1
|
He F, Chen C, Wang Y, Wang S, Lyu S, Jiao J, Huang G, Yang J. Safranal acts as a neurorestorative agent in rats with cerebral ischemic stroke via upregulating SIRT1. Exp Ther Med 2024; 27:71. [PMID: 38234630 PMCID: PMC10792405 DOI: 10.3892/etm.2023.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/09/2023] [Indexed: 01/19/2024] Open
Abstract
Safranal is an active ingredient of saffron (Crocus sativus L.). Its neuroprotective role in ischemic stroke (IS) through reducing oxidative stress damage has been widely reported. However, the neurorestorative mechanisms of safranal are still in the preliminary stage of exploration. the present study is aimed to discuss the effects of safranal on the recovery of neural function after IS. A middle cerebral artery occlusion/reperfusion (MCAO/R) rat model and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in rat brain microvascular endothelial cells (RBMEC) were established to explore the effects of safranal on IS in vivo and in vitro. It was found that safranal dramatically reduced infarct size and Nissl's body loss in rats subjected to MCAO/R. Safranal also promoted neuron survival, stimulated neurogenesis, induced angiogenesis and increased SIRT1 expression in vivo and in vitro. Silencing of SIRT1 reversed the above effects of safranal on OGD/R-induced RBMEC. The present study indicated that safranal was a promising compound to exert neurorestorative effect in IS via upregulating SIRT1 expression. These results offer insight into developing new mechanisms in the recovery of neural function after safranal treatment of IS.
Collapse
Affiliation(s)
- Fei He
- Department of Rehabilitation Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Chunmian Chen
- Key Laboratory of Neuropsychiatric Endocrinology, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Yangyang Wang
- Department of Rehabilitation Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Shuen Wang
- Department of Rehabilitation Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Shuangyan Lyu
- Department of Rehabilitation Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Junqiang Jiao
- Department of Rehabilitation Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Guoyong Huang
- Key Laboratory of Neuropsychiatric Endocrinology, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| | - Jiangshun Yang
- Key Laboratory of Neuropsychiatric Endocrinology, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325006, P.R. China
| |
Collapse
|
2
|
Hamdi E, Muñiz-Gonzalez AB, Hidouri S, Bermejo AM, Sakly M, Venero C, Amara S. Prevention of neurotoxicity and cognitive impairment induced by zinc nanoparticles by oral administration of saffron extract. J Anim Physiol Anim Nutr (Berl) 2023; 107:1473-1494. [PMID: 37246965 DOI: 10.1111/jpn.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/29/2022] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
The accumulation of relatively higher dose of zinc oxide nanoparticles in brain was reported to produce neurotoxicity. Indeed, nanoparticles have a high ability to penetrate biological membranes and be uptaken by cells, which may cause cell disorders and physiological dysfunctions. The aim of the current study was to evaluate, whether oral administration of saffron extract, in rats, can protect from neurotoxicity and behavioural disturbances induced by chronic administration of ZnO-NPs. Daily oral administration of ZnO-NPs was performed for 21 consecutive days to induce oxidative stress-like situation. Then after the saffron extract was concomitantly administrated in several rat groups to overcome the nanotoxicological effect induced by ZnO-NPs. In the frontal cortex, the hippocampus and the cerebellum, ZnO-NPs induced a H2 O2 -oxydative stress-like effect reflected in reduced enzymatic activities of catalase, superoxide dismutase and glutathione S-transferase, and decreased acetylcholinesterase activity. In addition, increased levels of proinflammatory interleukins IL-6 and IL-1-⍺ occurred in the hippocampus, reveal the existence of brain inflammation. The concomitant administration of saffron extract to animals exposed to ZnO-NPs prevented the enhanced anxiety-related to the behaviour in the elevated plus-maze test, the open field test and preserved spatial learning abilities in the Morris water maze. Moreover, animals exposed to ZnO-NPs and saffron showed abnormal activity of several antioxidant enzymes as well as acetylcholinesterase activity, an effect that may underly the preserved anxiety-like behaviour and spatial learning abilities observed in these animals. Saffron extract has a potential beneficial therapeutic effect: antioxidant, anti-inflammatory and neuroprotective agent.
Collapse
Affiliation(s)
- Essia Hamdi
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Department of Mathematical and Fluid Physics, Environmental Toxicology and Biology Group, UNED, Madrid, Spain
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ana-Belén Muñiz-Gonzalez
- Department of Mathematical and Fluid Physics, Environmental Toxicology and Biology Group, UNED, Madrid, Spain
| | - Slah Hidouri
- Department of Chemistry, Faculté des Sciences de Bizerte, Zarzouna, Tunisie
| | - Alberto M Bermejo
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Mohsen Sakly
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Salem Amara
- Laboratory of Integrative Physiology, Department of Sciences of Life, Faculty of Sciences of Bizerte, University of Carthage, Jarzouna, Tunisia
- Department of Natural and Applied Sciences in Afif, Afif, Faculty of Sciences and Humanities, Shaqra University, Sahqra, Saudi Arabia
| |
Collapse
|
3
|
Potential Role of Phytochemical Extract from Saffron in Development of Functional Foods and Protection of Brain-Related Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6480590. [PMID: 36193081 PMCID: PMC9526642 DOI: 10.1155/2022/6480590] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
The present review is designed to measure the effects of saffron extract in functional foods and its pharmacological properties against various disorders. Saffron is a traditional medicinal plant used as a food additive. The stigma of saffron has bioactive compounds such as safranal, crocin, crocetin, picrocrocin, kaempferol, and flavonoid. These bioactive compounds can be extracted using conventional (maceration, solvent extraction, soxhlet extraction, and vapor or hydrodistillation) and novel techniques (emulsion liquid membrane extraction, ultrasound-assisted extraction, enzyme-associated extraction, pulsed electric field extraction, microwave-assisted extraction, and supercritical fluid extraction). Saffron is used as a functional ingredient, natural colorant, shelf-life enhancer, and fortifying agent in developing different food products. The demand for saffron has been increasing in the pharma industry due to its protection against cardiovascular and Alzheimer disease and its antioxidant, anti-inflammatory, antitumor, and antidepressant properties. Conclusively, the phytochemical compounds of saffron improve the nutrition value of products and protect humans against various disorders.
Collapse
|
4
|
Tahmasbi F, Araj-Khodaei M, Mahmoodpoor A, Sanaie S. Effects of saffron (Crocus sativus L.) on anthropometric and cardiometabolic indices in overweight and obese patients: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36:3394-3414. [PMID: 35866520 DOI: 10.1002/ptr.7530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022]
Abstract
The worldwide prevalence of obesity is approximately tripled between 1975 and 2016 according to World Health Organization; therefore, obesity is now considered a global pandemic that needs academic and clinical focus. In search of antiobesity agents, Crocus sativus, known widely as saffron, has been praised for its beneficial effects. Several randomized controlled trials (RCTs) have been conducted to investigate the weight lowering effect of saffron. Following PRISMA guidelines, several medical databases were comprehensively searched for RCTs with a population consisting of obese individuals. A random-effects meta-analysis was used to pool estimates across studies, and standardized mean difference (SMD) was used to synthesize quantitative results. Twenty-five RCTs met the inclusion criteria. Meta-analysis showed a nonsignificant decrease for weight (-0.32 kg; CI: -3.15, 2.51; p = 0.82), BMI (-0.06 kg/m2 ;CI:-1.04,0.93; p = .91), waist circumference (-1.23 cm; CI: -4.14, 1.68; p = .41), and hip circumference (-0.38 cm; CI: -5.99, 5.23; p = .89) and a significant decrease of waist-to-hip ratio (SMD = -0.41; CI: -0.73, -0.09; p = .01; I2 = 0%). The mean difference in fasting blood sugar showed a significant reduction in patients with metabolic syndrome (SMD = -0.30; 95% CI: -0.63, 0.03; p = .07; I2 = 0.37%) but a nonsignificant change in the HbA1C level (WMD = 0.05; 95% CI: 0.32, 0.41; p = .79). Despite bearing several limitations, mainly as a result of heterogeneity among included studies, the available evidence indicates saffron supplementation shows promising effects on some cardiometabolic factors among overweight to obese patients; however, further investigations and high-quality evidence are required for more generalizable and comprehensive results.
Collapse
Affiliation(s)
- Fateme Tahmasbi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Persian Medicine, Faculty of Persian medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Anesthesiology and critical care department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, Bashiry M, Ezzat SM, Setzer WN, Martorell M, Mileski KS, Bagiu IC, Docea AO, Calina D, Cho WC. The Pharmacological Activities of Crocus sativus L.: A Review Based on the Mechanisms and Therapeutic Opportunities of its Phytoconstituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8214821. [PMID: 35198096 PMCID: PMC8860555 DOI: 10.1155/2022/8214821] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.
Collapse
Affiliation(s)
- Monica Butnariu
- 1Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timișoara, Romania
| | - Cristina Quispe
- 2Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- 3Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- 4Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Laxman Singh
- 6G.B. Pant National Institute of Himalayan Environment & Sustainable Development Kosi-Katarmal, Almora, Uttarakhand, India
| | - Nora M. Aborehab
- 7Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Abdelhakim Bouyahya
- 8Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Alessandro Venditti
- 9Dipartimento di Chimica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Surjit Sen
- 10Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- 11Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- 10Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Moein Bashiry
- 12Department of Food Science and Technology, Nutrition and Food Sciences Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahira M. Ezzat
- 13Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- 14Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - William N. Setzer
- 15Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Miquel Martorell
- 16Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Ksenija S. Mileski
- 17Department of Morphology and Systematic of Plants, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Iulia-Cristina Bagiu
- 18Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timișoara, Romania
- 19Multidisciplinary Research Center on Antimicrobial Resistance, Timișoara, Romania
| | - Anca Oana Docea
- 20Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- 21Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- 22Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
6
|
Ulya T, Ardianto C, Anggreini P, Budiatin AS, Setyawan D, Khotib J. Quercetin promotes behavioral recovery and biomolecular changes of melanocortin-4 receptor in mice with ischemic stroke. J Basic Clin Physiol Pharmacol 2021; 32:349-355. [PMID: 34214302 DOI: 10.1515/jbcpp-2020-0490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/03/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Ischemic stroke is known as a common causes of disability, lower psychological well-being as well as preventable death. The pathogenesis of ischemic stroke process becomes worse immediately after oxidative stress occurs. One of the flavonoids with antioxidant abilities is quercetin. This study was aimed to investigate quercetin administration on the behavioral functions (motor and sensory) and expression of melanocortin-4 receptor (MC4R) in mice with ischemic stroke. METHODS Male ICR mice were divided into sham, stroke, stroke with quercetin 100, 150, and 200 mg/kg. The stroke model was performed by blocking the left common carotid artery for 2 h. Quercetin was intraperitoneally administered daily for seven days. Evaluation was conducted during two weeks after induction using ladder rung walking test and narrow beam test for motoric function and adhesive removal tape test for sensory function. On day-14 mice were sacrificed, MC4R expression in the dorsal striatum was determined using RT-PCR. RESULTS Stroke decreased the motor, sensory function and MC4R mRNA expression in dorsal striatum. Quercetin improved motor and sensory function, and upregulated expression of MC4R. CONCLUSIONS Quercetin administration after ischemic stroke improves behavioral function, possibly through the upregulation of MC4R in the brain.
Collapse
Affiliation(s)
- Tuhfatul Ulya
- Department of Clinical Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Putri Anggreini
- Department of Clinical Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Dwi Setyawan
- Department of Pharmaceutics, Airlangga University, Surabaya, Indonesia
| | - Junaidi Khotib
- Department of Clinical Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
7
|
Islam MS, Azim F, Saju H, Zargaran A, Shirzad M, Kamal M, Fatema K, Rehman S, Azad MAM, Ebrahimi-Barough S. Pesticides and Parkinson's disease: Current and future perspective. J Chem Neuroanat 2021; 115:101966. [PMID: 33991619 DOI: 10.1016/j.jchemneu.2021.101966] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
Inappropriate use of pesticides has globally exposed mankind to a number of health hazards. Still their production is rising at the rate of 11 % annually and, has already exceeded more than 5 million tons in 2000 (FAO 2017). Plenty of available data reveals that pesticides exposures through agricultural use and food-preservative residue consumption may lead to neurodegenerative disorders like Parkinson's and Alzheimer's diseases. Parkinson's disease (PD) is a progressive motor impairment and a neurodegenerative disorder, considered as the leading source of motor disability. Pesticides strongly inhibit mitochondrial Complex-I, causing mitochondrial dysfunction and death of dopaminergic neurons in the substantia nigra (SN), thus leading to pathophysiologic implications of PD. Current medical treatment strategies, including pharmacotherapeutics and supportive therapies can only provide symptomatic relief. While complementary and alternative medicines including traditional medicine or acupuncture are considered as beneficial ways of treatment with significant clinical effect. Medically non-responding cases can be treated by surgical means, 'Deep Brain Stimulation'. Cell therapy is also an emerging and promising technology for disease modeling and drug development in PD. Their main aim is to replace and/or support the lost and dying dopaminergic neurons in the SN. Recently I/II clinical phase trial (Japan) have used dopaminergic progenitors generated from induced pluripotent stem (iPS) cells which can unveil a successful cell therapy to treat PD symptoms efficiently. This review focuses on PD caused by pesticides use, current treatment modalities, and ongoing research updates. Since PD is not a cell-autonomous disease rather caused by multiple factors, a combinatorial therapeutic approach may address not only the motor-related symptoms but also non-motor cognitive-behavioral issues.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Dept. of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Iran.
| | - Fazli Azim
- Dept. of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; IHITC: Isolation Hospital & Infection Treatment Centre, Islamabad, Pakistan.
| | - Hedaeytullah Saju
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Arman Zargaran
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Meysam Shirzad
- School of Persian Medicine (Traditional Medicine), Tehran University of Medical Science, Tehran, Iran.
| | - Mostofa Kamal
- Shaheed Suhrawardi Medical College & Hospital, Dhaka, Bangladesh.
| | - Kaniz Fatema
- National Institute of Cardiovascular Diseases and Hospital (NICVD), Dhaka, Bangladesh.
| | - Sumbul Rehman
- Faculty of Unani Medicine, Department of Ilmul Advia (Unani Pharmacology), Aligarh Muslim University, India.
| | - M A Momith Azad
- Dept of Research & Product Development (Natural Medicine), The IBN SINA Pharma Ltd, Bangladesh.
| | - Somayeh Ebrahimi-Barough
- Dept. of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
8
|
Pitsikas N. Crocus sativus L. Extracts and Its Constituents Crocins and Safranal; Potential Candidates for Schizophrenia Treatment? Molecules 2021; 26:molecules26051237. [PMID: 33669124 PMCID: PMC7956290 DOI: 10.3390/molecules26051237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
Schizophrenia is a chronic mental devastating disease. Current therapy suffers from various limitations including low efficacy and serious side effects. Thus, there is an urgent necessity to develop new antipsychotics with higher efficacy and safety. The dried stigma of the plant Crocus sativus L., (CS) commonly known as saffron, are used in traditional medicine for various purposes. It has been demonstrated that saffron and its bioactive components crocins and safranal exert a beneficial action in different pathologies of the central nervous system such as anxiety, depression, epilepsy and memory problems. Recently, their role as potential antipsychotic agents is under investigation. In the present review, I intended to critically assess advances in research of these molecules for the treatment of schizophrenia, comment on their advantages over currently used neuroleptics as well-remaining challenges. Up to our days, few preclinical studies have been conducted to this end. In spite of it, results are encouraging and strongly corroborate that additional research is mandatory aiming to definitively establish a role for saffron and its bioactive components for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Biopolis, Panepistimiou 3, 415-00 Larissa, Greece
| |
Collapse
|
9
|
Safdari MR, Shakeri F, Mohammadi A, Bibak B, Alesheikh P, Jamialahmadi T, Sathyapalan T, Sahebkar A. Role of Herbal Medicines in the Management of Brain Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:287-305. [DOI: 10.1007/978-3-030-73234-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Yousefsani BS, Barreto GE, Sahebkar A. Beneficial Medicinal Plants for Memory and Cognitive Functions Based on Traditional Persian Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:283-290. [PMID: 33861451 DOI: 10.1007/978-3-030-64872-5_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is one of the most important causes of dementia, especially in the elderlies. Due to the failures of recent clinical trials in finding effective medications, it appears the use of complementary therapies such as Traditional Persian Medicine (TPM) and the rich sources of effective herbs as well as their constituents for improving memory function could be beneficial. The aim of this study was to evaluate the recommended natural remedies in the TPM and examine their pharmacological properties. For this purpose, the data were collected by searching the recommended prescriptions of the seminal TPM textbooks. Then, the names of the most freuqently mentioned plants were extracted from the natural remedies and evaluated for their pharmacological properties. The sources included recently published articles cited in the major scientific databases. A total of 262 plants were identified in 96 evaluated prescriptions; 20 plants were identified with the most frequency of report (i.e. more than 10 times). Their neuroprotective effects, antioxidant features, and anti-AD properties were discussed. Based on our results, TPM has introduced many effective treatments for AD. Hence, more clinical studies are warranted to verify their efficacy and safety.
Collapse
Affiliation(s)
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
11
|
Abu-Izneid T, Rauf A, Khalil AA, Olatunde A, Khalid A, Alhumaydhi FA, Aljohani ASM, Sahab Uddin M, Heydari M, Khayrullin M, Shariati MA, Aremu AO, Alafnan A, Rengasamy KRR. Nutritional and health beneficial properties of saffron ( Crocus sativus L): a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:2683-2706. [PMID: 33327732 DOI: 10.1080/10408398.2020.1857682] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Saffron (Crocus sativus L., family Iridaceae) is used traditionally for medicinal purpose in Chinese, Ayurvedic, Persian and Unani medicines. The bioactive constituents such as apocarotenoids, monoterpenoids, flavonoids, phenolic acids and phytosterols are widely investigated in experimental and clinical studies for a wide range of therapeutic effects, especially on the nervous system. Some of the active constituents of saffron have high bioavailability and bioaccessibility and ability to pass the blood-brain barrier. Multiple preclinical and clinical studies have supported neuroprotective, anxiolytic, antidepressant, learning and memory-enhancing effect of saffron and its bioactive constituents (safranal, crocin, and picrocrocin). Thus, this plant and its active compounds could be a beneficial medicinal food ingredient in the formation of drugs targeting nervous system disorders. This review focuses on phytochemistry, bioaccessibility, bioavailability, and bioactivity of phytochemicals in saffron. Furthermore, the therapeutic effect of saffron against different nervous system disorders has also been discussed in detail.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- Faculty of Allied Health Sciences, Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Ahood Khalid
- Faculty of Allied Health Sciences, Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Mojtaba Heydari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation.,Plekhanov Russian University of Economics, Moscow, Russian Federation.,A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
| | - Adeyemi Oladapo Aremu
- Faculty of Natural and Agricultural Sciences, Indigenous Knowledge Systems Centre, North-West University, Mahikeng, North West Province, South Africa
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
12
|
Saeedi M, Rashidy-Pour A. Association between chronic stress and Alzheimer's disease: Therapeutic effects of Saffron. Biomed Pharmacother 2020; 133:110995. [PMID: 33232931 DOI: 10.1016/j.biopha.2020.110995] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic stress and high levels of glucocorticoids produce functional and structural changes in brain and especially in the hippocampus, an important limbic system structure that plays a key role in cognitive functions including learning and memory. Alzheimer's disease (AD) is a chronic neurodegenerative disease that usually starts slowly and worsens over time. Indeed, cognitive dysfunction, neuronal atrophy, and synaptic loss are associated with both AD and chronic stress. Recent preclinical and clinical studies have highlighted a possible link between chronic stress, cognitive decline and the development of AD. It is suggested that Tau protein is an essential mediator of the neurodegenerative effects of stress and glucocorticoids towards the development of AD pathology. Recent findings from animal and humans studies demonstrated that saffron and its main constitutive crocin are effective against chronic stress-induced cognitive dysfunction and oxidative stress and slowed cognitive decline in AD. The inhibitory actions on acetylcholinesterase activity, aggregation of beta-amyloid protein into amyloid plaques and tau protein into neurofibrillary tangles, and also the antioxidant, anti-inflammatory, and the promotion of synaptic plasticity effects are among the possible mechanisms to explain the neuroprotective effects of saffron. New evidences demonstrate that saffron and its main component crocin might be a promising target for cognition improvement in AD and stress-related disorders.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
13
|
Gudarzi S, Jafari M, Pirzad Jahromi G, Eshrati R, Asadollahi M, Nikdokht P. Evaluation of modulatory effects of saffron ( Crocus sativus L.) aqueous extract on oxidative stress in ischemic stroke patients: a randomized clinical trial. Nutr Neurosci 2020; 25:1137-1146. [PMID: 33151132 DOI: 10.1080/1028415x.2020.1840118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Saffron (Crocus sativus L.) has been widely used in traditional medicine as a treatment of nervous disorders. Saffron as an antioxidant can be considered effective for treatment of oxidative stress in ischemia stroke. Therefore, the aim of the present study was to investigate the role of aqueous extract of saffron in reducing oxidative stress in ischemic strokes patients. METHODS Forty patients with acute ischemic stroke were randomly divided into two groups including control group and saffron group. During 4 days of experiment, control group received routine stroke care and saffron group received routine care plus capsule of saffron 400 mg/day (200 mg twice per day). Then, two groups were compared using the National Institute of Health Stoke Scale (NIHSS) and serum oxidative stress biomarkers, at the time of hospital admission and 4 days later as well. RESULTS On the fourth day after ischemic stroke onset, antioxidant enzymes activities and glutathione (GSH) and total antioxidant capacity (TAC) levels were higher in the saffron group compared to the control group, while malondialdehyde (MDA) level was lower. In addition, the severity of stroke, based on the NIHSS scores, was significantly reduced after 4 days in the saffron group. The severity of stroke was negatively correlated with the levels of GSH and TAC and positively correlated with MDA level. CONCLUSIONS Saffron has modulatory effects on ischemic-induced oxidative stress due to its free radical scavenging and antioxidant properties. Thus, saffron extract can be considered as a potential candidate therapy of the ischemic brain.
Collapse
Affiliation(s)
- Saeed Gudarzi
- Faculty of Medicine, Department of Biochemistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahvash Jafari
- Faculty of Medicine, Department of Biochemistry, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Eshrati
- Faculty of Medicine, Department of Biochemistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Asadollahi
- Neurology, Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Nikdokht
- Department of Neurology, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
14
|
Krishnaswamy VKD, Alugoju P, Periyasamy L. Effect of short-term oral supplementation of crocin on age-related oxidative stress, cholinergic, and mitochondrial dysfunction in rat cerebral cortex. Life Sci 2020; 263:118545. [PMID: 33038382 DOI: 10.1016/j.lfs.2020.118545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Aging is associated with oxidative stress and altered cholinergic and mitochondrial function. Crocin is a carotenoid antioxidant that quenches free radicals and protects cells and tissues from oxidation in biological systems. The aim of the present study is to investigate the effect of oral supplementation of Crocin on age-associated oxidative stress, cholinergic, and mitochondrial function in rat cerebral cortex. MAIN METHODS The middle-aged (15 months old) rats were segregated into three groups (n = 6): Control (ad-libitum fed +0.9% saline as vehicle), Cro 50 (ad-libitum fed + crocin 50 mg/kg/day), Cro 150 (ad-libitum fed + crocin 150 mg/kg/day). The experiment was scheduled for 45 days. The serum and brain parameters were estimated after euthanasia. KEY FINDINGS Crocin supplementation of Cro 50 and Cro 150 displayed a relative decline in body weight gain during the experimental period and significantly reduced age-associated serum triglyceride level over control. In rat cerebral cortex, age-associated macromolecular damage, decline in endogenous antioxidants and an increase in intracellular calcium concentration were significantly reversed due to oral supplementation of Crocin. Cro 150 significantly improved acetylcholine content as a consequence of acetylcholinesterase inhibition. Further, remarkable mitochondrial function was observed in Cro 150 over the control group as determined by citrate synthase and cytochrome C oxidase enzyme activities. SIGNIFICANCE Oral supplementation of Crocin significantly reversed age-associated oxidative stress and neuroinflammatory markers. Meanwhile, Cro 150 remarkably improved cholinergic and mitochondrial function over the control group and facilitated further delay in the aging process due to enhanced cognitive effect.
Collapse
Affiliation(s)
- V K D Krishnaswamy
- Department of Biochemistry and Molecular Biology, Pondicherry University, India
| | - Phaniendra Alugoju
- Department of Biochemistry and Molecular Biology, Pondicherry University, India
| | - Latha Periyasamy
- Department of Biochemistry and Molecular Biology, Pondicherry University, India.
| |
Collapse
|
15
|
Bian Y, Zhao C, Lee SMY. Neuroprotective Potency of Saffron Against Neuropsychiatric Diseases, Neurodegenerative Diseases, and Other Brain Disorders: From Bench to Bedside. Front Pharmacol 2020; 11:579052. [PMID: 33117172 PMCID: PMC7573929 DOI: 10.3389/fphar.2020.579052] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing morbidity rates of brain disorders and conditions such as anxiety, depression, Alzheimer’s disease, and Parkinson’s disease have become a severe problem in recent years. Although researchers have spent considerable time studying these diseases and reported many positive outcomes, there still are limited drugs available for their treatment. As a common traditional Chinese medicine (TCM), saffron was employed to treat depression and some other inflammatory diseases in ancient China due to its antioxidant, anti-inflammatory, and antidepressant properties. In modern times, saffron and its constituents have been utilized, alone and in TCM formulas, to treat neuropsychiatric and neurodegenerative diseases. In this review, we mainly focus on recent clinical and preclinical trials of brain disorders in which saffron was applied, and summarize the neuroprotective properties of saffron and its constituents from chemical, pharmacokinetic, and pharmacological perspectives. We discuss the properties of saffron and its constituents, as well as their applications for treating brain disorders; we hope that this review will serve as a comprehensive reference for studies aimed at developing therapeutic drugs based on saffron.
Collapse
Affiliation(s)
- Yaqi Bian
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
16
|
Yuan Y, Shan X, Men W, Zhai H, Qiao X, Geng L, Li C. The effect of crocin on memory, hippocampal acetylcholine level, and apoptosis in a rat model of cerebral ischemia. Biomed Pharmacother 2020; 130:110543. [PMID: 32738637 DOI: 10.1016/j.biopha.2020.110543] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/05/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Although the memory- improving effect of crocin has been suggested by previous evidences, the association between this effect and hippocampal acetylcholine (Ach) level and apoptosis is not well investigated. This study aimed to determine the protective effects of crocin on memory, hippocampal Ach level, and apoptosis in a rat model of cerebral ischemia. Male Wistar rats were divided into sham group received saline, and other 3 groups underwent 4-vessel occlusion brain ischemia (4VOI), received oral administration of either saline or crocin in doses of 30 mg/day and 60 mg/day for 7 days. Outcomes were memory, determined by radial eight-arm maze (RAM) task and Morris water maze (MWM) test, Ach release in the dorsal hippocampus (evaluated by microdialysis-HPLC) and apoptosis (investigated by TUNEL assay). 4VOI impaired memory reduced dorsal hippocampus Ach level, and induced apoptosis. Crocin, significantly improved the memory (F = 343.20; P < 0.001 for RAM error choices and F = 182.5; P < 0.0001 for MWM), increased Ach level (F = 115.1; P < 0.001) and prevented hippocampal neuronal apoptosis (W = 183.50; P < 0.001) as compared statistically by ANOVA test. Crocin can be suggested as a promising therapy for ischemic cerebrovascular accidents by its memory preserving, Ach-increasing, and neuroprotective effects.
Collapse
Affiliation(s)
- Yu Yuan
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Xiaosong Shan
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Weidong Men
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Hexin Zhai
- Emergency Department, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Xiaoxia Qiao
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Lianting Geng
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Chunhui Li
- Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China.
| |
Collapse
|
17
|
Abdel-Rahman RF, El Awdan SA, Hegazy RR, Mansour DF, Ogaly HA, Abdelbaset M. Neuroprotective effect of Crocus sativus against cerebral ischemia in rats. Metab Brain Dis 2020; 35:427-439. [PMID: 31728890 DOI: 10.1007/s11011-019-00505-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022]
Abstract
The present study aimed to investigate the role of vascular endothelial growth factor (VEGF) in the neuroprotective effect of Crocus sativus (saffron) against cerebral ischemia/reperfusion injury (I/R) in rats. Four groups of a total forty I/R rats with 60-min occlusion followed by 48 h reperfusion or sham surgery were used. The sham and left-brain I/R control groups where treated with normal saline. The rats of the other two groups received saffron extract (100 or 200 mg/kg, ip, respectively) for 3 successive weeks prior to left-brain I/R. Other four doses of saffron extract were received by the rats of the last 2 groups 60 min prior to operation, during the surgery, and on days 1 and 2 following reperfusion. I/R group showed marked neurobehavioral, neurochemical and histopathological alterations. The results revealed a significant reduction in neurological deficit scores in the saffron-treated rats at both doses. Saffron significantly attenuated lipid peroxidation, decreased NO and brain natriuretic peptide (BNP) contents in I/R-brain tissue. On the other hand, saffron reversed the depletion of GSH in the injured brain. Moreover, saffron treatment evidently reduced apoptosis as revealed by a decrease in caspase-3 and Bax protein expression with a marked decrease in the apoptotic neuronal cells compared to I/R group. In addition, saffron administration effectively upregulated the expression of VEGF in I/R-brain tissue. In conclusion, saffron treatment offers significant neuroprotection against I/R damage possibly through diminishing oxidative stress and apoptosis and enhancement of VEGF.
Collapse
Affiliation(s)
| | | | - Rehab R Hegazy
- Pharmacology Department, National Research Centre, Giza, Egypt
| | - Dina F Mansour
- Pharmacology Department, National Research Centre, Giza, Egypt
| | - H A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
18
|
Zhong K, Wang RX, Qian XD, Yu P, Zhu XY, Zhang Q, Ye YL. Neuroprotective effects of saffron on the late cerebral ischemia injury through inhibiting astrogliosis and glial scar formation in rats. Biomed Pharmacother 2020; 126:110041. [PMID: 32113053 DOI: 10.1016/j.biopha.2020.110041] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
This study is to explore the neuroprotective effects and involved glial scar of saffron (Crocus sativus L.) on the late cerebral ischemia in rats. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in Sprague Dawley rats that were randomly divided into sham group, MCAO group, edaravone group (as a positive control) and saffron groups (saffron extract 30, 100, 300 mg/kg). Saffron was administered orally at 2 h at the first day and once daily from day 2 to 42 after ischemia. Behavioral changes were detected from day 43 to 46 after ischemia to evaluate the effects of saffron. Infarct volume, survival neuron density, activated astrocyte, and the thickness of glial scar were also detected. GFAP, neurocan, phosphocan, neurofilament expressions and inflammatory cytokine contents were detected by Western-blotting and ELISA methods, respectively. Saffron improved the body weight loss, neurological deficit and spontaneous activity. It also ameliorated anxiety-like state and cognitive dysfunction, which were detected by elevated plus maze (EPM), marble burying test (MBT) and novel object recognition test (NORT). Toluidine blue staining found that saffron treatment decreased the infarct volume and increased the neuron density in cortex in the ischemic boundary zone. The activated astrocyte number and the thickness of glial scar in the penumbra zone reduced after saffron treatment. Additionally, saffron decreased the contents of IL-6 and IL-1β, increased the content of IL-10 in the ischemic boundary zone. GFAP, neurocan, and phosphocan expressions in ischemic boundary zone and ischemic core zone all decreased after saffron treatment. Saffron exerted neuroprotective effects on late cerebral ischemia, associating with attenuating astrogliosis and glial scar formation after ischemic injury.
Collapse
Affiliation(s)
- Kai Zhong
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Rou-Xin Wang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Ping Yu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xin-Ying Zhu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Lu Ye
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Rajabian A, Hosseini A, Hosseini M, Sadeghnia HR. A Review of Potential Efficacy of Saffron ( Crocus sativus L.) in Cognitive Dysfunction and Seizures. Prev Nutr Food Sci 2019; 24:363-372. [PMID: 31915630 PMCID: PMC6941716 DOI: 10.3746/pnf.2019.24.4.363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
Crocus sativus (saffron) is traditionally used to relieve several ailments. Experimental researches have also investigated applications of saffron and its active constituents for the treatment of a wide spectrum of disorders. This review discusses pharmacological/therapeutic properties of saffron and its main components on memory function, learning ability and seizures, to highlight their merit for alleviating these disorders. An extensive literature review was carried out using various databases including ISI Web of Knowledge, Medline/PubMed, Science Direct, Scopus, Google Scholar, Embase, Biological Abstracts, and Chemical Abstracts. The growing body of evidence showed the value of saffron and its' components, alone, or in combination with the other pharmaceuticals, for improving learning and memory abilities and controlling seizures. These findings may provide pharmacological basis for the use of saffron in cognitive disturbance and epilepsy. However, further preclinical and clinical studies are necessary.
Collapse
Affiliation(s)
- Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177944553, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad 9177944553, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad 9177944553, Iran
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad 9177944553, Iran
| |
Collapse
|
20
|
Characterization of human serum albumin's interactions with safranal and crocin using multi-spectroscopic and molecular docking techniques. Biochem Biophys Rep 2019; 20:100670. [PMID: 31535038 PMCID: PMC6744526 DOI: 10.1016/j.bbrep.2019.100670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Interaction mechanisms of human serum albumin (HSA) with safranal and crocin were studied using UV–Vis absorption, fluorescence quenching and circular dichroism (CD) spectroscopies as well as molecular docking techniques. Changes in absorbance and fluorescence of HSA upon interactions with both compounds were attributed to their binding to amino acid chromophores located in subdomains IIA and IIIA. Fluorescence secondary inner filter effect was excluded using 278 nm and 340 nm as the wavelengths of HSA's excitation and fluorescence while safranal and crocin absorbed at 320 nm and 445 nm, respectively. Stern-Volmer model revealed a static quenching mechanism involve the formation of non-fluorescent ground state complexes. Stern-Volmer, Hill, Benesi-Hilbrand and Scatchard models gave apparent binding constants ranged in 4.25 × 103 - 2.15 × 105 for safranal and 7.67 × 103 - 4.23 × 105 L mol−1 for crocin. CD measurements indicated that 13 folds of safranal and crocin unfolded the α-helix structure of HSA by 7.47–21.20%. In-silico molecular docking revealed selective exothermic binding of safranal on eight binding sites with binding energies ranged in −3.969 to −6.6.913 kcal/mol. Crocin exothermally bound to a new large pocket located on subdomain IIA (sudlow 1) with binding energy of −12.922 kcal/mol. These results confirmed the formation of HSA stable complexes with safranal and crocin and contributed to our understanding for their binding characteristics (affinities, sites, modes, forces … etc.) and structural changes upon interactions. They also proved that HSA can solubilize and transport both compounds in blood to target tissues. The results are of high importance in determining the pharmacological properties of the two phytochemical compounds and for their future developments as anticancer, antispasmodic, antidepressant or aphrodisiac therapeutic agents. Interaction mechanisms of human serum albumin with safranal and crocin were studied using multi-spectroscopic techniques. Stern-Volmer, Hill, Benesi-Hilbrand and Scatchard models gave apparent binding constants ranged in 4.25 × 103 – 4.23 × 105 L.mol-1. In-silico molecular docking revealed selective exothermic binding on multiple HSA sites with ΔE between −3.96 and −12.92 kcal/mol The results confirmed that HSA can solubilize and transport safranal and crocin to target tissues through forming stable complexes. The results are important in determining the pharmacodynamics of both compounds and in their future development as therapeutic agents.
Collapse
|
21
|
Asadollahi M, Nikdokht P, Hatef B, Sadr SS, Sahraei H, Assarzadegan F, Pirzad Jahromi G. Protective properties of the aqueous extract of saffron (Crocus sativus L.) in ischemic stroke, randomized clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111833. [PMID: 30914350 DOI: 10.1016/j.jep.2019.111833] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crocus sativus L. has been used throughout the world in traditional medicine as a treatment for neurological disorders such as depression. Growing attention is currently being paid to the use of neuroprotective agents in ischemic strokes. AIM OF THE STUDY This study assed the effect of saffron as a neuroprotective natural product in cerebral ischemia in human. STUDY DESIGN Patients with acute ischemic stroke were randomly allocated to receive either routine stroke care (control group, n = 20) or routine care plus aqueous extract of saffron capsule (200 mg/day) (saffron-treated group, n = 19). Both groups were monitored during their four-day hospital stay and the three-month follow-up period. The groups were compared in terms of short- and long-term effects of saffron capsules using the National Institute of Health Stoke Scale (NIHSS), Barthel Scale, and serum neuron specific enolase (NSE), Brain-derived neurotrophic factor (BDNF), S100 levels. RESULTS Based on the NIHSS, the severity of stroke during the first four days was significantly lower in the saffron-treated group than in the control group (P < 0.05). Compared to the levels on the first day, serum NSE and s100 levels were significantly decreased and BDNF concentration was increased in the saffron-treated group on the fourth day. Also, our results showed there was a negative significant non-linear cubic regression between BDNF concentration and score of NIHSS. At the end of the three-month follow-up period, the mean Barthel index was significantly higher in the saffron-treated group than in the control group (P < 0.001). CONCLUSION The results of this study confirmed the short and long-term neuroprotective effects of aqueous extract of saffron on ischemic stroke in humans.
Collapse
Affiliation(s)
- Mostafa Asadollahi
- Neurology, Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Parisa Nikdokht
- Department of Neurology, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Boshra Hatef
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Shahabeddin Sadr
- Neurology, Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hedayat Sahraei
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Farhad Assarzadegan
- Department of Neurology, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Gila Pirzad Jahromi
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Khazdair MR, Anaeigoudari A, Hashemzehi M, Mohebbati R. Neuroprotective potency of some spice herbs, a literature review. J Tradit Complement Med 2019; 9:98-105. [PMID: 30963044 PMCID: PMC6435951 DOI: 10.1016/j.jtcme.2018.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/10/2017] [Accepted: 01/02/2018] [Indexed: 12/24/2022] Open
Abstract
In recent years, growing attention has been given to traditional medicine. In traditional medicine a large number of plants have been used to cure neurodegenerative diseases such as Alzheimer's disease (AD) and other memory related disorders. Crocus sativus (C. sativus), Nigella sativa (N. sativa), Coriandrum sativum (C. sativum), Ferula assafoetida (F. assafoetida), Thymus vulgaris (T. vulgaris), Zataria multiflora (Z. multiflora) and Curcuma longa (C. longa) were used traditionally for dietary, food additive, spice and various medicinal purposes. The Major components of these herbs are carotenoids, monoterpenes and poly phenol compounds which enhanced the neural functions. These medicinal plants increased anti-oxidant, decreased oxidant levels and inhibited acetylcholinesterase activity in the neural system. Furthermore, neuroprotective of plants occur via reduced pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α and total nitrite generation. Therefore, the effects of the above mentioned medicinal and their active constituents improved neurodegenerative diseases which indicate their therapeutic potential in disorders associated with neuro-inflammation and neurotransmitter deficiency such as AD and depression.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- Neurogenic Inflammation Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Milad Hashemzehi
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Mohebbati
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Hatziagapiou K, Lambrou GI. The Protective Role of Crocus Sativus L. (Saffron) Against Ischemia- Reperfusion Injury, Hyperlipidemia and Atherosclerosis: Nature Opposing Cardiovascular Diseases. Curr Cardiol Rev 2018; 14:272-289. [PMID: 29952263 PMCID: PMC6300793 DOI: 10.2174/1573403x14666180628095918] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 02/08/2023] Open
Abstract
Background: Reactive oxygen species and reactive nitrogen species, which are collective-ly called reactive oxygen-nitrogen species, are inevitable by-products of cellular metabolic redox reac-tions, such as oxidative phosphorylation in the mitochondrial respiratory chain, phagocytosis, reac-tions of biotransformation of exogenous and endogenous substrate in endoplasmic reticulum, eico-sanoid synthesis, and redox reactions in the presence of metal with variable valence. Among medici-nal plants, there is growing interest in Crocus Sativus L. It is a perennial, stemless herb, belonging to Iridaceae family, cultivated in various countries such as Greece, Italy, Spain, Israel, Morocco, Tur-key, Iran, India, China, Egypt and Mexico. Objective: The present study aims to address the anti-toxicant role of Crocus Sativus L. in the case of cardiovascular disease and its role towards the cardioprotective role of Crocus Sativus L. Materials and Methods: An electronic literature search was conducted by the two authors from 1993 to August 2017. Original articles and systematic reviews (with or without meta-analysis), as well as case reports were selected. Titles and abstracts of papers were screened by a third reviewer to deter-mine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. Results: Our review has indicated that scientific literature confirms the role of Crocus Sativus L. as a cardiovascular-protective agent. The literature review showed that Saffron is a potent cardiovascular-protective agent with a plethora of applications ranging from ischemia-reperfusion injury, diabetes and hypertension to hyperlipidemia. Conclusion: Literature findings represented in current review herald promising results for using Crocus Sativus L. and/or its active constituents as a cardiovascular-protective agent and in particular, Crocus Sativus L. manifests beneficial results against ischemia-reperfusion injury, hypertension, hy-perlipidemia and diabetes
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/ Oncology Unit, Thivon & Levadeias, 11527, Athens, Greece
| | - George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/ Oncology Unit, Thivon & Levadeias, 11527, Athens, Greece
| |
Collapse
|
24
|
Bukhari SI, Manzoor M, Dhar MK. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed Pharmacother 2018; 98:733-745. [PMID: 29306211 DOI: 10.1016/j.biopha.2017.12.090] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 01/28/2023] Open
Abstract
Crocus sativus is an herbaceous plant that belongs to family Iridaceae. It is commonly known as saffron and has been used for medicinal purposes since many centuries in India and other parts of the world. Saffron of commercial importance comprises of dried stigmas of the plant and is rich in flavonoids, vitamins, and carotenoids. Carotenoids represent the main components of saffron and their cleavage results in the formation of apocarotenoids such as crocin, picrocrocin, and safranal. Studies conducted during the past two decades have revealed the immense therapeutic potential of saffron. Most of the therapeutic properties are due to the presence of unique apocarotenoids having strong free radical scavenging activity. The mode of action of these apocarotenoids could be: modulatory effects on detoxifying enzymes involved in combating oxidative stress, decreasing telomerase activity, increased the proapoptotic effect, inhibition of DNA, RNA and protein synthesis, and by a strong binding capacity of crocetin with tRNA. The present review focuses on the therapeutic role of saffron and its bio oxidative cleavage products and also highlights the possible molecular mechanism of action. The findings reported in this review describes the wide range of applications of saffron and attributes its free radical scavenging nature the main property which makes this spice a potent chemotherapeutic agent for the treatment of various diseases.
Collapse
Affiliation(s)
| | - Mahreen Manzoor
- School of Biotechnology, University of Jammu, Jammu, 180006, India
| | - M K Dhar
- School of Biotechnology, University of Jammu, Jammu, 180006, India
| |
Collapse
|
25
|
José Bagur M, Alonso Salinas GL, Jiménez-Monreal AM, Chaouqi S, Llorens S, Martínez-Tomé M, Alonso GL. Saffron: An Old Medicinal Plant and a Potential Novel Functional Food. Molecules 2017; 23:E30. [PMID: 29295497 PMCID: PMC5943931 DOI: 10.3390/molecules23010030] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
The spice saffron is made from the dried stigmas of the plant Crocus sativus L. The main use of saffron is in cooking, due to its ability to impart colour, flavour and aroma to foods and beverages. However, from time immemorial it has also been considered a medicinal plant because it possesses therapeutic properties, as illustrated in paintings found on the island of Santorini, dated 1627 BC. It is included in Catalogues of Medicinal Plants and in the European Pharmacopoeias, being part of a great number of compounded formulas from the 16th to the 20th centuries. The medicinal and pharmaceutical uses of this plant largely disappeared with the advent of synthetic chemistry-produced drugs. However, in recent years there has been growing interest in demonstrating saffron's already known bioactivity, which is attributed to the main components-crocetin and its glycosidic esters, called crocins, and safranal-and to the synergy between the compounds present in the spice. The objective of this work was to provide an updated and critical review of the research on the therapeutic properties of saffron, including activity on the nervous and cardiovascular systems, in the liver, its antidepressant, anxiolytic and antineoplastic properties, as well as its potential use as a functional food or nutraceutical.
Collapse
Affiliation(s)
- María José Bagur
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | | | - Antonia M. Jiménez-Monreal
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | - Soukaina Chaouqi
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
- Laboratory of Materials, Environment and Electrochemistry, Faculty of Science, Ibn Tofaïl University, P.O. Box 242, 14000 Kénitra, Morocco
| | - Silvia Llorens
- Department of Medical Sciences, School of Medicine and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 02008 Albacete, Spain;
| | - Magdalena Martínez-Tomé
- Department of Food Science, Universidad de Murcia, Regional Campus of International Excellence, Campus International de Excelencia Regional “Campus Mare Nostrum”, CIBERobn, ISCIII, 30100 Murcia, Spain; (A.M.J.-M.); (M.M.-T.)
| | - Gonzalo L. Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y de Montes, Universidad de Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain; (M.J.B.); (S.C.)
| |
Collapse
|
26
|
Yosri H, Elkashef WF, Said E, Gameil NM. Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int Immunopharmacol 2017. [DOI: 10.10.1016/j.intimp.2017.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Crocin modulates IL-4/IL-13 signaling and ameliorates experimentally induced allergic airway asthma in a murine model. Int Immunopharmacol 2017; 50:305-312. [PMID: 28738246 DOI: 10.1016/j.intimp.2017.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 07/09/2017] [Accepted: 07/15/2017] [Indexed: 12/13/2022]
Abstract
Allergic asthma is a chronic respiratory disease with a prevalent T helper (Th2)-mediated immune reaction. Crocin, the major bioactive constituent of saffron, has been reported in multiple studies to have numerous pharmacological activities, including prominent anti-oxidant activities. In the current study, the anti-asthmatic potential of crocin was evaluated. Adult male Swiss Albino mice were administered 10mg of ovalbumin (OVA) mixed with 1mg of aluminum hydroxide intraperitoneally on days 0 and 7 and were administered crocin (25mg/kg) orally daily for 16days. Asthma progression was associated with significant increase in the lung/body weight index, inflammatory cell counts in bronchoalveolar lavage fluid (BALF), lung total protein content, and serious index of lung permeability, indicating pulmonary edema with accumulation of serous fluids within the lungs. Serum lactate dehydrogenase (LDH) activity and lung malondialdehyde (MDA) content were significantly increased, while lung superoxide dismutase (SOD) activity, reduced glutathione (GSH) levels, and serum and lung catalase activities were significantly decreased. These changes reflect significant pulmonary inflammation with concomitant disturbance of oxidant/antioxidant homeostasis. Moreover, tumor necrosis factor (TNF)-α, interleukin (IL)-4, and IL-13 contents in the lung were also significantly high after OVA sensitization. Crocin treatment significantly alleviated the OVA-induced allergic asthma-associated alterations in inflammatory and oxidative stress biomarkers. Crocin enhanced anti-oxidant defenses, reduced the incidence of oxidative stress, and restored pro-inflammatory cytokines to normal levels. Histopathological analysis showed significant lung improvement in crocin-treated mice. In conclusion, crocin showed a significant protective effect against allergic asthma progression, which was associated with down-regulation of inflammatory cytokine expression and restoration of oxidant/antioxidant homeostasis.
Collapse
|
28
|
Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Abdur Rub R, Ahmad FJ. RETRACTED ARTICLE: Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:717-729. [DOI: 10.1080/21691401.2017.1337024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam, Kingdom of Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam, Kingdom of Saudi Arabia
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicine, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam, Kingdom of Saudi Arabia
| | - Atta Abbas Naqvi
- Department of Pharmacy Practice, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam, Kingdom of Saudi Arabia
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Mohammad Ashafaq
- Neuroscience and Toxicology Unit, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rehan Abdur Rub
- Nanomedicine Lab, Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Farhan Jalees Ahmad
- Nanomedicine Lab, Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| |
Collapse
|
29
|
Linardaki ZI, Lamari FN, Margarity M. Saffron (Crocus sativus L.) Tea Intake Prevents Learning/Memory Defects and Neurobiochemical Alterations Induced by Aflatoxin B1 Exposure in Adult Mice. Neurochem Res 2017; 42:2743-2754. [DOI: 10.1007/s11064-017-2283-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/29/2017] [Accepted: 04/22/2017] [Indexed: 01/03/2023]
|
30
|
Skladnev NV, Ganeshan V, Kim JY, Burton TJ, Mitrofanis J, Stone J, Johnstone DM. Widespread brain transcriptome alterations underlie the neuroprotective actions of dietary saffron. J Neurochem 2016; 139:858-871. [PMID: 27696408 DOI: 10.1111/jnc.13857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
Abstract
Dietary saffron has shown promise as a neuroprotective intervention in clinical trials of retinal degeneration and dementia and in animal models of multiple CNS disorders, including Parkinson's disease. This therapeutic potential makes it important to define the relationship between dose and protection and the mechanisms involved. To explore these two issues, mice were pre-conditioned by providing an aqueous extract of saffron (0.01% w/v) as their drinking water for 2, 5 or 10 days before administration of the parkinsonian neurotoxin MPTP (50 mg/kg). Five days of saffron pre-conditioning provided the greatest benefit against MPTP-induced neuropathology, significantly mitigating both loss of functional dopaminergic cells in the substantia nigra pars compacta (p < 0.01) and abnormal neuronal activity in the caudate-putamen complex (p < 0.0001). RNA microarray analysis of the brain transcriptome of mice pre-conditioned with saffron for 5 days revealed differential expression of 424 genes. Bioinformatics analysis identified enrichment of molecular pathways (e.g. adherens junction, TNFR1 and Fas signaling) and expression changes in candidate genes (Cyr61, Gpx8, Ndufs4, and Nos1ap) with known neuroprotective actions. The apparent biphasic nature of the dose-response relationship between saffron and measures of neuroprotection, together with the stress-inducible nature of many of the up-regulated genes and pathways, lend credence to the idea that saffron, like various other phytochemicals, is a hormetic stimulus, with functions beyond its strong antioxidant capacity. These findings provide impetus for a more comprehensive evaluation of saffron as a neuroprotective intervention.
Collapse
Affiliation(s)
- Nicholas V Skladnev
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - Varshika Ganeshan
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - Ji Yeon Kim
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia.,School of Medicine, University of Queensland Centre for Clinical Research, Brisbane, Qld, Australia
| | - Thomas J Burton
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - John Mitrofanis
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Anatomy & Histology, University of Sydney, Sydney, NSW, Australia
| | - Jonathan Stone
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| | - Daniel M Johnstone
- Bosch Institute, University of Sydney, Sydney, NSW, Australia.,Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Saffron (Crocus sativus) pretreatment confers cardioprotection against ischemia-reperfusion injuries in isolated rabbit heart. J Physiol Biochem 2016; 72:711-719. [PMID: 27507116 DOI: 10.1007/s13105-016-0510-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/29/2016] [Indexed: 01/18/2023]
Abstract
Restoration of blood flow to the ischemic myocardium is imperative to avoid demise of cardiomyocytes, but is paradoxically associated with irreversible damage to cardiac tissues due to the excessive generation of reactive oxygen species (ROS). We have previously reported that saffron, a natural antioxidant, attenuated ischemia-reperfusion (IR) injuries in vitro; however, its role in a meaningful cardiac recovery remains unknown. Here, we show that saffron supplement (oral administration for 6 weeks) reduced myocardial damage and restored cardiac function in an IR model of rabbit hearts. This was evidenced by improved left ventricle pressure, heart rate and coronary flow, and left ventricle end diastolic pressure (LVEDP) in IR hearts (isolated from rabbits pre-exposed to saffron (S/IR)). Electrophysiological recordings revealed a significant decline in both premature ventricle contraction and ventricle tachycardia/fibrillation in S/IR compared to IR hearts. This was paralleled by increased expression of the contractile proteins α-actinin and Troponin C in the myocardium of S/IR hearts. Histological examination combined to biochemical analysis indicated that hearts pre-exposed to saffron exhibited reduced infarct size, lower lipid peroxidation, with increased glutathione peroxidase activity, and oxidation of nitro blue tetrazolium (by reactive oxygen species). Furthermore, in contrast with IR hearts, saffron pretreatment induced restoration of the phosphorylation level of the survival proteins Akt and 4EBP1 and reduced activity of p38. Collectively, our data demonstrate that the natural antioxidant saffron plays a pivotal role in halting IR-associated cardiac injuries and emerges as a novel preventive tool for ischemic heart disease.
Collapse
|
32
|
Pitsikas N. Constituents of Saffron (Crocus sativus L.) as Potential Candidates for the Treatment of Anxiety Disorders and Schizophrenia. Molecules 2016; 21:303. [PMID: 26950102 PMCID: PMC6273654 DOI: 10.3390/molecules21030303] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/10/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023] Open
Abstract
Anxiety disorders and schizophrenia are common public health issues. The dried stigma of the plant Crocus sativus L., (C. sativus) commonly known as saffron are used in folk medicine for various purposes. Several lines of evidence suggest that C. sativus, crocins and safranal are implicated in anxiety and schizophrenia. Here, I intend to critically review advances in research of these emerging molecules for the treatment of anxiety and schizophrenia, discuss their advantages over currently used anxiolytics and neuroleptics, as well remaining challenges. Current analysis shows that C. sativus and its components might be a promising class of compounds for the treatment of the above mentioned psychiatric diseases.
Collapse
Affiliation(s)
- Nikolaos Pitsikas
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Thessaly, Panepistimiou 3 (Biopolis), Larissa 41500, Greece.
| |
Collapse
|
33
|
Baba SA, Ashraf N. Pharmacological Importance of Crocus sativus Apocarotenoids. APOCAROTENOIDS OF CROCUS SATIVUS L: FROM BIOSYNTHESIS TO PHARMACOLOGY 2016. [DOI: 10.1007/978-981-10-1899-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
34
|
The Effect of Crocus sativus L. and Its Constituents on Memory: Basic Studies and Clinical Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:926284. [PMID: 25713594 PMCID: PMC4331467 DOI: 10.1155/2015/926284] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/19/2015] [Indexed: 12/17/2022]
Abstract
Memory-related disorders are a common public health issue. Memory impairment is frequent in degenerative diseases (such as Alzheimer's disease and Parkinson disease), cerebral injuries, and schizophrenia. The dried stigma of the plant Crocus sativus L. (C. sativus), commonly known as saffron, is used in folk medicine for various purposes. Several lines of evidence suggest that C. sativus and its constituents are implicated in cognition. Here we critically review advances in research of these emerging molecular targets for the treatment of memory disorders, and discuss their advantages over currently used cognitive enhancers as well remaining challenges. Current analysis has shown that C. sativus and its components might be a promising target for cognition impairments.
Collapse
|
35
|
Mirzapour S, Rafieirad M, Rouhi L. Hydroalcoholic Extract of Ferulago angulata Improves Memory and Pain in Brain Hypoperfusion Ischemia in Rats. Jundishapur J Nat Pharm Prod 2015; 10:e17451. [PMID: 25866714 PMCID: PMC4386316 DOI: 10.17795/jjnpp-17451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/08/2014] [Accepted: 05/21/2014] [Indexed: 11/25/2022] Open
Abstract
Background: Objectives: Materials and Methods: Results: Conclusions:
Collapse
|
36
|
Jia D, Han B, Yang S, Zhao J. Anemonin Alleviates Nerve Injury After Cerebral Ischemia and Reperfusion (I/R) in Rats by Improving Antioxidant Activities and Inhibiting Apoptosis Pathway. J Mol Neurosci 2014; 53:271-9. [DOI: 10.1007/s12031-013-0217-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022]
|
37
|
Vakili A, Einali MR, Bandegi AR. Protective Effect of Crocin against Cerebral Ischemia in a Dose-dependent Manner in a Rat Model of Ischemic Stroke. J Stroke Cerebrovasc Dis 2014. [DOI: 10.1016/j.jstrokecerebrovasdis.2012.10.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
38
|
Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 2013; 64:65-80. [PMID: 24275090 DOI: 10.1016/j.fct.2013.11.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/09/2013] [Accepted: 11/13/2013] [Indexed: 01/01/2023]
Abstract
Since ancient times, saffron, the dried stigma of the plant Crocus sativus L. has been extensively used as a spice and food colorant; in folk medicine it has been reputed to be efficacious for the alleviation and treatment of ailments. In addition to the three founded major constituents including crocin, picrocrocin and safranal, presence of carotenoids, carbohydrates, proteins, anthocyanins, vitamins and minerals provide valuable insights into the health benefits and nutritional value of saffron. Of the carotenoids present in saffron, highly water-soluble crocin (mono and diglycosyl esters of a polyene dicarboxylic acid, named crocetin) is responsible for the majority of its color, and appears to possess various health-promoting properties, as an antioxidant, antitumor, memory enhancer, antidepressant, anxiolytic and aphrodisiac. It is also worth noting that the crocin principle of saffron exhibited high efficacy along with no major toxicity in experimental models. We would be remiss to not consider the great potential of saffron and crocin, which benefits the cuisine and health of human life throughout the world. The present study provides a comprehensive and updated report of empirical investigations on bioactivities and biological characteristics of crocin.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Yan W, Liu J. Effects of Chinese herbal monomers on oxidative phosphorylation and membrane potential in cerebral mitochondria isolated from hypoxia-exposed rats in vitro. Neural Regen Res 2012; 7:2099-106. [PMID: 25558222 PMCID: PMC4281410 DOI: 10.3969/j.issn.1673-5374.2012.27.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/18/2012] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial dysfunction is the key pathogenic mechanism of cerebral injury induced by high-altitude hypoxia. Some Chinese herbal monomers may exert anti-hypoxic effects through enhancing the efficiency of oxidative phosphorylation. In this study, effects of 10 kinds of Chinese herbal monomers on mitochondrial respiration and membrane potential of cerebral mitochondria isolated from hypoxia-exposed rats in vitro were investigated to screen anti-hypoxic drugs. Rats were exposed to a low-pressure environment of 405.35 mm Hg (54.04 kPa) for 3 days to establish high-altitude hypoxic models. Cerebral mitochondria were isolated and treated with different concentrations of Chinese herbal monomers (sinomenine, silymarin, glycyrrhizic acid, baicalin, quercetin, ginkgolide B, saffron, piperine, ginsenoside Rg1 and oxymatrine) for 5 minutes in vitro. Mitochondrial oxygen consumption and membrane potential were measured using a Clark oxygen electrode and the rhodamine 123 fluorescence analysis method, respectively. Hypoxic exposure significantly decreased the state 3 respiratory rate, respiratory control rate and mitochondrial membrane potential, and significantly increased the state 4 respiratory rate. Treatment with saffron, ginsenoside Rg1 and oxymatrine increased the respiratory control rate in cerebral mitochondria isolated from hypoxia-exposed rats in dose-dependent manners in vitro, while ginsenoside Rg1, piperine and oxymatrine significantly increased the mitochondrial membrane potential in cerebral mitochondria from hypoxia-exposed rats. The Chinese herbal monomers saffron, ginsenoside Rg1, piperine and oxymatrine could thus improve cerebral mitochondrial disorders in oxidative phosphorylation induced by hypobaric hypoxia exposure in vitro.
Collapse
Affiliation(s)
- Weihua Yan
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, the Third Military Medical University of Chinese PLA, Chongqing 400038, China ; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing 400038, China ; Key Laboratory of High Altitude Physiology and High Altitude Disease of Chinese PLA, Chongqing 400038, China
| | - Junze Liu
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, the Third Military Medical University of Chinese PLA, Chongqing 400038, China ; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing 400038, China ; Key Laboratory of High Altitude Physiology and High Altitude Disease of Chinese PLA, Chongqing 400038, China
| |
Collapse
|
40
|
Tabassum R, Vaibhav K, Shrivastava P, Khan A, Ejaz Ahmed M, Javed H, Islam F, Ahmad S, Saeed Siddiqui M, Safhi MM, Islam F. Centella asiatica attenuates the neurobehavioral, neurochemical and histological changes in transient focal middle cerebral artery occlusion rats. Neurol Sci 2012; 34:925-33. [PMID: 22864972 DOI: 10.1007/s10072-012-1163-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/11/2012] [Indexed: 11/24/2022]
Abstract
Centella asiatica has been used as psychoactive and antioxidant herbal medicine since ancient time. The present study was design to evaluate the preventive role of ethanolic extract of C. asiatica in middle cerebral artery occlusion (MCAO) in rats. Male Wistar rats were gavaged orally with C. asiatica extract (100, 200 and 300 mg/kg body weight once daily) for 21 days and thereafter subjected to right MCAO for 2 h followed by 22-h reperfusion. Brain injury was evaluated by 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining. Behavioural outcomes as neurological deficit, rota rod test, and grip strength were assessed. In addition, lipid peroxidation, enzymatic and non enzymatic antioxidants were analyzed to assess the oxidative stress. Our results revealed that C. asiatica administration greatly improved neurobehavioral activity and diminished infarction volume along with the restored histological morphology of brain in MCAO rats. Furthermore, supplementation with this extract to MCAO group has reduced the level of thiobarbituric acid reactive species, restored glutathione content and augmented the activities of antioxidant enzymes-catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and superoxide dismutase in a dose-dependent manner in ischemic rats. The remarkable antioxidant activity of C. asiatica may be attributed to its bioactive triterpenes, asiatic acid, asiaticoside, madecassic acid and madecosside and may be translated to clinical level for prevention of ischemic stroke.
Collapse
Affiliation(s)
- Rizwana Tabassum
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ashafaq M, Khan MM, Shadab Raza S, Ahmad A, Khuwaja G, Javed H, Khan A, Islam F, Siddiqui MS, Safhi MM, Islam F. S-allyl cysteine mitigates oxidative damage and improves neurologic deficit in a rat model of focal cerebral ischemia. Nutr Res 2012; 32:133-43. [PMID: 22348462 DOI: 10.1016/j.nutres.2011.12.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/20/2011] [Accepted: 12/30/2011] [Indexed: 01/08/2023]
Abstract
Oxidative stress and inflammatory damage play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The present study examined the hypothesis that S-allyl cysteine (SAC), organosulfur compounds found in garlic extract, would reduce oxidative stress-associated brain injury after middle cerebral artery occlusion (MCAO). To test this hypothesis, male Wistar rats were subjected to MCAO for 2 hours and 22-hour reperfusion. S-allyl cysteine was administered (100 mg/kg, b.wt.) intraperitoneally 30 minutes before the onset of ischemia and after the ischemia at the interval of 0, 6, and 12 hours. After 24 hours of reperfusion, rats were tested for neurobehavioral activities and were killed for the infarct volume, estimation of lipid peroxidation, glutathione content, and activity of antioxidant enzymes (glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase). S-allyl cysteine treatment significantly reduced ischemic lesion volume, improved neurologic deficits, combated oxidative loads, and suppressed neuronal loss. Behavioral and biochemical alterations observed after MCAO were further associated with an increase in glial fibrillary acidic protein and inducible nitric oxide expression and were markedly inhibited by the treatment with SAC. The results suggest that SAC exhibits exuberant neuroprotective potential in rat ischemia/reperfusion model. Thus, this finding of SAC-induced adaptation to ischemic stress and inflammation could suggest a novel avenue for clinical intervention during ischemia and reperfusion.
Collapse
Affiliation(s)
- Mohammad Ashafaq
- Department of Medical Elementology and Toxicology (Fund for the Improvement of Science and Technology sponsored by DST and Special Assistance Programme sponsored by UGC), JamiaHamdard (Hamdard University), Hamdard Nagar, New Delhi-110062, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Antonio RL, Kozasa EH, Galduróz JCF, Dawa, Dorjee Y, Kalsang T, Norbu T, Tenzin T, Rodrigues E. Formulas used by Tibetan doctors at Men-Tsee-Khang in India for the treatment of neuropsychiatric disorders and their correlation with pharmacological data. Phytother Res 2012; 27:552-63. [PMID: 22674653 DOI: 10.1002/ptr.4749] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/30/2012] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to identify formulas used at Men-Tsee-Khang (Tibetan Medical and Astrological Institute), India, for the treatment of neuropsychiatric disorders and to compare the Tibetan usage of particular ingredients with pharmacological data from the scientific database. Using ethnographic methods, five doctors were selected and interviewed. A correlation was observed between central nervous system disorders and rLung, one of the three humors in Tibetan medicine, which imbalance is the source of mental disorders, and ten multi-ingredient formulas used to treat the imbalance of this particular humor were identified. These formulas utilize 61 ingredients; among them were 48 plant species. Each formula treats several symptoms related to rLung imbalance, so the plants may have therapeutic uses distinct from those of the formulas in which they are included. Myristica fragrans, nutmeg, is contained in 100% of the formulas, and its seeds exhibit stimulant and depressant actions affecting the central nervous system. Preclinical and clinical data from the scientific literature indicate that all of the formulas include ingredients with neuropsychiatric action and corroborate the therapeutic use of 75.6% of the plants. These findings indicate a level of congruence between the therapeutic uses of particular plant species in Tibetan and Western medicines.
Collapse
Affiliation(s)
- Raquel Luna Antonio
- Department of Psychobiology, Universidade Federal de São Paulo Brazil, Rua Botucatu 862, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Edaravone ameliorates oxidative stress associated cholinergic dysfunction and limits apoptotic response following focal cerebral ischemia in rat. Mol Cell Biochem 2012; 367:215-25. [DOI: 10.1007/s11010-012-1335-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
|
44
|
Catechin Hydrate Ameliorates Redox Imbalance and Limits Inflammatory Response in Focal Cerebral Ischemia. Neurochem Res 2012; 37:1747-60. [DOI: 10.1007/s11064-012-0786-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 04/03/2012] [Accepted: 04/24/2012] [Indexed: 01/24/2023]
|
45
|
Raza SS, Khan MM, Ahmad A, Ashafaq M, Khuwaja G, Tabassum R, Javed H, Siddiqui MS, Safhi MM, Islam F. Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Res 2011; 1420:93-105. [DOI: 10.1016/j.brainres.2011.08.047] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
|
46
|
Yousuf S, Atif F, Ahmad M, Ishrat T, Khan B, Islam F. Neuroprotection Offered by Majun Khadar, a Traditional Unani Medicine, during Cerebral Ischemic Damage in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:754025. [PMID: 20047892 PMCID: PMC3142668 DOI: 10.1093/ecam/nep224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 12/01/2009] [Indexed: 12/23/2022]
Abstract
Stroke results in damages to many biochemical, molecular and behavioral deficits. Present study provides evidence of the protective efficacy of a Unani herbal medicine, Majun Khadar (MK), against cerebral ischemia-induced behavioral dysfunctions and neurochemical alterations in the hippocampus (HIP). Transient focal cerebral ischemia was induced for 2 h followed by reperfusion for 22 h in a rat model. Rats were divided into four groups: sham, middle cerebral artery occluded (MCAO), drug sham (MK; 0.816 g kg(-1) orally for 15 days) and MK pre-treated ischemic group (MK + MCAO). Levels of enzymatic and non-enzymatic antioxidants were estimated in HIP along with behavioral testing. MK pre-treatment significantly (P < .05-.001) restored the activities of glutathione peroxidase (GP×), glutathione reductase (GR), glutathione S-transferase (GST) and decreased the level of lipid peroxidation (LPO) and H2O2 content in HIP in the MK + MCAO group which were severely altered in the MCAO group. The content of glutathione (GSH), total thiols (TT) and ascorbic acid (AsA) was significantly depleted in the MCAO group; pretreatment with MK was able to restore its levels. Also in the MK + MCAO group, significant (P < .5-.001) recovery in behavioral testing by rota rod and open-field activities was seen as compared with the MCAO group. MK alone did not show any change neither in the status of various antioxidants nor behavioral functions over sham values. Although detailed studies are required for the evaluation of exact neuroprotective mechanism of MK against cerebral ischemia these preliminary experimental findings conclude that MK exhibits neuroprotective effect in cerebral ischemia by potentiating the antioxidant defense system of the brain.
Collapse
Affiliation(s)
- Seema Yousuf
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Fahim Atif
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
- Brain Research Laboratory, Department of Emergency Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Muzamil Ahmad
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Tauheed Ishrat
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Badruzzaman Khan
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Fakhrul Islam
- Neurotoxicology Laboratory, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
47
|
Ahmad A, Khan MM, Hoda MN, Raza SS, Khan MB, Javed H, Ishrat T, Ashafaq M, Ahmad ME, Safhi MM, Islam F. Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochem Res 2011; 36:1360-71. [PMID: 21472457 DOI: 10.1007/s11064-011-0458-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2011] [Indexed: 12/17/2022]
Abstract
Experimental studies have demonstrated that oxidative stress and apoptosis play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The purpose of this study was to determine whether the quercetin dihydrate (Q) protects against cerebral ischemia neuronal damage. Male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 2 h and reperfused for 72 h. Quercetin (30 mg/kg, i.p) was administrated 30 min before the onset of ischemia and after the ischemia at interval of 0, 24, 48, and 72 h. The administration of Q showed marked reduction in infarct size, reduced the neurological deficits in terms of behaviors, suppressed neuronal loss and diminished the p53 expression in MCAO rats. Q was found to be successful in upregulating the antioxidant status and lowering the TBARS level. Conversely, the elevated activity of poly (ADP-ribose) polymerase (PARP), and activity of caspase-3 in MCAO group was attenuated significantly in Q treated group when compared with MCAO group. Our study reveals that Q, as a powerful antioxidant, could prevent free radicals associated oxidative damage and morphological changes in the MCAO rats. Thus, it may have a therapeutic value for the treatment of stroke.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Neurotoxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saffron extract and trans-crocetin inhibit glutamatergic synaptic transmission in rat cortical brain slices. Neuroscience 2011; 180:238-47. [PMID: 21352900 DOI: 10.1016/j.neuroscience.2011.02.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/26/2011] [Accepted: 02/15/2011] [Indexed: 11/24/2022]
Abstract
Saffron, the dried stigmata of Crocus sativus L., is used in traditional medicine for a wide range of indications including cramps, asthma, and depression. To investigate the influence of hydro-ethanolic saffron extract (CSE) and trans-crocetin on synaptic transmission, postsynaptic potentials (PSPs) were elicited by focal electrical stimulation and recorded using intracellular placed microelectrodes in pyramidal cells from rat cingulate cortex. CSE (10-200 μg/ml) inhibited evoked PSPs as well as the isolated NMDA and non-NMDA component of PSPs. Glutamate (500 μM) added into the organ bath induced membrane depolarization. CSE decreased glutamate-induced membrane depolarization. Additionally, CSE at 100 μg/ml decreased NMDA (20 μM) and kainate (1 μM)-induced depolarization, whereas AMPA (1 μM)-induced depolarization was not affected. Trans-crocetin (1-50 μM) showed inhibition of evoked PSPs and glutamate-induced membrane depolarization comparable to CSE. Trans-crocetin at 10 μM decreased NMDA (20 μM)-induced membrane depolarization, but did not inhibit the isolated non-NMDA component of PSPs. We conclude that trans-crocetin is involved in the antagonistic effect of CSE on NMDA but not on kainate receptors.
Collapse
|
49
|
Ulbricht C, Conquer J, Costa D, Hollands W, Iannuzzi C, Isaac R, Jordan JK, Ledesma N, Ostroff C, Serrano JMG, Shaffer MD, Varghese M. An Evidence-Based Systematic Review of Saffron (Crocus sativus) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8:58-114. [DOI: 10.3109/19390211.2011.547666] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Tamaddonfard E, Hamzeh-Gooshchi N. Effects of intraperitoneal and intracerebroventricular injection of crocin on acute corneal pain in rats. Phytother Res 2011; 24:1463-7. [PMID: 20878695 DOI: 10.1002/ptr.3169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, the effects of intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) injection of crocin in separate and combined treatments with i.p. injections of morphine (an opioid receptor agonist) and naloxone (an opioid receptor antagonist) were investigated on acute corneal pain in rats. Acute corneal pain was induced by local application of a drop of 5 M NaCl solution on the corneal surface. The number of eye wipes was taken as a pain response, and counted during the first 30 s. Crocin injected i.p. and i.c.v. and morphine injected i.p. significantly (p < 0.05) decreased the number of eye wipes. Morphine (i.p.)-induced antinociception was significantly (p < 0.05) increased by the systemically and centrally injected crocin. The antinociceptive effects induced by i.p. and i.c.v. injections of crocin were not reversed by i.p. injection of naloxone. These findings indicated that both crocin and morphine attenuated hypertonic saline-induced corneal pain. The opioid receptors may not be involved in the analgesic mechanism of crocin.
Collapse
Affiliation(s)
- Esmaeal Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, PO Box 1177, Urmia University, Urmia 57135, Iran.
| | | |
Collapse
|