that allow incorporation of various mechanical and biological factors that are otherwise difficult to reproduce in conventional cell or organ-based systems. The in silico models utilize the information obtained from in vitro and in vivo models and apply computational algorithms to incorporate multiple physiological parameters that can affect drug deposition, distribution, and disposition upon administration via the lungs. Bioengineered lungs, on the other hand, exhibit significant promise due to recent advances in stem or progenitor cell technologies. However, bioengineered approaches have met with limited success in terms of development of various components of the human respiratory system. In this review, we summarize the approaches used and advancements made toward the development of in silico and tissue-engineered lung models and discuss potential challenges associated with the development and efficacy of these models.
Collapse
Affiliation(s)
- Brijeshkumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, 79106, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hélium en réanimation : de la mécanique des fluides à la clinique. MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-011-0311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
36
|
Katz I, Caillibotte G, Martin AR, Arpentinier P. Property value estimation for inhaled therapeutic binary gas mixtures: He, Xe, N2O, and N2 with O2. Med Gas Res 2011; 1:28. [PMID: 22146153 PMCID: PMC3354644 DOI: 10.1186/2045-9912-1-28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background The property values of therapeutic gas mixtures are important in designing devices, defining delivery parameters, and in understanding the therapeutic effects. In the medical related literature the vast majority of articles related to gas mixtures report property values only for the pure substances or estimates based on concentration weighted averages. However, if the molecular size or structures of the component gases are very different a more accurate estimate should be considered. Findings In this paper estimates based on kinetic theory are provided of density, viscosity, mean free path, thermal conductivity, specific heat at constant pressure, and diffusivity over a range of concentrations of He-O2, Xe-O2, N2O-O2 and N2-O2 mixtures at room (or normal) and body temperature, 20 and 37°C, respectively and at atmospheric pressure. Conclusions Property value estimations have been provided for therapeutic gas mixtures and compared to experimental values obtained from the literature where possible.
Collapse
Affiliation(s)
- Ira Katz
- Medical Gases Group, Air Liquide Santé International, Centre de Recherche Claude-Delorme, Jouy-en-Josas, France.
| | | | | | | |
Collapse
|
37
|
Ari A, Harwood R, Sheard M, Dailey P, Fink JB. In vitro comparison of heliox and oxygen in aerosol delivery using pediatric high flow nasal cannula. Pediatr Pulmonol 2011; 46:795-801. [PMID: 21438178 DOI: 10.1002/ppul.21421] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 09/24/2010] [Accepted: 09/25/2010] [Indexed: 11/12/2022]
Abstract
Drug administration via high flow nasal cannula (HFNC) has been described in pediatrics but the amount of albuterol delivery with an HFNC is not known. The purpose of this study is to quantify aerosol delivery with heliox and oxygen (O(2)) in a model of pediatric ventilation. A vibrating mesh nebulizer (Aeroneb Solo, Aerogen) was placed on the inspiratory inlet of a heated humidifier and heated wire circuit attached to a pediatric nasal cannula (Optiflow, Fisher & Paykel). Breathing parameters were tidal volume (V(t)) 100 ml, respiratory rate (RR) 20/min, and I-time of 1 sec. Albuterol sulfate (2.5 mg/3 ml) was administered through a pediatric HFNC with O(2) (100%) and heliox (80/20% mixture). A total of 12 runs, using O(2) and heliox were conducted at 3 and 6 L/min (n = 3). Drug was collected on an absolute filter, eluted and measured using spectrophotometry. The percent inhaled dose (mean ± SD) was similar with heliox and O(2) at 3 L/min (11.41 ± 1.54 and 10.65 ± 0.51, respectively; P = 0.465). However at 6 L/min drug deposition was ≥ 2-fold greater with heliox (5.42 ± 0.54) than O(2) (1.95 ± 0.50; P = 0.01). Using a pediatric model of HFNC, reducing delivered flow from 6 to 3 L/min increased inhaled albuterol delivery ≥ 2-fold but eliminated the increase in inhaled drug efficiency associated with heliox.
Collapse
Affiliation(s)
- Arzu Ari
- Georgia State University, Division of Respiratory Therapy, Atlanta, Georgia 30302-4019, USA.
| | | | | | | | | |
Collapse
|
38
|
Kim IK, Corcoran T. Recent Developments in Heliox Therapy for Asthma and Bronchiolitis. CLINICAL PEDIATRIC EMERGENCY MEDICINE 2009. [DOI: 10.1016/j.cpem.2009.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Ma B, Ruwet V, Corieri P, Theunissen R, Riethmuller M, Darquenne C. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways. JOURNAL OF AEROSOL SCIENCE 2009; 40:403-141. [PMID: 20161301 PMCID: PMC2699293 DOI: 10.1016/j.jaerosci.2009.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy.
Collapse
Affiliation(s)
- Baoshun Ma
- Dept. of Medicine, University of California, San Diego, La Jolla, CA, U.S.A
| | - Vincent Ruwet
- von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium
| | - Patricia Corieri
- von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium
| | - Raf Theunissen
- von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium
| | | | - Chantal Darquenne
- Dept. of Medicine, University of California, San Diego, La Jolla, CA, U.S.A
| |
Collapse
|
40
|
Ma B, Lutchen KR. CFD Simulation of Aerosol Deposition in an Anatomically Based Human Large–Medium Airway Model. Ann Biomed Eng 2008; 37:271-85. [DOI: 10.1007/s10439-008-9620-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
41
|
Peterson JB, Prisk GK, Darquenne C. Aerosol deposition in the human lung periphery is increased by reduced-density gas breathing. J Aerosol Med Pulm Drug Deliv 2008; 21:159-68. [PMID: 18518792 DOI: 10.1089/jamp.2007.0651] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aerosol mixing resulting from turbulent flows is thought to be a major mechanism of deposition in the upper respiratory tract (URT). Because turbulence levels are a function of gas density, the use of a low-density carrier gas should reduce deposition in the URT allowing the aerosol to reach more peripheral airways of the lung. We performed aerosol bolus tests on 11 healthy subjects to investigate the effect of reduced gas density on regional aerosol deposition in the human lung. Using both air and heliox (80% helium, 20% oxygen) as carrier gas, boluses of 1 and 2 microm-diameter particles were inhaled to five volumetric lung depths (V(p)) between 150 and 1200 mL during an inspiration from residual volume (RV) to 1 liter above functional residual capacity at a constant flow rate of approximately 0.50 L/sec, which was immediately followed by an expiration to RV at the same flow rate. Aerosol deposition and axial dispersion were calculated from aerosol concentration and flow rate measured at the mouth. For 1 microm-diameter particles, deposition was significantly reduced by 29 +/- 28% (mean +/- SD, p < 0.05) when breathing heliox instead of air at shallow V(p) (150 mL) and significantly increased by 11 +/- 9% at deep V(p) (1200 mL). For 2 microm-diameter particles, deposition was significantly higher at V(p) = 500 mL by 6 +/- 7% and the predicted V(p) to achieve 100% deposition was significantly lower with heliox (834 +/- 146 mL) compared to air (912 +/- 128 mL) (p < 0.05). Despite a decrease in deposition at shallow V(p), there was no change in axial dispersion, suggesting that other factors such as radial turbulent mixing result in decreased aerosol deposition. Our results suggested that heliox reduces upper airway deposition of 1 and 2 microm-diameter particles allowing more particles to penetrate and subsequently deposit in the peripheral lung.
Collapse
Affiliation(s)
- Jonathan B Peterson
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
42
|
Finlay WH, Martin AR. Recent advances in predictive understanding of respiratory tract deposition. J Aerosol Med Pulm Drug Deliv 2008; 21:189-206. [PMID: 18518795 DOI: 10.1089/jamp.2007.0645] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accurate prediction of respiratory tract deposition is important in gauging the health risks of ambient bioaerosols and environmental aerosols, as well as in developing pharmaceutical aerosols for drug delivery. The present article highlights recent advances in the prediction of total, extrathoracic, and lung deposition fractions of inhaled aerosols over a broad range of parameters for both oral and nasal breathing. These advances build on recent data from in vivo and in vitro studies that have benefited from recent improvements in high-resolution imaging, rapid prototyping, and computational simulation abilities that have significantly enhanced the current understanding of respiratory tract deposition. It is anticipated that the relatively simple equations for predicting total or whole lung deposition that follow from the recent work discussed herein will allow for improved correlation between respiratory tract deposition and a wide range of health outcomes.
Collapse
|