1
|
Mishra G, Awasthi R, Mishra SK, Singh AK, Tiwari AK, Singh SK, Nandi MK. Development of Epigallocatechin and Ascorbic Acid Dual Delivery Transferosomes for Managing Alzheimer's Disease: In Vitro and in Vivo Studies. ACS OMEGA 2024; 9:35463-35474. [PMID: 39184506 PMCID: PMC11339821 DOI: 10.1021/acsomega.4c02140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 08/27/2024]
Abstract
Epigallocatechin-3-gallate (EGCG) and ascorbic acid (AA)-loaded transferosomes (TRANS) were developed for brain delivery. The investigation covered EGCG-TRANS, AA-TRANS, and EGCG-AA-TRANS formulations using the film hydration technique. We analyzed the formed transferosomes to confirm the presence of vesicles loaded with the respective drugs and their performance within a living organism. The sizes of the particles for EGCG-TRANS, AA-TRANS, and EGCG-AA-TRANS were measured correspondingly at 174.2 ± 1.80, 132.7 ± 12.22, and 184.31 ± 9.5 nm. The appearance of diffused rings in the scanning electron microscopic image suggests that the payload has a crystalline structure. The atomic force microscope image displayed minimal surface irregularities, potentially indicating the presence of a lipid layer on the surface. Hemolysis results indicated the safety of the vesicles. The results showed 10.23, 7.21, and 8.20% of hemolysis for EGCG-TRANS, AA-TRANS, and EGCG-AA-TRANS, respectively. In the case of EGCG-AA-TRANS, the release of EGCG was determined to be 61.65% ± 4.61 after 72 h when exposed to phosphate buffer saline (pH 7.4). In vivo studies show a good response against Alzheimer's disease (AD). EGCG-AA-TRANS (82.166%) exhibited a higher percentage of AChE inhibition in comparison to EGCG-TRANS (66.550%) and AA-TRANS (53.466%). Intranasal delivery of EGCG-AA-TRANS resulted in approximately a 5-fold enhancement in memory. Formulation allowed EGCG and AA to accumulate in various organs, including the brain. The results suggest that EGCG-AA-TRANS could be safe and effective for treating AD.
Collapse
Affiliation(s)
- Gaurav Mishra
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department
of Pharmaceutical Sciences, School of Health
Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Sunil Kumar Mishra
- Department
of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Anurag Kumar Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anurag Kumar Tiwari
- Department
of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Manmath K. Nandi
- Department
of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Liu JJ, Yang XQ, Li ZY, Miao JY, Li SB, Zhang WP, Lin YC, Lin LB. The role of symbiotic fungi in the life cycle of Gastrodia elata Blume (Orchidaceae): a comprehensive review. FRONTIERS IN PLANT SCIENCE 2024; 14:1309038. [PMID: 38264031 PMCID: PMC10804856 DOI: 10.3389/fpls.2023.1309038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Gastrodia elata Blume, a fully mycoheterotrophic perennial plant of the family Orchidaceae, is a traditional Chinese herb with medicinal and edible value. Interestingly, G. elata requires symbiotic relationships with Mycena and Armillaria strains for seed germination and plant growth, respectively. However, there is no comprehensive summary of the symbiotic mechanism between fungi and G. elata. Here, the colonization and digestion of hyphae, the bidirectional exchange of nutrients, the adaptation of fungi and G. elata to symbiosis, and the role of microorganisms and secondary metabolites in the symbiotic relationship between fungi and G. elata are summarized. We comprehensively and deeply analyzed the mechanism of symbiosis between G. elata and fungi from three perspectives: morphology, nutrition, and molecules. The aim of this review was to enrich the understanding of the mutualistic symbiosis mechanisms between plants and fungi and lay a theoretical foundation for the ecological cultivation of G. elata.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China
| | - Xiao-Qi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Zong-Yang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| | - Jia-Yun Miao
- Yunnan Senhao Fungi Industry Co., Ltd, Zhaotong, Yunnan, China
| | - Shi-Bo Li
- Yunnan Senhao Fungi Industry Co., Ltd, Zhaotong, Yunnan, China
| | - Wen-Ping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yi-Cen Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
- Yunnan Key Laboratory of Gastrodia and Fungal Symbiotic Biology, Zhaotong University, Zhaotong, Yunnan, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Kunming, Yunnan, China
| |
Collapse
|
3
|
Yu E, Liu Q, Gao Y, Li Y, Zang P, Zhao Y, He Z. An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification, and evaluation of Mycena. Front Microbiol 2023; 14:1220670. [PMID: 37928654 PMCID: PMC10620705 DOI: 10.3389/fmicb.2023.1220670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Gastrodia elata Bl. f. glauca is an important traditional Chinese medicinal plant. The yield and quality of Gastrodia elata Bl. have significantly decreased due to multigenerational asexual reproduction. Therefore, it is necessary to have sexual reproduction of Gastrodia elata Bl. to supplement the market supply. Seeds of G. elata Bl. have no endosperm, and their sexual reproduction depends on the nutrients provided by the embryo cells infected by Mycena fungi to complete seed germination. However, Mycena fungi are small and have many species, and not all Mycena fungi can promote the germination of G. elata Bl. seeds. Therefore, it is of great significance to isolate and identify suitable germination fungi and explore the mechanism for improving the production performance and yield, and quality of G. elata Bl. Six closely related Mycena isolates, JFGL-01, JFGL-02, JFGL-03, JFGL-04, JFGL-05, and JFGL-06, were isolated from the leaves and protocorms of G. elata Bl. f. glauca and were identified as Mycena purpureofusca. The mycelial state and number of germinating protocorms were used as indicators to preferentially select Mycena fungi, and it was concluded that JFGL-06 had the best mycelial state and ability to germinate G. elata Bl. seeds. Finally, a mechanism to increase the yield of G. elata Bl. was explored by comparing the changes in nutrient elements and microbial diversity in the soil around G. elata Bl. with different strains. JFGL-06 proved to be an excellent Mycena fungal strain suitable for G. elata Bl. f. glauca. Compared with the commercial strain, JFGL-06 significantly increased the C, N, Na, Mg, S, Cl, K, Ca, and Fe contents of the soil surrounding the protocorms of G. elata Bl. f. glauca. JFGL-06 improved the composition, diversity, and metabolic function of the surrounding soil microbial community of G. elata Bl. f. glauca protocorms at the phylum, class, and genus levels, significantly increased the relative abundance of bacteria such as Acidobacteria and fungi such as Trichoderma among the dominant groups, and increased the abundance of functional genes in metabolic pathways such as nucleotide metabolism and energy metabolism. There was a significant reduction in the relative abundance of bacteria, such as Actinomycetes, and fungi, such as Fusarium, in the dominant flora, and a reduced abundance of functional genes, such as amino acid metabolism and xenobiotic biodegradation and metabolism. This is the main reason why the JFGL-06 strain promoted high-quality and high-yield G. elata Bl. f. glauca in Changbai Mountain.
Collapse
Affiliation(s)
- En Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yaqi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Pu Zang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Tsai ST, Nithiyanantham S, Satyanarayanan SK, Su KP. Anti-Inflammatory Effect of Traditional Chinese Medicine on the Concept of Mind-Body Interface. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:435-458. [PMID: 36949321 DOI: 10.1007/978-981-19-7376-5_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
In this chapter, we conducted a systemic literature review for the anti-inflammatory effects of Traditional Chinese Medicine (TCM) applying molecular mechanisms focusing on the neuroinflammation and gut-brain axis in three neuropsychiatric disorders: major depressive disorder, Alzheimer's disease, and Parkinson's disease. We demonstrated the anti-inflammation or immunomodulation effects of TCM, including acupuncture, from basic and clinical research, including cellular and molecular approaches. In conclusion, inflammation plays a critical role in the neuropsychopathological process. At the same time, anti-inflammation seems to be the common biological pathway for the effects of TCM and acupuncture in depression, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Sheng-Ta Tsai
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Srinivasan Nithiyanantham
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Pin Su
- College of Medicine, China Medical University, Taichung, Taiwan.
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
- An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
5
|
Zhao W, Wang J, Latta M, Wang C, Liu Y, Ma W, Zhou Z, Hu S, Chen P, Liu Y. Rhizoma Gastrodiae Water Extract Modulates the Gut Microbiota and Pathological Changes of P-TauThr231 to Protect Against Cognitive Impairment in Mice. Front Pharmacol 2022; 13:903659. [PMID: 35910384 PMCID: PMC9335362 DOI: 10.3389/fphar.2022.903659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Gastrodiae Rhizoma and its active constituents are known to exhibit neuroprotective effects in Alzheimer’s disease (AD). However, the effect of Rhizoma Gastrodiae water extract (WERG) on AD and the detailed mechanism of action remain unclear. In this study, the mechanism of action of WERG was investigated by the microbiome–gut–brain axis using a D-galactose (D-gal)/AlCl3-induced AD mouse model. WERG improved the cognitive impairment of D-gal/AlCl3-induced mice. The expression level of p-Tauthr231 in the WERG-H treatment group was decreased, and p-Tauthr231 was found negative in hippocampal DG, CA1, and CA3 regions. Here, the diversity and composition of the gut microbiota were analyzed by 16sRNA sequencing. WERG-H treatment had a positive correlation with Firmicutes, Bacilli, Lactobacillus johnsonii, Lactobacillus murinus, and Lactobacillus reuteri. Interestingly, the Rikenellaceae-RC9 gut group in the gut increased in D-gal/AlCl3-induced mice, but the increased L. johnsonii, L. murinus, and L. reuteri reversed this process. This may be a potential mechanistic link between gut microbiota dysbiosis and P-TauThr231 levels in AD progression. In conclusion, this study demonstrated that WERG improved the cognitive impairment of the AD mouse model by enriching gut probiotics and reducing P-TauThr231 levels.
Collapse
Affiliation(s)
- Wenbin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianhui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Maria Latta
- School of Pharmacy, University of Connecticut, Mansfield, CT, United States
| | - Chenyu Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Yuheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shujian Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Peng Chen, ; Yingqian Liu,
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Peng Chen, ; Yingqian Liu,
| |
Collapse
|
6
|
Liu M, Zhao L, Han L, Li H, Shi Y, Cui J, Wang C, Xu L, Zhong L. Discovery and identification of proangiogenic chemical markers from Gastrodiae Rhizoma based on zebrafish model and metabolomics approach. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:835-845. [PMID: 32495458 DOI: 10.1002/pca.2949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Angiogenesis is closely related to a variety of diseases, and therapies based on angiogenesis are intensely investigated. Studies have shown that the use of Gastrodiae Rhizoma (GR, Gastrodia elata) can benefit the treatment of ischemic cardiovascular diseases and atherosclerosis by stimulating angiogenesis. OBJECTIVE This study tested the angiogenesis effects of a group of chemical markers isolated from GR. MATERIAL AND METHODS Zebrafish model was used to evaluate angiogenesis by setting four groups: blank control group, model group, positive control group and treatment group (0.1, 1, and 100 μg/mL RGP). The Gray correlation analysis (GCA) was implemented to calculate the correlation coefficients of each compound between the peak area in liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) and the bioactivity, the top ten components with the correlation degree > 0.9 were listed. RESULTS AND DISCUSSION The optimum final concentration of GR on proangiogenesis effect was determined to be 100 μg/mL. Ten compounds, including gastrodin, parishin E, stigmasterol, p-hydroxybenzyl alcohol, citric acid, etc., were identified to have high correlation coefficients with proangiogenic activity. Furthermore, the network pharmacologic analysis of these compounds revealed that the compounds systematically regulate the formation of new blood vessels via networked vital targets and signalling pathways. CONCLUSION GR can promote the growth of blood vessels, ten chemical components discovered contribute to this proangiogenesis activity. These chemical markers of GR thus provide a foundation for further studies on medicinal substances and quality evaluation of GR, also providing a scientific basis for modern interpretation of the processing theory of traditional Chinese medicine.
Collapse
Affiliation(s)
- Mengyujie Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Liang Zhao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haonan Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yongping Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jing Cui
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Chenyang Wang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Li Xu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Lihong Zhong
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Wang Y, Gao Y, Zang P, Xu Y. Transcriptome analysis reveals underlying immune response mechanism of fungal (Penicillium oxalicum) disease in Gastrodia elata Bl. f. glauca S. chow (Orchidaceae). BMC PLANT BIOLOGY 2020; 20:445. [PMID: 32993485 PMCID: PMC7525978 DOI: 10.1186/s12870-020-02653-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Gastrodia elata Bl. f. glauca S. Chow is a medicinal plant. G. elata f. glauca is unavoidably infected by pathogens in their growth process. In previous work, we have successfully isolated and identified Penicillium oxalicum from fungal diseased tubers of G. elata f. glauca. As a widespread epidemic, this fungal disease seriously affected the yield and quality of G. elata f. glauca. We speculate that the healthy G. elata F. glauca might carry resistance genes, which can resist against fungal disease. In this study, healthy and fungal diseased mature tubers of G. elata f. glauca from Changbai Mountain area were used as experimental materials to help us find potential resistance genes against the fungal disease. RESULTS A total of 7540 differentially expressed Unigenes (DEGs) were identified (FDR < 0.01, log2FC > 2). The current study screened 10 potential resistance genes. They were attached to transcription factors (TFs) in plant hormone signal transduction pathway and plant pathogen interaction pathway, including WRKY22, GH3, TIFY/JAZ, ERF1, WRKY33, TGA. In addition, four of these genes were closely related to jasmonic acid signaling pathway. CONCLUSIONS The immune response mechanism of fungal disease in G. elata f. glauca is a complex biological process, involving plant hormones such as ethylene, jasmonic acid, salicylic acid and disease-resistant transcription factors such as WRKY, TGA.
Collapse
Affiliation(s)
- Yanhua Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Pu Zang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Yue Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
8
|
Wang Y, Shahid MQ, Ghouri F, Baloch FS. De Novo Assembly and Annotation of the Juvenile Tuber Transcriptome of a Gastrodia elata Hybrid by RNA Sequencing: Detection of SSR Markers. Biochem Genet 2020; 58:914-934. [DOI: 10.1007/s10528-020-09983-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
|
9
|
Lu KH, Ou GL, Chang HP, Chen WC, Liu SH, Sheen LY. Safety evaluation of water extract of Gastrodia elata Blume: Genotoxicity and 28-day oral toxicity studies. Regul Toxicol Pharmacol 2020; 114:104657. [DOI: 10.1016/j.yrtph.2020.104657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
|
10
|
Lee K, Joo H, Sun M, Kim M, Kim B, Lee BJ, Cho JH, Jung JY, Park JW, Bu Y. Review on the characteristics of liver-pacifying medicinal in relation to the treatment of stroke: from scientific evidence to traditional medical theory. J TRADIT CHIN MED 2018. [DOI: 10.1016/j.jtcm.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zhan HD, Zhou HY, Sui YP, Du XL, Wang WH, Dai L, Sui F, Huo HR, Jiang TL. The rhizome of Gastrodia elata Blume - An ethnopharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2016; 189:361-85. [PMID: 27377337 DOI: 10.1016/j.jep.2016.06.057] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata Blume (Orchidaceae) is commonly called Tian ma in Chinese and mainly distributed in the mountainous areas of eastern Asia, such as China, Korea, Japan and India. It is an extensively used traditional Chinese herbal medicine in the clinical practice of traditional Chinese medicine, to treat headache, migraine, dizziness, epilepsy, infantile convulsion, tetany and so on. The present paper reviews the advancements in investigation of botany and ethnopharmacology, phytochemistry, pharmacology, toxicology and quality control of Gastrodia elata Blume. Finally, the possible tendency and perspective for future investigation of this plant are also put forward. MATERIALS AND METHODS The information on Gastrodia elata Blume was collected via piles of resources including classic books about Chinese herbal medicine, and scientific databases including Pubmed, Google Scholar, ACS, Web of science, ScienceDirect databases, CNKI and others. Plant taxonomy was validated by the databases "The Plant List", and "Mansfeld's Encyclopedia". RESULTS Over 81 compounds from this plant have been isolated and identified, phenolics and polysaccharides are generally considered as the characteristic and active constituents of Gastrodia elata Blume. Its active compounds possess wide-reaching biological activities, including sedative, hypnotic, antiepileptic, anticonvulsive, antianxietic, antidepressant, neuroprotective, antipsychotic, anti-vertigo, circulatory system modulating, anti-inflammationary, analgesic, antioxidative, memory-improving and antiaging, antivirus and antitumor effects. CONCLUSION Despite the publication of various papers on Gastrodia elata Blume, there is still, however, the need for definitive research and clarification of other bioactive compounds using bioactivity-guided isolation strategies, and the possible mechanism of action as well as potential synergistic or antagonistic effects of multi-component mixtures derived from Gastrodia elata Blume need to be evaluated. It is also necessary and important to do more quality control and toxicological study on human subjects in order to maintain its efficacy stable in the body and validate its safety in clinical uses. In addition, more investigations on other parts of this plant beyond the tubers are needed. Further studies on Gastrodia elata Blume will lead to the development of new drugs and therapeutics for various diseases, and how to utilize it better should be paid more attention to.
Collapse
Affiliation(s)
- Hong-Dan Zhan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hai-Yu Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yun-Peng Sui
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xin-Liang Du
- Graduate School of China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei-Hao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hai-Ru Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Ting-Liang Jiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
12
|
Chen J, Tian S, Shu X, Du H, Li N, Wang J. Extraction, Characterization and Immunological Activity of Polysaccharides from Rhizoma gastrodiae. Int J Mol Sci 2016; 17:ijms17071011. [PMID: 27347944 PMCID: PMC4964387 DOI: 10.3390/ijms17071011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/12/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022] Open
Abstract
A response surface and Box-Behnken design approach was applied to augment polysaccharide extraction from the residue of Rhizoma gastrodiae. Statistical analysis revealed that the linear and quadratic terms for three variables during extraction exhibited obvious effects on extraction yield. The optimum conditions were determined to be a liquid-to-solid ratio of 54 mL/g, an extraction temperature of 74 °C, an extraction time of 66 min, and three extractions. These conditions resulted in a maximum Rhizoma gastrodiae polysaccharide (RGP) extraction yield of 6.11% ± 0.13%. Two homogeneous polysaccharides (RGP-1a and RGP-1b) were obtained using DEAE cellulose-52 and Sephadex G-100 columns. The preliminary characterization of RGP-1a and RGP-1b was performed using HPLC-RID, HPGPC, and FTIR. Tests of the immunological activity in vitro showed that the two polysaccharides could significantly stimulate macrophages to release NO and enhance phagocytosis in a dose-dependent manner. In particular, RGP-1b (200 μg/mL) and LPS (2 μg/mL) had almost the same influence on the NO production and phagocytic activity of RAW 264.7 macrophages (p > 0.05). All the data obtained indicate that RGP-1a and RGP-1b have the potential to be developed as a health food.
Collapse
Affiliation(s)
- Juncheng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Sciences, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Shan Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Sciences, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Xiaoying Shu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Sciences, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Hongtao Du
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Sciences, Northwest A & F University, Yangling 712100, Shaanxi, China.
- College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Na Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Sciences, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Junru Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Sciences, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Chen WC, Lai YS, Lin SH, Lu KH, Lin YE, Panyod S, Ho CT, Sheen LY. Anti-depressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling. JOURNAL OF ETHNOPHARMACOLOGY 2016; 182:190-9. [PMID: 26899441 DOI: 10.1016/j.jep.2016.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 01/26/2016] [Accepted: 02/03/2016] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Gastrodia elata Blume is a highly valuable traditional Chinese medicine used in the treatment of depression. However, compounds with antidepressant effects in water extracts of G. elata Bl. (WGE) have not been identified. The aims of this study were to determine the major antidepressant compound in WGE and to evaluate the antidepressant effects of WGE and its active compounds which involved the monoaminergic system and neuronal cytoskeletal remodeling. MATERIALS AND METHODS Gastrodin (GAS) and 4-hydroxybenzyl alcohol (HBA) in WGE, were analyzed with high-performance liquid chromatography (HPLC)-ultraviolet detection. The forced swimming test (FST) was used to induce depression-like symptoms in 9 weeks old male Sprague-Dawley rats. The open field test (OFT) was used to measure anxiety after WGE, GAS, and HBA treatments. The levels of monoamine such as serotonin (5-HT), dopamine (DA), and their metabolites 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) were measured using HPLC-electrochemical detection. Western blotting was used to examine the 5-HT1A receptor and the neuronal cytoskeleton remodeling-related proteins, Slit, dihydropyrimidinase-related protein 2 (DPYSL2, also called CRMP2), Ras homologous member A (RhoA), and profilin 1 (PFN1) in vivo. Slit1 expression was evaluated in Hs683 cell line after treated with WGE (0.5mg/mL), GAS (50, 100 and 100μM), and HBA (50, 100 and 100μM). RESULTS Oral administration of WGE (500mg/kg bw), GAS (100mg/kg bw), and HBA (100mg/kg bw) exhibited the anti-depressant effect by significantly reducing the immobility time in FST, monoamine metabolism including the 5-HT to 5-HIAA in the hippocampus and DA to DOPAC and HVA ratios in the frontal cortex, amygdala, and hippocampus. In the hippocampus, the expression of the neuronal cytoskeleton remodeling-related negative regulators Slit1 and RhoA were significantly down-regulated. In addition, the positive regulators CRMP2 and PFN1 were significantly up-regulated following GAS, HBA, and WGE treatments. Moreover, WGE, GAS, and HBA were directly down-regulated Slit1 expression in Hs683 cells. CONCLUSION WGE, GAS, and HBA exhibited potential anti-depressant effects in rats by decreasing monoamine metabolism and modulated cytoskeleton remodeling-related protein expression in the Slit-Robo pathway. These results suggest that WGE can be used as agent for depressive prevention.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Syuan Lai
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Hang Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei 10617, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
14
|
Chen WC, Lai YS, Lu KH, Lin SH, Liao LY, Ho CT, Sheen LY. Method development and validation for the high-performance liquid chromatography assay of gastrodin in water extracts from different sources of Gastrodia elata Blume. J Food Drug Anal 2015; 23:803-810. [PMID: 28911498 PMCID: PMC9345451 DOI: 10.1016/j.jfda.2015.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/06/2015] [Accepted: 02/25/2015] [Indexed: 11/17/2022] Open
Abstract
Gastrodia elata Blume is commonly used as a medical herb in China for ameliorating headaches, dizziness, and convulsions. In previous studies, water extracts of G. elata Bl. (WGE) have demonstrated potential to act as therapeutic agents to improve depression-like symptoms in rats. As gastrodin (GAS) is a major active compound in WGE, its quantitation in WGE is important for quality control. The objective of this study was to develop an optimized and validated reversed-phase high-performance liquid chromatography method for the analysis of GAS in different sources of WGE. We evaluated the GAS content in varieties of G. elata Bl. including G. elata Bl. f. glauca S. Chow and G. elata Bl. f. elata. We also evaluated the GAS content of the latter variety from two different origins, Yun-nan and Hu-nan. The results indicate that the amount of GAS analyzed in WGE from G. elata Bl. f. glauca S. Chow is five times higher than that of G. elata Bl. f. elata from Yun-nan and Hu-nan. A significant difference in GAS content was observed between varieties of G. elata Bl., although not between locations of origin.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Syuan Lai
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Hang Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Li-Yun Liao
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Chen PJ, Sheen LY. Gastrodiae Rhizoma (tiān má): a review of biological activity and antidepressant mechanisms. J Tradit Complement Med 2014; 1:31-40. [PMID: 24716103 PMCID: PMC3942998 DOI: 10.1016/s2225-4110(16)30054-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gastrodiae Rhizoma, also called chì jiàn (赤箭), guǐ dū yóu (鬼督郵), or tiān má (天麻) in Chinese, is considered a top grade (上品 shàng pǐn) medicine described to enter liver channel (肝經 gān jīng) in classic literatures of traditional Chinese medicine and has been used for centuries. Many studies investigating its various bioactivities and active compounds have been conducted worldwide. This article reviews these biological activities and details the antidepressant pharmacology of Gastrodiae Rhizoma. Gastrodiae Rhizoma treatment exerts an effective inhibition of diverse diseases and disorders, including convulsion, oxidative stress, mental disorders, amnesia, cardio-cerebral-vascular diseases, and inflammation, among others. The antidepressant effect of Gastrodiae Rhizoma was evaluated in animal models and several mechanisms of activity were found, including the modulation and regulation of monoamine oxidase activity, monoamine concentration and turnover, antioxidatant activity, GABAergic system induction, BDNF induction, neuroprotection and anti-inflammatory activity.
Collapse
Affiliation(s)
- Pei-Ju Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Wang X, Yan S, Wang A, Li Y, Zhang F. Gastrodin ameliorates memory deficits in 3,3'-iminodipropionitrile-induced rats: possible involvement of dopaminergic system. Neurochem Res 2014; 39:1458-66. [PMID: 24842556 DOI: 10.1007/s11064-014-1335-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/29/2022]
Abstract
3,3'-Iminodipropionitrile (IDPN), one of the nitrile derivatives, can induce neurotoxicity, and therefore cause motor dysfunction and cognitive deficits. Gastrodin is a main bioactive constituent of a Chinese herbal medicine (Gastrodia elata Blume) widely used for treating various neurological disorders and showed greatly improved mental function. This study was designed to determine whether administration of gastrodin attenuates IDPN-induced working memory deficits in Y-maze task, and to explore the underlying mechanisms. Results showed that exposure to IDPN (150 mg/kg/day, v.o.) significantly impaired working memory and that long-term gastrodin (200 mg/kg/day, v.o.) could effectively rescue these IDPN-induced memory impairments as indicated by increased spontaneous alternation in the Y-maze test. Additionally, gastrodin treatment prevented IDPN-induced reductions of dopamine (DA) and its metabolites, as well as elevation of dopamine turnover ratio (DOPAC + HVA)/DA. Gastrodin treatment also prevented alterations in dopamine D2 receptor and dopamine transporter protein levels in the rat hippocampus. Our results suggest that long-term gastrodin treatment may have potential therapeutic values for IDPN-induced cognitive impairments, which was mediated, in part, by normalizing the dopaminergic system.
Collapse
Affiliation(s)
- Xiaona Wang
- Institute of Physiology, Shandong University School of Medicine, Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Metabolomic analysis of anti-hypoxia and anti-anxiety effects of Fu Fang Jin Jing Oral Liquid. PLoS One 2013; 8:e78281. [PMID: 24205180 PMCID: PMC3799728 DOI: 10.1371/journal.pone.0078281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/10/2013] [Indexed: 01/02/2023] Open
Abstract
Background Herba Rhodiolae is a traditional Chinese medicine used by the Tibetan people for treating hypoxia related diseases such as anxiety. Based on the previous work, we developed and patented an anti-anxiety herbal formula Fu Fang Jin Jing Oral Liquid (FJJOL) with Herba Rhodiolae as a chief ingredient. In this study, the anti-hypoxia and anti-anxiety effects of FJJOL in a high altitude forced-swimming mouse model with anxiety symptoms will be elucidated by NMR-based metabolomics. Methods In our experiments, the mice were divided randomly into four groups as flatland group, high altitude saline-treated group, high altitude FJJOL-treated group, and high altitude diazepam-treated group. To cause anxiety effects and hypoxic defects, a combination use of oxygen level decreasing (hypobaric cabin) and oxygen consumption increasing (exhaustive swimming) were applied to mice. After a three-day experimental handling, aqueous metabolites of mouse brain tissues were extracted and then subjected to NMR analysis. The therapeutic effects of FJJOL on the hypobaric hypoxia mice with anxiety symptoms were verified. Results Upon hypoxic exposure, both energy metabolism defects and disorders of functional metabolites in brain tissues of mice were observed. PCA, PLS-DA and OPLS-DA scatter plots revealed a clear group clustering for metabolic profiles in the hypoxia versus normoxia samples. After a three-day treatment with FJJOL, significant rescue effects on energy metabolism were detected, and levels of ATP, fumarate, malate and lactate in brain tissues of hypoxic mice recovered. Meanwhile, FJJOL also up-regulated the neurotransmitter GABA, and the improvement of anxiety symptoms was highly related to this effect. Conclusions FJJOL ameliorated hypobaric hypoxia effects by regulating energy metabolism, choline metabolism, and improving the symptoms of anxiety. The anti-anxiety therapeutic effects of FJJOL were comparable to the conventional anti-anxiety drug diazepam on the hypobaric hypoxia mice. FJJOL might serve as an alternative therapy for the hypoxia and anxiety disorders.
Collapse
|
18
|
Hong SS, Cho SH. Antidepressant-like Effects of the Gastrodia elata Bl Extract in Mice. ACTA ACUST UNITED AC 2013. [DOI: 10.7231/jon.2013.24.3.281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Antihyperglycemic effect of fermented Gastrodia elata blume in streptozotocin-induced diabetic mice. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0229-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
20
|
Ramachandran U, Manavalan A, Sundaramurthi H, Sze SK, Feng ZW, Hu JM, Heese K. Tianma modulates proteins with various neuro-regenerative modalities in differentiated human neuronal SH-SY5Y cells. Neurochem Int 2012; 60:827-36. [PMID: 22710396 DOI: 10.1016/j.neuint.2012.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/29/2012] [Accepted: 03/19/2012] [Indexed: 12/15/2022]
Abstract
Tianma (Rhizoma gastrodiae) is the dried rhizome of the plant Gastrodia elata Blume (Orchidaceae family). As a medicinal herb in traditional Chinese medicine (TCM) its functions are to control convulsions, pain, headache, dizziness, vertigo, seizure, epilepsy and others. In addition, tianma is frequently used for the treatment of neurodegenerative disorders though the mechanism of action is widely unknown. Accordingly, this study was designed to examine the effects of tianma on the proteome metabolism in differentiated human neuronal SH-SY5Y cells to explore its specific effects on neuronal signaling pathways. Using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach, we identified 2390 modulated proteins, out of which 406 were found to be altered by tianma in differentiated human neuronal SH-SY5Y cells. Based on the observed data, we hypothesize that tianma promotes neuro-regenerative signaling cascades by controlling chaperone/proteasomal degradation pathways (e.g. CALR, FKBP3/4, HSP70/90) and mobilizing neuro-protective genes (such as AIP5) as well as modulating other proteins (RTN1/4, NCAM, PACSIN2, and PDLIM1/5) with various regenerative modalities and capacities related to neuro-synaptic plasticity.
Collapse
|
21
|
Tsai CF, Huang CL, Lin YL, Lee YC, Yang YC, Huang NK. The neuroprotective effects of an extract of Gastrodia elata. JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:119-25. [PMID: 21925258 DOI: 10.1016/j.jep.2011.08.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/26/2011] [Indexed: 05/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastrodia elata (GE) Blume (family Orchidaceae) is a traditional Chinese herbal medicine for treating headaches, dizziness, tetanus, and epilepsy, indicating neuronal protective functions. AIM OF THE STUDY To evaluate the neuroprotection of GE and its molecular mechanism in preventing serum deprivation-induced PC12 cell apoptosis. MATERIALS AND METHODS An MTT assay and Hoechst staining were used to respectively validate serum deprivation-induced cell death and apoptosis. Cyclic (c)AMP formation and protein kinase (PK)A activity were also measured after GE treatment. Western blotting was used to detect the phosphorylation of the cAMP response element-binding (CREB) protein. Transient transfection of a dominant negative CREB was used to validate the importance of CREB. RESULTS GE targeted the adenosine A(2A) receptor (A(2A)-R). GE increased cAMP formation, PKA activity, and phosphorylation of the CREB protein. GE-induced CREB protein phosphorylation and protection was blocked by a PKA inhibitor and overexpression of the dominant negative CREB, respectively. CONCLUSIONS These results support the neuroprotective effects of GE. The protective mechanism might be mediated through an A(2A)-R/cAMP/PKA/CREB-dependent pathway.
Collapse
Affiliation(s)
- Chung-Fen Tsai
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taiwan
| | | | | | | | | | | |
Collapse
|