1
|
Wang Y, Wu J, Wang G, Tang W, Wu F, Zhao H, Cao W. Hydroxy Fatty Acid Synthesis-Related mRNA as the Biomarker for Detecting Mislabeling of Honey Entomological Origin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18283-18293. [PMID: 39082820 DOI: 10.1021/acs.jafc.4c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The authentication of the entomological origin of honey is a widespread concern, necessitating the prompt establishment of an effective approach for distinguishing between Apis cerana cerana honey (ACH) and Apis mellifera ligustica honey (AMH). Hydroxy fatty acids (HFAs) found in honey are bee-derived components synthesized by the mandibular glands of worker bees. We previously discovered significant variations in the hydroxy fatty acid composition between ACH and AMH, suggesting their potential as indicators for identifying the authenticity of the entomological origin of honey. Herein, we identified differentially expressed genes associated with HFA synthesis by conducting transcriptome sequencing of the mandibular glands of AC and AM honeybees. Subsequently, we proposed a method for the relative quantitative analysis of bee-derived RNA components using real-time fluorescence quantitative polymerase chain reaction, which was supplemented by multivariate statistical analysis to further discern differences in HFA synthesis-related mRNA between ACH and AMH. The results showed that the mRNAs of FAXDC2 (fatty acid hydroxylase domain-containing protein 2) and FAS (fatty acid synthase) may serve as indicators to discern the entomological origin of honey. This study presents two novel biomarkers for detecting mislabeling of the entomological origin in ACH and AMH based on variations in bee-derived components.
Collapse
Affiliation(s)
- Yan Wang
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Jinkui Wu
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Guiling Wang
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Wenxuan Tang
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| |
Collapse
|
2
|
Chen C, Ou W, Yang C, Liu H, Yang T, Mo H, Lu W, Yan J, Chen A. Queen bee acid pretreatment attenuates myocardial ischemia/reperfusion injury by enhancing autophagic flux. Heliyon 2024; 10:e33371. [PMID: 39021954 PMCID: PMC11253658 DOI: 10.1016/j.heliyon.2024.e33371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Queen bee acid (QBA), which is exclusively found in royal jelly, has anti-inflammatory, antihypercholesterolemic, and antiangiogenic effects. A recent study demonstrated that QBA enhances autophagic flux in the heart. Considering the significant role of autophagy in the development of myocardial ischemia/reperfusion (I/R) injury, we investigated the effect of pretreatment with QBA on myocardial damage. In an in vivo model, left coronary artery blockage for 30 min and reperfusion for 2 h were used to induce myocardial I/R. In an in vitro model, neonatal rat cardiomyocytes (NRCs) were exposed to 3 h of hypoxia and 3 h of reoxygenation (H/R). Our results showed that pretreatment with QBA increased the cell viability of cardiomyocytes exposed to H/R in a dose-dependent manner, and the best protective concentration of QBA was 100 μM. Next, we noted that QBA pretreatment (24h before H/R) enhanced autophagic flux and attenuated mitochondrial damage, cardiac oxidative stress and apoptosis in NRCs exposed to H/R injury, and these effects were weakened by cotreatment with the autophagy inhibitor bafilomycin A1 (Baf). In addition, similar results were observed when QBA (10 mg/kg) was injected intraperitoneally into I/R mice 30 min before ischemia. Compared to mice subjected to I/R alone, those treated with QBA had decreased myocardial infarct area and increased cardiac function, whereas, these effects were partly reversed by Baf. Notably, in NRCs exposed to H/R, tandem fluorescent mRFP-GFP-LC3 assays indicated increased autophagosome degradation due to the increase in autophagic flux upon QBA treatment, but coinjection of Baf blocked autophagic flux. In this investigation, no notable adverse effects of QBA were detected in either cellular or animal models. Our findings suggest that QBA pretreatment mitigates myocardial I/R injury by eliminating dysfunctional mitochondria and reducing reactive oxygen species via promoting autophagic flux.
Collapse
Affiliation(s)
- Changhai Chen
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Cardiology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wen Ou
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chaobo Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Haiqiong Liu
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Tao Yang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Cardiovascular Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, People's Republic of China
| | - Huaqiang Mo
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Weizhe Lu
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Yan
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Aihua Chen
- Department of Health Management, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|
4
|
Li Q, Zhang W, Zhou E, Tao Y, Wang M, Qi S, Zhao L, Tan Y, Wu L. Integrated microbiomic and metabolomic analyses reveal the mechanisms by which bee pollen and royal jelly lipid extracts ameliorate colitis in mice. Food Res Int 2023; 171:113069. [PMID: 37330827 DOI: 10.1016/j.foodres.2023.113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Bee pollen (BP) and royal jelly (RJ) have shown therapeutic effects against colitis, but the functional components contained therein remain elusive. Here, we used an integrated microbiomic-metabolomic strategy to clarify the mechanism by which bee pollen lipid extracts (BPL) and royal jelly lipid extracts (RJL) ameliorated dextran sulfate sodium (DSS)-induced colitis in mice. Lipidomic results showed that levels of ceramide (Cer), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were significantly higher in BPL than in RJL. The anti-inflammatory efficacy of BPL surpassed that of RJL, although both BPL and RJL could attenuate DSS-induced colitis through several mechanisms: reducing the disease activity index (DAI); decreasing histopathological damage; inhibiting the expression of genes encoding proinflammatory cytokines; improving intestinal microbial community structure, and modulating host metabolism. These findings demonstrated that BPL and RJL have great potential as functional ingredients for the production of dietary supplements to prevent early colitis.
Collapse
Affiliation(s)
- Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenwen Zhang
- College of Life and Health Sciences, Anhui Science and Technology University, Bengbu 233100, China
| | - Enning Zhou
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxiao Tao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Miao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liuwei Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yonggang Tan
- Oncology Center, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
5
|
Čeksterytė V, Bliznikas S, Jaškūnė K. The Composition of Fatty Acids in Bee Pollen, Royal Jelly, Buckthorn Oil and Their Mixtures with Pollen Preserved for Storage. Foods 2023; 12:3164. [PMID: 37685097 PMCID: PMC10487168 DOI: 10.3390/foods12173164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Honey produced by A. mellifera contains minor components present in the nectar collected from plants. Various studies of honey components and all other bee products can be informative in assessing their quality. The aim of the present study was to determine the content and composition of fatty acids (FAs) in sea buckthorn oil (SBO), royal jelly (RJ) and bee pollen (BP) and the changes in FAs content in these products during storage. The diversity of FAs and the effect of storage time on FAs content was also evaluated for the prepared-for-preservation mixtures, which included the following samples: pollen mixed with honey at a ratio of 1:2 (w/w); sample BPH, a well; BPH + 1% (w/w) SBO; and BPH + 1% (w/w) SBO + 2% (w/w) RJ. Fresh bee-collected pollen and RJ were stored at -20 °C, whereas the conserved samples were stored at +4 °C in hermetically sealed jars. The data revealed that RJ demonstrated the highest diversity of fatty acids compared to BP and BP prepared for storage with honey along with SBO and RJ. Palmitic and stearic acids were found in the highest amounts out of the eight saturated fatty acids identified in the studied SBO and RJ. The amount of these fatty acids in RJ compared to SBO was 1.27 and 6.14 times higher, respectively. In total, twenty-two unsaturated fatty acids (USFA) were identified in RJ and fourteen were found in SBO. The SBO used in this study was found to be high in linoleic acid, resulting in an increased n-6 fatty acids ratio in the prepared samples. Essential fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) were found in RJ, as well as in BP and BP mixed with honey. These FAs were not identified in the samples prepared with SBO even in the sample supplemented with RJ. The highest decrease in docosadienoic fatty acid was found in the BPH sample compared to BP, while arachidonic acid mostly decreased in BPH + 1% SBO compared to the BPH + 1% (w/w) SBO + 2% (w/w) RJ samples stored at +4 °C. Bee-collected pollen had the greatest influence on the number of FAs in its mixture with honey.
Collapse
Affiliation(s)
- Violeta Čeksterytė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, 58344 Kėdainiai, Lithuania;
| | - Saulius Bliznikas
- Institute of Animal Science, Lithuanian University of Health Sciences, R. Zebenkos 12, 82317 Baisogala, Lithuania;
| | - Kristina Jaškūnė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, 58344 Kėdainiai, Lithuania;
| |
Collapse
|
6
|
Martínez-Chacón G, Paredes-Barquero M, Yakhine-Diop SM, Uribe-Carretero E, Bargiela A, Sabater-Arcis M, Morales-García J, Alarcón-Gil J, Alegre-Cortés E, Canales-Cortés S, Rodríguez-Arribas M, Camello PJ, Pedro JMBS, Perez-Castillo A, Artero R, Gonzalez-Polo RA, Fuentes JM, Niso-Santano M. Neuroprotective properties of queen bee acid by autophagy induction. Cell Biol Toxicol 2023; 39:751-770. [PMID: 34448959 PMCID: PMC10406658 DOI: 10.1007/s10565-021-09625-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022]
Abstract
Autophagy is a conserved intracellular catabolic pathway that removes cytoplasmic components to contribute to neuronal homeostasis. Accumulating evidence has increasingly shown that the induction of autophagy improves neuronal health and extends longevity in several animal models. Therefore, there is a great interest in the identification of effective autophagy enhancers with potential nutraceutical or pharmaceutical properties to ameliorate age-related diseases, such as neurodegenerative disorders, and/or promote longevity. Queen bee acid (QBA, 10-hydroxy-2-decenoic acid) is the major fatty acid component of, and is found exclusively in, royal jelly, which has beneficial properties for human health. It is reported that QBA has antitumor, anti-inflammatory, and antibacterial activities and promotes neurogenesis and neuronal health; however, the mechanism by which QBA exerts these effects has not been fully elucidated. The present study investigated the role of the autophagic process in the protective effect of QBA. We found that QBA is a novel autophagy inducer that triggers autophagy in various neuronal cell lines and mouse and fly models. The beclin-1 (BECN1) and mTOR pathways participate in the regulation of QBA-induced autophagy. Moreover, our results showed that QBA stimulates sirtuin 1 (SIRT1), which promotes autophagy by the deacetylation of critical ATG proteins. Finally, QBA-mediated autophagy promotes neuroprotection in Parkinson's disease in vitro and in a mouse model and extends the lifespan of Drosophila melanogaster. This study provides detailed evidences showing that autophagy induction plays a critical role in the beneficial health effects of QBA.
Collapse
Affiliation(s)
- Guadalupe Martínez-Chacón
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Marta Paredes-Barquero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Sokhna M.S Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - María Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - José Morales-García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
| | - Jesús Alarcón-Gil
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mario Rodríguez-Arribas
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Pedro Javier Camello
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
- Instituto Universitario de Biomarcadores de Patologías Metabólicas, Cáceres, Spain
| | - José Manuel Bravo-San Pedro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigaciones Biomédicas (CSIC-UAM) “Alberto Sols” (CSIC-UAM), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain
- CIPF-INCLIVA Joint Unit, Valencia, Spain
| | - Rosa A. Gonzalez-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda de la Universidad s/n, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
7
|
Nazemi-Rafie J, Fatehi F, Hasrak S. A comparative transcriptome analysis of the head of 1 and 9 days old worker honeybees ( Apis mellifera). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:253-270. [PMID: 36511774 DOI: 10.1017/s0007485322000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The role of bees in the environment, economic, biodiversity and pharmaceutical industries is due to its social behavior, which is oriented from the brain and hypopharyngeal gland that is the center of royal jelly (RJ) production. Limited studies have been performed on the head gene expression profile at the RJ production stage. The aim of this study was to compare the gene expressions in 9 and 1-day-old (DO) honeybee workers in order to achieve better understanding about head gene expression pattern. After sequencing of RNAs, transcriptome and their networks were compared. The head expression profile undergoes various changes. 1662 gene transcripts had differential expressions which 1125 and 537 were up and down regulated, respectively, in 9_DO compared with 1_DO honey bees. The day 1th had more significant role in the expression of genes related to RJ production as major RJ protein 1, 2, 3, 5, 6 and 9 encoding genes, but their maximum secretion occurred at day 9th. All process related to hypopharyngeal glands activities as CYP450 gene, fatty acid synthase gene, vitamin B6 metabolism and some of genes involved in fatty acid elongation and degradation process had an upward trend from 1_DO and were age-dependent. By increasing the age, the activity of pathways related to immune system increased for keeping the health of bees against the chemical compound. The expression of aromatic amino acid genes involved in Phenylalanine, tyrosine and tryptophan biosynthesis pathway are essential for early stage of life. In 9_DO honeybees, the energy supplying, reducing stress, protein production and export pathways have a crucial role for support the body development and the social duties. It can be stated that the activity of honeybee head is focused on energy supply instead of storage, while actively trying to improve the level of cell dynamics for increasing the immunity and reducing stress. Results of current study identified key genes of certain behaviors of honeybee workers. Deeper considering of some pathways will be evaluated in future studies.
Collapse
Affiliation(s)
- Javad Nazemi-Rafie
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Foad Fatehi
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Shabnam Hasrak
- Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
8
|
Zhou E, Wang Q, Li X, Zhu D, Niu Q, Li Q, Wu L. Effects of Bee Pollen Derived from Acer mono Maxim. or Phellodendron amurense Rupr. on the Lipid Composition of Royal Jelly Secreted by Honeybees. Foods 2023; 12:foods12030625. [PMID: 36766159 PMCID: PMC9914857 DOI: 10.3390/foods12030625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Royal jelly is a specific product secreted by honeybees, and has been sought after to maintain health because of its valuable bioactive substances, e.g., lipids and vitamins. The lipids in royal jelly come from the bee pollen consumed by honeybees, and different plant source of bee pollen affects the lipid composition of royal jelly. However, the effect of bee pollen consumption on the lipid composition of royal jelly remains unclear. Herein, we examined the influence of two factors on the lipid composition of royal jelly: first, two plant sources of bee pollen, i.e., Acer mono Maxim. (BP-Am) and Phellodendron amurense Rupr. (BP-Pa); secondly, different feeding times. Lipidomic analyses were conducted on the royal jelly produced by honeybees fed BP-Am or BP-Pa using ultra-high performance liquid chromatography (UPLC)-Q-Exactive Orbitrap mass spectrometry. The results showed that the phospholipid and fatty acid contents differed in royal jelly produced by honeybees fed BP-Am compared to those fed BP-Pa. There were also differences between timepoints, with many lipid compounds decreasing in abundance soon after single-pollen feeding began, slowly increasing over time, then decreasing again after 30 days of single-pollen feeding. The single bee pollen diet destroyed the nutritional balance of bee colonies and affected the development of hypopharyngeal and maxillary glands, resulting in differences in royal jelly quality. This study provides guidance for optimal selection of honeybee feed for the production of high-quality royal jelly.
Collapse
Affiliation(s)
- Enning Zhou
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qi Wang
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
| | - Xiangxin Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Dan Zhu
- Department of Food Science, University of Otago, Dunedin 9016, New Zealand
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin 132011, China
- Correspondence: (Q.N.); (Q.L.); Tel.: +86-13943233663 (Q.N.); +86-13269495300 (Q.L.)
| | - Qiangqiang Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Correspondence: (Q.N.); (Q.L.); Tel.: +86-13943233663 (Q.N.); +86-13269495300 (Q.L.)
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
9
|
Investigation of the lipidomic profile of royal jelly from different botanical origins using UHPLC-IM-Q-TOF-MS and GC-MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Asma ST, Bobiş O, Bonta V, Acaroz U, Shah SRA, Istanbullugil FR, Arslan-Acaroz D. General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses. Nutrients 2022; 14:nu14173579. [PMID: 36079835 PMCID: PMC9460612 DOI: 10.3390/nu14173579] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Bee products have been extensively employed in traditional therapeutic practices to treat several diseases and microbial infections. Numerous bioactive components of bee products have exhibited several antibacterial, antifungal, antiviral, anticancer, antiprotozoal, hepatoprotective, and immunomodulatory properties. Apitherapy is a form of alternative medicine that uses the bioactive properties of bee products to prevent and/or treat different diseases. This review aims to provide an elaborated vision of the antiviral activities of bee products with recent advances in research. Since ancient times, bee products have been well known for their several medicinal properties. The antiviral and immunomodulatory effects of bee products and their bioactive components are emerging as a promising alternative therapy against several viral infections. Numerous studies have been performed, but many clinical trials should be conducted to evaluate the potential of apitherapy against pathogenic viruses. In that direction, here, we review and highlight the potential roles of bee products as apitherapeutics in combating numerous viral infections. Available studies validate the effectiveness of bee products in virus inhibition. With such significant antiviral potential, bee products and their bioactive components/extracts can be effectively employed as an alternative strategy to improve human health from individual to communal levels as well.
Collapse
Affiliation(s)
- Syeda Tasmia Asma
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Otilia Bobiş
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Correspondence: (O.B.); (U.A.)
| | - Victoriţa Bonta
- Department of Beekeeping and Sericulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
- Correspondence: (O.B.); (U.A.)
| | - Syed Rizwan Ali Shah
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Fatih Ramazan Istanbullugil
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, Bishkek KG-720038, Kyrgyzstan
| | - Damla Arslan-Acaroz
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| |
Collapse
|
11
|
Damiani AP, Magenis ML, Dagostin LS, Beretta ÂCDL, Sarter RJ, Longaretti LM, Monteiro IDO, Andrade VMD. Royal jelly reduce DNA damage induced by alkylating agent in mice. Mutat Res 2022; 825:111796. [PMID: 36007462 DOI: 10.1016/j.mrfmmm.2022.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Royal jelly (RJ) is a creamy white-yellow liquid that is secreted by the mandibular and hypopharyngeal glands of bees to nourish the larvae. RJ has gained increasing interest in recent years owing to its antioxidant potential. However, little is known about adequate RJ dosing and its effects on genetic material. Thus, the aim of this study was to evaluate the in vivo effects of RJ on genotoxicity and mutagenicity induced by the alkylating agent methyl methanesulfonate (MMS). In this study, 3-month-old Swiss albino male mice (N = 66) were divided into 11 groups for experimentation. Experiments were performed by administering lyophilized RJ (150 mg/kg, 300 mg/kg, and 1000 mg/kg) or water via gavage as pre- and posttreatment processes with the alkylating agent MMS. After treatment, blood samples were collected from the mice via an incision at the end of the tail to conduct comet assays at times of 24 h and 48 h posttreatment. The mice were then euthanized to remove the bone marrow for a micronucleus test. Overall, regardless of dose, RJ did not exhibit genotoxic, mutagenic activity and the administration of high doses, mainly in the form of posttreatment, presented antigenotoxic and antimutagenic actions. Further, a dose-response correlation was observed in the RJ posttreatment groups. These results demonstrate that RJ administration was effective in reversing the damage caused by the alkylating agent MMS.
Collapse
Affiliation(s)
- Adriani Paganini Damiani
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Marina Lummertz Magenis
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Ligia Salvan Dagostin
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Ângela Caroline da Luz Beretta
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Rovena Jacobsen Sarter
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Luiza Martins Longaretti
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Isadora de Oliveira Monteiro
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil.
| |
Collapse
|
12
|
Gao K, Su B, Dai J, Li P, Wang R, Yang X. Anti-Biofilm and Anti-Hemolysis Activities of 10-Hydroxy-2-decenoic Acid against Staphylococcus aureus. Molecules 2022; 27:1485. [PMID: 35268586 PMCID: PMC8912057 DOI: 10.3390/molecules27051485] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Persistent infections caused by Staphylococcus aureus biofilms pose a major threat to global public health. 10-Hydroxy-2-decenoic acid (10-HDA), a main fatty acid in royal jelly, has been shown to possess various biological activities. The purpose of this study was to explore the effects of 10-HDA on the biofilms and virulence of S. aureus and its potential molecular mechanism. Quantitative crystal violet staining indicated that 10-HDA significantly reduced the biofilm biomass at sub-minimum inhibitory concentration (MIC) levels (1/32MIC to 1/2MIC). Scanning electron microscope (SEM) observations demonstrated that 10-HDA inhibited the secretion of extracellular polymeric substances, decreased bacterial adhesion and aggregation, and disrupted biofilm architecture. Moreover, 10-HDA could significantly decrease the biofilm viability and effectively eradicated the mature biofilms. It was also found that the hemolytic activity of S. aureus was significantly inhibited by 10-HDA. qRT-PCR analyses revealed that the expressions of global regulators sarA, agrA, and α-hemolysin gene hla were downregulated by 10-HDA. These results indicate that 10-HDA could be used as a potential natural antimicrobial agent to control the biofilm formation and virulence of S. aureus.
Collapse
Affiliation(s)
- Kuankuan Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.G.); (B.S.); (P.L.); (R.W.)
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Bei Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.G.); (B.S.); (P.L.); (R.W.)
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Jing Dai
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.G.); (B.S.); (P.L.); (R.W.)
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.G.); (B.S.); (P.L.); (R.W.)
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Xiaohui Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (K.G.); (B.S.); (P.L.); (R.W.)
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| |
Collapse
|
13
|
Martin N, Hulbert AJ, Mitchell TW, Else PL. Regulation of membrane phospholipids during the adult life of worker honey bee. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104310. [PMID: 34530044 DOI: 10.1016/j.jinsphys.2021.104310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Two female castes that are genetically identical are found in honey bees: workers and queens. Adult female honey bees differ in their morphology and behaviors, but the most intriguing difference between the castes is the difference in their longevity. Queens live for years while workers live generally for weeks. The mechanisms that mediate this extraordinary difference in lifespan remain mostly unknown. Both castes share similar developmental stages and are fed liquid food (i.e. a jelly) during development. However, after emergence, workers begin to feed on pollen while queens are fed the same larval food for their entire life. Pollen has a high content of polyunsaturated fatty acids (PUFA) while royal jelly has negligible amounts. The difference in food during adult life leads to drastic changes in membrane phospholipids of female honey bees, and those changes have been proposed as mechanisms that could explain the difference in lifespan. To provide further details on those mechanisms, we characterized the membrane phospholipids of adult workers at seven different ages covering all life-history stages. Our results suggest that the majority of changes in worker membranes occur in the first four days of adult life. Shortly after emergence, workers increase their level of total phospholipids by producing phospholipids that contained saturated (SFA) and monounsaturated fatty acids (MUFA). From the second day, workers start replacing fatty acid chains from those pre-synthesized molecules with PUFA acquired from pollen. After four days, worker membranes are set and appear to be maintained for the rest of adult life, suggesting that damaged PUFA are replaced effectively. Plasmalogen phospholipids increase continuously throughout worker adult life, suggesting that plasmalogen might help to reduce lipid peroxidation in worker membranes. We postulate that the diet-induced increase in PUFA in worker membranes makes them far more prone to lipid-based oxidative damage compared to queens.
Collapse
Affiliation(s)
- N Martin
- School of Medicine, University of Wollongong, NSW 2522, Australia; School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia
| | - A J Hulbert
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW 2522, Australia
| | - T W Mitchell
- School of Medicine, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia
| | - P L Else
- School of Medicine, University of Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute (IHMRI), Wollongong, NSW 2522, Australia.
| |
Collapse
|
14
|
Quque M, Villette C, Criscuolo F, Sueur C, Bertile F, Heintz D. Eusociality is linked to caste-specific differences in metabolism, immune system, and somatic maintenance-related processes in an ant species. Cell Mol Life Sci 2021; 79:29. [PMID: 34971425 PMCID: PMC11073003 DOI: 10.1007/s00018-021-04024-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023]
Abstract
The social organization of many primate, bird and rodent species and the role of individuals within that organization are associated with specific individual physiological traits. However, this association is perhaps most pronounced in eusocial insects (e.g., termites, ants). In such species, genetically close individuals show significant differences in behavior, physiology, and life expectancy. Studies addressing the metabolic changes according to the social role are still lacking. We aimed at understanding how sociality could influence essential molecular processes in a eusocial insect, the black garden ant (Lasius niger) where queens can live up to ten times longer than workers. Using mass spectrometry-based analysis, we explored the whole metabolome of queens, nest-workers and foraging workers. A former proteomics study done in the same species allowed us to compare the findings of both approaches. Confirming the former results at the proteome level, we showed that queens had fewer metabolites related to immunity. Contrary to our predictions, we did not find any metabolite linked to reproduction in queens. Among the workers, foragers had a metabolic signature reflecting a more stressful environment and a more highly stimulated immune system. We also found that nest-workers had more digestion-related metabolites. Hence, we showed that specific metabolic signatures match specific social roles. Besides, we identified metabolites differently expressed among behavioral castes and involved in nutrient sensing and longevity pathways (e.g., sirtuins, FOXO). The links between such molecular pathways and aging being found in an increasing number of taxa, our results confirm and strengthen their potential universality.
Collapse
Affiliation(s)
- Martin Quque
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France.
| | - Claire Villette
- Plant Imaging and Mass Spectrometry (PIMS), Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France
- Institut Universitaire de France, 75005, Paris, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging and Mass Spectrometry (PIMS), Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| |
Collapse
|
15
|
Guo J, Wang Z, Chen Y, Cao J, Tian W, Ma B, Dong Y. Active components and biological functions of royal jelly. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Ibrahim RS, El-Banna AA. Royal jelly fatty acids bioprofiling using TLC-MS and digital image analysis coupled with chemometrics and non-parametric regression for discovering efficient biomarkers against melanoma. RSC Adv 2021; 11:18717-18728. [PMID: 35478617 PMCID: PMC9033460 DOI: 10.1039/d1ra00580d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023] Open
Abstract
A comprehensive approach of untargeted and targeted fatty acid bioprofiling of different royal jelly commercial and pharmaceutical products based on HPTLC-image analysis and melanoma cytotoxic activity together with chemometric analysis was applied in this study for discovering efficient biomarkers. Principal component analysis based on HPTLC-image analysis fingerprints of fatty acid loading plots were used to determine the chemical markers responsible for classification of royal jelly samples into fresh and lyophilized ones. These markers were identified using the HPTLC-MS technique as 8-hydroxyoctanoic acid, 3,10-dihydroxydecanoic acid, 10-hydroxy-2-decenoic acid, decanedioic acid and 10-hydroxydecanoic acid. These discriminating markers were quantified via the HPTLC-imaging technique for targeted profiling using two different methods: parametric and non-parametric regression. The non-parametric regression method exhibited superiority in terms of linearity, accuracy and precision. Biomarkers were determined from the 3D-loading plot of orthogonal projection to latent structures model based on the fatty acid quantitative data together with the melanoma cytotoxic activity data. 10-Hydroxy-2-decenoic acid showed the greatest reduction in melanoma cell viability followed by decanedioic acid then 8-hydroxyoctanoic acid. The present study is considered the first attempt to discriminate fresh and lyophilized royal jelly samples based on their holistic lipidomic profile to discover efficient fatty acid reducing melanoma cell viability.
Collapse
Affiliation(s)
- Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +201223821098
| | - Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt +201223821098
| |
Collapse
|
17
|
Sari E, Mahira KF, Patel DN, Chua LS, Pratami DK, Sahlan M. Metabolome analysis and chemical profiling of Indonesian royal jellies as the raw material for cosmetic and bio-supplement products. Heliyon 2021; 7:e06912. [PMID: 34013079 PMCID: PMC8113846 DOI: 10.1016/j.heliyon.2021.e06912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/20/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
Royal jellies (RJs) possess moisturizing, emulsifying, and stabilizing properties, and several pharmacological activities have also been found to be present, which make them an ideal component for cosmetic and skin care products. However, despite the abundant efficacies, there is a lack of studies that explore the chemical composition of RJ using metabolome analysis. Furthermore, an evaluation of the chemical composition of Indonesian RJs collected from different regions has yet to be carried out. Therefore, the main objective of this study was to identify any differences in the chemical composition of such RJs. Chemical profiling was also carried out to enable more targeted utilization based on the actual compositions. Chemical profiling is also important given the rich Indonesian biodiversity and the high dependence of the RJ compositions on the botanical source. In this research, ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used as part of an untargeted metabolomics approach. From the chemical profiling, >30 compounds were identified across four RJ samples. The major constituents of the samples were found to be oligosaccharides, fatty acids, and adenosine monophosphate derivatives. Meanwhile, sucrose and planteose were found to be highest in the samples from Banjarnegara and Kediri, whereas dimethyloctanoic acid was found to be unique to the sample from Banjarnegara. It was also discovered that the RJs from Demak and Tuban contained more organic fatty acids and oligosaccharides than the other samples. Although the sample from Demak demonstrated good potential for use in the cosmetic, skin care, and bio-supplement industries, the higher abundance of fatty acids and oligosaccharides in the sample from Tuban indicated that it is perhaps the most suitable RJ for use in this field.
Collapse
Affiliation(s)
- Eka Sari
- Bioengineering and Biomedical Engineering Laboratory, Research Centre Sultan Ageng Tirtayasa, Banten, 42124, Indonesia
- Chemical Engineering, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Banten, 42124, Indonesia
- Corresponding author.
| | - Kaysa Faradis Mahira
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok, 16424, Indonesia
| | | | - Lee Suan Chua
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Diah Kartika Pratami
- Laboratorium of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Pancasila University, Jakarta, 12640, Indonesia
| | - Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok, 16424, Indonesia
- Corresponding author.
| |
Collapse
|
18
|
Collazo N, Carpena M, Nuñez-Estevez B, Otero P, Simal-Gandara J, Prieto MA. Health Promoting Properties of Bee Royal Jelly: Food of the Queens. Nutrients 2021; 13:543. [PMID: 33562330 PMCID: PMC7915653 DOI: 10.3390/nu13020543] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Royal jelly (RJ) demand is growing every year and so is the market for functional foods in general. RJ is formed by different substances, mainly carbohydrates, proteins, and lipids, but also vitamins, minerals, and phenolic or volatile compounds in lower proportion. Major royal jelly proteins (MRJP) are, together with 10-hydroxy-2-decenoic acid (10-HDA), key substances of RJ due to their different biological properties. In particular, 10-HDA is a unique substance in this product. RJ has been historically employed as health enhancer and is still very relevant in China due to the traditional medicine and the apitherapy. Nowadays, it is mainly consumed as a functional food or is found in supplements and other formulations for its health-beneficial properties. Within these properites, anti-lipidemic, antioxidant, antiproliferative, antimicrobial, neuroprotective, anti-inflammatory, immunomodulatory, antiaging, and estrogenic activities have been reported for RJ or its specific components. This manuscript is aimed at reviewing the current knowledge on RJ components, their assessment in terms of authenticity, their biological activities, and related health applications.
Collapse
Affiliation(s)
- Nicolas Collazo
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Bernabe Nuñez-Estevez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Ourense Campus, University of Vigo, E32004 Ourense, Spain; (N.C.); (M.C.); (B.N.-E.); (P.O.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| |
Collapse
|
19
|
Bouamama S, Merzouk H, Latrech H, Charif N, Bouamama A. Royal jelly alleviates the detrimental effects of aging on immune functions by enhancing the in vitro cellular proliferation, cytokines, and nitric oxide release in aged human PBMCS. J Food Biochem 2021; 45:e13619. [PMID: 33491244 DOI: 10.1111/jfbc.13619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Aging strongly delays the immunity. Our research aims to assess the in vitro effects of royal jelly (RJ) on the immune function of aged PBMCs. PBMCs were obtained from 10 healthy aged and young donors by the gradient density centrifugation method and further cultured in RPMI-1640 medium supplemented with or without RJ in the presence of Con A. Cell proliferation was assessed by MTT assay along with the measurement of interleukins, Nitric oxide (NO), Glutathione (GSH), and Malondialdehydes (MDA). Our results showed that RJ improved PBMCs proliferation significantly in the elderly subjects, accompanied by the increase in NO (p = .001) and the release of IL-2, IL-4, and IL-6 cytokines. RJ also increased the intracellular GSH (p = .001) and MDA (p = .001) levels in aged PBMCs. In young subjects, RJ enhanced PBMCs proliferation potency, IL-4, IL-6, GSH, and intracellular MDA levels but with a concomitant decrease in NO and IL-2 cytokine secretion as compared with non RJ-treated cells. In conclusion, RJ restored functions of the aged PBMCs as well as the young control subjects, indicating a beneficial effect on immune status during the aging process. PRACTICAL APPLICATIONS: Royal jelly is a well-known edible dietary compound, used traditionally to treat many diseases throughout the world. Since antiquity, it was shown to have medicinal importance. The immuno-enhancing potential of this food was largely and scientifically established by the lipid and protein fractions. The present study illustrates the anti-aging and stimulatory effects of the fresh RJ whole extract, from local Algerian honey bee: Apis mellifera intermissa, on the immunity of aged men. This study provides the experimental evidence supporting anti-immunosenesence effects of royal jelly. RJ supplementation can be used in the old age management and human age-related complications, especially, associated with the weaknesses of the immune response.
Collapse
Affiliation(s)
- Samia Bouamama
- Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaid University, Tlemcen, Algeria.,Research Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Abou-Bekr Belkaid University, Tlemcen, Algeria
| | - Hafida Merzouk
- Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaid University, Tlemcen, Algeria.,Research Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Abou-Bekr Belkaid University, Tlemcen, Algeria
| | - Hamidou Latrech
- Institute of Veterinary Sciences, Blida University, Blida, Algeria
| | - Naima Charif
- Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaid University, Tlemcen, Algeria.,Research Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Abou-Bekr Belkaid University, Tlemcen, Algeria
| | - Amina Bouamama
- Department of Foreign Languages, Literatures and Languages Faculty, Abou-Bekr Belkaid University, Tlemcen, Algeria
| |
Collapse
|
20
|
Tsuchiya Y, Hayashi M, Nagamatsu K, Ono T, Kamakura M, Iwata T, Nakashima T. The key royal jelly component 10-hydroxy-2-decenoic acid protects against bone loss by inhibiting NF-κB signaling downstream of FFAR4. J Biol Chem 2020; 295:12224-12232. [PMID: 32647011 PMCID: PMC7443481 DOI: 10.1074/jbc.ra120.013821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
The supplementation of royal jelly (RJ) is known to provide a variety of health benefits, including anti-inflammatory and anti-obesity effects. RJ treatment also reportedly protects against bone loss, but no single factor in RJ has yet been identified as an anti-osteoporosis agent. Here we fractionated RJ and identified 10-hydroxy-2-decenoic acid (10H2DA) as a key component involved in inhibiting osteoclastogenesis based on mass spectrometric analysis. We further demonstrated free fatty acid receptor 4 (FFAR4) as directly interacting with 10H2DA; binding of 10H2DA to FFAR4 on osteoclasts inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced activation of NF-κB signaling, thereby attenuating the induction of nuclear factor of activated T cells (NFAT) c1, a key transcription factor for osteoclastogenesis. Oral administration of 10H2DA attenuated bone resorption in ovariectomized mice. These results suggest a potential therapeutic approach of targeting osteoclast differentiation by the supplementation of RJ, and specifically 10H2DA, in cases of pathological bone loss such as occur in postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Yosuke Tsuchiya
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Agency for Medical Research and Development, Precursory Research for Innovative Medical Care (PRIME), Tokyo, Japan
| | | | - Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Toyama, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.
| |
Collapse
|
21
|
Abdelnour SA, Abd El-Hack ME, Alagawany M, Taha AE, Elnesr SS, Abd Elmonem OM, Swelum AA. Useful impacts of royal jelly on reproductive sides, fertility rate and sperm traits of animals. J Anim Physiol Anim Nutr (Berl) 2020; 104:1798-1808. [PMID: 31916638 DOI: 10.1111/jpn.13303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022]
Abstract
Royal jelly (RJ) is one of the furthermost valuable curative products mentioned by natural medicine scientists due to its promising medical and nutritional purposes. It possesses many impacts, including antioxidants, antimicrobial, antitumor, anti-inflammatory and immunomodulatory functions in human and animal that benefit their health and welfare, resulting in its widespread use in medical and commercial products and healthy food. Recently, favourable functions of RJ on male fertility have been reported in different animals. According to earlier literatures, the level of RJ supplementation in animal diet ranged from 100 to 200 mg/kg. Oral exposure to RJ has been reported to have oestrogenic influences in the adult female rats. Also, RJ may be influential in improvement of pregnancy and lambing rates of ewes. Oral administration of RJ at 100 mg/kg diet before sexual maturity enhanced sexual behaviour and semen quality of male rabbits. Moreover, RJ administration (up to 400 mg/kg diet once weekly) for male rabbits exposed to heat stress can counteract "summer infertility" and improve physiological responses. Furthermore, supplementation of freezing extender media with 0.1 or 3% RJ had a protective influence on cryopreserved and chilled spermatozoa of buffalo and ram respectively. However, the high dose of RJ oral administration (800 mg/kg) by pubescent male rats for 1 month had an undesirable effect on the reproductive system; however, the somewhat unfavourable influences were mitigated by the discontinuation of the administration. This review shows the chemical composition, favourable applications and health benefits of RJ and its effects on reproductive aspects, semen quality and in vitro fertilization outcomes which are advantageous for scientists, researchers, nutritionists, physiologists, embryologists, pharmacists, veterinarians, pharmaceutical industries and animal's breeders.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Osama M Abd Elmonem
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
22
|
New Insights into the Biological and Pharmaceutical Properties of Royal Jelly. Int J Mol Sci 2020; 21:ijms21020382. [PMID: 31936187 PMCID: PMC7014095 DOI: 10.3390/ijms21020382] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Royal jelly (RJ) is a yellowish-white and acidic secretion of hypopharyngeal and mandibular glands of nurse bees used to feed young worker larvae during the first three days and the entire life of queen bees. RJ is one of the most appreciated and valued natural product which has been mainly used in traditional medicines, health foods, and cosmetics for a long time in different parts of the world. It is also the most studied bee product, aimed at unravelling its bioactivities, such as antimicrobial, antioxidant, anti-aging, immunomodulatory, and general tonic action against laboratory animals, microbial organisms, farm animals, and clinical trials. It is commonly used to supplement various diseases, including cancer, diabetes, cardiovascular, and Alzheimer's disease. Here, we highlight the recent research advances on the main bioactive compounds of RJ, such as proteins, peptides, fatty acids, and phenolics, for a comprehensive understanding of the biochemistry, biological, and pharmaceutical responses to human health promotion and life benefits. This is potentially important to gain novel insight into the biological and pharmaceutical properties of RJ.
Collapse
|
23
|
Jagua-Gualdrón A, Peña-Latorre JA, Fernadez-Bernal RE. Apitherapy for Osteoarthritis: Perspectives from Basic Research. Complement Med Res 2020; 27:184-192. [PMID: 31896107 DOI: 10.1159/000505015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022]
Abstract
Osteoarthritis is one of the most common rheumatic disease in the world and one of the leading causes of disability in the elderly. There is still no curative management for the disease, so the search for new therapeutic alternatives continues. -Apitherapy is a therapeutic tool based on the use of beehive products used since ancient times and, at present, their mechanism of action begins to be known. Many of the mechanisms of action of the beehive products are useful for chronic articular pathophysiological processes such as those described in osteoarthritis. This article presents a review of the current state of understanding of the mechanisms through which bee venom, propolis, honey, pollen, and royal jelly may act on osteoarthritis.
Collapse
Affiliation(s)
- Andrés Jagua-Gualdrón
- Universidad Nacional de Colombia, Bogotá, Colombia, .,Apitherapy Investigation and Development Group, Sociedad Colombiana de Apiterapia - Colombian Apitherapy Society, Bogotá, Colombia,
| | - José Adolfo Peña-Latorre
- Universidad Nacional de Colombia, Bogotá, Colombia.,Apitherapy Investigation and Development Group, Sociedad Colombiana de Apiterapia - Colombian Apitherapy Society, Bogotá, Colombia.,Complementary and Alternative Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Roger Edwin Fernadez-Bernal
- Apitherapy Investigation and Development Group, Sociedad Colombiana de Apiterapia - Colombian Apitherapy Society, Bogotá, Colombia.,Universidad Provada del Valle, Cochabamba Bolivia Medical Director Medizen Bolivia, Cochabamba, Bolivia
| |
Collapse
|
24
|
Ding S, Liu G, Jiang H, Fang J. MicroRNA Determines the Fate of Intestinal Epithelial Cell Differentiation and Regulates Intestinal Diseases. Curr Protein Pept Sci 2019; 20:666-673. [PMID: 30678626 DOI: 10.2174/1389203720666190125110626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China.,Academician Workstation of Hunan Baodong Farming Co., Ltd., Hunan 422001, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
25
|
Pan Y, Rong Y, You M, Ma Q, Chen M, Hu F. Royal jelly causes hypotension and vasodilation induced by increasing nitric oxide production. Food Sci Nutr 2019; 7:1361-1370. [PMID: 31024709 PMCID: PMC6475742 DOI: 10.1002/fsn3.970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
Among royal jelly's (RJ) various biological activities, its possible antihypertension and vasorelaxation effects deserve particular attention, but the underlying mechanisms of action remain unclear. Therefore, this study used the spontaneously hypertensive rats (SHR) hypertension model and the isolated rabbit thoracic aorta rings model to explore the mechanisms underlying the hypotension and vasorelaxation effects of RJ. Rats were divided into the following groups (n = 6): WKY-control group, SHR-control group, and SHR-RJ group. SHR-RJ group was received 1 g/kg of RJ via oral administration daily for 4 weeks. Systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), and nitric oxide (NO) level were detected. In addition, the mechanism of vasodilation of RJ was investigated using an isolated rabbit aortic ring technique. RJ significantly reduced SBP and DBP as well as increased NO levels of SHR in vivo. RJ caused vasorelaxation of the isolated aorta rings, and this effect was inhibited by atropine (M3 receptor blocker), L-NAME (nitric oxide synthase inhibitor), methylene blue (guanylate cyclase inhibitor), and indomethacin (cyclooxygenase inhibitor). Moreover, RJ could markedly suppress the NE-induced intracellular Ca2+ releases and high K+-induced extracellular Ca2+ influx in denuded aortic rings. In addition, RJ can also increase cGMP levels and the production of NO in isolated aortic rings. The present study showed that RJ has antihypertensive effects and was associated with increased NO production. In addition, RJ contains muscarinic receptor agonist, possibly an acetylcholine-like substance, and induces vasodilation through NO/cGMP pathway and calcium channels.
Collapse
Affiliation(s)
- Yongming Pan
- College of Animal SciencesZhejiang UniversityHangzhouChina
- Comparative Medical Research Institute, Experimental Animal Research CenterZhejiang Chinese Medical UniversityHangzhouChina
| | - Yili Rong
- Comparative Medical Research Institute, Experimental Animal Research CenterZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengmeng You
- College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Quanxin Ma
- Comparative Medical Research Institute, Experimental Animal Research CenterZhejiang Chinese Medical UniversityHangzhouChina
| | - Minli Chen
- Comparative Medical Research Institute, Experimental Animal Research CenterZhejiang Chinese Medical UniversityHangzhouChina
| | - Fuliang Hu
- College of Animal SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
26
|
Effect of royal jelly on testicular antioxidant enzymes activity, MDA level and spermatogenesis in rat experimental Varicocele model. Tissue Cell 2019; 57:70-77. [DOI: 10.1016/j.tice.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
|
27
|
Martin N, Hulbert AJ, Brenner GC, Brown SHJ, Mitchell TW, Else PL. Honeybee caste lipidomics in relation to life-history stages and the long life of the queen. J Exp Biol 2019; 222:jeb.207043. [DOI: 10.1242/jeb.207043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/29/2019] [Indexed: 12/30/2022]
Abstract
Honey bees have evolved a system in which fertilised eggs transit through the same developmental stages but can become either workers or queens. This difference is determined by their diet through development. Whereas workers live for weeks (normally 2-6 weeks), queens can live for years. Unfertilised eggs also develop through the same stages but result in a short living male caste (drones). Workers and drones are fed pollen throughout their late larval and adult life stages, while queens are fed exclusively on royal jelly and do not eat pollen. Pollen has high content of polyunsaturated fatty acids (PUFA) while royal jelly has a negligible amount of PUFA. To investigate the role of dietary PUFA lipids, and their oxidation in the longevity difference of honey bees, membrane fatty acid composition of the three castes was characterised at six different life-history stages (larvae, pupa, emergent, and different adult stages) through mass spectrometry. All castes were found to share a similar membrane phospholipid composition during early larval development. However, at pupation, drones and workers increased their level of PUFA, whilst queens increased their level of monounsaturated fatty acids. After emergence, worker bees further increased their level of PUFA by 5-fold across most phospholipid classes. In contrast, the membrane phospholipids of adult queens remained highly monounsaturated throughout their adult life. We postulate that this diet-induced increase in membrane PUFA results in more oxidative damage and is potentially responsible for the much shorter lifespans of worker bees compared to long-living queens.
Collapse
Affiliation(s)
- N. Martin
- School of Medicine (IHMRI), University of Wollongong, NSW 2522, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW 2522, Australia
| | - A. J. Hulbert
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW 2522, Australia
| | | | | | - T. W. Mitchell
- School of Medicine (IHMRI), University of Wollongong, NSW 2522, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW 2522, Australia
- Mountain View Apiary, Grenfell, NSW 2810, Australia
- School of Chemistry and Molecular Bioscience, Australia
| | - P. L. Else
- School of Medicine (IHMRI), University of Wollongong, NSW 2522, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, NSW 2522, Australia
- Mountain View Apiary, Grenfell, NSW 2810, Australia
- School of Chemistry and Molecular Bioscience, Australia
| |
Collapse
|
28
|
Pattamayutanon P, Peng CC, Sinpoo C, Chantawannakul P. Effects of Pollen Feeding on Quality of Royal Jelly. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2974-2978. [PMID: 30184093 DOI: 10.1093/jee/toy251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 06/08/2023]
Abstract
This study was carried out to assess the impact of pollen feeding from common floral sources in Thailand (e.g., tea, coffee, and bitter bush) on royal jelly (RJ) properties (i.e., protein pattern, (E)-9-hydroxydec-2-enoic acid (9-HDA), and (E)-10-hydroxy-2-decenoic acid (10-HDA) contents and antibacterial activity). The protein patterns from three different pollen were different, while RJ samples derived from bee colonies fed by different pollen, exhibited similar protein patterns. RJ samples from bee colonies fed by pollen from bitter bush and coffee possessed the higher 10-HDA levels than RJ collected from bee colonies fed by tea pollen. The 9-HDA was found in lower amount than 10-HDA in every sample. Even though the antibacterial activities of pollen were varied, however, RJ samples exhibited similar antibacterial properties. This is the first report showing that different pollen feeding affected 10-HDA contents, but not affected overall protein content and antibacterial properties.
Collapse
Affiliation(s)
- Praetinee Pattamayutanon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Applied Microbiology Program, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Chi-Chung Peng
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Applied Microbiology Program, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
29
|
Šedivá M, Laho M, Kohútová L, Mojžišová A, Majtán J, Klaudiny J. 10-HDA, A Major Fatty Acid of Royal Jelly, Exhibits pH Dependent Growth-Inhibitory Activity Against Different Strains of Paenibacillus larvae. Molecules 2018; 23:E3236. [PMID: 30544571 PMCID: PMC6320966 DOI: 10.3390/molecules23123236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Paenibacillus larvae (P. larvae) is a bacterial pathogen causing American foulbrood (AFB), the most serious disease of honeybee larvae. The food of young larvae could play an important role in the resistance of larvae against AFB. It contains antibacterial substances produced by honeybees that may inhibit the propagation of the pathogen in larval midguts. In this study, we identified and investigated the antibacterial effects of one of these substances, trans-10-hydroxy-2-decenoic acid (10-HDA), against P. larvae strains including all Enterobacterial Repetitive Intergenic Consensus (ERIC) genotypes. Its inhibitory activities were studied by determining the minimum inhibitory concentrations (MICs). It was found that 10-HDA efficacy increases substantially with decreasing pH; up to 12-fold differences in efficacy were observed between pH = 5.5 and pH = 7.2. P. larvae strains showed different susceptibility to 10-HDA; up to 2.97-fold differences existed among various strains with environmentally important ERIC I and ERIC II genotypes. Germinating spores of the pathogen were generally more susceptible to 10-HDA than vegetative cells. Our findings suggest that 10-HDA could play significant role in conferring antipathogenic activity to larval food in the midguts of young larvae and contribute to the resistance of individual larvae to P. larvae.
Collapse
Affiliation(s)
- Mária Šedivá
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | - Maroš Laho
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia.
| | - Lenka Kohútová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | - Andrea Mojžišová
- Veterinary and Food Institute in Dolny Kubin, Janoškova 58, 02601 Dolný Kubín, Slovakia.
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia.
| | - Jaroslav Klaudiny
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
30
|
Royal jelly supplementation reduces skeletal muscle lipotoxicity and insulin resistance in aged obese rats. ACTA ACUST UNITED AC 2018; 25:307-315. [PMID: 29960833 DOI: 10.1016/j.pathophys.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/28/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Consumption of a high-fat diet (HFD) in aged rats is associated with several metabolic disorders. The mechanism of skeletal muscle lipotoxicity and insulin resistance (IR) is multi-factorial, but the exact mechanism of how aging affects these processes unknown. Royal jelly (RJ) is a dietary supplement with many physiological and pharmacological properties. No previous studies have demonstrated the protective effects and mechanism of RJ in aged obese rats. OBJECTIVES The study was carried to investigate the effects of aging and HFD on skeletal muscles, and adipose tissue metabolism and inflammation, in aged rats, and whether RJ could combat such adverse effects. METHODOLOGY A total of 40 male rats were divided into5 groups; young rats fed a standard diet, aged rats fed a standard diet, aged rats fed RJ, aged rats fed a HFD, and aged rats fed both a HFD and RJ for 8 weeks. We investigated changes in body weights (BW), abdominal fat weights, total cholesterol, triglycerides (TG), low density lipoprotein-cholesterol (LDL-c), high density lipoprotein-cholesterol (HDL-c), muscle TG, and IR levels. Also, concentrations of TNF-α receptor 1(TNFR1) were estimated in the serum and adipose tissues. RESULTS Aged, obese rats showed increased BW, adipose weights, IR, and disturbed serum and muscle lipids. Also, TNFR1 was increased. Rats fed RJ showed decreased adiposity, improved lipids' profiles, improved IR, and decreased TNFR1. CONCLUSION Aging and HFD were associated with disturbed metabolism, and muscle lipotoxicity and inflammation, while RJ could counteract muscle lipotoxicity in rats and reduce IR, most likely due to an anti-inflammatory effect.
Collapse
|
31
|
Chen YF, You MM, Liu YC, Shi YZ, Wang K, Lu YY, Hu FL. Potential protective effect of Trans-10-hydroxy-2-decenoic acid on the inflammation induced by Lipoteichoic acid. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
32
|
Wu Y, Zheng H, Corona M, Pirk C, Meng F, Zheng Y, Hu F. Comparative transcriptome analysis on the synthesis pathway of honey bee (Apis mellifera) mandibular gland secretions. Sci Rep 2017; 7:4530. [PMID: 28674395 PMCID: PMC5495765 DOI: 10.1038/s41598-017-04879-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023] Open
Abstract
Secretions from mandibular glands (MGs) have important caste-specific functions that are associated with the social evolution of honey bees. To gain insights into the molecular architecture underlying these caste differences, we compared the gene expression patterns of MGs from queens, queenright workers (WQRs) and queenless workers (WQLs) using high-throughput RNA-sequencing technology. In total, we identified 46 candidate genes associated with caste-specific biosynthesis of fatty acid pheromones in the MG, including members of cytochrome P450 (CYP450) family and genes involved in fatty acid β-oxidation and ω-oxidation. For further identification of the CYP450s genes involved in the biosynthesis of MG secretions, we analyzed by means of qPCR, the expression levels of six of the CYP450 genes most abundantly expressed in the transcriptome analysis across different castes, ages, tasks and tissues. Our analysis revealed that CYP6AS8 and CYP6AS11, the most abundantly expressed CYP450 genes in worker and queen MGs, respectively, are selectively expressed in the MGs of workers and queens compared to other tissues. These results suggest that these genes might be responsible for the critical bifurcated hydroxylation process in the biosynthesis pathway. Our study contributes to the description of the molecular basis for the biosynthesis of fatty acid-derived pheromones in the MGs.
Collapse
Affiliation(s)
- YuQi Wu
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - HuoQing Zheng
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P.R. China.
| | - Miguel Corona
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Christian Pirk
- Social Insect research Group, Department of Zoology and Entomology, University of Pretoria, 0002, Pretoria, South Africa
| | - Fei Meng
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - YuFei Zheng
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - FuLiang Hu
- College of Animal Science, Zhejiang University, Hangzhou, 310058, P.R. China.
| |
Collapse
|
33
|
Antiproliferative hydroxy-fatty acids from the fodder legume Stylosanthes guianensis. J Pharm Biomed Anal 2017; 141:157-164. [DOI: 10.1016/j.jpba.2017.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 11/15/2022]
|
34
|
Cornara L, Biagi M, Xiao J, Burlando B. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Front Pharmacol 2017; 8:412. [PMID: 28701955 PMCID: PMC5487425 DOI: 10.3389/fphar.2017.00412] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/12/2017] [Indexed: 02/05/2023] Open
Abstract
Honeybees produce honey, royal jelly, propolis, bee venom, bee pollen, and beeswax, which potentially benefit to humans due to the bioactives in them. Clinical standardization of these products is hindered by chemical variability depending on honeybee and botanical sources, but different molecules have been isolated and pharmacologically characterized. Major honey bioactives include phenolics, methylglyoxal, royal jelly proteins (MRJPs), and oligosaccharides. In royal jelly there are antimicrobial jelleins and royalisin peptides, MRJPs, and hydroxy-decenoic acid derivatives, notably 10-hydroxy-2-decenoic acid (10-HDA), with antimicrobial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome preventing, and anti-aging activities. Propolis contains caffeic acid phenethyl ester and artepillin C, specific of Brazilian propolis, with antiviral, immunomodulatory, anti-inflammatory and anticancer effects. Bee venom consists of toxic peptides like pain-inducing melittin, SK channel blocking apamin, and allergenic phospholipase A2. Bee pollen is vitaminic, contains antioxidant and anti-inflammatory plant phenolics, as well as antiatherosclerotic, antidiabetic, and hypoglycemic flavonoids, unsaturated fatty acids, and sterols. Beeswax is widely used in cosmetics and makeup. Given the importance of drug discovery from natural sources, this review is aimed at providing an exhaustive screening of the bioactive compounds detected in honeybee products and of their curative or adverse biological effects.
Collapse
Affiliation(s)
- Laura Cornara
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di GenovaGenova, Italy
| | - Marco Biagi
- Unità Operativa di Biologia Farmaceutica, Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università degli Studi di SienaSiena, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of MacauTaipa, Macau
| | - Bruno Burlando
- Dipartimento di Farmacia, Università degli Studi di GenovaGenova, Italy
| |
Collapse
|
35
|
Chen YF, Wang K, Zhang YZ, Zheng YF, Hu FL. In Vitro Anti-Inflammatory Effects of Three Fatty Acids from Royal Jelly. Mediators Inflamm 2016; 2016:3583684. [PMID: 27847405 PMCID: PMC5099463 DOI: 10.1155/2016/3583684] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/18/2016] [Indexed: 12/25/2022] Open
Abstract
Trans-10-hydroxy-2-decenoic acid (10-H2DA), 10-hydroxydecanoic acid (10-HDAA), and sebacic acid (SEA) are the three major fatty acids in royal jelly (RJ). Previous studies have revealed several pharmacological activities of 10-H2DA and 10-HDAA, although the anti-inflammatory effects and underlying mechanisms by which SEA acts are poorly understood. In the present study, we evaluated and compared the in vitro anti-inflammatory effects of these RJ fatty acids in lipopolysaccharide-stimulated RAW 264.7 macrophages. The results showed that 10-H2DA, 10-HDAA, and SEA had potent, dose-dependent inhibitory effects on the release of the major inflammatory-mediators, nitric oxide, and interleukin-10, and only SEA decreased TNF-α production. Several key inflammatory genes have also been modulated by these RJ fatty acids, with 10-H2DA showing distinct modulating effects as compared to the other two FAs. Furthermore, we found that these three FAs regulated several proteins involved in MAPK and NF-κB signaling pathways. Taken together, these findings provide additional references for using RJ against inflammatory diseases.
Collapse
Affiliation(s)
- Yi-Fan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yan-Zheng Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Fei Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Yuksel S, Akyol S. The consumption of propolis and royal jelly in preventing upper respiratory tract infections and as dietary supplementation in children. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:308-11. [PMID: 27366357 PMCID: PMC4927136 DOI: 10.5455/jice.20160331064836] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 12/30/2022]
Abstract
Propolis and royal jelly (RJ), two important honeybee products, have been used commonly all over the world as traditional and ethnopharmacological nutrients since ancient times. Both of them have a lot of active ingredients which are known to be effective for several medical conditions. In this article, medical databases were searched for the usage of RJ and propolis in upper respiratory tract infections (URTI) and as a dietary supplementation, together and separately. 10-hydroxy-2-decenoic acid is the most prominent active compound showing antimicrobial effect within RJ. Caffeic acid phenethyl ester is the most famous one that shows antimicrobial and anti-inflammatory effect within propolis. When compared with propolis, RJ was found to have richer content for all three main nutrients; proteins, carbohydrates, and lipids. More clinical, experimental, and basic studies are needed to find out the best standardized mixture to cope with URTI in which RJ and propolis will be main ingredients in addition to the other secondary compounds that have health-beneficial effects.
Collapse
Affiliation(s)
- Sevda Yuksel
- Department of Child Development, School of Health, Turgut Ozal University, Ankara, Turkey
| | - Sumeyya Akyol
- Department of Medical Biology, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| |
Collapse
|
37
|
Henatsch D, Wesseling F, Kross KW, Stokroos RJ. Honey and beehive products in otorhinolaryngology: a narrative review. Clin Otolaryngol 2016; 41:519-31. [PMID: 26453201 DOI: 10.1111/coa.12557] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Honey and beehive products were rediscovered as an alternative treatment in wounds. The medicinal properties also raised interest of their use in Otorhinolaryngology. OBJECTIVE OF REVIEW To give an overview of the effectiveness of beehive products in Otorhinolaryngology. TYPE OF REVIEW Narrative. SEARCH STRATEGY AND EVALUATION A literature search of the databases PubMed, EMBASE and Cochrane was performed from the last two decades till December 2014. The search terms 'honey', 'propolis' or 'royal jelly' were used. Articles, which evaluated the effectiveness of beehive products in Otorhinolaryngology, were included. The quality assessment of included studies was performed using the Cochrane Collaboration's risk of bias tool. DISCUSSION AND CONCLUSION A total of 36 studies were identified and evaluated. Eighteen studies investigated their effect in oral infections, seven in infection of the respiratory tract, six in rhino-sinusal diseases, four investigated the use in tonsillectomy and head and neck surgery and one study explored the preventive effect in otitis media. Honey can be considered as effective (additional) treatment in mucositis, childhood cough, persistent post-infectious cough and after tonsillectomy. Propolis may have a role in the treatment of (aphthous) stomatitis, mouth ulcer and prevention of acute otitis media. Royal jelly showed to reduce mucositis. In the presented studies, beehive products proved to be safe, with only minor adverse reactions. Studies showed to be diverse and had some methodological limitations.
Collapse
Affiliation(s)
- D Henatsch
- Department of Otorhinolaryngology - Head and Neck Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands.
| | - F Wesseling
- Department of Otorhinolaryngology - Head and Neck Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - K W Kross
- Department of Otorhinolaryngology - Head and Neck Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - R J Stokroos
- Department of Otorhinolaryngology - Head and Neck Surgery, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| |
Collapse
|
38
|
Yi SS, Song JA, Baek H, Hwang E, Kim TH, Lee HH, Jun HS, Kim SJ. The Availability of Beneficial Insects-originated Materials on Women's Health following Menopause. J Menopausal Med 2015; 21:126-9. [PMID: 26793676 PMCID: PMC4719085 DOI: 10.6118/jmm.2015.21.3.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/13/2015] [Accepted: 11/09/2015] [Indexed: 01/30/2023] Open
Abstract
Human health problems due to long life are becoming major issues in society, and in particular greater interest collected on women's health after menopause. Many substances can be introduced to women's health, however, materials from the substances have not shown all of the safety and efficacy properties that are not easily found. Currently, it is known about the effects of the disease on the female insect-derived material that is capable of overcoming this problem significantly. When using the insect-derived material through the results of several studies suggest that it is possible to solve a hormonal imbalance and nutritional imbalance in the elderly. Here, we'd like to try to dissertate about the new trends for women's health improvement using novel materials-derived from insects.
Collapse
Affiliation(s)
- Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Biomedical Science, Soonchunhyang University, Asan, Korea
| | - Ji Ae Song
- Department of Biomedical Laboratory Science, College of Biomedical Science, Soonchunhyang University, Asan, Korea
| | - Hyekyung Baek
- Department of Biomedical Laboratory Science, College of Biomedical Science, Soonchunhyang University, Asan, Korea
| | - Eunmi Hwang
- Department of Biotechnology, Hoseo University, Asan, Korea
| | - Tae-Hee Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University, College of Medicine, Bucheon, Korea
| | - Hye-Hyeog Lee
- Department of Obstetrics and Gynecology, Soonchunhyang University, College of Medicine, Bucheon, Korea
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Korea
| | - Sung-Jo Kim
- Department of Biotechnology, Hoseo University, Asan, Korea
| |
Collapse
|
39
|
Brazel AJ, Vernimmen D. The complexity of epigenetic diseases. J Pathol 2015; 238:333-44. [PMID: 26419725 PMCID: PMC4982038 DOI: 10.1002/path.4647] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 12/29/2022]
Abstract
Over the past 30 years, a plethora of pathogenic mutations affecting enhancer regions and epigenetic regulators have been identified. Coupled with more recent genome‐wide association studies (GWAS) and epigenome‐wide association studies (EWAS) implicating major roles for regulatory mutations in disease, it is clear that epigenetic mechanisms represent important biomarkers for disease development and perhaps even therapeutic targets. Here, we discuss the diversity of disease‐causing mutations in enhancers and epigenetic regulators, with a particular focus on cancer. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ailbhe Jane Brazel
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Douglas Vernimmen
- The Roslin Institute, Developmental Biology Division, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
40
|
Szarc vel Szic K, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics 2015; 7:33. [PMID: 25861393 PMCID: PMC4389409 DOI: 10.1186/s13148-015-0068-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023] Open
Abstract
The progressively older population in developed countries is reflected in an increase in the number of people suffering from age-related chronic inflammatory diseases such as metabolic syndrome, diabetes, heart and lung diseases, cancer, osteoporosis, arthritis, and dementia. The heterogeneity in biological aging, chronological age, and aging-associated disorders in humans have been ascribed to different genetic and environmental factors (i.e., diet, pollution, stress) that are closely linked to socioeconomic factors. The common denominator of these factors is the inflammatory response. Chronic low-grade systemic inflammation during physiological aging and immunosenescence are intertwined in the pathogenesis of premature aging also defined as ‘inflammaging.’ The latter has been associated with frailty, morbidity, and mortality in elderly subjects. However, it is unknown to what extent inflammaging or longevity is controlled by epigenetic events in early life. Today, human diet is believed to have a major influence on both the development and prevention of age-related diseases. Most plant-derived dietary phytochemicals and macro- and micronutrients modulate oxidative stress and inflammatory signaling and regulate metabolic pathways and bioenergetics that can be translated into stable epigenetic patterns of gene expression. Therefore, diet interventions designed for healthy aging have become a hot topic in nutritional epigenomic research. Increasing evidence has revealed that complex interactions between food components and histone modifications, DNA methylation, non-coding RNA expression, and chromatin remodeling factors influence the inflammaging phenotype and as such may protect or predispose an individual to many age-related diseases. Remarkably, humans present a broad range of responses to similar dietary challenges due to both genetic and epigenetic modulations of the expression of target proteins and key genes involved in the metabolism and distribution of the dietary constituents. Here, we will summarize the epigenetic actions of dietary components, including phytochemicals, and macro- and micronutrients as well as metabolites, that can attenuate inflammaging. We will discuss the challenges facing personalized nutrition to translate highly variable interindividual epigenetic diet responses to potential individual health benefits/risks related to aging disease.
Collapse
Affiliation(s)
- Katarzyna Szarc vel Szic
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ken Declerck
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Wim Vanden Berghe
- Lab Protein Science, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
41
|
10-Hydroxy-2-decenoic Acid, the Major Lipid Component of Royal Jelly, Extends the Lifespan of Caenorhabditis elegans through Dietary Restriction and Target of Rapamycin Signaling. J Aging Res 2015; 2015:425261. [PMID: 25789174 PMCID: PMC4350847 DOI: 10.1155/2015/425261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 11/17/2022] Open
Abstract
Royal jelly (RJ) produced by honeybees has been reported to possess diverse health-beneficial properties and has been implicated to have a function in longevity across diverse species as well as honeybees. 10-Hydroxy-2-decenoic acid (10-HDA), the major lipid component of RJ produced by honeybees, was previously shown to increase the lifespan of Caenorhabditis elegans. The objective of this study is to elucidate signaling pathways that are involved in the lifespan extension by 10-HDA. 10-HDA further extended the lifespan of the daf-2 mutants, which exhibit long lifespan through reducing insulin-like signaling (ILS), indicating that 10-HDA extended lifespan independently of ILS. On the other hand, 10-HDA did not extend the lifespan of the eat-2 mutants, which show long lifespan through dietary restriction caused by a food-intake defect. This finding indicates that 10-HDA extends lifespan through dietary restriction signaling. We further found that 10-HDA did not extend the lifespan of the long-lived mutants in daf-15, which encodes Raptor, a target of rapamycin (TOR) components, indicating that 10-HDA shared some longevity control mechanisms with TOR signaling. Additionally, 10-HDA was found to confer tolerance against thermal and oxidative stress. 10-HDA increases longevity not through ILS but through dietary restriction and TOR signaling in C. elegans.
Collapse
|
42
|
Kashima Y, Kanematsu S, Asai S, Kusada M, Watanabe S, Kawashima T, Nakamura T, Shimada M, Goto T, Nagaoka S. Identification of a novel hypocholesterolemic protein, major royal jelly protein 1, derived from royal jelly. PLoS One 2014; 9:e105073. [PMID: 25144734 PMCID: PMC4140749 DOI: 10.1371/journal.pone.0105073] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022] Open
Abstract
Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats.
Collapse
Affiliation(s)
| | | | - Saori Asai
- Akitaya Honten Co., Ltd., Kano, Gifu, Japan
| | - Mio Kusada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | | | | | | | - Masaya Shimada
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Tsuyoshi Goto
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
- * E-mail:
| |
Collapse
|