1
|
Jiang ZL, Liu Y, Zhang CH, Chu T, Yang YL, Zhu YW, Wang Y, Liu YF, Zhang YX, Feng ZF, Ji XY, Wu DD. Emerging roles of hydrogen sulfide in colorectal cancer. Chem Biol Interact 2024; 403:111226. [PMID: 39237072 DOI: 10.1016/j.cbi.2024.111226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, plays a key role in several critical physiological and pathological processes in vivo, including vasodilation, anti-infection, anti-tumor, anti-inflammation, and angiogenesis. In colorectal cancer (CRC), aberrant overexpression of H2S-producing enzymes has been observed. Due to the important role of H2S in the proliferation, growth, and death of cancer cells, H2S can serve as a potential target for cancer therapy. In this review, we thoroughly analyzed the underlying mechanism of action of H2S in CRC from the following aspects: the synthesis and catabolism of H2S in CRC cells and its effect on cell signal transduction pathways; the inhibition effects of exogenous H2S donors with different concentrations on the growth of CRC cells and the underlying mechanism of H2S in garlic and other natural products. Furthermore, we elucidate the expression characteristics of H2S in CRC and construct a comprehensive H2S-related signaling pathway network, which has important basic and practical significance for promoting the clinical research of H2S-related drugs.
Collapse
Affiliation(s)
- Zhi-Liang Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Lun Yang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Medicine, Huaxian County People's Hospital, Anyang, Henan, 456400, China; Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Periodontal Tissue Engineering, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
2
|
Furdak P, Bartosz G, Stefaniuk I, Cieniek B, Bieszczad-Bedrejczuk E, Soszyński M, Sadowska-Bartosz I. Effect of Garlic Extract on the Erythrocyte as a Simple Model Cell. Int J Mol Sci 2024; 25:5115. [PMID: 38791153 PMCID: PMC11121474 DOI: 10.3390/ijms25105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Garlic is known to have diverse effects on mammalian cells, being cytotoxic, especially to cancer cells, but also protect against oxidative stress. Mammalian erythrocyte is a simple cell devoid of intracellular organelles, protein synthesis ability, and most signaling pathways. Therefore, examination of the effects of garlic on erythrocytes allows for revealing primary events in the cellular action of garlic extract. In this study, human erythrocytes or erythrocyte membranes were exposed to garlic extract at various dilutions. Hemoglobin oxidation to methemoglobin, increased binding of hemoglobin to the membrane, and formation of Heinz bodies were observed. Garlic extract depleted acid-soluble thiols, especially glutathione, and induced a prooxidative shift in the cellular glutathione redox potential. The extract increased the osmotic fragility of erythrocytes, induced hemolysis, and inhibited hemolysis in isotonic ammonium chloride, indicative of decreased membrane permeability for Cl- and increased the membrane fluidity. Fluorescent probes indicated an increased level of reactive oxygen species and induction of lipid peroxidation, but these results should be interpreted with care since the extract alone induced oxidation of the probes (dichlorodihydrofluorescein diacetate and BODIPY C11). These results demonstrate that garlic extract induces oxidative changes in the erythrocyte, first of all, thiol and hemoglobin oxidation.
Collapse
Affiliation(s)
- Paulina Furdak
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (P.F.); (G.B.); (E.B.-B.)
- Doctoral School, University of Rzeszow, 16C Rejtana Street, 35-959 Rzeszów, Poland
| | - Grzegorz Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (P.F.); (G.B.); (E.B.-B.)
| | - Ireneusz Stefaniuk
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, 1 Pigonia Street, 35-310 Rzeszow, Poland; (I.S.); (B.C.)
| | - Bogumił Cieniek
- Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, 1 Pigonia Street, 35-310 Rzeszow, Poland; (I.S.); (B.C.)
| | - Edyta Bieszczad-Bedrejczuk
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (P.F.); (G.B.); (E.B.-B.)
| | - Mirosław Soszyński
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, Rzeszow University, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland; (P.F.); (G.B.); (E.B.-B.)
| |
Collapse
|
3
|
Gruhlke MCH, Antelmann H, Bernhardt J, Kloubert V, Rink L, Slusarenko AJ. The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects. Free Radic Biol Med 2019; 131:144-153. [PMID: 30500420 PMCID: PMC6342545 DOI: 10.1016/j.freeradbiomed.2018.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
A single clove of edible garlic (Allium sativum L.) of about 10 g produces up to 5 mg of allicin (diallylthiosulfinate), a thiol-reactive sulfur-containing defence substance that gives injured garlic tissue its characteristic smell. Allicin induces apoptosis or necrosis in a dose-dependent manner but biocompatible doses influence cellular metabolism and signalling cascades. Oxidation of protein thiols and depletion of the glutathione pool are thought to be responsible for allicin's physiological effects. Here, we studied the effect of allicin on post-translational thiol-modification in human Jurkat T-cells using shotgun LC-MS/MS analyses. We identified 332 proteins that were modified by S-thioallylation in the Jurkat cell proteome which causes a mass shift of 72 Da on cysteines. Many S-thioallylated proteins are highly abundant proteins, including cytoskeletal proteins tubulin, actin, cofilin, filamin and plastin-2, the heat shock chaperones HSP90 and HSPA4, the glycolytic enzymes GAPDH, ALDOA, PKM as well the protein translation factor EEF2. Allicin disrupted the actin cytoskeleton in murine L929 fibroblasts. Allicin stimulated the immune response by causing Zn2+ release from proteins and increasing the Zn2+-dependent IL-1-triggered production of IL-2 in murine EL-4 T-cells. Furthermore, allicin caused inhibition of enolase activity, an enzyme considered a cancer therapy target. In conclusion, our study revealed the widespread extent of S-thioallylation in the human Jurkat cell proteome and showed effects of allicin exposure on essential cellular functions of selected targets, many of which are targets for cancer therapy.
Collapse
Affiliation(s)
- Martin C H Gruhlke
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, D-52056 Aachen, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Str. 12-16, D-14195 Berlin, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Straße 8, D-17489 Greifswald, Germany
| | - Veronika Kloubert
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology, RWTH Aachen University, Worringer Weg 1, D-52056 Aachen, Germany
| |
Collapse
|
4
|
Guo W, Cheng ZY, Zhu YZ. Hydrogen sulfide and translational medicine. Acta Pharmacol Sin 2013; 34:1284-91. [PMID: 24096643 PMCID: PMC3791558 DOI: 10.1038/aps.2013.127] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) along with carbon monoxide and nitric oxide is an important signaling molecule that has undergone large numbers of fundamental investigations. H2S is involved in various physiological activities associated with the regulation of homeostasis, vascular contractility, pro- and anti-inflammatory activities, as well as pro- and anti-apoptotic activities etc. However, the actions of H2S are influenced by its concentration, reaction time, and cell/disease types. Therefore, H2S is a signaling molecule without definite effect. The use of existing H2S donors is limited because of the instant release and short lifetime of H2S. Thus, translational medicine involving the sustained and controlled release of H2S is of great value for both scientific and clinical uses. H2S donation can be manipulated by different ways, including where H2S is given, how H2S is donated, or the specific structures of H2S-releasing drugs and H2S donor molecules. This review briefly summarizes recent progress in research on the physiological and pathological functions of H2S and H2S-releasing drugs, and suggests hope for future investigations.
Collapse
Affiliation(s)
- Wei Guo
- Department of Pharmacology, School of Pharmacy, Shanghai 201203, China
| | - Ze-yu Cheng
- Department of Pharmacology, School of Pharmacy, Shanghai 201203, China
| | - Yi-zhun Zhu
- Department of Pharmacology, School of Pharmacy, Shanghai 201203, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 201203, China
- Department of Pharmacology, National University of Singapore, Singapore
| |
Collapse
|