1
|
Syed Khaja AS, Binsaleh NK, Beg MMA, Ashfaq F, Khan MI, Almutairi MG, Qanash H, Saleem M, Ginawi IAM. Clinical importance of cytokine (IL-6, IL-8, and IL-10) and vitamin D levels among patients with Type-1 diabetes. Sci Rep 2024; 14:24225. [PMID: 39414864 PMCID: PMC11484771 DOI: 10.1038/s41598-024-73737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
Type-1 diabetes (T1D) is an autoimmune disorder characterized by impaired insulin release by islet β cells. It has been shown that proinflammatory cytokines released during the disease can exacerbate the condition, while anti-inflammatory cytokines offer protection. This study analyzed the clinical role of interleukin (IL)-6, -8, -10, and vitamin D levels in T1D patients compared to healthy controls. The levels of IL-6, IL-8, IL-10, and vitamin D in the participants' serum samples were analyzed using ELISA. The findings showed that T1D patients had significantly increased levels (p < 0.0001) of fasting blood glucose, HbA1c, systolic blood pressure, low-density lipoprotein, triglycerides, cholesterol, and very low-density lipoprotein and decreased levels of high-density lipoprotein and vitamin D (p < 0.0001) compared to healthy controls. Moreover, the levels of IL-6, IL-8, and IL-10 were also significantly greater (p < 0.0001) in T1D patients. The study also determined the significance of these cytokines among T1D patients and healthy controls using ROC curves. Furthermore, we found that smokers had significantly higher levels of IL-6 (p = 0.01) and IL-8 (p = 0.003) than non-smokers. These results showed that elevated levels of IL-6, IL-8, and IL-10, decreased vitamin D levels, and smoking among T1D participants could contribute to the worsening of T1D disease and could serve as predictive indicators.
Collapse
Affiliation(s)
- Azharuddin Sajid Syed Khaja
- Department of Pathology, College of Medicine, University of Hail, Hail, 55476, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Hail, Hail, 55476, Saudi Arabia.
| | - Naif K Binsaleh
- Medical and Diagnostic Research Centre, University of Hail, Hail, 55476, Saudi Arabia
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Mirza Masroor Ali Beg
- Faculty of Medicine, Alatoo International University, Bishkek, 720048, Kyrgyzstan.
- Centre for Promotion of Medical Research, Alatoo International University, Bishkek, 720048, Kyrgyzstan.
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Nursing and Health Sciences, Jazan University, Jazan, 82817, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Malak Ghazi Almutairi
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hafr Albatin, Hafr Albatin, Saudi Arabia
| | - Husam Qanash
- Medical and Diagnostic Research Centre, University of Hail, Hail, 55476, Saudi Arabia
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, 55476, Saudi Arabia
| | - Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, Hail, 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Hail, 55476, Saudi Arabia
| | | |
Collapse
|
2
|
Yang K, Zhang Y, Ding J, Li Z, Zhang H, Zou F. Autoimmune CD8+ T cells in type 1 diabetes: from single-cell RNA sequencing to T-cell receptor redirection. Front Endocrinol (Lausanne) 2024; 15:1377322. [PMID: 38800484 PMCID: PMC11116783 DOI: 10.3389/fendo.2024.1377322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic β cell destruction and mediated primarily by autoreactive CD8+ T cells. It has been shown that only a small number of stem cell-like β cell-specific CD8+ T cells are needed to convert normal mice into T1D mice; thus, it is likely that T1D can be cured or significantly improved by modulating or altering self-reactive CD8+ T cells. However, stem cell-type, effector and exhausted CD8+ T cells play intricate and important roles in T1D. The highly diverse T-cell receptors (TCRs) also make precise and stable targeted therapy more difficult. Therefore, this review will investigate the mechanisms of autoimmune CD8+ T cells and TCRs in T1D, as well as the related single-cell RNA sequencing (ScRNA-Seq), CRISPR/Cas9, chimeric antigen receptor T-cell (CAR-T) and T-cell receptor-gene engineered T cells (TCR-T), for a detailed and clear overview. This review highlights that targeting CD8+ T cells and their TCRs may be a potential strategy for predicting or treating T1D.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yihan Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Seth P, Dubey S. IL-22 as a target for therapeutic intervention: Current knowledge on its role in various diseases. Cytokine 2023; 169:156293. [PMID: 37441942 DOI: 10.1016/j.cyto.2023.156293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/12/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
IL-22 has emerged as a crucial cytokine mediating protective response against pathogens and tissue regeneration. Dysregulated production of IL-22 has been shown to play a pivotal role in the pathogenesis of various diseases like malignant tumours, viral, cardiovascular, allergic and autoimmune disorders. Interleukin 22 belongs to IFN-IL-10 cytokine family. It is a major proinflammatory cytokine secreted by activated Th1 cells (Th22), though can also be secreted by many other immune cells like group 3 innate lymphocytes, γδ T cells, NK cells, NK T cells, and mucosal associated invariant T cells. Th22 cells exclusively release IL-22 but not IL-17 or IFN-γ (as Th1 cells releases IFN-γ along with IL-22 and Th17 cells releases IL-17 along with IL-22) and also express aryl hydrocarbon receptor as the key transcription factor. Th22 cells also exhibit expression of chemokine receptor CCR6 and skin-homing receptors CCR4 and CCR10 indicating the involvement of this subset in bolstering epithelial barrier immunity and promoting secretion of antimicrobial peptides (AMPs) from intestinal epithelial cells. The function of IL-22 is modulated by IL-22 binding protein (binds to IL-22 and inhibits it binding to its cell surface receptor); which serves as a competitor for IL-22R1 chain of IL-22 receptor. The pathogenic and protective nature of the Th22 cells is modulated both by the site of infected tissue and the type of disease pathology. This review aims to discuss key features of IL-22 biology, comparisons between IL and 22 and IFN-γ and its role as a potential immune therapy target in different maladies.
Collapse
Affiliation(s)
- Pranav Seth
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Shweta Dubey
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Sector 125, Noida, India.
| |
Collapse
|
4
|
Cano-Cano F, Gómez-Jaramillo L, Ramos-García P, Arroba AI, Aguilar-Diosdado M. IL-1β Implications in Type 1 Diabetes Mellitus Progression: Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11051303. [PMID: 35268394 PMCID: PMC8910979 DOI: 10.3390/jcm11051303] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023] Open
Abstract
During Type 1 Diabetes Mellitus (T1DM) progression, there is chronic and low-grade inflammation that could be related to the evolution of the disease. We carried out a systematic review and meta-analysis to evaluate whether peripheral levels of pro-inflammatory markers such as interleukin-1 beta (IL-1β) is significantly different among patients with or without T1DM, in gender, management of the T1DM, detection in several biological fluids, study design, age range, and glycated hemoglobin. We searched PubMed, Embase, Web of Science, and Scopus databases, and 26 relevant studies (2186 with T1DM, 2047 controls) were included. We evaluated the studies’ quality using the Newcastle−Ottawa scale. Meta-analyses were conducted, and heterogeneity and publication bias were examined. Compared with controls, IL-1β determined by immunoassays (pooled standardized mean difference (SMD): 2.45, 95% CI = 1.73 to 3.17; p < 0.001) was significantly elevated in T1DM. The compared IL-1β levels in patients <18 years (SMD = 2.81, 95% CI = 1.88−3.74) was significantly elevated. The hemoglobin-glycated (Hbg) levels in patients <18 years were compared (Hbg > 7: SMD = 5.43, 95% CI = 3.31−7.56; p = 0.001). Compared with the study design, IL-1β evaluated by ELISA (pooled SMD = 3.29, 95% CI = 2.27 to 4.30, p < 0.001) was significantly elevated in T1DM patients. IL-1β remained significantly higher in patients with a worse management of T1DM and in the early stage of T1DM. IL-1β levels determine the inflammatory environment during T1DM.
Collapse
Affiliation(s)
- Fátima Cano-Cano
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain; (F.C.-C.); (L.G.-J.); (M.A.-D.)
| | - Laura Gómez-Jaramillo
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain; (F.C.-C.); (L.G.-J.); (M.A.-D.)
| | - Pablo Ramos-García
- Faculty of Dentistry, University of Granada, 18011 Granada, Spain
- Correspondence: (P.R.-G.); (A.I.A.)
| | - Ana I. Arroba
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain; (F.C.-C.); (L.G.-J.); (M.A.-D.)
- Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, 11009 Cadiz, Spain
- Correspondence: (P.R.-G.); (A.I.A.)
| | - Manuel Aguilar-Diosdado
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain; (F.C.-C.); (L.G.-J.); (M.A.-D.)
- Department of Endocrinology and Metabolism, University Hospital Puerta del Mar, 11009 Cadiz, Spain
| |
Collapse
|
5
|
Alblihed M. Primary understanding of type 1 diabetes as an autoimmune disease. SAUDI JOURNAL FOR HEALTH SCIENCES 2022. [DOI: 10.4103/sjhs.sjhs_50_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
6
|
Brodnicki TC. A Role for lncRNAs in Regulating Inflammatory and Autoimmune Responses Underlying Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:97-118. [DOI: 10.1007/978-3-030-92034-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Aghajanzadeh H, Abdolmaleki M, Ebrahimzadeh MA, Mojtabavi N, Mousavi T, Izad M. Methanolic Extract of Sambucus ebulus Ameliorates Clinical Symptoms in Experimental Type 1 Diabetes through Anti-Inflammatory and Immunomodulatory Actions. CELL JOURNAL 2021; 23:465-473. [PMID: 34455723 PMCID: PMC8405075 DOI: 10.22074/cellj.2021.7287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/26/2020] [Indexed: 01/10/2023]
Abstract
Objective Sambucus ebulus (SE), a famous traditional Iranian medicine, is grown in the north of Iran. As a traditional
medicine with anti-inflammatory effects, SE has been utilized against inflammatory joint diseases, insect bites,
infectious wounds, edema, and eczema. Type1 diabetes, is an autoimmune disease, characterized by the destruction
of pancreatic beta cells by the immune system. For the first time, we investigated the effect of methanolic extract of SE
on CD4+, CD8+ and regulatory T cells in experimental type 1 diabetes (T1D). Materials and Methods In this experimental study, fifty-six C57BL\6 mice in 8 groups (G1-G8), were enrolled. Diabetes
was induced by a multiple low-dose streptozotocin (MLDS) protocol and mice were daily treated with SE extract at 200
and 400 mg/kg doses, for 35 days. Fasting blood glucose was weekly measured by a glucometer. Islets insulin content
was analyzed by immunohistochemistry. Percentage of CD4+, CD8+ and regulatory T cells and cytokines production
levels were evaluated by flow cytometer and ELISA, respectively.
Results The clinical symptoms of diabetes were significantly alleviated in G2 group mice which received 400 mg/
kg SE extract. Immunohistochemistry analysis showed that the insulin content of islets increased in G2 group mice.
Immunophenotyping analysis indicated that the percentage of CD4+ and CD8+ T cells in G2 group mice was significantly
decreased. SE extract significantly increased the percentage of regulatory T cells. The extract in G2 and G4 groups
mice significantly decreased IFN-γ and IL-17levels. The extract significantly increased IL-10 in G2 group mice.
Conclusion The protective effect of SE extract in MLDS-induced diabetes could be partly due to a decrease of CD4+
and CD8+ T cells and an increase of Treg cells resulting in an inflammation reduction in the pancreatic islets.
Collapse
Affiliation(s)
- Hamid Aghajanzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohsen Abdolmaleki
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Mousavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Izad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Multiple Sclerosis Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kaminitz A, Ash S, Askenasy N. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes. Clin Rev Allergy Immunol 2018; 52:460-472. [PMID: 27677500 DOI: 10.1007/s12016-016-8587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Shifra Ash
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202.
| |
Collapse
|
9
|
Role of TGF-β in Self-Peptide Regulation of Autoimmunity. Arch Immunol Ther Exp (Warsz) 2017; 66:11-19. [PMID: 28733878 DOI: 10.1007/s00005-017-0482-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Transforming growth factor (TGF)-β has been implicated in regulation of the immune system, including autoimmunity. We have found that TGF-β is readily produced by T cells following immunization with self-peptide epitopes that downregulate autoimmune responses in type 1 diabetes (T1D) prone nonobese diabetic (NOD) mice. These include multiple peptide epitopes derived from the islet β-cell antigens GAD65 (GAD65 p202-221, GAD65 p217-236), GAD67 (GAD67 p210-229, GAD67 p225-244), IGRP (IGRP p123-145, IGRP p195-214) and insulin B-chain (Ins. B:9-23) that protected NOD mice from T1D. Immunization of NOD mice with the self-MHC class II I-Ag7 β-chain-derived peptide, I-Aβg7 p54-76 also induced large amounts of TGF-β and also protected these mice from diabetes development. These results indicate that peptides derived from disease related self-antigens and MHC class II molecules primarily induce TGF-β producing regulatory Th3 and Tr1-like cells. TGF-β produced by these cells could enhance the differentiation of induced regulatory iTreg and iTreg17 cells to prevent induction and progression of autoimmune diseases. We therefore suggest that peripheral immune tolerance could be induced and maintained by immunization with self-peptides that induce TGF-β producing T cells.
Collapse
|
10
|
Fibroblasts accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation. PLoS One 2017; 12:e0180695. [PMID: 28672010 PMCID: PMC5495486 DOI: 10.1371/journal.pone.0180695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet transplantation has been considered for many years a promising therapy for beta-cell replacement in patients with type-1 diabetes despite that long-term clinical results are not as satisfactory. This fact points to the necessity of designing strategies to improve and accelerate islets engraftment, paying special attention to events assuring their revascularization. Fibroblasts constitute a cell population that collaborates on tissue homeostasis, keeping the equilibrium between production and degradation of structural components as well as maintaining the required amount of survival factors. Our group has developed a model for subcutaneous islet transplantation using a plasma-based scaffold containing fibroblasts as accessory cells that allowed achieving glycemic control in diabetic mice. Transplanted tissue engraftment is critical during the first days after transplantation, thus we have gone in depth into the graft-supporting role of fibroblasts during the first ten days after islet transplantation. All mice transplanted with islets embedded in the plasma-based scaffold reversed hyperglycemia, although long-term glycemic control was maintained only in the group transplanted with the fibroblasts-containing scaffold. By gene expression analysis and histology examination during the first days we could conclude that these differences might be explained by overexpression of genes involved in vessel development as well as in β-cell regeneration that were detected when fibroblasts were present in the graft. Furthermore, fibroblasts presence correlated with a faster graft re-vascularization, a higher insulin-positive area and a lower cell death. Therefore, this work underlines the importance of fibroblasts as accessory cells in islet transplantation, and suggests its possible use in other graft-supporting strategies.
Collapse
|
11
|
Sharma A, Yerra VG, Kumar A. Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication. Biochimie 2017; 133:56-65. [DOI: 10.1016/j.biochi.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023]
|
12
|
Karri SK, Sheela A. Potential route of Th17/T reg cell dynamics in targeting type 1 diabetes and rheumatoid arthritis: an autoimmune disorder perspective. Br J Biomed Sci 2017; 74:8-15. [PMID: 28074676 DOI: 10.1080/09674845.2016.1264704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytokines, small secreted proteins, have a specific effect on the interactions and communications between cells. They play a pivotal role in the pathogenesis of autoimmune diseases. Factors in the breakdown of self-tolerance and the subsequent events leading to the induction of pathogenic responses remain unclear for most of the autoimmune diseases. Large numbers of studies have revealed a general scheme in which pro-inflammatory cytokines contribute to the initiation and propagation of autoimmune inflammation, whereas anti-inflammatory cytokines facilitate the regression of inflammation and thereby recovery from the disease. The interleukin (IL)-17/IL-23 axis that emerged as the new paradigm has compelled us to critically re-examine the cytokine-driven immune events in the pathogenesis and treatment of autoimmunity. T-helper 17 cells and Regulatory T cells are two lymphocyte subsets with opposing action. In this review, we discuss the mechanism that promotes development of these cells from common precursors and specific factors that impact their cell numbers and function. Also presented are findings that suggest how the equilibrium between pre-inflammatory T helper and regulatory T-cell subsets might be pharmacologically restored for therapeutic benefit, emphasising type-1 diabetes and rheumatoid arthritis. Furthermore, the emerging clinical data showing anti-IL-17 and anti-IL-23 treatments for their efficacy in treating immune-mediated inflammatory diseases are presented.
Collapse
Affiliation(s)
- Suresh Kumar Karri
- a Department of Chemistry, School of Advanced Sciences , VIT University , Vellore , India
| | - A Sheela
- a Department of Chemistry, School of Advanced Sciences , VIT University , Vellore , India
| |
Collapse
|
13
|
Boldison J, Wong FS. Immune and Pancreatic β Cell Interactions in Type 1 Diabetes. Trends Endocrinol Metab 2016; 27:856-867. [PMID: 27659143 DOI: 10.1016/j.tem.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
The autoimmune destruction of the pancreatic islet β cells is due to a targeted lymphocyte attack. Different T cell subsets communicate with each other and with the insulin-producing β cells in this process, with evidence not only of damage to the tissue cells but also of lymphocyte regulation. Here we explore the various components of the immune response as well as the cellular interactions that are involved in causing or reducing immune damage to the β cells. We consider these in the light of the possibility that understanding them may help us identify therapeutic targets to reduce the damage and destruction leading to type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
14
|
Insights from lncRNAs Profiling of MIN6 Beta Cells Undergoing Inflammation. Mediators Inflamm 2016; 2016:9275106. [PMID: 27698546 PMCID: PMC5028877 DOI: 10.1155/2016/9275106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/12/2016] [Accepted: 07/27/2016] [Indexed: 01/19/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an organ-specific autoimmune disease characterized by chronic and progressive apoptotic destruction of pancreatic beta cells. During the initial phases of T1DM, cytokines and other inflammatory mediators released by immune cells progressively infiltrate islet cells, induce alterations in gene expression, provoke functional impairment, and ultimately lead to apoptosis. Long noncoding RNAs (lncRNAs) are a new important class of pervasive genes that have a variety of biological functions and play key roles in many diseases. However, whether they have a function in cytokine-induced beta cell apoptosis is still uncertain. In this study, lncRNA microarray technology was used to identify the differently expressed lncRNAs and mRNAs in MIN6 cells exposed to proinflammatory cytokines. Four hundred forty-four upregulated and 279 downregulated lncRNAs were detected with a set filter fold-change ≧2.0. To elucidate the potential functions of these lncRNAs, Gene Ontology (GO) and pathway analyses were used to evaluate the potential functions of differentially expressed lncRNAs. Additionally, a lncRNA-mRNA coexpression network was constructed to predict the interactions between the most strikingly regulated lncRNAs and mRNAs. This study may be utilized as a background or reference resource for future functional studies on lncRNAs related to the diagnosis and development of new therapies for T1DM.
Collapse
|
15
|
Perusina Lanfranca M, Lin Y, Fang J, Zou W, Frankel T. Biological and pathological activities of interleukin-22. J Mol Med (Berl) 2016; 94:523-34. [PMID: 26923718 PMCID: PMC4860114 DOI: 10.1007/s00109-016-1391-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22, a member of the IL-10 family, is a cytokine secreted by several types of immune cells including IL-22(+)CD4(+) T cells (Th22) and IL-22 expressing innate leukocytes (ILC22). Recent studies have demonstrated that IL-22 is a key component in mucosal barrier defense, tissue repair, epithelial cell survival, and proliferation. Furthermore, accumulating evidence has defined both protective and pathogenic properties of IL-22 in a number of conditions including autoimmune disease, infection, and malignancy. In this review, we summarize the expression and signaling pathway and functional characteristics of the IL-22 and IL-22 receptor axis in physiological and pathological scenarios and discuss the potential to target IL-22 signaling to treat human diseases.
Collapse
Affiliation(s)
- Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yanwei Lin
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Bellemore SM, Nikoopour E, Krougly O, Lee‐Chan E, Fouser LA, Singh B. Pathogenic T helper type 17 cells contribute to type 1 diabetes independently of interleukin-22. Clin Exp Immunol 2016; 183:380-8. [PMID: 26496462 PMCID: PMC4750601 DOI: 10.1111/cei.12735] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 12/12/2022] Open
Abstract
We have shown that pathogenic T helper type 17 (Th17) cells differentiated from naive CD4(+) T cells of BDC2·5 T cell receptor transgenic non-obese diabetic (NOD) mice by interleukin (IL)-23 plus IL-6 produce IL-17, IL-22 and induce type 1 diabetes (T1D). Neutralizing interferon (IFN)-γ during the polarization process leads to a significant increase in IL-22 production by these Th17 cells. We also isolated IL-22-producing Th17 cells from the pancreas of wild-type diabetic NOD mice. IL-27 also blocked IL-22 production from diabetogenic Th17 cells. To determine the functional role of IL-22 produced by pathogenic Th17 cells in T1D we neutralized IL-22 in vivo by using anti-IL-22 monoclonal antibody. We found that blocking IL-22 did not alter significantly adoptive transfer of disease by pathogenic Th17 cells. Therefore, IL-22 is not required for T1D pathogenesis. The IL-22Rα receptor for IL-22 however, increased in the pancreas of NOD mice during disease progression and based upon our and other studies we suggest that IL-22 may have a regenerative and protective role in the pancreatic islets.
Collapse
Affiliation(s)
- S. M. Bellemore
- Centre for Human Immunology and Department of Microbiology and Immunology and Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - E. Nikoopour
- Centre for Human Immunology and Department of Microbiology and Immunology and Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - O. Krougly
- Centre for Human Immunology and Department of Microbiology and Immunology and Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - E. Lee‐Chan
- Centre for Human Immunology and Department of Microbiology and Immunology and Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - L. A. Fouser
- Inflammation and ImmunologyBiotherapeutics Research and Development, Pfizer Inc.CambridgeMA02140USA
| | - B. Singh
- Centre for Human Immunology and Department of Microbiology and Immunology and Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| |
Collapse
|
17
|
Zamani F, Almasi S, Kazemi T, Jahanban Esfahlan R, Aliparasti MR. New Approaches to the Immunotherapy of Type 1 Diabetes Mellitus Using Interleukin-27. Adv Pharm Bull 2015; 5:599-603. [PMID: 26793604 DOI: 10.15171/apb.2015.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/22/2014] [Accepted: 07/02/2015] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is a pancreatic beta cell specific autoimmune disease. One of the most significant current discussions in T1D studies is therapy. Since the conventional therapy, islet transplantation and external insulin, e.g., cannot prevent the destructive autoimmune process against original beta cells and persistent hyperglycemia remains, so recent developments in the field of T1D therapy paved the way to a renewed interest in immunotherapy based on the disease process, especially monoclonal antibody therapy. Due to encouraging laboratory results, cytokine antibody-based drugs could be effective in the clinical direction of the T1D disease process. Hence, implementation of this approach can be useful to improve clinical and laboratory manifestations of T1D.
Collapse
Affiliation(s)
- Fatemeh Zamani
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shohreh Almasi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran. ; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban Esfahlan
- Department of Medical Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
18
|
Yamauchi A, Itaya-Hironaka A, Sakuramoto-Tsuchida S, Takeda M, Yoshimoto K, Miyaoka T, Fujimura T, Tsujinaka H, Tsuchida C, Ota H, Takasawa S. Synergistic activations of REG I α and REG I β promoters by IL-6 and Glucocorticoids through JAK/STAT pathway in human pancreatic β cells. J Diabetes Res 2015; 2015:173058. [PMID: 25767811 PMCID: PMC4342170 DOI: 10.1155/2015/173058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/26/2015] [Indexed: 12/31/2022] Open
Abstract
Reg (Regenerating gene) gene was originally isolated from rat regenerating islets and its encoding protein was revealed as an autocrine/paracrine growth factor for β cells. Rat Reg gene is activated in inflammatory conditions for β cell regeneration. In human, although five functional REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV) were isolated, their expressions in β cells under inflammatory conditions remained unclear. In this study, we found that combined addition of IL-6 and dexamethasone (Dx) induced REG Iα and REG Iβ expression in human 1.1B4 β cells. Promoter assay revealed that a signal transducer and activator of transcription- (STAT-) binding site in each promoter of REG Iα (TGCCGGGAA) and REG Iβ (TGCCAGGAA) was essential for the IL-6+Dx-induced promoter activation. A Janus kinase 2 (JAK2) inhibitor significantly inhibited the IL-6+Dx-induced REG Iα and REG Iβ transcription. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed that IL-6+Dx stimulation increased STAT3 binding to the REG Iα promoter. Furthermore, small interfering RNA-mediated targeting of STAT3 blocked the IL-6+Dx-induced expression of REG Iα and REG Iβ. These results indicate that the expression of REG Iα and REG Iβ should be upregulated in human β cells under inflammatory conditions through the JAK/STAT pathway.
Collapse
Affiliation(s)
- Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | | | | | - Maiko Takeda
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Kiyomi Yoshimoto
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Tomoko Miyaoka
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Takanori Fujimura
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroki Tsujinaka
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Chikatsugu Tsuchida
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroyo Ota
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
19
|
IL-32γ overexpression accelerates streptozotocin (STZ)-induced type 1 diabetes. Cytokine 2014; 69:1-5. [DOI: 10.1016/j.cyto.2014.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 04/24/2014] [Accepted: 05/01/2014] [Indexed: 12/13/2022]
|
20
|
Li M, Song LJ, Qin XY. Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med 2014; 18:749-58. [PMID: 24629100 PMCID: PMC4119381 DOI: 10.1111/jcmm.12270] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of insulin-producing pancreatic β cells. In recent years, the incidence of type 1 diabetes continues to increase. It is supposed that genetic, environmental and immune factors participate in the damage of pancreatic β cells. Both the immune regulation and the immune response are involved in the pathogenesis of type 1 diabetes, in which cellular immunity plays a significant role. For the infiltration of CD4(+) and CD8(+) T lymphocyte, B lymphocytes, natural killer cells, dendritic cells and other immune cells take part in the damage of pancreatic β cells, which ultimately lead to type 1 diabetes. This review outlines the cellular immunological mechanism of type 1 diabetes, with a particular emphasis to T lymphocyte and natural killer cells, and provides the effective immune therapy in T1D, which is approached at three stages. However, future studies will be directed at searching for an effective, safe and long-lasting strategy to enhance the regulation of a diabetogenic immune system with limited toxicity and without global immunosuppression.
Collapse
Affiliation(s)
- Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Lu-Jun Song
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xin-Yu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
21
|
Wållberg M, Cooke A. Immune mechanisms in type 1 diabetes. Trends Immunol 2013; 34:583-91. [PMID: 24054837 DOI: 10.1016/j.it.2013.08.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
There are three prerequisites for development of the autoimmune disease type 1 diabetes (T1D). First, β cell-reactive T cells need to be activated; second, the response needs to be proinflammatory; and finally, immune regulation of autoreactive responses must fail. Here, we describe our current understanding of the cell types and immune mechanisms involved in each of these steps leading to T1D. Novel findings regarding β cell involvement in its own destruction, the importance of the microbiota for instruction of the immune system, and recent data from studies in T1D patients are discussed. In addition, we summarise therapeutic approaches to T1D, and how these relate to the immune mechanisms involved in disease development.
Collapse
Affiliation(s)
- Maja Wållberg
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB21QP, UK.
| | | |
Collapse
|
22
|
Jia J, Liu X, Chen Y, Zheng X, Tu L, Huang X, Wang X. Establishment of a pancreatic β cell proliferation model in vitro and a platform for diabetes drug screening. Cytotechnology 2013; 66:687-97. [PMID: 23979319 DOI: 10.1007/s10616-013-9622-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/19/2013] [Indexed: 01/13/2023] Open
Abstract
Diabetes, a disease resulting from loss of functional β cells, is globally an increasingly important condition. Based on the islet-differentiation ability of ductal epithelial cells and stimulating β cell proliferation ability of the Reg Iα gene, we aimed to establish an in vitro pancreatic β cell proliferation model for screening therapeutic drugs of diabetes in the future. Pancreatic ductal epithelial cells were isolated from male Wistar rats, and induced to differentiate into pancreatic β cells. Immunofluorescence staining assay, western blot, RT-PCR analysis, and dithizone staining were used to characterize the cells. Rat Reg Iα protein was transiently expressed in vitro by transfection of HEK 293 cells with the PCMV6-entry-REG Ia plasmid, and expression was verified by RT-PCR analysis, proliferation assay, and apoptosis assay. The pancreatic β cell proliferation model was further validated by a proliferation assay using differentiated pancreatic β cells treated with transfection supernatant. Finally, we have successfully established an in vitro pancreatic β cells proliferation model using transiently expressed rat Reg Iα protein and differentiated pancreatic β cells from pancreatic ductal epithelial cells. This model could be used as a platform to screen new drugs for islet neogenesis to cure diabetes, especially Chinese herbal drugs in the future.
Collapse
Affiliation(s)
- Jing Jia
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
23
|
The involvement of interleukin-22 in the expression of pancreatic beta cell regenerative Reg genes. CELL REGENERATION 2013; 2:2. [PMID: 25408874 PMCID: PMC4230743 DOI: 10.1186/2045-9769-2-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/02/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND In Type 1 diabetes, the insulin-producing β-cells within the pancreatic islets of Langerhans are destroyed. We showed previously that immunotherapy with Bacillus Calmette-Guerin (BCG) or complete Freund's adjuvant (CFA) of non-obese diabetic (NOD) mice can prevent disease process and pancreatic β-cell loss. This was associated with increased islet Regenerating (Reg) genes expression, and elevated IL-22-producing Th17 T-cells in the pancreas. RESULTS We hypothesized that IL-22 was responsible for the increased Reg gene expression in the pancreas. We therefore quantified the Reg1, Reg2, and Reg3δ (INGAP) mRNA expression in isolated pre-diabetic NOD islets treated with IL-22. We measured IL-22, and IL-22 receptor(R)-α mRNA expression in the pancreas and spleen of pre-diabetic and diabetic NOD mice. Our results showed: 1) Reg1 and Reg2 mRNA abundance to be significantly increased in IL-22-treated islets in vitro; 2) IL-22 mRNA expression in the pre-diabetic mouse pancreas increased with time following CFA treatment; 3) a reduced expression of IL-22Rα following CFA treatment; 4) a down-regulation in Reg1 and Reg2 mRNA expression in the pancreas of pre-diabetic mice injected with an IL-22 neutralizing antibody; and 5) an increased islet β-cell DNA synthesis in vitro in the presence of IL-22. CONCLUSIONS We conclude that IL-22 may contribute to the regeneration of β-cells by up-regulating Regenerating Reg1 and Reg2 genes in the islets.
Collapse
|
24
|
Abstract
INTRODUCTION Th22 and related cytokines regulate various processes and have been linked to diverse effects. The levels of Th22 and cytokine IL-22 are increased in several disorders and positively related to some autoimmune diseases. Preclinical studies have suggested that the inhibition or stimulation of IL-22 is an attractive approach to reverse the immune disorders. Simultaneously, considering many patients with refractory autoimmune diseases respond poorly to the therapies which are highly toxic, more effective therapies are to be examined. AREAS COVERED The role of Th22 cells and related cytokines and therapeutic strategies targeting them in many illnesses, especially inflammatory and autoimmune diseases. EXPERT OPINION Th22 cells and related cytokine IL-22 regulate multiple biological functions and play an important role in a number of inflammatory and autoimmune diseases. They have unique and attractive advantages for targeting. Targeting IL-22 has already been trialed in many mice experiments, showing better efficacy and fewer side effects compared with classical drugs. Targeting IL-22 or Th22 might provide pathogenetic treatment. However, Th22 subset is a recently identified Th subset and its associated research is extremely limited. Therefore, there are still many unanswered questions and further researches are warranted.
Collapse
Affiliation(s)
- Tian Tian
- Shandong University, Qilu Hospital, Department of Hematology, Jinan, 250012, P R China
| | | | | |
Collapse
|
25
|
Moudgil KD, Choubey D. Cytokines in autoimmunity: role in induction, regulation, and treatment. J Interferon Cytokine Res 2011; 31:695-703. [PMID: 21942420 DOI: 10.1089/jir.2011.0065] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytokines play a pivotal role in the pathogenesis of autoimmune diseases. The precise triggers for the breakdown of self-tolerance and the subsequent events leading to the induction of pathogenic autoimmune responses remain to be defined for most of the naturally occurring autoimmune diseases. Studies conducted in experimental models of human autoimmune diseases and observations in patients have revealed a general scheme in which proinflammatory cytokines contribute to the initiation and propagation of autoimmune inflammation, whereas anti-inflammatory cytokines facilitate the regression of inflammation and recovery from acute phase of the disease. This idea is embodied in the T helper (Th) 1/Th2 paradigm, which over the past two decades has had a major influence on our thinking about the role of cytokines in autoimmunity. Interestingly, over the past decade, the interleukin (IL)-17/IL-23 axis has rapidly emerged as the new paradigm that has compelled us to critically re-examine the cytokine-driven immune events in the pathogenesis and treatment of autoimmunity. In this 2-volume special issue of the journal, leading experts have presented their research findings and viewpoints on the role of cytokines in the context of specific autoimmune diseases.
Collapse
Affiliation(s)
- Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|