1
|
Lattanzi G, Lelli D, Antonelli Incalzi R, Pedone C. Effect of Macronutrients or Micronutrients Supplementation on Nutritional Status, Physical Functional Capacity and Quality of Life in Patients with COPD: A Systematic Review and Meta-Analysis. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:473-487. [PMID: 38329722 DOI: 10.1080/27697061.2024.2312852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Given the importance that a correct and balanced nutrition has on patients with chronic obstructive pulmonary disease (COPD), supplementation of macro and micronutrients has been proposed, but the results of previous meta-analyses are contrasting. We performed an update of the latest evidence through a systematic review and meta-analysis of studies to assess the role of nutritional supplements in improving nutritional status, pulmonary function, physical performance, and quality of life of these patients.We included randomized controlled trials (RCTs) published between 01-01-2010 and 11-01-2023 evaluating the effectiveness of nutritional support in patients affected by stable COPD with an intervention of at least 2 weeks. Primary outcomes were changes in body mass index (BMI) and fat free mass index (FFMI). Secondary outcomes were exercise tolerance (6-min walking test, 6MWT), quality of life (St George's Respiratory Questionnaire, SGRQ) and respiratory function (FEV1). According with supplements type (macronutrients or micronutrients), we calculated the pooled adjusted mean difference (MD) and 95% confidence intervals (95%CIs) of the selected outcomes, using random-effects models in presence of high heterogeneity (I2>50%) or fixed-effects models otherwise. The risk of publication bias was evaluated with the trim and fill method.From 967 articles, 20 RCTs were included. Macronutrients supplementation improved BMI (MD 1.0 kg/m2, 95%CI 0.21-1.79), FFMI (MD 0.77 Kg/m2, 95%CI 0.48-1.06), 6MQT (MD 68.39 m, 95%CI 40.07-96.71), and SGRQ (MD -5.14, 95% CI -7.31-2.97), while it does not ameliorate respiratory function (MD 0.26% 95%CI -1.87-2.40). Micronutrients supplementation alone did not improve any of the considered outcomes.
Collapse
Affiliation(s)
- Greta Lattanzi
- Unit of Food Science and Human Nutrition, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Diana Lelli
- Operative Research Unit of Geriatrics, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Raffaele Antonelli Incalzi
- Operative Research Unit of Internal Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Internal Medicine, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Claudio Pedone
- Operative Research Unit of Geriatrics, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Geriatrics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
2
|
Huang WJ, Ko CY. Systematic review and meta-analysis of nutrient supplements for treating sarcopenia in people with chronic obstructive pulmonary disease. Aging Clin Exp Res 2024; 36:69. [PMID: 38483650 PMCID: PMC10940388 DOI: 10.1007/s40520-024-02722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Individuals with chronic obstructive pulmonary disease (COPD) are prone to malnutrition and sarcopenia as a result of nutritional deficiencies and increased energy metabolism. However, the effects of nutrient supplements (NS) on treating sarcopenia in patients with COPD are not well established from systematic evidence. This meta-analysis examined the effect of NS on sarcopenia in patients with COPD. A systematic search of multiple databases was conducted, and 29 randomized controlled trials involving 1625 participants (age, mean [SD] = 67.9 [7.8] years) were analyzed. NS demonstrated significant improvements in body weight (MD,1.33 kg; 95% CI, 0.60, 2.05 kg; P = 0.0003; I2 = 87%), fat-free mass index (MD, 0.74 kg/m2; 95% CI, 0.21, 1.27 kg/m2; P = 0.007; I2 = 75%), and 6-min walk test (MD, 19.43 m; 95% CI, 4.91, 33.94 m; P = 0.009; I2 = 81%) compared with control. However, NS had nonsignificant effects on handgrip strength (SMD, 0.36; 95% CI, - 0.15, 0.88; P = 0.16; I2 = 87%) and quadriceps muscle strength (SMD, 0.11; 95% CI, - 0.06, 0.27; P = 0.20; I2 = 25%) compared with the control. In conclusion, NS may be an effective treatment for improving body composition and physical performance in COPD. Future studies should explore the effects of intervention durations, specific NS types, or combined training in patients with COPD and sarcopenia.
Collapse
Affiliation(s)
- Wen-Jian Huang
- Department of Clinical Nutrition, the Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshanbei Rd, Licheng District, Quanzhou, 362000, Fujian, China
- Huidong Center for Chronic Disease Control, Huizhou, 516300, Guangdong, China
| | - Chih-Yuan Ko
- Department of Clinical Nutrition, the Second Affiliated Hospital of Fujian Medical University, No. 34, Zhongshanbei Rd, Licheng District, Quanzhou, 362000, Fujian, China.
- School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Jenkins AR, Gaynor-Sodeifi K, Lewthwaite H, Triandafilou J, Belo LF, de Oliveira MF, Jensen D. Efficacy of interventions to alter measures of fat-free mass in people with COPD: a systematic review and meta-analysis. ERJ Open Res 2023; 9:00102-2023. [PMID: 37529637 PMCID: PMC10388177 DOI: 10.1183/23120541.00102-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/08/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Low fat-free mass (FFM) is linked to poor health outcomes in COPD, including impaired exercise tolerance and premature death. The aim of this systematic review was to synthesise evidence on the effectiveness of interventions for increasing FFM in COPD. Methods Searches of electronic databases (MEDLINE, Cochrane Library, Embase, Web of Science, Scopus) and trial registers (ClinicalTrials.gov) were undertaken from inception to August 2022 for randomised studies of interventions assessing measures of FFM in COPD. The primary outcome was change in FFM (including derivatives). Secondary outcomes were adverse events, compliance and attrition. Results 99 studies (n=5138 people with COPD) of 11 intervention components, used alone or in combination, were included. Exercise training increased mid-thigh cross-sectional area (k=3, standardised mean difference (SMD) 1.04, 95% CI 0.02-2.06; p=0.04), but not FFM (k=4, SMD 0.03, 95% CI -0.18-0.24; p=0.75). Nutritional supplementation significantly increased FFM index (k=11, SMD 0.31, 95% CI 0.13-0.50; p<0.001), but not FFM (k=19, SMD 0.16, 95% CI -0.06-0.39; p=0.16). Combined exercise training and nutritional supplementation increased measures related to FFM in 67% of studies. Anabolic steroids increased FFM (k=4, SMD 0.98, 95% CI 0.24-1.72; p=0.009). Neuromuscular electrical stimulation increased measures related to FFM in 50% of studies. No interventions were more at risk of serious adverse events, low compliance or attrition. Discussion Exercise training and nutritional supplementation were not effective in isolation to increase FFM, but were for localised muscle and index measures, respectively. Combined, exercise and nutritional supplementation shows promise as a strategy to increase FFM in COPD. Anabolic steroids are efficacious for increasing FFM in COPD.
Collapse
Affiliation(s)
- Alex R. Jenkins
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
| | - Kaveh Gaynor-Sodeifi
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
| | - Hayley Lewthwaite
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
- Centre of Research Excellence in Treatable Traits, College of Health, Medicine, and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
- Asthma and Breathing Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Jaycie Triandafilou
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
| | - Letícia F. Belo
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
- Laboratory of Research in Respiratory Physiotherapy, Physiotherapy Department, State University of Londrina, Londrina, Brazil
| | - Mayron Faria de Oliveira
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
- Science Division, Exercise Science, Lyon College, Batesville, AR, USA
| | - Dennis Jensen
- Clinical Exercise and Respiratory Physiology Laboratory, Department of Kinesiology and Physical Education, Faculty of Education, McGill University, Montréal, QC, Canada
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
4
|
Prokopidis K, Mazidi M, Sankaranarayanan R, Tajik B, McArdle A, Isanejad M. Effects of whey and soy protein supplementation on inflammatory cytokines in older adults: a systematic review and meta-analysis. Br J Nutr 2023; 129:759-770. [PMID: 35706399 PMCID: PMC9975787 DOI: 10.1017/s0007114522001787] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Low-grade inflammation is a mediator of muscle proteostasis. This study aimed to investigate the effects of isolated whey and soy proteins on inflammatory markers. METHODS We conducted a systematic literature search of randomised controlled trials (RCT) through MEDLINE, Web of Science, Scopus and Cochrane Library databases from inception until September 2021. To determine the effectiveness of isolated proteins on circulating levels of C-reactive protein (CRP), IL-6 and TNF-α, a meta-analysis using a random-effects model was used to calculate the pooled effects (CRD42021252603). RESULTS Thirty-one RCT met the inclusion criteria and were included in the systematic review and meta-analysis. A significant reduction of circulating IL-6 levels following whey protein [Mean Difference (MD): -0·79, 95 % CI: -1·15, -0·42, I2 = 96 %] and TNF-α levels following soy protein supplementation (MD: -0·16, 95 % CI: -0·26, -0·05, I2 = 68 %) was observed. The addition of soy isoflavones exerted a further decline in circulating TNF-α levels (MD: -0·20, 95 % CI: -0·31, -0·08, I2 = 34 %). According to subgroup analysis, whey protein led to a statistically significant decrease in circulating IL-6 levels in individuals with sarcopenia and pre-frailty (MD: -0·98, 95 % CI: -1·56, -0·39, I2 = 0 %). These findings may be dependent on participant characteristics and treatment duration. CONCLUSIONS These data support that whey and soy protein supplementation elicit anti-inflammatory effects by reducing circulating IL-6 and TNF-α levels, respectively. This effect may be enhanced by soy isoflavones and may be more prominent in individuals with sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Mohsen Mazidi
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Rajiv Sankaranarayanan
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Behnam Tajik
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Anne McArdle
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Masoud Isanejad
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Corresponding author: Masoud Isanejad, email
| |
Collapse
|
5
|
Bernardes S, Eckert IDC, Burgel CF, Teixeira PJZ, Silva FM. Increased energy and/or protein intake improves anthropometry and muscle strength in chronic obstructive pulmonary disease patients: a systematic review with meta-analysis on randomised controlled clinical trials. Br J Nutr 2022; 129:1-18. [PMID: 35416134 DOI: 10.1017/s0007114522000976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Compromised nutritional status is associated with a poor prognosis in chronic obstructive pulmonary disease (COPD) patients. However, the impact of nutritional support in this group of patients is controversial. The present study systematically reviewed the effect of energy and or protein supplements or food fortification on anthropometry and muscle strength of COPD patients. We searched MEDLINE (PubMed), EMBASE, Cochrane Library and Scopus for all published randomised clinical trials without language restriction up to May 2021. Three reviewers performed study selection and data extraction independently. We judged the risk of bias by RoB 2 and the certainty of evidence by the GRADE approach. We included thirty-two randomised controlled trials and compiled thirty-one of them (1414 participants) in the random-effects model meta-analyses. Interventions were energy and/or protein oral nutritional supplements or food fortification added to the diet for at least one week. Pooled analysis revealed that nutritional interventions increased body weight (muscle circumference (MD) = 1·44 kg, 95 % CI 0·81, 2·08, I2 = 73 %), lean body mass (standardised mean difference (SMD) = 0·37; 95 % CI 0·15, 0·59, I2 = 46 %), midarm muscle circumference (MD = 0·29 mm2, 95 % CI 0·02, 0·57, I2 = 0 %), triceps skinfold (MD = 1·09 mm, 95 % CI 0·01, 2·16, I2 = 0 %) and handgrip strength (SMD = 0·39, 95 % CI 0·07, 0·71, I2 = 62 %) compared with control diets. Certainty of evidence ranged from very low to low, and most studies were judged with some concerns or at high risk of bias. This meta-analysis revealed, with limited evidence, that increased protein and/or energy intake positively impacts anthropometric measures and handgrip strength of COPD patients.
Collapse
Affiliation(s)
- Simone Bernardes
- Post-Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Igor da Conceição Eckert
- Undergraduate Nutrition Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Ferri Burgel
- Nutrition Service, Santa Casa de Misericordia of Porto Alegre Hospital Complex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo José Zimermann Teixeira
- Post-Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Undergraduate Medicine Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Pulmologist at Pulmonary Rehabilitation Program, Hospital Pavilhão Pereira Filho, Santa Casa de Misericordia of Porto Alegre Hospital Complex, Porto Alegre, Rio Grande do Sul, Brazil
| | - Flávia Moraes Silva
- Nutrition Department and Postgraduate Program in Nutrition Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Jamshidi S, Mohsenpour MA, Masoumi SJ, Fatahi S, Nasimi N, Zahabi ES, Pourrajab B, Shidfar F. Effect of whey protein consumption on IL-6 and TNF-α: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2022; 16:102372. [PMID: 34998259 DOI: 10.1016/j.dsx.2021.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS Due to inconsistent data about WP supplementation on inflammatory markers, present systematic review and meta-analysis was done to summarize its effect on TNF-α and IL-6. METHODS Our search was done in Pubmed, Scopus, Embase, and Cochrane up to June 2021. Weighted mean difference (WMD) and 95% confidence intervals (CI) was used to indicate the effect sizes. Conceivable sources of heterogeneity were detected by subgroup analysis. RESULTS Overall, 11 eligible RCTs were included. The pooled results showed that WP supplementation had no significant effect on TNF-α and IL-6 status compare to those receiving carbohydrate and other types of proteins as placebo. Results from subgroup analysis based on health status, study duration, WP dosage and sex, expressed no favorable effect of WP on TNF-α and IL-6 levels. CONCLUSION It can be concluded that whey supplementation had no favorable effects on inflammatory biomarkers including TNF- α and IL-6.
Collapse
Affiliation(s)
- Sanaz Jamshidi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Fatahi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Nasimi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Sharifi Zahabi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Pourrajab
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Wouters EFM. Nutritional Status and Body Composition in Patients Suffering From Chronic Respiratory Diseases and Its Correlation With Pulmonary Rehabilitation. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:725534. [PMID: 36188872 PMCID: PMC9397774 DOI: 10.3389/fresc.2021.725534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022]
Abstract
As part of an individualized intervention to improve the physical, emotional, and social functioning of patients with chronic respiratory diseases in general and chronic obstructive pulmonary disease in particular, awareness of the presence and consequences of changes in body composition increased enormously during the last decades, and nutritional intervention is considered as an essential component in the comprehensive approach of these patients. This review describes the prevalence and the clinical impact of body composition changes and also provides an update of current intervention strategies. It is argued that body composition, preferentially a three-component evaluation of fat, lean, and bone mass, must become part of a thorough assessment of every patient, admitted for pulmonary rehabilitation.
Collapse
Affiliation(s)
- Emiel F. M. Wouters
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, Netherlands
- *Correspondence: Emiel F. M. Wouters
| |
Collapse
|
8
|
de Bisschop C, Caron F, Ingrand P, Bretonneau Q, Dupuy O, Meurice JC. Does branched-chain amino acid supplementation improve pulmonary rehabilitation effect in COPD? Respir Med 2021; 189:106642. [PMID: 34678585 DOI: 10.1016/j.rmed.2021.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Muscle wasting is frequent in chronic obstructive lung disease (COPD) and associated with low branched-chain amino acids (BCAA). We hypothesized that BCAA supplementation could potentiate the effect of a pulmonary rehabilitation program (PRP) by inducing muscular change. MATERIALS AND METHODS Sixty COPD patients (GOLD 2-3) were involved in an ambulatory 4-week PRP either with BCAA oral daily supplementation or placebo daily supplementation in a randomized double-blind design. Maximal exercise test including quadriceps oxygenation measurements, functional exercise test, muscle strength, lung function tests, body composition, dyspnea and quality of life were assessed before and after PRP. RESULTS Fifty-four patients (64.9 ± 8.3 years) completed the protocol. In both groups, maximal exercise capacity, functional and muscle performances, quality of life and dyspnea were improved after 4-week PRP (p ≤ 0.01). Changes in muscle oxygenation during the maximal exercise and recovery period were not modified after 4-week PRP in BCAA group. Contrarily, in the placebo group the muscle oxygenation kinetic of recovery was slowed down after PRP. CONCLUSION This study demonstrated that a 4-week PRP with BCAA supplementation is not more beneficial than PRP alone for patients. A longer duration of supplementation or a more precise targeting of patients would need to be investigated to validate an effect on muscle recovery and to demonstrate other beneficial effects.
Collapse
Affiliation(s)
| | - Fabrice Caron
- CHU Poitiers, F-86000, Poitiers, France; Centre de Réadaptation Du Moulin Vert, F-86340, Nieuil L'espoir, France
| | - Pierre Ingrand
- Université de Poitiers, CHU Poitiers, INSERM CIC 1402, F-86000, Poitiers, France
| | | | - Olivier Dupuy
- Université de Poitiers, MOVE, F-86000, Poitiers, France
| | | |
Collapse
|
9
|
Aldhahir AM, Aldabayan YS, Alqahtani JS, Ridsdale HA, Smith C, Hurst JR, Mandal S. A double-blind randomised controlled trial of protein supplementation to enhance exercise capacity in COPD during pulmonary rehabilitation: a pilot study. ERJ Open Res 2021; 7:00077-2021. [PMID: 33816594 PMCID: PMC8005591 DOI: 10.1183/23120541.00077-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background Pulmonary rehabilitation is a cost-effective management strategy in chronic obstructive pulmonary disease (COPD) which improves exercise performance and health-related quality of life. Nutritional supplementation may counter malnutrition and enhance pulmonary rehabilitation outcomes but rigorous evidence is absent. We aimed to investigate the effect of high-protein supplementation (Fortisip Compact Protein (FCP)) during pulmonary rehabilitation on exercise capacity. Methods This was a double-blind randomised controlled trial comparing FCP (intervention) with PreOp (a carbohydrate control supplement) in COPD patients participating in a pulmonary rehabilitation programme. Participants consumed the supplement twice a day during pulmonary rehabilitation and attended twice-weekly pulmonary rehabilitation sessions, with pre- and post-pulmonary rehabilitation measurements, including the incremental shuttle walk test (ISWT) distance at 6 weeks as the primary outcome. Participants’ experience using supplements was assessed. Results 68 patients were recruited (intervention n=36 and control n=32). The trial was stopped early due to the COVID-19 pandemic. Although statistical significance was not reached, there was the suggestion of a clinically meaningful difference in the ISWT distance at 6 weeks favouring the intervention group (intervention 342±149 m (n=22) versus control 305±148 m (n=22); p=0.1). Individuals who achieved an improvement in the ISWT had a larger mid-thigh circumference at baseline (responders 62±4 cm versus nonresponders 55±6 cm; p=0.006). 79% of the patients were satisfied with the taste and 43% would continue taking the FCP. Conclusions Although the data did not demonstrate a statistically significant difference in the ISWT, high-protein supplementation in COPD during pulmonary rehabilitation may result in a clinically meaningful improvement in exercise capacity and was acceptable to patients. Large, adequately powered studies are justified. High-protein supplementation combined with pulmonary rehabilitation in COPD did not statistically improve exercise capacity but may be associated with a clinically meaningful improvement. Larger trials are needed to confirm this.https://bit.ly/3tMtX9O
Collapse
Affiliation(s)
- Abdulelah M Aldhahir
- UCL Respiratory, Royal Free Campus, University College London, London, UK.,Respiratory Therapy Dept, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Yousef S Aldabayan
- UCL Respiratory, Royal Free Campus, University College London, London, UK.,Respiratory Care Dept, College of Applied Medical Sciences, King Faisal University, Al-Hasa, Saudi Arabia
| | - Jaber S Alqahtani
- UCL Respiratory, Royal Free Campus, University College London, London, UK.,Dept of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | | | - Colette Smith
- Research Dept of Infection and Population Health, University College London, London, UK
| | - John R Hurst
- UCL Respiratory, Royal Free Campus, University College London, London, UK.,Royal Free London NHS Foundation Trust, London, UK.,These authors contributed equally to this work
| | - Swapna Mandal
- UCL Respiratory, Royal Free Campus, University College London, London, UK.,Royal Free London NHS Foundation Trust, London, UK.,These authors contributed equally to this work
| |
Collapse
|
10
|
Zanini B, Simonetto A, Zubani M, Castellano M, Gilioli G. The Effects of Cow-Milk Protein Supplementation in Elderly Population: Systematic Review and Narrative Synthesis. Nutrients 2020; 12:E2548. [PMID: 32842497 PMCID: PMC7551861 DOI: 10.3390/nu12092548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To review currently available evidence on the effect of cow-milk proteins supplementation (CPS) on health in the elderly. METHODS Five electronic databases (Pubmed, Web of Science, Embase, Cochrane Library, ClinicalTrials.gov) were searched for studies about CPS among older people. All types of publications were included, with the exception of systematic reviews, meta-analyses, opinion letters, editorials, case reports, conference abstracts and comments. An additional search in Google Scholar and a manual review of the reference lists were performed. RESULTS Overall, 103 studies were included. Several studies explored the role of CPS in the preservation or improvement of muscle mass among healthy subjects (40 studies) and pre-frail, frail or sarcopenic patients (14), with evidence of beneficial effects. Other studies assessed the effect of CPS on bones (12), cardiovascular disease (8), inflamm-aging (7), chronic pulmonary disease (4), neurocognitive function (4), and vaccines (2), with weak evidence of positive effects. Seven studies in the field of protein metabolism investigated the role of CPS as an important contributor to nutritional needs. Other investigational areas are considered in the last five studies. CONCLUSIONS The beneficial effects of CPS in achieving aged-related nutritional goals, in preserving muscle mass and in recovering after hospitalization may be particularly relevant in the elderly.
Collapse
Affiliation(s)
- Barbara Zanini
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, I-25123 Brescia, Italy;
| | - Anna Simonetto
- AgroFood Lab, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, I-25123 Brescia, Italy; (A.S.); (M.Z.); (G.G.)
| | - Matilde Zubani
- AgroFood Lab, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, I-25123 Brescia, Italy; (A.S.); (M.Z.); (G.G.)
| | - Maurizio Castellano
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, I-25123 Brescia, Italy;
| | - Gianni Gilioli
- AgroFood Lab, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, I-25123 Brescia, Italy; (A.S.); (M.Z.); (G.G.)
| |
Collapse
|
11
|
Ahmadi A, Eftekhari MH, Mazloom Z, Masoompour M, Fararooei M, Eskandari MH, Mehrabi S, Bedeltavana A, Famouri M, Zare M, Nasimi N, Sohrabi Z. Fortified whey beverage for improving muscle mass in chronic obstructive pulmonary disease: a single-blind, randomized clinical trial. Respir Res 2020; 21:216. [PMID: 32807165 PMCID: PMC7430110 DOI: 10.1186/s12931-020-01466-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 07/23/2020] [Indexed: 04/22/2024] Open
Abstract
Background The development of effective nutritional supports for patients with chronic obstructive pulmonary diseases (COPD) is still challenging. This study was conducted to investigate the efficacy of daily consumption of fortified whey on inflammation, muscle mass, functionality, and quality of life in patients with moderate-to-severe COPD. Methods A single-blind, randomized trial study was performed on patients with COPD (n = 46). Participants in the intervention group (n = 23) daily received 250 ml of whey beverage fortified with magnesium and vitamin C for 8 weeks. Any changes in inflammatory cytokines (including interleukin- 6 (IL-6) and tumor necrosis factor (TNFα)) were the primary outcomes and the secondary outcomes were fat-free mass, handgrip strength, malnutrition, glutathione and malondialdehyde serum concentrations, and health-related quality of life (HRQoL). Body composition and muscle strength were measured by Bioelectrical Impedance Analysis (BIA) and hydraulic hand dynamometer, respectively. Fat-free mass index (FFMI) was also calculated. Results At the end of the study, 44 patients were analyzed. There were significant decreases in IL-6 concentrations in the intervention group compared to the control group. Also, FFMI, body protein, and handgrip strength increased significantly in the intervention group with significant changes between two groups. Moreover, improvement in health-related quality of life was observed in the intervention group compared to the control group. There were no significant changes in other study variables. Conclusions This novel nutritional intervention decreased inflammatory cytokines levels, improved indices of skeletal muscle mass and muscle strength, and ultimately, increased HRQoL in patients with moderate-to-severe COPD. Thus, it is suggested to do further studies to assess the effects of nutrition intervention on COPD progression. Trial registration IR.SUMS.REC.1396.85 (https://www.irct.ir/).
Collapse
Affiliation(s)
- Afsane Ahmadi
- Research Center for Health Sciences, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hassan Eftekhari
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zohreh Mazloom
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoom Masoompour
- Non-communicable Disease Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararooei
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Sciences and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Samrad Mehrabi
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Bedeltavana
- Dairy Expert at Research and Development of Zarrin Ghazal Company (DAITY), Shiraz, Iran
| | - Mandana Famouri
- Dairy Expert at Research and Development of Zarrin Ghazal Company (DAITY), Shiraz, Iran
| | - Morteza Zare
- Nutrition Reasearch Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Nasimi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sohrabi
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Master PBZ, Macedo RCO. Effects of dietary supplementation in sport and exercise: a review of evidence on milk proteins and amino acids. Crit Rev Food Sci Nutr 2020; 61:1225-1239. [PMID: 32363897 DOI: 10.1080/10408398.2020.1756216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary supplements, especially protein, are used by athletes to achieve the exercise and training daily demands, and have been receiving research focus on their role regarding recovery and performance. Protein supplements are preferred over traditional protein sources because of their ease of availability and use. In addition to consuming a complete protein supplement, such as whey protein, the ingestion of a supplement containing only amino acids has been of interest for promoting skeletal muscle anabolism and high-quality weight loss. The aim of this study was to review the existing evidence on the effects of protein and amino acid supplementation on exercise. The preponderance of evidence suggests that protein supplementation, especially milk proteins, potentiate muscle protein synthesis, lean mass and exercise recovery. Unlike proteins, amino acids supplementation (branched-chain amino acids, glutamine or leucine) results from research are equivocal and are not warranted.
Collapse
|
13
|
Oxidative and inflammatory effects of pulmonary rehabilitation in patients with bronchiectasis. A prospective, randomized study. NUTR HOSP 2020; 37:6-13. [PMID: 31960695 DOI: 10.20960/nh.02763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background: systemic inflammation and oxidative stress are important factors in the pathogenesis of bronchiectasis. Pulmonary rehabilitation (PR) is recommended for bronchiectasis, but there is no data about its effect on the inflammatory and REDOX status of these patients. Aims: to investigate the effect of PR in non-cystic-fibrosis bronchiectasis (NCFB) patients, and to compare it with the effect of PR plus a hyperproteic oral nutritional supplement (PRS) enriched with beta-hydroxy-beta-methylbutyrate (HMB) on serum inflammatory and oxidative biomarkers. Materials and methods: this was an open randomized, controlled trial. Thirty individuals (65 years old or younger with a body mass index over 18.5, older than 65 years with a body mass index over 20) were recruited from September 2013 to September 2014, and randomly assigned to receive PR or PRS. Total neutrophils, and inflammatory and oxidative biomarker levels were measured at baseline, and then at 3 and 6 months. Results: in the PRS group neutrophil levels were decreased from baseline at 6 months. A significantly different fold change was found between the PR and PRS groups. In the PR group, IL-6 and adiponectin were increased by the end of the study while TNFα levels were decreased from baseline at 6 months. REDOX biomarkers remained stable throughout the study except for 8-isoprostane levels, which were increased from baseline at 6 months in both groups of patients. Conclusions: a PR program induced a pro-oxidative effect accompanied by changes in circulating inflammatory cytokine levels in NCFB patients. Our results would also suggest a possible beneficial effect of the HMB enriched supplement on neutrophil level regulation in these patients. The information provided in this study could be useful for choosing the right therapeutic approach in the management of bronchiectasis.
Collapse
|
14
|
van Beers M, Rutten-van Mölken MP, van de Bool C, Boland M, Kremers SP, Franssen FM, van Helvoort A, Gosker HR, Wouters EF, Schols AM. Clinical outcome and cost-effectiveness of a 1-year nutritional intervention programme in COPD patients with low muscle mass: The randomized controlled NUTRAIN trial. Clin Nutr 2020; 39:405-413. [DOI: 10.1016/j.clnu.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 01/18/2023]
|
15
|
Aldhahir AM, Rajeh AMA, Aldabayan YS, Drammeh S, Subbu V, Alqahtani JS, Hurst JR, Mandal S. Nutritional supplementation during pulmonary rehabilitation in COPD: A systematic review. Chron Respir Dis 2020; 17:1479973120904953. [PMID: 32054293 PMCID: PMC7019390 DOI: 10.1177/1479973120904953] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022] Open
Abstract
Uptake of nutritional supplementation during pulmonary rehabilitation (PR) for people with chronic obstructive pulmonary disease (COPD) has been limited by an absence of rigorous evidence-based studies supporting use. The objective was to report and summarise the current evidence supporting the use of nutritional supplementation to improve outcomes during PR in stable COPD patients. A systematic search was conducted up to 7 August 2019 (registration number CRD42018089142). The preferred reporting items for systematic reviews and meta-analyses guidelines were used. Six databases were included: Medical Literature Analysis and Retrieval System Online or MEDLARS Online, Allied and Complementary Medicine Database, the Cochrane Database of Systematic Reviews, Excerpta Medica dataBASE, Cumulative Index of Nursing and Allied Health Literature and Web of Science. This systematic search generated 580 initial matches, of which 22 studies (917 COPD participants) met the pre-specified criteria and were included. Sixteen of 19 studies that used nutritional supplements in addition to PR did not show additional benefit compared to PR alone when measuring exercise capacity. Nutritional supplements significantly increased body weight in 7 of 11 studies. Body mass index increased significantly in two of six studies. Handgrip strength did not improve, while quadriceps muscle strength significantly improved in 3 of 11 studies. Four of eight studies showed a significant improvement in inspiratory muscle function. Only 2 of 14 studies demonstrated a significant improvement in quality of life with supplementation in addition to PR. There remains insufficient evidence on the effect of nutritional supplementation on improving outcomes during PR in patients with COPD due to heterogeneity in supplements, outcome measures and PR programmes. Therefore, controversy remains and further research is needed.
Collapse
Affiliation(s)
- Abdulelah M Aldhahir
- UCL Respiratory, Royal Free Campus, University College London, London,
UK
- Respiratory Care Department, Faculty of Applied Medical Sciences, Jazan
University, Jazan, Saudi Arabia
| | - Ahmed M Al Rajeh
- Respiratory Care Department, College of Applied Medical Sciences, King
Faisal University, Al-Ahsa, Saudi Arabia
| | - Yousef S Aldabayan
- Respiratory Care Department, College of Applied Medical Sciences, King
Faisal University, Al-Ahsa, Saudi Arabia
| | - Salifu Drammeh
- UCL Respiratory, Royal Free Campus, University College London, London,
UK
| | | | - Jaber S Alqahtani
- UCL Respiratory, Royal Free Campus, University College London, London,
UK
- Department of Respiratory Care, Prince Sultan Military College of Health
Sciences, Dhahran, Saudi Arabia
| | - John R Hurst
- UCL Respiratory, Royal Free Campus, University College London, London,
UK
| | | |
Collapse
|
16
|
Jaitovich A, Barreiro E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am J Respir Crit Care Med 2019; 198:175-186. [PMID: 29554438 DOI: 10.1164/rccm.201710-2140ci] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle dysfunction occurs in patients with chronic obstructive pulmonary disease (COPD) and affects both ventilatory and nonventilatory muscle groups. It represents a very important comorbidity that is associated with poor quality of life and reduced survival. It results from a complex combination of functional, metabolic, and anatomical alterations leading to suboptimal muscle work. Muscle atrophy, altered fiber type and metabolism, and chest wall remodeling, in the case of the respiratory muscles, are relevant etiological contributors to this process. Muscle dysfunction worsens during COPD exacerbations, rendering patients progressively less able to perform activities of daily living, and it is also associated with poor outcomes. Muscle recovery measures consisting of a combination of pulmonary rehabilitation, optimized nutrition, and other strategies are associated with better prognosis when administered in stable patients as well as after exacerbations. A deeper understanding of this process' pathophysiology and clinical relevance will facilitate the use of measures to alleviate its effects and potentially improve patients' outcomes. In this review, a general overview of skeletal muscle dysfunction in COPD is offered to highlight its relevance and magnitude to expert practitioners and scientists as well as to the average clinician dealing with patients with chronic respiratory diseases.
Collapse
Affiliation(s)
- Ariel Jaitovich
- 1 Division of Pulmonary and Critical Care Medicine and.,2 Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Esther Barreiro
- 3 Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, Institut Hospital del Mar d'Investigacions Mèdiques-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Spain; and.,4 Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Additional Effects of Nutritional Antioxidant Supplementation on Peripheral Muscle during Pulmonary Rehabilitation in COPD Patients: A Randomized Controlled Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5496346. [PMID: 31178967 PMCID: PMC6501222 DOI: 10.1155/2019/5496346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/24/2019] [Indexed: 11/30/2022]
Abstract
Background Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease (COPD) is not fully reversed by exercise training. Antioxidants are critical for muscle homeostasis and adaptation to training. However, COPD patients experience antioxidant deficits that worsen after training and might impact their muscle response to training. Nutritional antioxidant supplementation in combination with pulmonary rehabilitation (PR) would further improve muscle function, oxidative stress, and PR outcomes in COPD patients. Methods Sixty-four COPD patients admitted to inpatient PR were randomized to receive 28 days of oral antioxidant supplementation targeting the previously observed deficits (PR antioxidant group; α-tocopherol: 30 mg/day, ascorbate: 180 mg/day, zinc gluconate: 15 mg/day, selenomethionine: 50 μg/day) or placebo (PR placebo group). PR consisted of 24 sessions of moderate-intensity exercise training. Changes in muscle endurance (primary outcome), oxidative stress, and PR outcomes were assessed. Results Eighty-one percent of the patients (FEV1 = 58.9 ± 20.0%pred) showed at least one nutritional antioxidant deficit. Training improved muscle endurance in the PR placebo group (+37.4 ± 45.1%, p < 0.001), without additional increase in the PR antioxidant group (-6.6 ± 11.3%; p = 0.56). Nevertheless, supplementation increased the α-tocopherol/γ-tocopherol ratio and selenium (+58 ± 20%, p < 0.001, and +16 ± 5%, p < 0.01, respectively), muscle strength (+11 ± 3%, p < 0.001), and serum total proteins (+7 ± 2%, p < 0.001), and it tended to increase the type I fiber proportion (+32 ± 17%, p = 0.07). The prevalence of muscle weakness decreased in the PR antioxidant group only, from 30.0 to 10.7% (p < 0.05). Conclusions While the primary outcome was not significantly improved, COPD patients demonstrate significant improvements of secondary outcomes (muscle strength and other training-refractory outcomes), suggesting a potential “add-on” effect of the nutritional antioxidant supplementation (vitamins C and E, zinc, and selenium) during PR. This trial is registered with NCT01942889.
Collapse
|
18
|
Yfanti C, Deli CK, Georgakouli K, Fatouros I, Jamurtas AZ. Sport nutrition, redox homeostasis and toxicity in sport performance. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Lakhdar R, Rabinovich RA. Can muscle protein metabolism be specifically targeted by nutritional support and exercise training in chronic obstructive pulmonary disease? J Thorac Dis 2018; 10:S1377-S1389. [PMID: 29928520 PMCID: PMC5989103 DOI: 10.21037/jtd.2018.05.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) associates with several extra-pulmonary effects. Muscle dysfunction and wasting is one of the most prominent extra-pulmonary effects and contributes to exercise limitation and health related quality of life (HRQoL), morbidity as well as mortality. The loss of muscle mass is characterised by an impaired balance between protein synthesis (anabolism) and protein breakdown (catabolism) which relates to nutritional disturbances, muscle disuse and the presence of a systemic inflammation, among other factors. Current approaches to reverse skeletal muscle dysfunction and wasting attain only modest improvements. The development of new therapeutic strategies aiming at improving skeletal muscle dysfunction and wasting are needed. This requires a better understanding of the underlying molecular pathways responsible for these abnormalities. In this review we update recent research on protein metabolism, nutritional depletion as well as physical (in)activity in relation to muscle wasting and dysfunction in patients with COPD. We also discuss the role of nutritional supplementation and exercise training as strategies to re-establish the disrupted balance of protein metabolism in the muscle of patients with COPD. Future areas of research and clinical practice directions are also addressed.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- ELEGI Colt Laboratory, MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Roberto A. Rabinovich
- ELEGI Colt Laboratory, MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Scotland, UK
- Respiratory Medicine Department, Royal Infirmary of Edinburgh, Scotland, UK
| |
Collapse
|
20
|
Involvement of the FoxO1/MuRF1/Atrogin-1 Signaling Pathway in the Oxidative Stress-Induced Atrophy of Cultured Chronic Obstructive Pulmonary Disease Myotubes. PLoS One 2016; 11:e0160092. [PMID: 27526027 PMCID: PMC4987766 DOI: 10.1371/journal.pone.0160092] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/13/2016] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is thought to be one of the most important mechanisms implicated in the muscle wasting of chronic obstructive pulmonary disease (COPD) patients, but its role has never been demonstrated. We therefore assessed the effects of both pro-oxidant and antioxidant treatments on the oxidative stress levels and atrophic signaling pathway of cultured COPD myotubes. Treatment of cultured COPD myotubes with the pro-oxidant molecule H2O2 resulted in increased ROS production (P = 0.002) and protein carbonylation (P = 0.050), in association with a more pronounced atrophy of the myotubes, as reflected by a reduced diameter (P = 0.003), and the activated expression of atrophic markers MuRF1 and FoxO1 (P = 0.022 and P = 0.030, respectively). Conversely, the antioxidant molecule ascorbic acid induced a reduction in ROS production (P<0.001) and protein carbonylation (P = 0.019), and an increase in the myotube diameter (P<0.001) to a level similar to the diameter of healthy subject myotubes, in association with decreased expression levels of MuRF1, atrogin-1 and FoxO1 (P<0.001, P = 0.002 and P = 0.042, respectively). A significant negative correlation was observed between the variations in myotube diameter and the variations in the expression of MuRF1 after antioxidant treatment (P = 0.047). Moreover, ascorbic acid was able to prevent the H2O2-induced atrophy of COPD myotubes. Last, the proteasome inhibitor MG132 restored the basal atrophy level of the COPD myotubes and also suppressed the H2O2-induced myotube atrophy. These findings demonstrate for the first time the involvement of oxidative stress in the atrophy of COPD peripheral muscle cells in vitro, via the FoxO1/MuRF1/atrogin-1 signaling pathway of the ubiquitin/proteasome system.
Collapse
|
21
|
Ticinesi A, Meschi T, Lauretani F, Felis G, Franchi F, Pedrolli C, Barichella M, Benati G, Di Nuzzo S, Ceda GP, Maggio M. Nutrition and Inflammation in Older Individuals: Focus on Vitamin D, n-3 Polyunsaturated Fatty Acids and Whey Proteins. Nutrients 2016; 8:186. [PMID: 27043616 PMCID: PMC4848655 DOI: 10.3390/nu8040186] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/17/2022] Open
Abstract
Chronic activation of the inflammatory response, defined as inflammaging, is the key physio-pathological substrate for anabolic resistance, sarcopenia and frailty in older individuals. Nutrients can theoretically modulate this phenomenon. The underlying molecular mechanisms reducing the synthesis of pro-inflammatory mediators have been elucidated, particularly for vitamin D, n-3 polyunsaturated fatty acids (PUFA) and whey proteins. In this paper, we review the current evidence emerging from observational and intervention studies, performed in older individuals, either community-dwelling or hospitalized with acute disease, and evaluating the effects of intake of vitamin D, n-3 PUFA and whey proteins on inflammatory markers, such as C-Reactive Protein (CRP), interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). After the analysis, we conclude that there is sufficient evidence for an anti-inflammatory effect in aging only for n-3 PUFA intake, while the few existing intervention studies do not support a similar activity for vitamin D and whey supplements. There is need in the future of large, high-quality studies testing the effects of combined dietary interventions including the above mentioned nutrients on inflammation and health-related outcomes.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Internal Medicine and Critical Subacute Care Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Tiziana Meschi
- Internal Medicine and Critical Subacute Care Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Fulvio Lauretani
- Internal Medicine and Critical Subacute Care Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Giovanna Felis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| | - Fabrizio Franchi
- Geriatric Unit, "Guglielmo da Saliceto" Hospital, AUSL Piacenza, Via Taverna 49, Piacenza 29121, Italy.
| | - Carlo Pedrolli
- Dietetics and Clinical Nutrition Unit, Santa Chiara Hospital, Azienda Provinciale per i Servizi Sanitari Provincia Autonoma di Trento, Largo Medaglie d'Oro 9, Trento 38122, Italy.
| | - Michela Barichella
- Parkinson Institute, Azienda Socio-Sanitaria Territoriale "Gaetano Pini"-C.T.O., Via Bignami 1, Milan 20126, Italy.
| | - Giuseppe Benati
- Geriatric Unit, Ospedale G.B. Morgagni-L. Pierantoni, Via Carlo Forlanini 34, Forlì 47121, Italy.
| | - Sergio Di Nuzzo
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Gian Paolo Ceda
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Clinical Geriatrics Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| | - Marcello Maggio
- Department of Clinical and Experimental Medicine, University of Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
- Clinical Geriatrics Unit, Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, Parma 43126, Italy.
| |
Collapse
|
22
|
Camillo CA, Osadnik CR, van Remoortel H, Burtin C, Janssens W, Troosters T. Effect of "add-on" interventions on exercise training in individuals with COPD: a systematic review. ERJ Open Res 2016; 2:00078-2015. [PMID: 27730178 PMCID: PMC5005161 DOI: 10.1183/23120541.00078-2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/16/2016] [Indexed: 11/05/2022] Open
Abstract
The aim of this review was to identify the effectiveness of therapies added on to conventional exercise training to maximise exercise capacity in patients with chronic obstructive pulmonary disease (COPD). Electronic databases were searched, identifying trials comparing exercise training with exercise training plus "add-on" therapy. Outcomes included peak oxygen uptake (V'O2peak), work rate and incremental/endurance cycle and field walking tests. Individual trial effects on exercise capacity were extracted and collated into eight subgroups and pooled for meta-analysis. Sensitivity analyses were conducted to explore the stability of effect estimates across studies employing patient-centred designs and those deemed to be of "high" quality (PEDro score >5 out of 10). 74 studies (2506 subjects) met review inclusion criteria. Interventions spanned a broad scope of clinical practice and were most commonly evaluated via the 6-min walking distance and V'O2peak. Meta-analysis revealed few clinically relevant and statistically significant benefits of "add-on" therapies on exercise performance compared with exercise training. Benefits favouring "add-on" therapies were observed across six different interventions (additional exercise training, noninvasive ventilation, bronchodilator therapy, growth hormone, vitamin D and nutritional supplementation). The sensitivity analyses included considerably fewer studies, but revealed minimal differences to the primary analysis. The lack of systematic benefits of "add-on" interventions is a probable reflection of methodological limitations, such as "one size fits all" eligibility criteria, that are inherent in many of the included studies of "add-on" therapies. Future clarification regarding the exact value of such therapies may only arise from adequately powered, multicentre clinical trials of tailored interventions for carefully selected COPD patient subgroups defined according to distinct clinical phenotypes.
Collapse
Affiliation(s)
- Carlos A Camillo
- KU Leuven, Dept of Rehabilitation Sciences, Leuven, Belgium; University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium; Both authors contributed equally
| | - Christian R Osadnik
- KU Leuven, Dept of Rehabilitation Sciences, Leuven, Belgium; Monash University, Dept of Physiotherapy, Victoria, Australia; Institute for Breathing and Sleep, Victoria, Australia; Monash Health, Monash Lung and Sleep, Victoria, Australia; Both authors contributed equally
| | - Hans van Remoortel
- KU Leuven, Dept of Rehabilitation Sciences, Leuven, Belgium; Belgian Red Cross, Flanders, Mechelen, Belgium
| | - Chris Burtin
- KU Leuven, Dept of Rehabilitation Sciences, Leuven, Belgium; Hasselt University, Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
| | - Wim Janssens
- University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium
| | - Thierry Troosters
- KU Leuven, Dept of Rehabilitation Sciences, Leuven, Belgium; University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium
| |
Collapse
|
23
|
Nongonierma AB, FitzGerald RJ. Bioactive properties of milk proteins in humans: A review. Peptides 2015; 73:20-34. [PMID: 26297879 DOI: 10.1016/j.peptides.2015.08.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 12/25/2022]
Abstract
Many studies have demonstrated that milk protein consumption has benefits in terms of promoting human health. This review assesses the intervention studies which have evaluated potential health enhancing effects in humans following the ingestion of milk proteins. The impact of milk protein ingestion has been studied to asses their satiating, hypotensive, antimicrobial, anti-inflammatory, anticancer, antioxidant and insulinotropic properties as well as their impact on morphological modifications (e.g., muscle and fat mass) in humans. Consistent health promoting effects appear to have been observed in certain instances (i.e., muscle protein synthesis, insulinotropic and hypotensive activity). However, controversial outcomes have also been reported (i.e., antimicrobial, anti-inflammatory, anticancer and antioxidant properties). Several factors including interindividual differences, the timing of protein ingestion as well as the potency of the active components may explain these differences. In addition, processing conditions have been reported, in certain instances, to affect milk protein structure and therefore modify their bioactive potential. It is thought that the health promoting properties of milk proteins are linked to the release of bioactive peptides (BAPs) during gastrointestinal digestion. There is a need for further research to develop a more in-depth understanding on the possible mechanisms involved in the observed physiological effects. In addition, more carefully controlled and appropriately powered human intervention studies are required to demonstrate the health enhancing properties of milk proteins in humans.
Collapse
Affiliation(s)
- Alice B Nongonierma
- Department of Life Sciences and Food for Health Ireland (FHI), University of Limerick, Limerick, Ireland
| | - Richard J FitzGerald
- Department of Life Sciences and Food for Health Ireland (FHI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
24
|
Piccolomini AF, Kubow S, Lands LC. Clinical Potential of Hyperbaric Pressure-Treated Whey Protein. Healthcare (Basel) 2015; 3:452-65. [PMID: 27417773 PMCID: PMC4939533 DOI: 10.3390/healthcare3020452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 01/10/2023] Open
Abstract
Whey protein (WP) from cow's milk is a rich source of essential and branched chain amino acids. Whey protein isolates (WPI) has been demonstrated to support muscle accretion, antioxidant activity, and immune modulation. However, whey is not readily digestible due to its tight conformational structure. Treatment of WPI with hyperbaric pressure results in protein unfolding. This enhances protein digestion, and results in an altered spectrum of released peptides, and greater release of essential and branched chain amino acids. Pressurized whey protein isolates (pWPI), through a series of cell culture, animal models and clinical studies, have been demonstrated to enhance muscle accretion, reduce inflammation, improve immunity, and decrease fatigue. It is also conceivable that pWPI would be more accessible to digestive enzymes, which would allow for a more rapid proteolysis of the proteins and an increased or altered release of small bioactive peptides. The altered profile of peptides released from WP digestion could thus play a role in the modulation of the immune response and tissue glutathione (GSH) concentrations. The research to date presents potentially interesting applications for the development of new functional foods based on hyperbaric treatment of WPI to produce products with more potent nutritional and nutraceutical properties.
Collapse
Affiliation(s)
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Larry C Lands
- Montreal Children's Hospital McGill University Health Centre, Division of Pediatric Respiratory Medicine, Room D380, 2300 Tupper Street, Montreal, QC H3H 1P3, Canada.
| |
Collapse
|
25
|
Iskandar MM, Lands LC, Sabally K, Azadi B, Meehan B, Mawji N, Skinner CD, Kubow S. High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity. Foods 2015; 4:184-207. [PMID: 28231198 PMCID: PMC5302329 DOI: 10.3390/foods4020184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Michèle M Iskandar
- School of Dietetics and Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC H9X 3V9, Canada.
- Montreal Children's Hospital - McGill University Health Centre, Division of Pediatric Respiratory Medicine, Room D380, 2300 Tupper Street, Montreal, QC H3H 1P3, Canada.
| | - Larry C Lands
- Montreal Children's Hospital - McGill University Health Centre, Division of Pediatric Respiratory Medicine, Room D380, 2300 Tupper Street, Montreal, QC H3H 1P3, Canada.
| | - Kebba Sabally
- School of Dietetics and Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC H9X 3V9, Canada.
| | - Behnam Azadi
- School of Dietetics and Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC H9X 3V9, Canada.
| | - Brian Meehan
- Montreal Children's Hospital - McGill University Health Centre, Division of Pediatric Respiratory Medicine, Room D380, 2300 Tupper Street, Montreal, QC H3H 1P3, Canada.
| | - Nadir Mawji
- Montreal Children's Hospital - McGill University Health Centre, Division of Pediatric Respiratory Medicine, Room D380, 2300 Tupper Street, Montreal, QC H3H 1P3, Canada.
| | - Cameron D Skinner
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street W., Montreal, QC H4B 1R6 Canada.
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
26
|
Zhou LM, Xu JY, Rao CP, Han S, Wan Z, Qin LQ. Effect of whey supplementation on circulating C-reactive protein: a meta-analysis of randomized controlled trials. Nutrients 2015; 7:1131-43. [PMID: 25671415 PMCID: PMC4344580 DOI: 10.3390/nu7021131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
Whey supplementation is beneficial for human health, possibly by reducing the circulating C-reactive protein (CRP) level, a sensitive marker of inflammation. Thus, a meta-analysis of randomized controlled trials was conducted to evaluate their relationship. A systematic literature search was conducted in July, 2014, to identify eligible studies. Either a fixed-effects model or a random-effects model was used to calculate pooled effects. The meta-analysis results of nine trials showed a slight, but no significant, reduction of 0.42 mg/L (95% CI −0.96, 0.13) in CRP level with the supplementation of whey protein and its derivates. Relatively high heterogeneity across studies was observed. Subgroup analyses showed that whey significantly lowered CRP by 0.72 mg/L (95% CI −0.97, −0.47) among trials with a daily whey dose ≥20 g/day and by 0.67 mg/L (95% CI −1.21, −0.14) among trials with baseline CRP ≥3 mg/L. Meta-regression analysis revealed that the baseline CRP level was a potential effect modifier of whey supplementation in reducing CRP. In conclusion, our meta-analysis did not find sufficient evidence that whey and its derivates elicited a beneficial effect in reducing circulating CRP. However, they may significantly reduce CRP among participants with highly supplemental doses or increased baseline CRP levels.
Collapse
Affiliation(s)
- Ling-Mei Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Jia-Ying Xu
- Key Laboratory of Radiation Biology, School of Radiation Medicine and Protection, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Chun-Ping Rao
- Suzhou Health College, 28 Kehua Road, Suzhou 215009, China.
| | - Shufen Han
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou 215123, China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, 199 Renai Road, Suzhou 215123, China.
| |
Collapse
|
27
|
Barreiro E, Gea J. Epigenetics and muscle dysfunction in chronic obstructive pulmonary disease. Transl Res 2015; 165:61-73. [PMID: 24794953 DOI: 10.1016/j.trsl.2014.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 01/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease and a major leading cause of morbidity and mortality worldwide. In COPD, comorbidities, acute exacerbations, and systemic manifestations negatively influence disease severity and progression regardless of the respiratory condition. Skeletal muscle dysfunction, which is one of the commonest systemic manifestations in patients with COPD, has a tremendous impact on their exercise capacity and quality of life. Several pathophysiological and molecular underlying mechanisms including epigenetics (the process whereby gene expression is regulated by heritable mechanisms that do not affect DNA sequence) have been shown to participate in the etiology of COPD muscle dysfunction. The epigenetic modifications identified so far in cells include DNA methylation, histone acetylation and methylation, and noncoding RNAs such as microRNAs. Herein, we first review the role of epigenetic mechanisms in muscle development and adaptation to environmental factors in several models. Moreover, the epigenetic events reported so far to be potentially involved in muscle dysfunction and mass loss of patients with COPD are also discussed. Furthermore, the different expression profile of several muscle-enriched microRNAs in the diaphragm and vastus lateralis muscles of patients with COPD are also reviewed from results recently obtained in our group. The role of protein hyperacetylation in enhanced muscle protein catabolism of limb muscles is also discussed. Future research should focus on the full elucidation of the triggers of epigenetic mechanisms and their specific downstream biological pathways in COPD muscle dysfunction and wasting.
Collapse
Affiliation(s)
- Esther Barreiro
- Respiratory Medicine Department-Muscle and Respiratory System Research Unit, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Joaquim Gea
- Respiratory Medicine Department-Muscle and Respiratory System Research Unit, Institute of Medical Research of Hospital del Mar (IMIM)-Hospital del Mar, Parc de Salut Mar, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
28
|
|
29
|
|
30
|
Andersen G, Ørngreen MC, Preisler N, Jeppesen TD, Krag TO, Hauerslev S, van Hall G, Vissing J. Protein-carbohydrate supplements improve muscle protein balance in muscular dystrophy patients after endurance exercise: a placebo-controlled crossover study. Am J Physiol Regul Integr Comp Physiol 2014; 308:R123-30. [PMID: 25411362 DOI: 10.1152/ajpregu.00321.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In healthy individuals, postexercise protein supplementation increases muscle protein anabolism. In patients with muscular dystrophies, aerobic exercise improves muscle function, but the effect of exercise on muscle protein balance is unknown. Therefore, we investigated 1) muscle protein balance before, during, and after exercise and 2) the effect of postexercise protein-carbohydrate supplementation on muscle protein balance in patients with muscular dystrophies. In 17 patients [7 women and 10 men, aged 33 ± 11 yr (18-52), body mass index: 22 ± 3 kg/m(2) (16-26)] and 8 healthy matched controls [3 women and 5 men, age 33 ± 13 years (19-54), body mass index: 23 ± 3 kg/m(2) (19-27)], muscle protein synthesis, breakdown, and fractional synthesis rates (FSR) were measured across the leg using tracer dilution methodology on two occasions, with and without oral postexercise protein-carbohydrate supplementation. In patients, muscle protein breakdown increased in the recovery period (11 ± 1 μmol phenylalanine/min) vs. rest (8 ± 1 μmol phenylalanine/min, P = 0.02), enhancing net muscle protein loss. In contrast, postexercise protein-carbohydrate supplementation reduced protein breakdown, abolished net muscle protein loss, and increased the muscle FSR in patients (0.04 to 0.06%/h; P = 0.03). In conclusion, postexercise protein-carbohydrate supplementation reduces skeletal mixed-muscle protein breakdown, enhances FSR, resulting in a reduced net muscle loss in patients with muscular dystrophies. The findings suggest that postexercise protein-carbohydrate supplementation could be an important add-on to exercise training therapy in muscular dystrophies, and long-term studies of postexercise protein-carbohydrate supplementation are warranted in these conditions.
Collapse
Affiliation(s)
- Grete Andersen
- Neuromuscular Research Unit, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| | - Mette C Ørngreen
- Neuromuscular Research Unit, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| | - Nicolai Preisler
- Neuromuscular Research Unit, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| | - Tina D Jeppesen
- Neuromuscular Research Unit, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| | - Thomas O Krag
- Neuromuscular Research Unit, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| | - Simon Hauerslev
- Neuromuscular Research Unit, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| | - Gerrit van Hall
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Neuromuscular Research Unit, Section 3342, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
31
|
Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, Dekhuijzen PNR, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SNA, Janssens W, Polkey MI, Roca J, Saey D, Schols AMWJ, Spruit MA, Steiner M, Taivassalo T, Troosters T, Vogiatzis I, Wagner PD. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189:e15-62. [PMID: 24787074 DOI: 10.1164/rccm.201402-0373st] [Citation(s) in RCA: 704] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. PURPOSE The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. METHODS An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. RESULTS We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. CONCLUSIONS Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed.
Collapse
|
32
|
Bauer J, Biolo G, Cederholm T, Cesari M, Cruz-Jentoft AJ, Morley JE, Phillips S, Sieber C, Stehle P, Teta D, Visvanathan R, Volpi E, Boirie Y. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J Am Med Dir Assoc 2013; 14:542-59. [DOI: 10.1016/j.jamda.2013.05.021] [Citation(s) in RCA: 1068] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
|
33
|
Antoun S, Besse B, Planchard D, Raynard B. [Managing nutritional support in thoracic oncology]. Rev Mal Respir 2013; 30:490-7. [PMID: 23835321 DOI: 10.1016/j.rmr.2013.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/27/2013] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Cancer treatments are based on specific anticancer chemotherapy. However, there is increasing interest in general aspects of care, which are increasingly evidence based. STATE OF THE ART The importance of muscle mass is becoming increasingly evident. Its role is not only limited to the maintenance of physical performance and quality of life. In oncology, recent studies have shown a close link between sarcopenia (low muscle mass) and mortality as well as between sarcopenia and chemotherapy toxicity. To treat malnutrition and the lack of energy intake, nutritional support is considered, whether through the prescription of oral nutritional supplements, enteral nutrition or even parenteral nutrition. Scientific arguments are often absent and few studies have been carried out in patients with lung cancer. PERSPECTIVES There are many experimental arguments and a few clinical trials that support using omega 3 fatty acids to modulate inflammatory reaction and to reduce its consequences on muscular proteolysis. The benefit of regular physical activity has already been proven in chronic respiratory disease and its use in association with nutritional support must be recommended in oncologic care. CONCLUSION Given the increasing recognition of the role of muscle mass in cancer, the purpose of any nutritional support must be focused on increasing muscle anabolism and decreasing proteolysis.
Collapse
Affiliation(s)
- S Antoun
- Service des urgences, CLAN institut Gustave-Roussy, 39, rue Camille-Desmoulins, 94805 Villejuif cedex, France.
| | | | | | | |
Collapse
|
34
|
Collins PF, Elia M, Stratton RJ. Nutritional support and functional capacity in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Respirology 2013; 18:616-29. [DOI: 10.1111/resp.12070] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/09/2013] [Accepted: 02/07/2013] [Indexed: 12/24/2022]
Affiliation(s)
| | - Marinos Elia
- Faculty of Medicine; Institute of Human Nutrition; Southampton General Hospital, University of Southampton; Southampton; UK
| | - Rebecca J. Stratton
- Faculty of Medicine; Institute of Human Nutrition; Southampton General Hospital, University of Southampton; Southampton; UK
| |
Collapse
|
35
|
Ribeiro F, Thériault ME, Debigaré R, Maltais F. Should all patients with COPD be exercise trained? J Appl Physiol (1985) 2013; 114:1300-8. [PMID: 23412902 DOI: 10.1152/japplphysiol.01124.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training is one of the most powerful interventions to provide symptomatic relief in patients with chronic obstructive pulmonary disease (COPD). The purpose of this minireview is to discuss how exercise training can improve limb muscle dysfunction in this disease. Various exercise training strategies will be outlined, along with their beneficial effects and potential limitations. Strategies to optimize the gains achievable with exercise training will be presented. Whether exercise training may exert deleterious effects in some patients will also be discussed.
Collapse
Affiliation(s)
- Fernanda Ribeiro
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
36
|
Ferreira IM, Brooks D, White J, Goldstein R. Nutritional supplementation for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012; 12:CD000998. [PMID: 23235577 DOI: 10.1002/14651858.cd000998.pub3] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Individuals with chronic obstructive pulmonary disease (COPD) and low body weight have impaired pulmonary status, reduced diaphragmatic mass, lower exercise capacity and higher mortality than those who are adequately nourished. Nutritional support may be useful for their comprehensive care. OBJECTIVES To assess the impact of nutritional support on anthropometric measures, pulmonary function, respiratory and peripheral muscles strength, endurance, functional exercise capacity and health-related quality of life (HRQoL) in COPD.If benefit is demonstrated, to perform subgroup analysis to identify treatment regimens and subpopulations that demonstrate the greatest benefits. SEARCH METHODS We identified randomised controlled trials (RCTs) from the Cochrane Airways Review Group Trials Register, a handsearch of abstracts presented at international meetings and consultation with experts. Searches are current to April 2012. SELECTION CRITERIA Two review authors independently selected trials for inclusion, assessed risk of bias and extracted the data. Decisions were made by consensus. DATA COLLECTION AND ANALYSIS We used post-treatment values when pooling the data for all outcomes, and change from baseline scores for primary outcomes. We used mean difference (MD) to pool data from studies that measured outcomes with the same measurement tool and standardised mean difference (SMD) when the outcomes were similar but the measurement tools different. We contacted authors of the primary studies for missing data.We established clinical homogeneity prior to pooling. We presented the results with 95% confidence intervals (CI) in the text and in a 'Summary of findings' table. MAIN RESULTS We included 17 studies (632 participants) of at least two weeks of nutritional support. There was moderate-quality evidence (14 RCTs, 512 participants, nourished and undernourished) of no significant difference in final weight between those who received supplementation and those who did not (MD 0.69 kg; 95% CI -0.86 to 2.24). Pooled data from 11 RCTs (325 undernourished patients) found a statistically significant weight gain (MD 1.65 kg; 95% CI 0.14 to 3.16) in favour of supplementation; three RCTs (116 mixed population) found no significant difference between groups (MD -1.28 kg; 95% CI -6.27 to 3.72). However, when analysed as change from baseline, there was significant improvement with supplementation: 14 RCTs (five of which had imputed SE), MD 1.62 kg (95% CI 1.27 to 1.96 ); 11 RCTs (malnourished), MD 1.73 kg (95% CI 1.29 to 2.17) and three RCTs (mixed), MD 1.44 kg (95% CI 0.68 to 2.19).There was low-quality evidence from five RCTs (six comparisons, 287 participants) supporting a significant improvement from baseline for fat-free mass/fat-free mass index (SMD 0.57; 95% CI 0.04 to 1.09), which was larger for undernourished patients (three RCTs, 125 participants; SMD 1.08; 95% CI 0.70 to 1.47). There was no significant change from baseline noted for adequately nourished patients (one RCT, 71 participants; SMD 0.27; 95% CI -0.20 to 0.73), or for a mixed population (two RCTs, 91 participants; SMD -0.05; 95% CI -0.76 to 0.65).There was moderate-quality evidence from two RCTs (91 mixed participants) that nutritional supplementation significantly improved fat mass/fat mass index from baseline (SMD 0.90; 95% CI 0.46 to 1.33).There was low-quality evidence (eight RCTs, 294 participants) of an increase in mid-arm muscle circumference change (MAMC; MD 0.29; 95% CI 0.02 to 0.57).There was low-quality evidence (six RCTs, 125 participants) of no significant difference in change from baseline scores for triceps measures (MD 0.54; 95% CI -0.16 to 1.24).There was low-quality evidence (five RCTs, 142 participants) of no significant difference between groups in the six-minute walk distance (MD 14.05 m; 95% CI -24.75 to 52.84), 12-minute walk distance or in shuttle walking. However, the pooled change from baseline for the six-minute walk distance was significant (MD 39.96 m; 95% CI 22.66 to 57.26).There was low-quality evidence (seven RCTs, 228 participants) that there was no significant difference between groups in the forced expiratory volume in one second (FEV(1); SMD -0.01; 95% CI -0.31 to 0.30) when measured in litres or percentage predicted.There was low-quality evidence (nine RCTs, 245 participants) of no significant between group difference in maximum inspiratory pressure (MIP; MD 3.54 cm H(2)O; 95% CI -0.90 to 7.99), but those who received supplementation had a higher maximum expiratory pressure (MEP; MD 9.55 cm H(2)O; 95% CI 2.43 to 16.68). For malnourished patients (seven RCTs, 189 participants), those with supplementation had significantly better MIP (MD 5.02; 95% CI 0.29 to 9.76) and MEP (MD 12.73; 95% CI 4.91 to 20.55).There was low-quality evidence (four RCTs, 130 participants) of no significant difference in HRQoL total score (SMD -0.36; 95% CI -0.77 to 0.06) when pooling results from both the St George's Respiratory Questionnaire (SGRQ) and the Chronic Respiratory Questionnaire (CRQ).Two trials (67 participants) used the SGRQ to measure individual domains of activity, impact and symptoms. At the end of treatment, the pooled total SGRQ score was both statistically and clinically significant (MD -6.55; 95% CI -11.7 to -1.41). The three RCTs (123 participants) that used the CRQ to measure the change in individual domains (dyspnoea, fatigue, emotion, mastery), found no significant difference between groups. AUTHORS' CONCLUSIONS We found moderate-quality evidence that nutritional supplementation promotes significant weight gain among patients with COPD, especially if malnourished. Nourished patients may not respond to the same degree to supplemental feeding. We also found a significant change from baseline in fat-free mass index/fat-free mass, fat mass/fat mass index, MAMC (as a measure of lean body mass), six-minute walk test and a significant improvement in skinfold thickness (as measure of fat mass, end score) for all patients. In addition, there were significant improvements in respiratory muscle strength (MIP and MEP) and overall HRQoL as measured by SGRQ in malnourished patients with COPD.These results differ from previous reviews and should be considered in the management of malnourished patients with COPD.
Collapse
Affiliation(s)
- Ivone M Ferreira
- Asthma and Airways Centre, Toronto Western Hospital, Toronto, Canada.
| | | | | | | |
Collapse
|
37
|
Abstract
The ability to perform exercise is an important determinant of both longevity and quality of life for patients with Cystic Fibrosis. There are a variety of physical and behavioural factors that contribute to exercise limitation. These, such as lung function or habitual physical activity, change over time. However, these factors can also be modified by treatments and interventions. This review discusses the various factors that contribute to exercise limitation in Cystic Fibrosis, and how these change with age.
Collapse
|
38
|
van de Bool C, Steiner MC, Schols AMWJ. Nutritional targets to enhance exercise performance in chronic obstructive pulmonary disease. Curr Opin Clin Nutr Metab Care 2012; 15:553-60. [PMID: 23075934 DOI: 10.1097/mco.0b013e328358bdeb] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review presents current knowledge regarding the rationale and efficacy of nutrition as an ergogenic aid to enhance the effects of exercise and training in chronic obstructive pulmonary disease (COPD). RECENT FINDINGS Altered body composition and skeletal muscle dysfunction in COPD suggest that exercise capacity can be targeted via several metabolic routes. Muscle metabolic alterations in COPD include a reduced oxidative metabolism and enhanced susceptibility for oxidative stress. Muscle wasting may be associated with deficiencies of vitamin D and low branched-chain amino acid levels. Exercise training is of established benefit in COPD but clear-cut clinical trial evidence to support the performance enhancing effect of nutritional intervention is lacking. One randomized controlled trial suggested that augmentation of training with polyunsaturated fatty acids may improve exercise capacity. Conflicting results are reported on dietary creatine supplementation in patients with COPD receiving pulmonary rehabilitation and results from acute intervention studies do not directly imply long-term effects of glutamate or glutamine supplementation as an ergogenic aid in COPD. Recent data indicate that not only muscle but also visceral fat may be an important additional target for combined nutrition and exercise intervention in COPD to improve physical performance and decrease cardiometabolic risk. SUMMARY There is a clear need for adequately powered and controlled intervention and maintenance trials to establish the role of nutritional supplementation in the enhancement of exercise performance and training and the wider management of the systemic features of the disease.
Collapse
Affiliation(s)
- Coby van de Bool
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | |
Collapse
|
39
|
Sugawara K, Takahashi H, Kashiwagura T, Yamada K, Yanagida S, Homma M, Dairiki K, Sasaki H, Kawagoshi A, Satake M, Shioya T. Effect of anti-inflammatory supplementation with whey peptide and exercise therapy in patients with COPD. Respir Med 2012; 106:1526-34. [DOI: 10.1016/j.rmed.2012.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 06/30/2012] [Accepted: 07/02/2012] [Indexed: 12/17/2022]
|
40
|
Engelen MPKJ, Rutten EPA, De Castro CLN, Wouters EFM, Schols AMWJ, Deutz NEP. Casein protein results in higher prandial and exercise induced whole body protein anabolism than whey protein in chronic obstructive pulmonary disease. Metabolism 2012; 61:1289-300. [PMID: 22512824 PMCID: PMC3407276 DOI: 10.1016/j.metabol.2012.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/06/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
Exercise is known to improve physical functioning and health status in Chronic Obstructive Pulmonary Disease (COPD). Recently, disturbances in protein turnover and amino acid kinetics have been observed after exercise in COPD. The objective was to investigate which dairy protein is able to positively influence the protein metabolic response to exercise in COPD. 8 COPD patients and 8 healthy subjects performed a cycle test on two days while ingesting casein or whey protein. Whole body protein breakdown (WbPB), synthesis (WbPS), splanchnic amino acid extraction (SPE), and NetWbPS (=WbPS-WbPB) were measured using stable isotope methodology during 20 min of exercise (at 50% peak work load of COPD group). The controls performed a second exercise test at the same relative workload. Exercise was followed by 1 h of recovery. In the healthy group, WbPS, SPE, and NetPS were higher during casein than during whey feeding (P<.01). WbPS and NetPS were higher during exercise, independent of exercise intensity (P<.01). NetPS was higher during casein feeding in COPD due to lower WbPB (P<.05). Higher SPE was found during exercise during casein and whey feeding in COPD (P<.05). Lactate levels during exercise were higher in COPD (P<.05) independent of the protein. Post-exercise, lower NetPS values were found independent of protein type in both groups. Casein resulted in more protein anabolism than whey protein which was maintained during and following exercise in COPD. Optimizing protein intake might be of importance for muscle maintenance during daily physical activities in COPD.
Collapse
Affiliation(s)
- Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Fitzpatrick AM, Jones DP, Brown LAS. Glutathione redox control of asthma: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2012; 17:375-408. [PMID: 22304503 PMCID: PMC3353819 DOI: 10.1089/ars.2011.4198] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/22/2012] [Accepted: 01/22/2012] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic inflammatory disorder of the airways associated with airway hyper-responsiveness and airflow limitation in response to specific triggers. Whereas inflammation is important for tissue regeneration and wound healing, the profound and sustained inflammatory response associated with asthma may result in airway remodeling that involves smooth muscle hypertrophy, epithelial goblet-cell hyperplasia, and permanent deposition of airway extracellular matrix proteins. Although the specific mechanisms responsible for asthma are still being unraveled, free radicals such as reactive oxygen species and reactive nitrogen species are important mediators of airway tissue damage that are increased in subjects with asthma. There is also a growing body of literature implicating disturbances in oxidation/reduction (redox) reactions and impaired antioxidant defenses as a risk factor for asthma development and asthma severity. Ultimately, these redox-related perturbations result in a vicious cycle of airway inflammation and injury that is not always amenable to current asthma therapy, particularly in cases of severe asthma. This review will discuss disruptions of redox signaling and control in asthma with a focus on the thiol, glutathione, and reduced (thiol) form (GSH). First, GSH synthesis, GSH distribution, and GSH function and homeostasis are discussed. We then review the literature related to GSH redox balance in health and asthma, with an emphasis on human studies. Finally, therapeutic opportunities to restore the GSH redox balance in subjects with asthma are discussed.
Collapse
Affiliation(s)
- Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
42
|
Björkman M, Finne-Soveri H, Tilvis R. Whey protein supplementation in nursing home residents. A randomized controlled trial. Eur Geriatr Med 2012. [DOI: 10.1016/j.eurger.2012.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Collins PF, Stratton RJ, Elia M. Nutritional support in chronic obstructive pulmonary disease: a systematic review and meta-analysis. Am J Clin Nutr 2012; 95:1385-95. [PMID: 22513295 DOI: 10.3945/ajcn.111.023499] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The efficacy of nutritional support in the management of malnutrition in chronic obstructive pulmonary disease (COPD) is controversial. Previous meta-analyses, based on only cross-sectional analysis at the end of intervention trials, found no evidence of improved outcomes. OBJECTIVE The objective was to conduct a meta-analysis of randomized controlled trials (RCTs) to clarify the efficacy of nutritional support in improving intake, anthropometric measures, and grip strength in stable COPD. DESIGN Literature databases were searched to identify RCTs comparing nutritional support with controls in stable COPD. RESULTS Thirteen RCTs (n = 439) of nutritional support [dietary advice (1 RCT), oral nutritional supplements (ONS; 11 RCTs), and enteral tube feeding (1 RCT)] with a control comparison were identified. An analysis of the changes induced by nutritional support and those obtained only at the end of the intervention showed significantly greater increases in mean total protein and energy intakes with nutritional support of 14.8 g and 236 kcal daily. Meta-analyses also showed greater mean (±SE) improvements in favor of nutritional support for body weight (1.94 ± 0.26 kg, P < 0.001; 11 studies, n = 308) and grip strength (5.3%, P < 0.050; 4 studies, n = 156), which was not shown by ANOVA at the end of the intervention, largely because of bias associated with baseline imbalance between groups. CONCLUSION This systematic review and meta-analysis showed that nutritional support, mainly in the form of ONS, improves total intake, anthropometric measures, and grip strength in COPD. These results contrast with the results of previous analyses that were based on only cross-sectional measures at the end of intervention trials.
Collapse
Affiliation(s)
- Peter F Collins
- Institute of Human Nutrition, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | | | | |
Collapse
|
44
|
Applicability and generalizability of palliative interventions for dyspnoea: one size fits all, some or none? Curr Opin Support Palliat Care 2011; 5:92-100. [DOI: 10.1097/spc.0b013e328345d4a1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Arizono S, Taniguchi H, Nishiyama O, Kondoh Y, Kimura T, Kataoka K, Ogawa T, Watanabe F, Nishimura K, Senjyu H, Tabira K. Improvements in quadriceps force and work efficiency are related to improvements in endurance capacity following pulmonary rehabilitation in COPD patients. Intern Med 2011; 50:2533-9. [PMID: 22041353 DOI: 10.2169/internalmedicine.50.5316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The endurance time has been reported to be the most sensitive measure of improved exercise capacity in response to a variety of interventions for COPD. The aim of the present study was to determine whether the improvements in quadriceps force and measures obtained from a symptom-limited maximal test contributed to the improvements in endurance time following pulmonary rehabilitation. METHODS Fifty-seven consecutive COPD subjects completed a 10-week pulmonary rehabilitation program. The subjects completed a symptom-limited incremental cycle ergometry test and a constant work rate test before and after pulmonary rehabilitation. Peripheral and respiratory muscle strength was also measured. The relationships between the change in endurance time and the changes obtained from the incremental test and muscle strength test were investigated. RESULTS The endurance time showed the greatest improvement among the exercise capacity indices. The changes in endurance time were significantly correlated to changes in quadriceps force, peak work rate, anaerobic threshold and work efficiency on the incremental load test. In the multiple stepwise regression analysis, changes in quadriceps force and work efficiency measured on the maximal exercise test were selected. CONCLUSION These findings suggest that the improvements in endurance time after pulmonary rehabilitation may be explained by increased quadriceps force and improvements in peak work rate and work efficiency.
Collapse
|