1
|
Zhu Y, Guan X, Geng X, Du Y, Jin S, Liu J. The signaling pathways involved in non-coding RNA regulation during osteogenic differentiation of periodontal tissue-derived cells in the field of periodontitis. J Periodontal Res 2024; 59:18-31. [PMID: 37961979 DOI: 10.1111/jre.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Periodontitis is a prevalent oral disease caused by chronic inflammation of the periodontal tissues surrounding the teeth, which can lead to bone loss, tooth loosening, and even tooth loss. This inflammation has a negative impact on the osteogenic differentiation capacity of periodontal tissue-derived cells. Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not encode proteins but can regulate various physiological processes. In this review, we summarized the critical signaling pathways that ncRNAs modulate in osteogenic differentiation of periodontal tissue-derived cells, such as the Wnt, BMP/Smad, NF-κB, and PI3-K/Akt/mTOR pathways. This comprehensive exploration of ncRNA-mediated modulation offers fresh and promising insights for prospective approaches in the management of periodontitis and the advancement of periodontal regeneration therapies.
Collapse
Affiliation(s)
- Yinci Zhu
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaorui Geng
- Department of Otolaryngology. Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Yuanhang Du
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Suhan Jin
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Diseases Research, Higher Education Institution, Zunyi, China
| |
Collapse
|
2
|
Han P, Moran CS, Liu C, Griffiths R, Zhou Y, Ivanovski S. Engineered adult stem cells: Current clinical trials status of disease treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:33-62. [PMID: 37678978 DOI: 10.1016/bs.pmbts.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Regenerative medicine is an interdisciplinary field involving the process of replacing and regenerating cells/tissues or organs by integrating medicine, science, and engineering principles to enhance the intrinsic regenerative capacity of the host. Recently, engineered adult stem cells have gained attention for their potential use in regenerative medicine by reducing inflammation and modulating the immune system. This chapter introduces adult stem cell engineering and chimeric antigen receptor T cells (CAR T) gene therapy and summarises current engineered stem cell- and extracellular vesicles (EVs)-focused clinical trial studies that provide the basis for the proposal of a personalised medicine approach to diseases diagnosis and treatment.
Collapse
Affiliation(s)
- Pingping Han
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | - Corey Stephan Moran
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | - Chun Liu
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia
| | | | - Yinghong Zhou
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| | - Sašo Ivanovski
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD, Australia; The University of Queensland, School of Dentistry, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Cao Z, Yan Z, Wang J, Yang H, Han B, Gao J, Guo Y. Conditioned medium of PC‑3 prostate cancer cells affects microRNA and mRNA profiles in mechanically strained osteoblasts. Exp Ther Med 2023; 25:138. [PMID: 36845959 PMCID: PMC9947580 DOI: 10.3892/etm.2023.11837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Bone is the main site of metastasis from prostate cancer; therefore, it is important to investigate the microRNAs (miRNAs) and mRNA associated with bone metastases from prostate cancer. Since an appropriate mechanical environment is important in the growth of bone, in the present study, the miRNA, mRNA, and long non-coding RNA (lncRNA) profiles of mechanically strained osteoblasts treated with conditioned medium (CM) from PC-3 prostate cancer cells were studied. MC3T3-E1 osteoblastic cells were treated with the CM of PC-3 prostate cancer cells and were simultaneously stimulated with a mechanical tensile strain of 2,500 µε at 0.5 Hz; the osteoblastic differentiation of the MC3T3-E1 cells was then assessed. In addition, the differential expression levels of mRNA, miRNA and lncRNA in MC3T3-E1 cells treated with the CM of PC-3 cells were screened, and some of the miRNAs and mRNAs were verified by reverse transcription-quantitative PCR (RT-qPCR). The signal molecules and signaling pathways associated with osteogenic differentiation were predicted by bioinformatics analysis. The CM of PC-3 prostate cancer cells suppressed osteoblastic differentiation of MC3T3-E1 cells. A total of seven upregulated miRNAs and 12 downregulated miRNAs were selected by sequencing and further verified using RT-qPCR, and related differentially expressed genes (11 upregulated and 12 downregulated genes) were also selected by sequencing and further verified using RT-qPCR; subsequently, according to the enrichment of differentially expressed genes in signaling pathways, nine signaling pathways involved in osteogenic differentiation were screened out. Furthermore, a functional mRNA-miRNA-lncRNA regulatory network was constructed. The differentially expressed miRNAs, mRNAs and lncRNAs may provide a novel signature in bone metastases of prostate cancer. Notably, some of the signaling pathways and related genes may be associated with pathological osteogenic differentiation caused by bone metastasis of prostate cancer.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Key Laboratory of Biochemistry and Molecular Biology, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541199, P.R. China
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhixiong Yan
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Key Laboratory of Biochemistry and Molecular Biology, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541199, P.R. China
| | - Jiahui Wang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Key Laboratory of Biochemistry and Molecular Biology, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541199, P.R. China
| | - Huan Yang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Key Laboratory of Biochemistry and Molecular Biology, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541199, P.R. China
| | - Biao Han
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Key Laboratory of Biochemistry and Molecular Biology, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541199, P.R. China
| | - Jintao Gao
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Key Laboratory of Biochemistry and Molecular Biology, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541199, P.R. China
| | - Yong Guo
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Key Laboratory of Biochemistry and Molecular Biology, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541199, P.R. China
| |
Collapse
|
4
|
González-Quintanilla D, Abásolo N, Astudillo P. Wnt Signaling in Periodontal Disease. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.763308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is a multifactorial and chronic condition associated with the formation of a dysbiotic biofilm, leading to a pro-inflammatory environment that can modulate cell signaling. The Wnt pathway plays fundamental roles during homeostasis and disease, and emerging evidence suggests its involvement in the maintenance of the periodontium and the development of periodontitis. Here, we summarize the role of the Wnt/β-catenin and non-canonical Wnt signaling pathways in periodontitis. The accumulated data suggests specific roles for each branch of the Wnt pathway. Wnt5a emerges as a critical player promoting periodontal ligament remodeling and impairing regenerative responses modulated by the Wnt/β-catenin pathway, such as alveolar bone formation. Collectively, the evidence suggests that achieving a proper balance between the Wnt/β-catenin and non-canonical pathways, rather than their independent modulation, might contribute to controlling the progression and severity of the periodontal disease.
Collapse
|
5
|
Han P, Vaquette C, Abdal-hay A, Ivanovski S. The Mechanosensing and Global DNA Methylation of Human Osteoblasts on MEW Fibers. NANOMATERIALS 2021; 11:nano11112943. [PMID: 34835707 PMCID: PMC8621030 DOI: 10.3390/nano11112943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/02/2023]
Abstract
Cells interact with 3D fibrous platform topography via a nano-scaled focal adhesion complex, and more research is required on how osteoblasts sense and respond to random and aligned fibers through nano-sized focal adhesions and their downstream events. The present study assessed human primary osteoblast cells’ sensing and response to random and aligned medical-grade polycaprolactone (PCL) fibrous 3D scaffolds fabricated via the melt electrowriting (MEW) technique. Cells cultured on a tissue culture plate (TCP) were used as 2D controls. Compared to 2D TCP, 3D MEW fibrous substrates led to immature vinculin focal adhesion formation and significantly reduced nuclear localization of the mechanosensor-yes-associated protein (YAP). Notably, aligned MEW fibers induced elongated cell and nucleus shape and highly activated global DNA methylation of 5-methylcytosine, 5-hydroxymethylcytosine, and N-6 methylated deoxyadenosine compared to the random fibers. Furthermore, although osteogenic markers (osterix-OSX and bone sialoprotein-BSP) were significantly enhanced in PCL-R and PCL-A groups at seven days post-osteogenic differentiation, calcium deposits on all seeded samples did not show a difference after normalizing for DNA content after three weeks of osteogenic induction. Overall, our study linked 3D extracellular fiber alignment to nano-focal adhesion complex, nuclear mechanosensing, DNA epigenetics at an early point (24 h), and longer-term changes in osteoblast osteogenic differentiation.
Collapse
Affiliation(s)
- Pingping Han
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
| | - Abdalla Abdal-hay
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
- Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Sašo Ivanovski
- Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics Nanodiagnostic and Therapeutic Group, School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (C.V.); (A.A.-h.)
- Correspondence:
| |
Collapse
|
6
|
Periodontal and Dental Pulp Cell-Derived Small Extracellular Vesicles: A Review of the Current Status. NANOMATERIALS 2021; 11:nano11071858. [PMID: 34361246 PMCID: PMC8308278 DOI: 10.3390/nano11071858] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound lipid particles that are secreted by all cell types and function as cell-to-cell communicators through their cargos of protein, nucleic acid, lipids, and metabolites, which are derived from their parent cells. There is limited information on the isolation and the emerging therapeutic role of periodontal and dental pulp cell-derived small EVs (sEVs, <200 nm, or exosome). In this review, we discuss the biogenesis of three EV subtypes (sEVs, microvesicles and apoptotic bodies) and the emerging role of sEVs from periodontal ligament (stem) cells, gingival fibroblasts (or gingival mesenchymal stem cells) and dental pulp cells, and their therapeutic potential in vitro and in vivo. A review of the relevant methodology found that precipitation-based kits and ultracentrifugation are the two most common methods to isolate periodontal (dental pulp) cell sEVs. Periodontal (and pulp) cell sEVs range in size, from 40 nm to 2 μm, due to a lack of standardized isolation protocols. Nevertheless, our review found that these EVs possess anti-inflammatory, osteo/odontogenic, angiogenic and immunomodulatory functions in vitro and in vivo, via reported EV cargos of EV–miRNAs, EV–circRNAs, EV–mRNAs and EV–lncRNAs. This review highlights the considerable therapeutic potential of periodontal and dental pulp cell-derived sEVs in various regenerative applications.
Collapse
|
7
|
Jiao K, Walsh LJ, Ivanovski S, Han P. The Emerging Regulatory Role of Circular RNAs in Periodontal Tissues and Cells. Int J Mol Sci 2021; 22:ijms22094636. [PMID: 33924932 PMCID: PMC8124626 DOI: 10.3390/ijms22094636] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is a chronic complex inflammatory disease associated with a destructive host immune response to microbial dysbiosis, leading to irreversible loss of tooth-supporting tissues. Regeneration of functional periodontal soft (periodontal ligament and gingiva) and hard tissue components (cementum and alveolar bone) to replace lost tissues is the ultimate goal of periodontal treatment, but clinically predictable treatments are lacking. Similarly, the identification of biomarkers that can be used to accurately diagnose periodontitis activity is lacking. A relatively novel category of molecules found in oral tissue, circular RNAs (circRNAs) are single-stranded endogenous, long, non-coding RNA molecules, with covalently circular-closed structures without a 5' cap and a 3' tail via non-classic backsplicing. Emerging research indicates that circRNAs are tissue and disease-specific expressed and have crucial regulatory functions in various diseases. CircRNAs can function as microRNA or RNA binding sites or can regulate mRNA. In this review, we explore the biogenesis and function of circRNAs in the context of the emerging role of circRNAs in periodontitis pathogenesis and the differentiation of periodontal cells. CircMAP3K11, circCDK8, circCDR1as, circ_0062491, and circ_0095812 are associated with pathological periodontitis tissues. Furthermore, circRNAs are expressed in periodontal cells in a cell-specific manner. They can function as microRNA sponges and can form circRNA-miRNA-mRNA networks during osteogenic differentiation for periodontal-tissue (or dental pulp)-derived progenitor cells.
Collapse
Affiliation(s)
- Kexin Jiao
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
| | - Laurence J. Walsh
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
| | - Sašo Ivanovski
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- Correspondence: (S.I.); (P.H.)
| | - Pingping Han
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia;
- Correspondence: (S.I.); (P.H.)
| |
Collapse
|
8
|
CTHRC1 Knockdown Promotes Inflammatory Responses Partially by p38 MAPK Activation in Human Periodontal Ligament Cells. Inflammation 2021; 44:1831-1842. [PMID: 33846931 DOI: 10.1007/s10753-021-01461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Collagen triple helix repeat containing 1 (CTHRC1), a secreted glycoprotein, is widely expressed in many tissues. It has been recently defined as a novel marker for rheumatoid arthritis (RA), a systemic inflammatory disorder. However, the precise role of CTHRC1 in other chronic inflammatory diseases, like periodontal disease, remains unclear. This research aimed to explore the presence of CTHRC1 in periodontal inflammation, determine the precise role in inflammatory response modulation in periodontal ligament cells (PDLCs), and explore its underlying mechanisms. In vivo gingival crevicular fluid (GCF) and gingivae were obtained from healthy people and chronic periodontitis patients. Maxillary tissues of mice with or without ligature-induced periodontitis were immunostained for CTHRC1. In vitro human PDLCs were treated with tumor necrosis factor alpha (TNF-α) to mimic the inflammatory environment. Small interfering RNA (siRNA) was used to silence CTHRC1. SB203580 was used to inhibit the p38 mitogen-activated protein kinase (MAPK) pathway. CTHRC1 was highly expressed in GCF and gingival tissues of periodontitis patients. Animal models also revealed the same tendency. CTHRC1 knockdown promoted inflammatory cytokine production and activated the p38 MAPK signaling pathway in PDLCs. Inhibiting the p38 MAPK signaling pathway partially attenuated the inflammatory responses. This study revealed that CTHRC1 was highly expressed in periodontitis and suggested that CTHRC1 might play an important role in modulating periodontal inflammation.
Collapse
|
9
|
Han P, Bartold PM, Salomon C, Ivanovski S. Salivary Outer Membrane Vesicles and DNA Methylation of Small Extracellular Vesicles as Biomarkers for Periodontal Status: A Pilot Study. Int J Mol Sci 2021; 22:ijms22052423. [PMID: 33670900 PMCID: PMC7957785 DOI: 10.3390/ijms22052423] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Periodontitis is an inflammatory disease, associated with a microbial dysbiosis. Early detection using salivary small extracellular vesicles (sEVs) biomarkers may facilitate timely prevention. sEVs derived from different species (i.e., humans, bacteria) are expected to circulate in saliva. This pilot study recruited 22 participants (seven periodontal healthy, seven gingivitis and eight periodontitis) and salivary sEVs were isolated using the size-exclusion chromatography (SEC) method. The healthy, gingivitis and periodontitis groups were compared in terms of salivary sEVs in the CD9+ sEV subpopulation, Gram-negative bacteria-enriched lipopolysaccharide (LPS+) outer membrane vesicles (OMVs) and global DNA methylation pattern of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) and N6-Methyladenosine (m6dA). It was found that LPS+ OMVs, global 5mC methylation and four periodontal pathogens (T. denticola, E. corrodens, P. gingivalis and F. nucleatum) that secreted OMVs were significantly increased in periodontitis sEVs compared to those from healthy groups. These differences were more pronounced in sEVs than the whole saliva and were more superior in distinguishing periodontitis than gingivitis, in comparison to healthy patients. Of note, global 5mC hypermethylation in salivary sEVs can distinguish periodontitis patients from both healthy controls and gingivitis patients with high sensitivity and specificity (AUC = 1). The research findings suggest that assessing global sEV methylation may be a useful biomarker for periodontitis.
Collapse
Affiliation(s)
- Pingping Han
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
- Correspondence: (P.H.); (S.I.)
| | - Peter Mark Bartold
- School of Dentistry, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD 4029, Australia;
| | - Sašo Ivanovski
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
- Epigenetics Nanodiagnostic and Therapeutic Group, Center for Oral-Facial Regeneration, Rehabilitation and Reconstruction (COR3), School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
- Correspondence: (P.H.); (S.I.)
| |
Collapse
|
10
|
Wei X, Liu Q, Guo S, Wu Y. Role of Wnt5a in periodontal tissue development, maintenance, and periodontitis: Implications for periodontal regeneration (Review). Mol Med Rep 2021; 23:167. [PMID: 33398377 PMCID: PMC7821221 DOI: 10.3892/mmr.2020.11806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
The periodontium is a highly dynamic microenvironment constantly adapting to changing external conditions. In the processes of periodontal tissue formation and remodeling, certain molecules may serve an essential role in maintaining periodontal homeostasis. Wnt family member 5a (Wnt5a), as a member of the Wnt family, has been identified to have extensive biological roles in development and disease, predominantly through the non‑canonical Wnt signaling pathway or through interplay with the canonical Wnt signaling pathway. An increasing number of studies has also demonstrated that it serves crucial roles in periodontal tissues. Wnt5a participates in the development of periodontal tissues, maintains a non‑mineralized state of periodontal ligament, and regulates bone homeostasis. In addition, Wnt5a is involved in the pathogenesis of periodontitis. Recently, it has been shown to serve a positive role in the regeneration of integrated periodontal complex. The present review article focuses on recent research studies of Wnt5a and its functions in development, maintenance, and pathological disorders of periodontal tissues, as well as its potential effect on periodontal regeneration.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
11
|
Detection of Salivary Small Extracellular Vesicles Associated Inflammatory Cytokines Gene Methylation in Gingivitis. Int J Mol Sci 2020; 21:ijms21155273. [PMID: 32722322 PMCID: PMC7432462 DOI: 10.3390/ijms21155273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Salivary small extracellular vesicles (sEV) are emerging as a potential liquid biopsy for oral diseases. However, technical difficulties for salivary sEV isolation remain a challenge. Twelve participants (five periodontally healthy, seven gingivitis patients) were recruited and salivary sEV were isolated by ultracentrifuge (UC-sEV) and size exclusion chromatography (SEC-sEV). The effect of UC and SEC on sEV yield, DNA methylation of five cytokine gene promoters (interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, IL-8, and IL-10), and functional uptake by human primary gingival fibroblasts (hGFs) was investigated. The results demonstrated that SEC-sEV had a higher yield of particles and particle/protein ratios compared to UC-sEV, with a minimal effect on the detection of DNA methylation of five cytokine genes and functional uptake in hGFs (n = 3). Comparing salivary sEV characteristics between gingivitis and healthy patients, gingivitis-UC-sEV were increased compared to the healthy group; while no differences were found in sEV size, oral bacterial gDNA, and DNA methylation for five cytokine gene promoters, for both UC-sEV and SEC-sEV. Overall, the data indicate that SEC results in a higher yield of salivary sEV, with no significant differences in sEV DNA epigenetics, compared to UC.
Collapse
|
12
|
Li X, He XT, Kong DQ, Xu XY, Wu RX, Sun LJ, Tian BM, Chen FM. M2 Macrophages Enhance the Cementoblastic Differentiation of Periodontal Ligament Stem Cells via the Akt and JNK Pathways. Stem Cells 2019; 37:1567-1580. [PMID: 31400241 DOI: 10.1002/stem.3076] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/21/2019] [Indexed: 12/11/2022]
Abstract
Although macrophage (Mφ) polarization has been demonstrated to play crucial roles in cellular osteogenesis across the cascade of events in periodontal regeneration, how polarized Mφ phenotypes influence the cementoblastic differentiation of periodontal ligament stem cells (PDLSCs) remains unknown. In the present study, human monocyte leukemic cells (THP-1) were induced into M0, M1, and M2 subsets, and the influences of these polarized Mφs on the cementoblastic differentiation of PDLSCs were assessed in both conditioned medium-based and Transwell-based coculture systems. Furthermore, the potential pathways and cyto-/chemokines involved in Mφ-mediated cementoblastic differentiation were screened and identified. In both systems, M2 subsets increased cementoblastic differentiation-related gene/protein expression levels in cocultured PDLSCs, induced more PDLSCs to differentiate into polygonal and square cells, and enhanced alkaline phosphatase activity in PDLSCs. Furthermore, Akt and c-Jun N-terminal Kinase (JNK) signaling was identified as a potential pathway involved in M2 Mφ-enhanced PDLSC cementoblastic differentiation, and cyto-/chemokines (interleukin (IL)-10 and vascular endothelial growth factor [VEGF]) secreted by M2 Mφs were found to be key players that promoted cell cementoblastic differentiation by activating Akt signaling. Our data indicate for the first time that Mφs are key modulators during PDLSC cementoblastic differentiation and are hence very important for the regeneration of multiple periodontal tissues, including the cementum. Although the Akt and JNK pathways are involved in M2 Mφ-enhanced cementoblastic differentiation, only the Akt pathway can be activated via a cyto-/chemokine-associated mechanism, suggesting that players other than cyto-/chemokines also participate in the M2-mediated cementoblastic differentiation of PDLSCs. Stem Cells 2019;37:1567-1580.
Collapse
Affiliation(s)
- Xuan Li
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiao-Tao He
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - De-Qin Kong
- Department of Toxicology, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, The Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xin-Yue Xu
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Rui-Xin Wu
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Li-Juan Sun
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bei-Min Tian
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fa-Ming Chen
- Department of Periodontology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
13
|
Xiaoguang L, Yizhu W, Bin G. [Tumor necrosis factor-α regulates the osteogenic differentiation of bone marrow mesenchymal stem cells in chronic periodontitis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:334-338. [PMID: 28675022 DOI: 10.7518/hxkq.2017.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) and ideal adult stem cells for alveolar bone regeneration considerably help restore the structure and function of the periodontium and promote the healing of periodontal disease. Thus, BMSC features, especially the mechanism of osteogenic differentiation, has recently become a research hotspot. Tumor necrosis factor-α (TNF-α), which is the main factor in the periodontal inflammatory microenvironment, is directly related to the osteogenic differentiation of BMSCs. Exploring the TNF-α-regulated differentiation mechanism of BMSCs aids in the search for new treatment targets. Such investigation also promotes the development of stem cell therapy for periodontal diseases. This article aims to describe the potential of TNF-α in regulating the osteogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Li Xiaoguang
- Institution of Stomatology, The PLA General Hospital, Beijing 100853, China
| | - Wang Yizhu
- Institution of Stomatology, The PLA General Hospital, Beijing 100853, China
| | - Guo Bin
- Institution of Stomatology, The PLA General Hospital, Beijing 100853, China
| |
Collapse
|
14
|
Chen Z, Ni S, Han S, Crawford R, Lu S, Wei F, Chang J, Wu C, Xiao Y. Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages. NANOSCALE 2017; 9:706-718. [PMID: 27959374 DOI: 10.1039/c6nr06421c] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The osteoimmune environment plays indispensable roles in bone regeneration because the early immune environment that exists during the regenerative process promotes the recruitment and differentiation of osteoblastic lineage cells. The response of immune cells growing on nanotopographic surfaces and the microenvironment they generate should be considered when evaluating nanotopography-mediated osteogenesis, which are topics that are generally neglected in the field. In this study, we investigated the modulatory effects of nanoporous anodic alumina with different sized pores on macrophage responses and their subsequent effects on the osteogenic differentiation of bone marrow stromal cells (BMSCs). The nanopore structure and the pore size were found to be important adhesive cues for macrophages, which affected their spreading and cell shape, subsequently regulated the expression and activation of autophagy pathway components (LC3A/B, Beclin-1, Atg3, Atg7, and P62) and modulated the inflammatory response, osteoclastic activities, and release of osteogenic factors. Subsequently, the osteogenic pathways (Wnt and BMP) of BMSCs were found to be regulated by different nanopore-induced inflammatory environments, which affected the osteogenic differentiation outcomes. This study is the first to emphasize the effects of immune cells on nanotopography-mediated osteogenesis, which could lead to a new strategy for the development of advanced nanobiomaterials for tissue engineering, nanomedicine and immunotherapeutic applications.
Collapse
Affiliation(s)
- Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, People's Republic of China and Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| | - Siyu Ni
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai, 201620, People's Republic of China
| | - Shengwei Han
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| | - Ross Crawford
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| | - Shifeier Lu
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| | - Fei Wei
- Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, People's Republic of China and Institute of Health and Biomedical Innovation & the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia.
| |
Collapse
|