1
|
Rehman T, Welsh MJ. Inflammation as a Regulator of the Airway Surface Liquid pH in Cystic Fibrosis. Cells 2023; 12:1104. [PMID: 37190013 PMCID: PMC10137218 DOI: 10.3390/cells12081104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The airway surface liquid (ASL) is a thin sheet of fluid that covers the luminal aspect of the airway epithelium. The ASL is a site of several first-line host defenses, and its composition is a key factor that determines respiratory fitness. Specifically, the acid-base balance of ASL has a major influence on the vital respiratory defense processes of mucociliary clearance and antimicrobial peptide activity against inhaled pathogens. In the inherited disorder cystic fibrosis (CF), loss of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function reduces HCO3- secretion, lowers the pH of ASL (pHASL), and impairs host defenses. These abnormalities initiate a pathologic process whose hallmarks are chronic infection, inflammation, mucus obstruction, and bronchiectasis. Inflammation is particularly relevant as it develops early in CF and persists despite highly effective CFTR modulator therapy. Recent studies show that inflammation may alter HCO3- and H+ secretion across the airway epithelia and thus regulate pHASL. Moreover, inflammation may enhance the restoration of CFTR channel function in CF epithelia exposed to clinically approved modulators. This review focuses on the complex relationships between acid-base secretion, airway inflammation, pHASL regulation, and therapeutic responses to CFTR modulators. These factors have important implications for defining optimal ways of tackling CF airway inflammation in the post-modulator era.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael J. Welsh
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Brackenborough K, Ellis H, Flight WG. Respiratory Viruses and Cystic Fibrosis. Semin Respir Crit Care Med 2023; 44:196-208. [PMID: 36535663 DOI: 10.1055/s-0042-1758728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The threat of respiratory virus infection to human health and well-being has been clearly highlighted by the coronavirus disease 2019 (COVID-19) pandemic. For people with cystic fibrosis (CF), the clinical significance of viral infections long predated the emergence of severe acute respiratory syndrome coronavirus 2. This article reviews the epidemiology, diagnosis, and treatment of respiratory virus infection in the context of CF as well as the current understanding of interactions between viruses and other microorganisms in the CF lung. The incidence of respiratory virus infection in CF varies by age with young children typically experiencing more frequent episodes than adolescents and adults. At all ages, respiratory viruses are very common in CF and are associated with pulmonary exacerbations. Respiratory viruses are identified at up to 69% of exacerbations, while viruses are also frequently detected during clinical stability. The full impact of COVID-19 in CF is yet to be established. Early studies found that rates of COVID-19 were lower in CF cohorts than in the general population. The reasons for this are unclear but may be related to the effects of shielding, infection control practices, maintenance CF therapies, or the inflammatory milieu in the CF lung. Observational studies have consistently identified that prior solid organ transplantation is a key risk factor for poor outcomes from COVID-19 in CF. Several key priorities for future research are highlighted. First, the impact of highly effective CFTR modulator therapy on the epidemiology and pathophysiology of viral infections in CF requires investigation. Second, the impact of respiratory viruses on the development and dynamics of the CF lung microbiota is poorly understood and viral infection may have important interactions with bacteria and fungi in the airway. Finally, bacteriophages represent a key focus of future investigation both for their role in transmission of antimicrobial resistance and as a promising treatment modality for multiresistant pathogens.
Collapse
Affiliation(s)
- Kate Brackenborough
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - Huw Ellis
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom
| | - William G Flight
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service Foundation Trust, Oxford, United Kingdom.,Research and Development, GlaxoSmithKline plc, Brentford, United Kingdom
| |
Collapse
|
3
|
Honce R, Wohlgemuth N, Meliopoulos VA, Short KR, Schultz-Cherry S. Influenza in High-Risk Hosts-Lessons Learned from Animal Models. Cold Spring Harb Perspect Med 2020; 10:a038604. [PMID: 31871227 PMCID: PMC7706577 DOI: 10.1101/cshperspect.a038604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Factoring significantly into the global burden of influenza disease are high-risk populations that suffer the bulk of infections. Classically, the very young, very old, and pregnant women have been identified as high-risk populations; however, recent research has uncovered several other conditions that contribute to severe infection. By using varied animal models, researchers have identified molecular mechanisms underpinning the increased likelihood for infection due to obesity and malnourishment, as well as insight into the role sex hormones play in antiviral immunity in males, in females, and across the life span. Additionally, novel comorbidity models have helped elucidate the role of chronic infectious and genetic diseases in influenza virus pathogenesis. Animal models play a vital role in understanding the contribution of host factors to influenza severity and immunity. An in-depth understanding of these host factors represents an important step in reducing the burden of influenza among the growing number of people living with one or more chronic medical conditions.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| |
Collapse
|
4
|
Berkebile AR, Bartlett JA, Abou Alaiwa M, Varga SM, Power UF, McCray PB. Airway Surface Liquid Has Innate Antiviral Activity That Is Reduced in Cystic Fibrosis. Am J Respir Cell Mol Biol 2020; 62:104-111. [PMID: 31242392 PMCID: PMC6938132 DOI: 10.1165/rcmb.2018-0304oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Although chronic bacterial infections and inflammation are associated with progressive lung disease in patients with cystic fibrosis (CF), much less is known regarding the contributions of respiratory viral infections to this process. Clinical studies suggest that antiviral host defenses may be compromised in individuals with CF, and CF airway epithelia exhibit impaired antiviral responses in vitro. Here, we used the CF pig model to test the hypothesis that the antiviral activity of respiratory secretions is reduced in CF. We developed an in vitro assay to measure the innate antiviral activity present in airway surface liquid (ASL) from CF and non-CF pigs. We found that tracheal and nasal ASL from newborn non-CF pigs exhibited dose-dependent inhibitory activity against several enveloped and encapsidated viruses, including Sendai virus, respiratory syncytial virus, influenza A, and adenovirus. Importantly, we found that the anti-Sendai virus activity of nasal ASL from newborn CF pigs was significantly diminished relative to non-CF littermate controls. This diminution of extracellular antiviral defenses appears to be driven, at least in part, by the differences in pH between CF and non-CF ASL. These data highlight the novel antiviral properties of native airway secretions and suggest the possibility that defects in extracellular antiviral defenses contribute to CF pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Steven M. Varga
- Department of Microbiology and Immunology
- Department of Pathology, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Ultan F. Power
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Paul B. McCray
- Department of Microbiology and Immunology
- Department of Pediatrics
| |
Collapse
|
5
|
Bartlett JA, Ramachandran S, Wohlford-Lenane CL, Barker CK, Pezzulo AA, Zabner J, Welsh MJ, Meyerholz DK, Stoltz DA, McCray PB. Newborn Cystic Fibrosis Pigs Have a Blunted Early Response to an Inflammatory Stimulus. Am J Respir Crit Care Med 2018; 194:845-854. [PMID: 27027566 DOI: 10.1164/rccm.201510-2112oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Studies suggest that inappropriate responses to proinflammatory stimuli might contribute to inflammation in cystic fibrosis (CF) lungs. However, technical challenges have made it difficult to distinguish whether altered responses in CF airways are an intrinsic defect or a secondary effect of chronic disease in their tissue of origin. The CF pig model provides an opportunity to study the inflammatory responses of CF airways at birth, before the onset of infection and inflammation. OBJECTIVES To test the hypothesis that acute inflammatory responses are perturbed in porcine CF airways. METHODS We investigated the inflammatory responses of newborn CF and non-CF pig airways following a 4-hour exposure to heat-killed Staphylococcus aureus, in vivo and in vitro. MEASUREMENTS AND MAIN RESULTS Following an in vivo S. aureus challenge, markers of inflammation were similar between CF and littermate control animals through evaluation of bronchoalveolar lavage and tissues. However, transcriptome analysis revealed genotype-dependent differences as CF pigs showed a diminished host defense response compared with their non-CF counterparts. Furthermore, CF pig airways exhibited an increase in apoptotic pathways and a suppression of ciliary and flagellar biosynthetic pathways. Similar differences were observed in cultured airway epithelia from CF and non-CF pigs exposed to the stimulus. CONCLUSIONS Transcriptome profiling suggests that acute inflammatory responses are dysregulated in the airways of newborn CF pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael J Welsh
- 2 Department of Internal Medicine.,3 Department of Molecular Physiology and Biophysics.,4 Howard Hughes Medical Institute, and
| | - David K Meyerholz
- 5 Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
6
|
Londino JD, Lazrak A, Collawn JF, Bebok Z, Harrod KS, Matalon S. Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. Am J Physiol Lung Cell Mol Physiol 2017; 313:L845-L858. [PMID: 28775098 DOI: 10.1152/ajplung.00244.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial sodium channels (ENaC) are located in the apical membranes of airway and alveolar epithelial cells. These transporters play an important role in the regulation of lung fluid balance across airway and alveolar epithelia by being the conduits for chloride (Cl-) and bicarbonate ([Formula: see text]) secretion and sodium (Na+) ion absorption, respectively. The functional role of these channels in the respiratory tract is to maintain the optimum volume and ionic composition of the bronchial periciliary fluid (PCL) and alveolar lining fluid (ALF) layers. The PCL is required for proper mucociliary clearance of pathogens and debris, and the ALF is necessary for surfactant homeostasis and optimum gas exchange. Dysregulation of ion transport may lead to mucus accumulation, bacterial infections, inflammation, pulmonary edema, and compromised respiratory function. Influenza (or flu) in mammals is caused by influenza A and B viruses. Symptoms include dry cough, sore throat, and is often followed by secondary bacterial infections, accumulation of fluid in the alveolar spaces and acute lung injury. The underlying mechanisms of flu symptoms are not fully understood. This review summarizes our present knowledge of how influenza virus infections alter airway and alveolar epithelial cell CFTR and ENaC function in vivo and in vitro and the role of these changes in influenza pathogenesis.
Collapse
Affiliation(s)
- James David Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zsuzsanna Bebok
- Department of Cell, Developmental and Integrative Biology School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
7
|
Boikos C, Papenburg J, Martineau C, Joseph L, Scheifele D, Chilvers M, Lands LC, De Serres G, Quach C. Viral interference and the live-attenuated intranasal influenza vaccine: Results from a pediatric cohort with cystic fibrosis. Hum Vaccin Immunother 2017; 13:1-7. [PMID: 28273006 PMCID: PMC5489283 DOI: 10.1080/21645515.2017.1287641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/03/2017] [Accepted: 01/24/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The objective of this study was to explore the effects of viral co-detection in individuals recently vaccinated with the live-attenuated intranasal influenza virus vaccine (LAIV) on the detection of influenza RNA. METHODS Before the 2013-2014 influenza season, nasal swabs were obtained from 59 pediatric participants with cystic fibrosis (CF) and 17 of their healthy siblings immediately before vaccination and 4 times during the week of follow-up. Real-time RT-PCR assays were used to detect influenza RNA. Co-detection of a non-influenza respiratory virus (NIRV) at the time of vaccination was determined by a multiplex RT-PCR assay. Differences in the proportions and rates of influenza detection and their 95% credible intervals (CrI) were estimated. RESULTS Influenza RNA was detected in 16% fewer participants (95% CrI: -7, 39%) throughout follow-up in the NIRV-positive group compared with the NIRV-negative group (59% vs. 75%). This was also observed in participants with CF alone (66% vs. 74%; RD = 8% 95% CrI: -16, 33%) as well as in healthy participants only (75% vs. 30%; RD = 45%, 95% CrI: -2, 81%). Influenza was detected in NIRV-negative subjects for 0.49 d more compared with NIRV-positive subjects (95% CrI: -0.37, 1.26). CONCLUSION The observed proportion of subjects in whom influenza RNA was detected and the duration of detection differed slightly between NIRV- positive and -negative subjects. However, wide credible intervals for the difference preclude definitive conclusions. If true, this observed association may be related to a recent viral respiratory infection, a phenomenon known as viral interference.
Collapse
Affiliation(s)
- Constantina Boikos
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
| | - Jesse Papenburg
- Department of Pediatrics, Division of Infectious Diseases, The Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Christine Martineau
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, QC, Canada
| | - Lawrence Joseph
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
| | - David Scheifele
- Vaccine Evaluation Center, Child & Family Research Institute, University of British Columbia, BC, Canada
| | - Mark Chilvers
- Director, Cystic Fibrosis Clinic, University of British Columbia, BC, Canada
| | - Larry C. Lands
- Department of Pediatrics, Division of Respiratory Medicine, The Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | - Gaston De Serres
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, QC, Canada
| | - Caroline Quach
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
- Department of Pediatrics, Division of Infectious Diseases, The Montreal Children's Hospital, McGill University, Montreal, QC, Canada
- Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec, QC, Canada
- McGill University Health Centre, Vaccine Study Centre, Research Institute of the MUHC, Montreal, QC, Canada
| |
Collapse
|
8
|
Billard L, Le Berre R, Pilorgé L, Payan C, Héry-Arnaud G, Vallet S. Viruses in cystic fibrosis patients' airways. Crit Rev Microbiol 2017; 43:690-708. [PMID: 28340310 DOI: 10.1080/1040841x.2017.1297763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although bacteria have historically been considered to play a major role in cystic fibrosis (CF) airway damage, a strong impact of respiratory viral infections (RVI) is also now recognized. Emerging evidence confirms that respiratory viruses are associated with deterioration of pulmonary function and exacerbation and facilitation of bacterial colonization in CF patients. The aim of this review is to provide an overview of the current knowledge on respiratory viruses in CF airways, to discuss the resulting inflammation and RVI response, to determine how to detect the viruses, and to assess their clinical consequences, prevalence, and interactions with bacteria. The most predominant are Rhinoviruses (RVs), significantly associated with CF exacerbation. Molecular techniques, and especially multiplex PCR, help to diagnose viral infections, and the coming rise of metagenomics will extend knowledge of viral populations in the complex ecosystem of CF airways. Prophylaxis and vaccination are currently available only for Respiratory syncytial and Influenza virus (IV), but antiviral molecules are being tested to improve CF patients' care. All the points raised in this review highlight the importance of taking account of RVIs and their potential impact on the CF airway ecosystem.
Collapse
Affiliation(s)
- Lisa Billard
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France
| | - Rozenn Le Berre
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France.,b Département de Médecine Interne et Pneumologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche , Brest cedex , France
| | - Léa Pilorgé
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France.,c Département de Bacteriologie-Virologie, Hygiène et Parasitologie-Mycologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche , Brest cedex , France
| | - Christopher Payan
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France.,c Département de Bacteriologie-Virologie, Hygiène et Parasitologie-Mycologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche , Brest cedex , France
| | - Geneviève Héry-Arnaud
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France.,c Département de Bacteriologie-Virologie, Hygiène et Parasitologie-Mycologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche , Brest cedex , France
| | - Sophie Vallet
- a EA 3882-Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM) , Groupe de Bactériologie-Virologie, Faculté de Médecine et des Sciences de la Santé , Université Bretagne Loire , Brest Cedex , France.,c Département de Bacteriologie-Virologie, Hygiène et Parasitologie-Mycologie, Pôle de Biologie-Pathologie , Centre Hospitalier Régional et Universitaire de Brest, Hôpital de la Cavale Blanche , Brest cedex , France
| |
Collapse
|
9
|
Flight W, Jones A. The diagnosis and management of respiratory viral infections in cystic fibrosis. Expert Rev Respir Med 2017; 11:221-227. [PMID: 28132571 DOI: 10.1080/17476348.2017.1288102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Respiratory viruses, such as those that cause influenza and the common cold, are a regular feature of life for the entire human population. Among people with CF, these viruses are associated with prolonged respiratory illness and show a clear association with pulmonary exacerbations which in turn are associated with lung function decline and risk of death. Human rhinovirus is the most commonly encountered respiratory viral pathogen in CF although adenovirus, bocavirus, coronavirus, influenza, parainfluenza, metapneumovirus and respiratory syncytial virus are all also responsible for infections in this population. Areas covered: This article reviews the epidemiology, clinical impact and therapeutic options for respiratory virus infection in both children and adults with CF. Expert commentary: The management of CF to date has largely focused on airway clearance strategies, nutritional support and aggressive antibacterial therapy. We highlight the significant role that respiratory viruses play in CF lung disease and argue that these pathogens represent an under-exploited target in the battle to control patients' symptoms and disease progression.
Collapse
Affiliation(s)
- William Flight
- a Oxford Adult Cystic Fibrosis Centre, Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Andrew Jones
- b Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester NHS Foundation Trust , Manchester , UK.,c Institute of Inflammation & Repair, University of Manchester , Manchester , UK
| |
Collapse
|
10
|
Boikos C, Joseph L, Martineau C, Papenburg J, Scheifele D, Lands LC, De Serres G, Chilvers M, Quach C. Influenza Virus Detection Following Administration of Live-Attenuated Intranasal Influenza Vaccine in Children With Cystic Fibrosis and Their Healthy Siblings. Open Forum Infect Dis 2016; 3:ofw187. [PMID: 27747255 PMCID: PMC5063549 DOI: 10.1093/ofid/ofw187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022] Open
Abstract
Background. We aimed to explore the detection profile of influenza viruses following live-attenuated intranasal influenza vaccination (LAIV) in children aged 2-19 years with and without cystic fibrosis (CF). Methods. Before the 2013-2014 influenza season, flocked nasal swabs were obtained before vaccination and 4 times in the week of follow-up from 76 participants (nCF: 57; nhealthy: 19). Influenza was detected by reverse transcription polymerase chain reaction (RT-PCR) assays. A Bayesian hierarchical logistic regression model was used to estimate the effect of CF status and age on influenza detection. Results. Overall, 69% of the study cohort shed influenza RNA during follow-up. The mean duration of RT-PCR detection was 2.09 days (95% credible interval [CrI]: 1.73-2.48). The odds of influenza RNA detection on day 1 following vaccination decreased with age in years (odds ratio [OR]: 0.82 per year; 95% CrI: 0.70-0.95), and subjects with CF had higher odds of influenza RNA detection on day 1 of follow-up (OR: 5.09; 95% CrI: 1.02-29.9). Conclusion. Despite the small sample size, our results indicate that LAIV vaccine strains are detectable during the week after LAIV, mainly in younger individuals and vaccinees with CF. It remains unclear whether recommendations for avoiding contact with severely immunocompromised patients should differ for these groups.
Collapse
Affiliation(s)
- Constantina Boikos
- Department of Epidemiology , Biostatistics & Occupational Health, McGill University , Montreal
| | - Lawrence Joseph
- Department of Epidemiology , Biostatistics & Occupational Health, McGill University , Montreal
| | - Christine Martineau
- Laboratoire de santé publique du Québec , Institut national de santé publique du Québec
| | - Jesse Papenburg
- Department of Pediatrics, Division of Infectious Diseases, Montreal Children's Hospital, McGill University; McGill University Health Centre, Vaccine Study Centre, Research Institute of the MUHC, Montreal, Quebec
| | - David Scheifele
- Vaccine Evaluation Center, Child & Family Research Institute, University of British Columbia
| | - Larry C Lands
- Meakins Christie Laboratories, Department of Pediatrics, Division of Respiratory Medicine , Montreal Children's Hospital, McGill University , Montreal , Quebec
| | - Gaston De Serres
- Direction des risques biologiques et de la santé au travail , Institut national de santé publique du Québec
| | - Mark Chilvers
- Division of Respiratory Medicine, Department of Pediatrics, Faculty of Medicine , University of British Columbia , Canada
| | - Caroline Quach
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal; Department of Pediatrics, Division of Infectious Diseases, Montreal Children's Hospital, McGill University; McGill University Health Centre, Vaccine Study Centre, Research Institute of the MUHC, Montreal, Quebec; Direction des risques biologiques et de la santé au travail, Institut national de santé publique du Québec
| |
Collapse
|
11
|
Londino JD, Lazrak A, Noah JW, Aggarwal S, Bali V, Woodworth BA, Bebok Z, Matalon S. Influenza virus M2 targets cystic fibrosis transmembrane conductance regulator for lysosomal degradation during viral infection. FASEB J 2015; 29:2712-25. [PMID: 25795456 PMCID: PMC4478808 DOI: 10.1096/fj.14-268755] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/26/2015] [Indexed: 12/24/2022]
Abstract
We sought to determine the mechanisms by which influenza infection of human epithelial cells decreases cystic fibrosis transmembrane conductance regulator (CFTR) expression and function. We infected human bronchial epithelial (NHBE) cells and murine nasal epithelial (MNE) cells with various strains of influenza A virus. Influenza infection significantly reduced CFTR short circuit currents (Isc) and protein levels at 8 hours postinfection. We then infected CFTR expressing human embryonic kidney (HEK)-293 cells (HEK-293 CFTRwt) with influenza virus encoding a green fluorescent protein (GFP) tag and performed whole-cell and cell-attached patch clamp recordings. Forskolin-stimulated, GlyH-101-sensitive CFTR conductances, and CFTR open probabilities were reduced by 80% in GFP-positive cells; Western blots also showed significant reduction in total and plasma membrane CFTR levels. Knockdown of the influenza matrix protein 2 (M2) with siRNA, or inhibition of its activity by amantadine, prevented the decrease in CFTR expression and function. Lysosome inhibition (bafilomycin-A1), but not proteasome inhibition (lactacystin), prevented the reduction in CFTR levels. Western blots of immunoprecipitated CFTR from influenza-infected cells, treated with BafA1, and probed with antibodies against lysine 63-linked (K-63) or lysine 48-linked (K-48) polyubiquitin chains supported lysosomal targeting. These results highlight CFTR damage, leading to early degradation as an important contributing factor to influenza infection-associated ion transport defects.
Collapse
Affiliation(s)
- James David Londino
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Ahmed Lazrak
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - James W Noah
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Saurabh Aggarwal
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Vedrana Bali
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Bradford A Woodworth
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Zsuzsanna Bebok
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Sadis Matalon
- *Department of Anesthesiology, Pulmonary Injury and Repair Center, and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; Southern Research Institute, Birmingham, Alabama, USA; and Department of Surgery, Division of Otolaryngology, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Ramirez IA, Caverly LL, Kalikin LM, Goldsmith AM, Lewis TC, Burke DT, LiPuma JJ, Sajjan US, Hershenson MB. Differential responses to rhinovirus- and influenza-associated pulmonary exacerbations in patients with cystic fibrosis. Ann Am Thorac Soc 2014; 11:554-61. [PMID: 24641803 PMCID: PMC4225796 DOI: 10.1513/annalsats.201310-346oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/26/2014] [Indexed: 12/25/2022] Open
Abstract
RATIONALE The mechanism by which viruses cause exacerbations of chronic airway disease and the capacity of patients with cystic fibrosis (CF) to respond to viral infection are not precisely known. OBJECTIVES To determine the antiviral response to infection in patients with CF. METHODS Sputum was collected from patients with CF with respiratory exacerbation. Viruses were detected in multiplex polymerase chain reaction (PCR)-based assays. Gene expression of 84 antiviral response genes was measured, using a focused quantitative PCR gene array. MEASUREMENTS AND MAIN RESULTS We examined 36 samples from 23 patients with respiratory exacerbation. Fourteen samples tested virus-positive and 22 virus-negative. When we compared exacerbations associated with rhinovirus (RV, n = 9) and influenza (n = 5) with virus-negative specimens, we found distinct patterns of antiviral gene expression. RV was associated with greater than twofold induction of five genes, including those encoding the monocyte-attracting chemokines CXCL10, CXCL11, and CXCL9. Influenza was associated with overexpression of 20 genes, including those encoding the cytokines tumor necrosis factor and IL-12; the kinases MEK, TBK-1, and STAT-1; the apoptosis proteins caspase-8 and caspase-10; the influenza double-stranded RNA receptor RIG-I and its downstream effector MAVS; and pyrin, an IFN-stimulated protein involved in influenza resistance. CONCLUSIONS We conclude that virus-induced exacerbations of CF are associated with immune responses tailored to specific infections. Influenza induced a more potent response consisting of inflammation, whereas RV infection had a pronounced effect on chemokine expression. As far as we are aware, this study is the first to compare specific responses to different viruses in live patients with chronic airway disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marc B. Hershenson
- Department of Pediatrics and Communicable Diseases
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
13
|
Principi N, Daleno C, Esposito S. Human rhinoviruses and severe respiratory infections: is it possible to identify at-risk patients early? Expert Rev Anti Infect Ther 2014; 12:423-30. [PMID: 24559383 DOI: 10.1586/14787210.2014.890048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular methods of viral screening have demonstrated that human rhinoviruses (HRVs) are associated with lower respiratory tract infections (LRTIs, including bronchiolitis and pneumonia), exacerbations of chronic pulmonary disease and the development of asthma. Patients with severe chronic diseases are at greater risk of developing major clinical problems when infected by HRVs, particularly if they are immunocompromised or have a chronic lung disease. Analysing the characteristics of HRVs does not provide any certainty concerning the risk of a poor prognosis and, although viremia seems to be associated with an increased risk of severe HRV infection, the available data are too scanty to be considered conclusive. However, a chest x-ray showing alveolar involvement suggests the potentially negative evolution of a bacterial superinfection. There is therefore an urgent need for more effective diagnostic, preventive and therapeutic measures in order to prevent HRV infection, and identify and treat the patients at highest risk.
Collapse
Affiliation(s)
- Nicola Principi
- Department of Pathophysiology and Transplantation, Pediatric High Intensity Care Unit, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | | |
Collapse
|
14
|
Renk H, Regamey N, Hartl D. Influenza A(H1N1)pdm09 and cystic fibrosis lung disease: a systematic meta-analysis. PLoS One 2014; 9:e78583. [PMID: 24427261 PMCID: PMC3888399 DOI: 10.1371/journal.pone.0078583] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/27/2013] [Indexed: 01/01/2023] Open
Abstract
Background To systematically assess the literature published on the clinical impact of Influenza A(H1N1)pdm09 on cystic fibrosis (CF) patients. Methods An online search in PUBMED database was conducted. Original articles on CF patients with Influenza A(H1N1)pdm09 infection were included. We analyzed incidence, symptoms, clinical course and treatment. Results Four surveys with a total of 202 CF patients infected by Influenza A(H1N1)pdm09 were included. The meta-analysis showed that hospitalisation rates were higher in CF patients compared to the general population. While general disease symptoms were comparable, the clinical course was more severe and case fatality rate (CFR) was higher in CF patients compared to asthmatics and the general population. Conclusions Evidence so far suggests that CF patients infected with Influenza A(H1N1)pdm09 show increased morbidity and a higher CFR compared to patients with other chronic respiratory diseases and healthy controls. Particularly, CF patients with advanced stage disease seem to be more susceptible to severe lung disease. Accordingly, early antiviral and antibiotic treatment strategies are essential in CF patients. Preventive measures, including vaccination as well as hygiene measures during the influenza season, should be reinforced and improved in CF patients.
Collapse
Affiliation(s)
- Hanna Renk
- University Children's Hospital, Eberhard-Karls-University, Tuebingen, Germany
| | - Nicolas Regamey
- Department of Paediatrics, Inselspital and University of Bern, Bern, Switzerland
| | - Dominik Hartl
- University Children's Hospital, Eberhard-Karls-University, Tuebingen, Germany
| |
Collapse
|
15
|
Patria MF, Longhi B, Esposito S. Influenza vaccination in children with cystic fibrosis. Expert Rev Vaccines 2013; 12:415-20. [PMID: 23560921 DOI: 10.1586/erv.13.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cystic fibrosis (CF) is an inherited autosomal recessive disease characterized by progressive pulmonary damage and respiratory failure. It is known that bacterial infections play a critical role in the development of significant lung damage, whereas the role of respiratory viruses in CF pulmonary exacerbations and the relationship between viral infections and the progression of lung damage are uncertain. Health authorities throughout the world recommend influenza vaccination for CF patients. The aim of this review is to analyze the impact of seasonal and pandemic influenza on CF patients and data concerning influenza vaccination in order to assess the current situation and identify areas for future study. As data are limited, further well-constructed clinical studies of the effectiveness of influenza vaccination on the main clinical outcome measures of pulmonary function and nutritional status in patients with CF are required.
Collapse
Affiliation(s)
- Maria Francesca Patria
- Pediatric Clinic 1, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, Milan, Italy
| | | | | |
Collapse
|
16
|
Kieninger E, Singer F, Tapparel C, Alves MP, Latzin P, Tan HL, Bossley C, Casaulta C, Bush A, Davies JC, Kaiser L, Regamey N. High rhinovirus burden in lower airways of children with cystic fibrosis. Chest 2013. [PMID: 23188200 DOI: 10.1378/chest.12-0954] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Rhinovirus (RV)-induced pulmonary exacerbations are common in cystic fibrosis (CF) and have been associated with impaired virus clearance by the CF airway epithelium in vitro. Here, we assess in vivo the association of RV prevalence and load with antiviral defense mechanisms, airway inflammation, and lung function parameters in children with CF compared with a control group and children with other chronic respiratory diseases. METHODS RV presence and load were measured by real-time reverse transcription-polymerase chain reaction in BAL samples and were related to antiviral and inflammatory mediators measured in BAL and to clinical parameters. RESULTS BAL samples were obtained from children with CF (n = 195), non-CF bronchiectasis (n = 40), or asthma (n = 29) and from a control group (n = 35) at a median (interquartile range [IQR]) age of 8.2 (4.0-11.7) years. RV was detected in 73 samples (24.4%). RV prevalence was similar among groups. RV load (median [IQR] x 10(3) copies/mL) was higher in children with CF (143.0 [13.1-1530.0]), especially during pulmonary exacerbations, compared with children with asthma (3.0 [1.3-25.8], P = .006) and the control group (0.5 [0.3-0.5], P < .001), but similar to patients with non-CF bronchiectasis (122.1 [2.7-4423.5], P = not significant). In children with CF, RV load was negatively associated with interferon (IFN)- b and IFN- l , IL-1ra levels, and FEV 1 , and positively with levels of the cytokines CXCL8 and CXCL10. CONCLUSIONS RV load in CF BAL is high, especially during exacerbated lung disease. Impaired production of antiviral mediators may lead to the high RV burden in the lower airways of children with CF. Whether high RV load is a cause or a consequence of inflammation needs further investigation in longitudinal studies.
Collapse
Affiliation(s)
- Elisabeth Kieninger
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Florian Singer
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland
| | - Caroline Tapparel
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marco P Alves
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Hui-Leng Tan
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Cara Bossley
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Carmen Casaulta
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland
| | - Andrew Bush
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Jane C Davies
- Department of Pediatric Respiratory Medicine, Royal Brompton Hospital, London, England
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Regamey
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University Hospital, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
17
|
Londino JD, Lazrak A, Jurkuvenaite A, Collawn JF, Noah JW, Matalon S. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity. Am J Physiol Lung Cell Mol Physiol 2013; 304:L582-92. [PMID: 23457187 DOI: 10.1152/ajplung.00314.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl(-)) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H(+)) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o-) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H(+), did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection.
Collapse
Affiliation(s)
- James D Londino
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Human rhinoviruses (HRVs), first discovered in the 1950s, are responsible for more than one-half of cold-like illnesses and cost billions of dollars annually in medical visits and missed days of work. Advances in molecular methods have enhanced our understanding of the genomic structure of HRV and have led to the characterization of three genetically distinct HRV groups, designated groups A, B, and C, within the genus Enterovirus and the family Picornaviridae. HRVs are traditionally associated with upper respiratory tract infection, otitis media, and sinusitis. In recent years, the increasing implementation of PCR assays for respiratory virus detection in clinical laboratories has facilitated the recognition of HRV as a lower respiratory tract pathogen, particularly in patients with asthma, infants, elderly patients, and immunocompromised hosts. Cultured isolates of HRV remain important for studies of viral characteristics and disease pathogenesis. Indeed, whether the clinical manifestations of HRV are related directly to viral pathogenicity or secondary to the host immune response is the subject of ongoing research. There are currently no approved antiviral therapies for HRVs, and treatment remains primarily supportive. This review provides a comprehensive, up-to-date assessment of the basic virology, pathogenesis, clinical epidemiology, and laboratory features of and treatment and prevention strategies for HRVs.
Collapse
Affiliation(s)
- Samantha E. Jacobs
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
| | - Daryl M. Lamson
- Laboratory of Viral Diseases, Wadsworth Center, Albany, New York, USA
| | | | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
19
|
Frickmann H, Jungblut S, Hirche TO, Groß U, Kuhns M, Zautner AE. Spectrum of viral infections in patients with cystic fibrosis. Eur J Microbiol Immunol (Bp) 2012; 2:161-75. [PMID: 24688762 DOI: 10.1556/eujmi.2.2012.3.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 01/05/2023] Open
Abstract
This review explores the extensive influence of viral infections leading to chronic deterioration of lung function in patients with cystic fibrosis (CF). The mechanisms how viral agents affect the pathogenesis as well as the inflammatory and immune response of CF are discussed. Viral infections of the upper and lower respiratory tract due to viruses in CF patients and methods for diagnosis of respiratory viruses are described in detail. The importance of respiratory and non-respiratory viral agents for the pathogenesis, especially for the exacerbation of bacterial lower respiratory tract infections and course of CF, is stressed, especially emphasizing respiratory syncytial virus, influenza virus, rhinovirus, and human herpes viruses. Possible harmful effects of further viruses like adenovirus, bocavirus, coronavirus, metapneumovirus, parainfluenzavirus on the lung function of CF patients are discussed. The potential use of adenovirus-based vectors for somatic gene therapy is mentioned.
Collapse
|
20
|
Mangeat B, Cavagliotti L, Lehmann M, Gers-Huber G, Kaur I, Thomas Y, Kaiser L, Piguet V. Influenza virus partially counteracts restriction imposed by tetherin/BST-2. J Biol Chem 2012; 287:22015-29. [PMID: 22493439 DOI: 10.1074/jbc.m111.319996] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Influenza virus infections lead to a burst of type I interferon (IFN) in the human respiratory tract, which most probably accounts for a rapid control of the virus. Although in mice, IFN-induced Mx1 factor mediates a major part of this response, the situation is less clear in humans. Interestingly, a recently identified IFN-induced cellular protein, tetherin (also known as CD317, BST-2, or HM1.24), exerts potent antiviral activity against a broad range of retroviruses, as well as several other enveloped viruses, by impeding the release of newly generated viral particles from the cell surface. Here we show that influenza virus belongs to the targets of this potent antiviral factor. Ectopic expression of tetherin strongly inhibited fully replicative influenza virus. In addition, depleting endogenous tetherin increased viral production of influenza virions, both in cells constitutively expressing tetherin and upon its induction by IFN. We further demonstrate, by biochemical and morphological means, that tetherin exerts its antiviral action by tethering newly budded viral particles, a mechanism similar to the one that operates against HIV-1. In addition, we determined that the magnitude of tetherin antiviral activity is comparable with or higher than the one of several previously identified anti-influenza cellular factors, such as MxA, ADAR1, ISG15, and viperin. Finally, we demonstrate that influenza virus reduces the impact of tetherin-mediated restriction on its replication by several mechanisms. First, the influenza virus NS1 protein impedes IFN-mediated tetherin induction. Second, influenza infection leads to a decrease of tetherin steady state levels, and the neuraminidase surface protein partly counteracts its activity. Overall, our study helps to delineate the intricate molecular battle taking place between influenza virus and its host cells.
Collapse
Affiliation(s)
- Bastien Mangeat
- Department of Dermatology and Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pseudomonas aeruginosa suppresses interferon response to rhinovirus infection in cystic fibrosis but not in normal bronchial epithelial cells. Infect Immun 2011; 79:4131-45. [PMID: 21825067 DOI: 10.1128/iai.05120-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite increased morbidity associated with secondary respiratory viral infections in cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa infection, the underlying mechanisms are not well understood. Here, we investigated the effect of P. aeruginosa infection on the innate immune responses of bronchial epithelial cells to rhinovirus (RV) infection. CF cells sequentially infected with mucoid P. aeruginosa (MPA) and RV showed lower levels of interferons (IFNs) and higher viral loads than those of RV-infected cells. Unlike results for CF cells, normal bronchial epithelial cells coinfected with MPA/RV showed higher IFN expression than RV-infected cells. In both CF and normal cells, the RV-stimulated IFN response requires phosphorylation of Akt and interferon response factor 3 (IRF3). Preinfection with MPA inhibited RV-stimulated Akt phosphorylation and decreased IRF3 phosphorylation in CF cells but not in normal cells. Compared to normal, unstimulated CF cells or normal cells treated with CFTR inhibitor showed increased reactive oxygen species (ROS) production. Treatment of CF cells with antioxidants prior to MPA infection partially reversed the suppressive effect of MPA on the RV-stimulated IFN response. Together, these results suggest that MPA preinfection inhibits viral clearance by suppressing the antiviral response particularly in CF cells but not in normal cells. Further, increased oxidative stress in CF cells appears to modulate the innate immune responses to coinfection.
Collapse
|
22
|
Abstract
To understand the links between CFTR mutations and the development of cystic fibrosis (CF) phenotypes, it is imperative to study the transcriptome in affected cell types. Microarray expression profiling provides a platform to study global gene expression in detail. This approach may provide the necessary information to segregate phenotypic characteristics of CF, differentiate between genetic or environmental factors, and assess the advent and progression of disease phenotypes. Moreover, if a "CF signature" of genes with altered expression is defined, this can be used to monitor effectiveness of treatment. We provide here detailed protocols and tips for collecting and preserving tissues and cells, and preparing total RNA. We also outline novel strategies for experimental design and data analysis, and describe some powerful gene and pathway discovery tools.
Collapse
|
23
|
Jain M, Thomson AH. Palivizumab, pneumococcal and influenza vaccination in cystic fibrosis. J R Soc Med 2009; 102 Suppl 1:23-8. [PMID: 19605871 DOI: 10.1258/jrsm.2009.s19006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mukta Jain
- Oxford Children's Hospital, The John Radcliffe, Headington, UK
| | | |
Collapse
|
24
|
Rate A, Upham JW, Bosco A, McKenna KL, Holt PG. Airway epithelial cells regulate the functional phenotype of locally differentiating dendritic cells: implications for the pathogenesis of infectious and allergic airway disease. THE JOURNAL OF IMMUNOLOGY 2009; 182:72-83. [PMID: 19109137 DOI: 10.4049/jimmunol.182.1.72] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atopic asthma pathogenesis is driven by the combined effects of airway inflammation generated during responses to viral infections and aeroallergens, and both these pathways are regulated by dendritic cells (DC) that differentiate locally from monocytic precursors. These DCs normally exhibit a sentinel phenotype characterized by active Ag sampling but attenuated presentation capability, which limits the intensity of local expression of adaptive immunity. How this tight control of airway DC functions is normally maintained, and why it breaks down in some atopics leading to immunopathological changes in airway tissues, is unknown. We postulated that signals from adjacent airway epithelial cells (AEC) contribute to regulation of local differentiation of DC. We tested this in a coculture model containing both cell types in a GM-CSF-IL-4-enriched cytokine milieu characteristic of the atopic asthmatic airway mucosa. We demonstrate that contact with AEC during DC differentiation up-regulates expression of the function-associated markers MHC class II, CD40, CD80, TLR3, and TLR4 on DCs with concomitant up-regulation of Ag uptake/processing. Moreover, the AEC-conditioned DCs displayed increased LPS responsiveness evidenced by higher production of IL-12, IL-6, IL-10, and TNF-alpha. The Th2 memory-activating properties of AEC-conditioned DCs were also selectively attenuated. Data from microarray and blocking experiments implicate AEC-derived type 1 IFNs and IL-6 in modulation of DC differentiation. Collectively, these findings suggest that resting AECs modulate local DC differentiation to optimize antimicrobial defenses in the airways and in the process down-modulate capacity for expression of potentially damaging Th2 immunity.
Collapse
Affiliation(s)
- Angela Rate
- Telethon Institute for Child Health Research, and Centre for Child Health Research, Faculty of Medicine and Dentistry, University of Western Australia, West Perth, Australia
| | | | | | | | | |
Collapse
|
25
|
Manson ME, Corey DA, White NM, Kelley TJ. cAMP-mediated regulation of cholesterol accumulation in cystic fibrosis and Niemann-Pick type C cells. Am J Physiol Lung Cell Mol Physiol 2008; 295:L809-19. [PMID: 18790990 DOI: 10.1152/ajplung.90402.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to identify a mechanism regulating cholesterol accumulation in cystic fibrosis (CF) cells. Both CFTR activation and expression are regulated by the cAMP pathway, and it is hypothesized that a feedback response involving this pathway may be involved in the phenotype of cholesterol accumulation. To examine the role of the cAMP pathway in cholesterol accumulation, we treated two CF model cell lines with the Rp diastereomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS) and visualized by filipin staining. Rp-cAMPS treatment eliminated cholesterol accumulation in CF cells, whereas 8-bromo-cAMP treatment led to cholesterol accumulation in wild-type cells. To confirm these findings in an independent model system, we also examined the role of cAMP in modulating cholesterol accumulation in Niemann-Pick type C (NPC) fibroblasts. Expression of the protein related to NPC, NPC1, is also directly regulated by cAMP; therefore, it is postulated that NPC cells exhibit the same cAMP-mediated control of cholesterol accumulation. Cholesterol accumulation in NPC cells also was reduced by the presence of Rp-cAMPS. Expression of beta-arrestin-2 (betaarr2), a marker of cellular response to cAMP signaling, was significantly elevated in CF model cells, Cftr(-/-) MNE, primary tissue obtained by nasal scrapes from CF subjects, and in NPC fibroblasts compared with respective controls.
Collapse
Affiliation(s)
- Mary E Manson
- Department of Pediatrics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4948, USA
| | | | | | | |
Collapse
|
26
|
DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription. BMC Mol Biol 2008; 9:39. [PMID: 18423053 PMCID: PMC2387165 DOI: 10.1186/1471-2199-9-39] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/21/2008] [Indexed: 11/24/2022] Open
Abstract
Background The clinical course of cystic fibrosis (CF) is characterized by recurrent pulmonary infections and chronic inflammation. We have recently shown that decreased methylation of the toll-like receptor-2 (TLR2) promoter leads to an apparent CF-related up-regulation of TLR2. This up-regulation could be responsible, in part, for the CF-associated enhanced proinflammatory responses to various bacterial products in epithelial cells. However, the molecular mechanisms underlying DNA hypomethylation-dependent enhancement of TLR2 expression in CF cells remain unknown. Results The present study indicates that there is a specific CpG region (CpG#18-20), adjacent to the SP1 binding site that is significantly hypomethylated in several CF epithelial cell lines. These CpGs encompass a minimal promoter region required for basal TLR2 expression, and suggests that CpG#18-20 methylation regulates TLR2 expression in epithelial cells. Furthermore, reporter gene analysis indicated that the SP1 binding site is involved in the methylation-dependent regulation of the TLR2 promoter. Inhibition of SP1 with mithramycin A decreased TLR2 expression in both CF and 5-azacytidine-treated non-CF epithelial cells. Moreover, even though SP1 binding was not affected by CpG methylation, SP1-dependent transcription was abolished by CpG methylation. Conclusion This report implicates SP1 as a critical component of DNA demethylation-dependent up-regulation of TLR2 expression in CF epithelial cells.
Collapse
|
27
|
Nichols D, Chmiel J, Berger M. Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intracellular signaling. Clin Rev Allergy Immunol 2008; 34:146-62. [PMID: 17960347 DOI: 10.1007/s12016-007-8039-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A vicious cycle of airway obstruction, infection, and inflammation continues to cause most of the morbidity and mortality in cystic fibrosis (CF). Mutations that result in decreased expression or function of the membrane Cl(-) channel, cystic fibrosis transmembrane regulator (CFTR), result in a decrease in the volume (and hence the depth) of liquid on the airway surface, impaired ciliary function, and dehydrated glandular secretions. In turn, these abnormalities contribute to a milieu, which promotes chronic infection with a limited but unique spectrum of microorganisms. Defects in CFTR also perturb regulation of several intracellular signaling pathways including signal transducers and activator of transcription, I-kappaB and nuclear factor-kappa B, and low molecular weight GTPases. Together, these abnormalities result in excessive production of NF-kappaB dependent cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF), IL-6, and IL-8. There are decreased responses to interferon gamma and transforming growth factor beta leading to decreased production of iNOS and NO. Abnormalities of lipid mediators and decreased secretion of counter/regulatory cytokines have also been reported. Together, these effects combine to create a chronic inflammatory process, which damages and obstructs the airways, and eventually claims the life of the patient.
Collapse
Affiliation(s)
- David Nichols
- Pulmonology and Allergy-Immunology Divisions, Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow, Babies and Children's Hospital, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
28
|
Ammous Z, Hackett NR, Butler MW, Raman T, Dolgalev I, O'Connor TP, Harvey BG, Crystal RG. Variability in small airway epithelial gene expression among normal smokers. Chest 2008; 133:1344-1353. [PMID: 18339782 DOI: 10.1378/chest.07-2245] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite overwhelming data that cigarette smoking causes COPD, only a minority of long-term smokers are affected, strongly suggesting that genetic factors modify susceptibility to this disease. We hypothesized that individual variations exist in the response to cigarette smoking, with variability among smokers in expression levels of protective/susceptibility genes. METHODS Affymetrix arrays and quantitative polymerase chain reaction were used to assess the variability of gene expression in the small airway epithelium obtained by fiberoptic bronchoscopy of 18 normal nonsmokers, 18 normal smokers, and 18 smokers with COPD. RESULTS We identified 201 probe sets representing 152 smoking-responsive genes that were significantly up-regulated or down-regulated, and assessed the coefficient of variation in expression levels among the study population. Variation was a reproducible property of each gene as assessed by different microarray probe sets and real-time polymerase chain reaction, and was observed in both normal smokers and smokers with COPD. Greater individual variability was found in smokers with COPD than in normal smokers. The majority of these highly variable smoking-responsive genes were in the functional categories of signal transduction, xenobiotic degradation, metabolism, transport, oxidant related, and transcription. A similar pattern of the same highly variable genes was observed in an independent data set. CONCLUSIONS We propose that genetic diversity is likely within this subset of genes, with highly variable individual-to-individual responses of the small airway epithelium to smoking, and that this subset of genes represents putative candidates for assessment of susceptibility/protection from disease in future gene-based epidemiologic studies of smokers' risk for COPD.
Collapse
Affiliation(s)
- Zeinab Ammous
- Weill Cornell Medical College in Qatar, Education City, Doha, Qatar
| | - Neil R Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Marcus W Butler
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, NY
| | - Tina Raman
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Igor Dolgalev
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Timothy P O'Connor
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY
| | - Ben-Gary Harvey
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, NY
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY.
| |
Collapse
|
29
|
Newby CM, Sabin L, Pekosz A. The RNA binding domain of influenza A virus NS1 protein affects secretion of tumor necrosis factor alpha, interleukin-6, and interferon in primary murine tracheal epithelial cells. J Virol 2007; 81:9469-80. [PMID: 17596305 PMCID: PMC1951395 DOI: 10.1128/jvi.00989-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary differentiated respiratory epithelial cell cultures closely model the in vivo environment and allow for studies of innate immune responses generated specifically by epithelial cells, the primary cell type infected by human influenza A virus strains. We used primary murine tracheal epithelial cell (mTEC) cultures to investigate antiviral and cytokine responses to influenza A virus infection, focusing on the contribution of the RNA binding domain of the NS1 protein. rWSN NS1 R38A replication is attenuated in mTEC cultures; however, viral antigen is detected predominantly in ciliated cells, similar to wild-type virus. NS1 and NS1 R38A proteins display a primarily cytoplasmic localization in infected mTEC cultures. Increased production of tumor necrosis factor alpha, interleukin-6, and beta interferon is observed during rWSN NS1 R38A infection, and cytokines are secreted in a directional manner. Cytokine pretreatment of mTEC cultures and Vero cells suggest that rWSN NS1 R38A is more sensitive to the presence of antiviral/inflammatory cytokines than wild-type virus. Our results demonstrate that the RNA binding domain is a critical regulator of both cytokine production and cytokine sensitivity during influenza A virus infection of primary tracheal epithelial cells.
Collapse
Affiliation(s)
- Celeste M Newby
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8230, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
30
|
Hammond S, Chenever E, Durbin JE. Respiratory virus infection in infants and children. Pediatr Dev Pathol 2007; 10:172-80. [PMID: 17535096 DOI: 10.2350/07-02-0238.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/03/2007] [Indexed: 11/20/2022]
Abstract
The recent availability of diagnostic polymerase chain reaction-based assays for the detection of viral pathogens has allowed us to identify the infectious agents present in a large percentage of culture-negative specimens. The information gained by these studies has led to a reassessment of the prevalence of individual viruses in lower respiratory tract infections in both normal and immunocompromised children. Pathologic examination of less severe cases identified by more sensitive methodologies in immunocompetent children is now possible and has prompted the realization that many of the classic features of particular viral infections in the lung are in fact hallmarks of fulminant disease. In this article we review the body of literature discussing these anatomic findings, the approaches taken by those investigators, and the types of reagents that are commercially available.
Collapse
Affiliation(s)
- Sue Hammond
- Department of Pathology and Laboratory Medicine, Columbus Children's Hospital, Columbus, OH, USA
| | | | | |
Collapse
|