1
|
Ishii M, Miyata H, Ikeda N, Sakurai T, Oura Y, Nishimura M. Kaempferia parviflora extract and its component polymethoxyflavones suppress adipogenic differentiation of human bone marrow-derived mesenchymal stem cells via the AMPK pathway. Mol Biol Rep 2024; 51:785. [PMID: 38951450 DOI: 10.1007/s11033-024-09739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Kaempferia parviflora Wall. ex. Baker (KP) has been reported to exhibit anti-obesity effects. However, the detailed mechanism of the anti-obesity effect of KP extract (KPE) is yet to be clarified. Here, we investigated the effect of KPE and its component polymethoxyflavones (PMFs) on the adipogenic differentiation of human mesenchymal stem cells (MSCs). METHODS AND RESULTS KPE and PMFs fraction (2.5 µg/mL) significantly inhibited lipid and triacylglyceride accumulation in MSCs; lipid accumulation in MSCs was suppressed during the early stages of differentiation (days 0-3) but not during the mid (days 3-7) or late (days 7-14) stages. Treatment with KPE and PMFs fractions significantly suppressed peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and various adipogenic metabolic factors. Treatment with KPE and PMFs fraction induced the activation of AMP-activated protein kinase (AMPK) signaling, and pretreatment with an AMPK signaling inhibitor significantly attenuated KPE- and PMFs fraction-induced suppression of lipid formation. CONCLUSIONS Our findings demonstrate that KPE and PMFs fraction inhibit lipid formation by inhibiting the differentiation of undifferentiated MSCs into adipocyte lineages via AMPK signaling, and this may be the mechanism underlying the anti-obesity effects of KPE and PMFs. Our study lays the foundation for the elucidation of the anti-obesity mechanism of KPE and PMFs.
Collapse
Affiliation(s)
- Masakazu Ishii
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science 8-35-1, Sakuragaoka, Kagoshima, Japan.
| | - Haruka Miyata
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science 8-35-1, Sakuragaoka, Kagoshima, Japan
| | - Nao Ikeda
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science 8-35-1, Sakuragaoka, Kagoshima, Japan
| | - Tomoaki Sakurai
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science 8-35-1, Sakuragaoka, Kagoshima, Japan
| | - Yurika Oura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science 8-35-1, Sakuragaoka, Kagoshima, Japan
| | - Masahiro Nishimura
- Department of Oral and Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Science 8-35-1, Sakuragaoka, Kagoshima, Japan
| |
Collapse
|
2
|
Yang Z, Lu Y, Li T, Zhou X, Yang J, Yang S, Bu S, Duan Y. Osmanthus fragrans Flavonoid Extract Inhibits Adipogenesis and Induces Beiging in 3T3-L1 Adipocytes. Foods 2024; 13:1894. [PMID: 38928836 PMCID: PMC11202805 DOI: 10.3390/foods13121894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Osmanthus fragrans has a long history of cultivation in Asia and is widely used in food production for its unique aroma, which has important cultural and economic values. It is rich in flavonoids with diverse pharmacological properties, such as antioxidant, anti-tumor, and anti-lipid activities. However, little is known regarding the effects of Osmanthus fragrans flavonoid extract (OFFE) on adipogenesis and pre-adipocyte transdifferentiation. Herein, this research aimed to investigate the effect of OFFE on the differentiation, adipogenesis, and beiging of 3T3-L1 adipocytes and to elucidate the underlying mechanism. Results showed that OFFE inhibited adipogenesis, reduced intracellular reactive oxygen species levels in mature adipocytes, and promoted mitochondrial biogenesis as well as beiging/browning in 3T3-L1 adipocytes. This effect was accompanied by increased mRNA and protein levels of the brown adipose-specific marker gene Pgc-1a, and the upregulation of the expression of UCP1, Cox7A1, and Cox8B. Moreover, the research observed a dose-dependent reduction in the mRNA expression of adipogenic genes (C/EBPα, GLUT-4, SREBP-1C, and FASN) with increasing concentrations of OFFE. Additionally, OFFE activated the AMPK signaling pathway to inhibit adipogenesis. These findings elucidate that OFFE has an inhibitory effect on adipogenesis and promotes browning in 3T3-L1 adipocytes, which lays the foundation for further investigation of the lipid-lowering mechanism of OFFE in vivo in the future.
Collapse
Affiliation(s)
- Zhiying Yang
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Yuxin Lu
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineer, Nanjing Forestry University, Nanjing 210037, China;
| | - Xunyong Zhou
- HC Enzyme (Shenzhen) Biotech. Co., Ltd., Shenzhen 518112, China;
| | - Jia Yang
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Shuwen Yang
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Su Bu
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
| | - Yifan Duan
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (Z.Y.); (Y.L.); (J.Y.); (S.Y.); (Y.D.)
- International Cultivar Registration Center for Osmanthus, Nanjing 210037, China
| |
Collapse
|
3
|
Ding K, Jiang W, Zhangwang J, Wang Y, Zhang J, Lei M. The potential of traditional herbal active ingredients in the treatment of sarcopenia animal models: focus on therapeutic effects and mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3483-3501. [PMID: 37526688 DOI: 10.1007/s00210-023-02639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Sarcopenia is a major global public health problem that harms individual physical function. In 2018, the European Working Group on Sarcopenia in the Elderly 2 classified sarcopenia into primary and secondary sarcopenia. However, information on the pathogenesis and effective treatment of primary and secondary sarcopenia is limited. Traditional herbal active ingredients have biological activities that promote skeletal muscle health, showing potential preventive and therapeutic effects on sarcopenia. Therefore, this narrative review aims to provide a comprehensive overview of global traditional herbal active ingredients' beneficial therapeutic effects and molecular mechanisms on sarcopenia-related animal models. For this purpose, we conducted a literature search in three databases, PubMed, Web of Science, and Embase, consistent with the review objectives. After the screening, 12 animal studies met the review themes. The review results showed that the pathological mechanisms in sarcopenia-related animal models include imbalanced protein metabolism, oxidative stress, inflammation, apoptosis, insulin resistance, endoplasmic reticulum stress, impaired mitochondrial biogenesis, and autophagy-lysosome system aggravation. Eleven traditional herbal active ingredients exerted positive anti-sarcopenic effects by ameliorating these pathological mechanisms. This narrative review will provide meaningful insight into future studies regarding traditional herbal active ingredients for treating sarcopenia.
Collapse
Affiliation(s)
- Kaixi Ding
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wei Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Juejue Zhangwang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu Wang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, 210029, China
| | - Jing Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
4
|
Bae J, Kumazoe M, Park S, Fujimura Y, Tachibana H. The anti-cancer effect of epigallocatechin-3-O-gallate against multiple myeloma cells is potentiated by 5,7-dimethoxyflavone. FEBS Open Bio 2023; 13:2147-2156. [PMID: 37730921 PMCID: PMC10626272 DOI: 10.1002/2211-5463.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/22/2023] Open
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG) is one of the major components of green tea polyphenol. Previous studies have shown that EGCG induces cancer-specific cell death in vitro and in vivo without causing severe side effects. However, the anti-cancer effect of EGCG alone is limited. 5,7-dimethoxyflavone (5,7-DMF), one of the principal functional components of black ginger (Kaempferia parviflora), also exerts anti-cancer effects. Here, we show that 5,7-DMF synergistically enhances the anti-cancer effect of EGCG in multiple myeloma cells by potentiating EGCG-induced intracellular cyclic guanosine monophosphate (cGMP) production. Moreover, the combination of EGCG and 5,7-DMF induces apoptotic cell death in multiple myeloma cells, and this is accompanied by activation of the cGMP/acid sphingomyelinase (ASM)/cleaved caspase-3 pathway. In conclusion, we have shown that 5,7-DMF enhances the anti-cancer effect of EGCG by upregulating cGMP in multiple myeloma cells.
Collapse
Affiliation(s)
- Jaehoon Bae
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan
- Functional Biomaterial Research CenterKorea Research Institute of Bioscience and BiotechnologyJeongeup‐siKorea
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan
| | - Su‐Jin Park
- Functional Biomaterial Research CenterKorea Research Institute of Bioscience and BiotechnologyJeongeup‐siKorea
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of AgricultureKyushu UniversityFukuokaJapan
| |
Collapse
|
5
|
Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 2023; 146:155639. [PMID: 37380015 PMCID: PMC11448314 DOI: 10.1016/j.metabol.2023.155639] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Sarcopenic obesity, or the loss of muscle mass and function associated with excess adiposity, is a largely untreatable medical condition associated with diminished quality of life and increased risk of mortality. To date, it remains somewhat paradoxical and mechanistically undefined as to why a subset of adults with obesity develop muscular decline, an anabolic stimulus generally associated with retention of lean mass. Here, we review evidence surrounding the definition, etiology, and treatment of sarcopenic obesity with an emphasis on emerging regulatory nodes with therapeutic potential. We review the available clinical evidence largely focused on diet, lifestyle, and behavioral interventions to improve quality of life in patients with sarcopenic obesity. Based upon available evidence, relieving consequences of energy burden, such as oxidative stress, myosteatosis, and/or mitochondrial dysfunction, is a promising area for therapeutic development in the treatment and management of sarcopenic obesity.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
6
|
Lee HS, Jeon YE, Awa R, Yoshino S, Kim EJ. Kaempferia parviflora rhizome extract exerts anti-obesity effect in high-fat diet-induced obese C57BL/6N mice. Food Nutr Res 2023; 67:9413. [PMID: 37691744 PMCID: PMC10492229 DOI: 10.29219/fnr.v67.9413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 09/12/2023] Open
Abstract
Kaempferia parviflora (KP) rhizome, also called black ginger, has been used as a herbal medicine for many centuries. This current study was aimed at exploring whether KP rhizome extract (KPE) had anti-obesity effects and the mechanism involved. Five-week-old C57BL/6N male mice were allocated into five groups for 8-week feeding with control diet (CD), high-fat diet (HFD), HFD + 150 mg/kg body weight (BW)/day KPE (HFD+K150), HFD + 300 mg/kg BW/day KPE (HFD+K300), and HFD + 600 mg/kg BW/day KPE (HFD+K600). KPE decreased BW, body fat mass, adipose tissue weight, adipocyte size, and serum levels of glucose, triglycerides, cholesterol, insulin, and leptin in HFD-induced obese C57BL/6N mice. KPE inhibited adipogenesis by decreasing CCAAT/enhancer binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase 1, ATP-citrate lyase, and fatty acid synthase mRNA expression. KPE improved lipolysis by increasing carnitine palmitoyl transferase 1 and hormone-sensitive lipase mRNA expression. These results suggest that KPE may have inhibited HFD-induced obesity by regulating several pathways involved in decreasing adipogenesis and enhancing lipolysis. Thus, the results suggest that KPE (or KP) may be applicable as an anti-obesity agent.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Food Science & Nutrition, Dongseo University, Busan, Korea
| | - Young Eun Jeon
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon, Korea
| | - Riyo Awa
- Research Center, Maruzen Pharmaceuticals Co. Ltd., Hiroshima, Japan
| | - Susumu Yoshino
- Research Center, Maruzen Pharmaceuticals Co. Ltd., Hiroshima, Japan
| | - Eun Ji Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon, Korea
| |
Collapse
|
7
|
Jung UJ. Sarcopenic Obesity: Involvement of Oxidative Stress and Beneficial Role of Antioxidant Flavonoids. Antioxidants (Basel) 2023; 12:antiox12051063. [PMID: 37237929 DOI: 10.3390/antiox12051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenic obesity, which refers to concurrent sarcopenia and obesity, is characterized by decreased muscle mass, strength, and performance along with abnormally excessive fat mass. Sarcopenic obesity has received considerable attention as a major health threat in older people. However, it has recently become a health problem in the general population. Sarcopenic obesity is a major risk factor for metabolic syndrome and other complications such as osteoarthritis, osteoporosis, liver disease, lung disease, renal disease, mental disease and functional disability. The pathogenesis of sarcopenic obesity is multifactorial and complicated, and it is caused by insulin resistance, inflammation, hormonal changes, decreased physical activity, poor diet and aging. Oxidative stress is a core mechanism underlying sarcopenic obesity. Some evidence indicates a protective role of antioxidant flavonoids in sarcopenic obesity, although the precise mechanisms remain unclear. This review summarizes the general characteristics and pathophysiology of sarcopenic obesity and focuses on the role of oxidative stress in sarcopenic obesity. The potential benefits of flavonoids in sarcopenic obesity have also been discussed.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
8
|
Ahmad B, Friar EP, Taylor E, Vohra MS, Serpell CJ, Garrett MD, Loo JSE, Fong IL, Wong EH. Anti-pancreatic lipase and anti-adipogenic effects of 5, 7, 3',4',5' -pentamethoxy and 6, 2',4'-trimethoxy flavone - An In vitro study. Eur J Pharmacol 2022; 938:175445. [PMID: 36473593 DOI: 10.1016/j.ejphar.2022.175445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
In this study, the anti-obesity effects of 5,7,3',4',5-pentamethoxyflavone (PMF) and 6,2',4'-trimethoxyflavone (TMF) were evaluated through two distinct mechanisms of action: inhibition of crude porcine pancreatic lipase (PL), and inhibition of adipogenesis in 3T3-L1 pre-adipocytes. Both flavones show dose dependent, competitive inhibition of PL activity. Molecular docking studies revealed binding of the flavones to the active site of PL. In 3T3-L1 adipocytes, both flavones reduced the accumulation of lipids and triglycerides. PMF and TMF also lowered the expression of adipogenic and lipogenic genes. They both reduced the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein α and β (C/EBP α and β), sterol regulatory element-binding protein 1 (SREBF 1), fatty acid synthase (FASN), adipocyte binding protein 2 (aP2), and leptin gene. In addition, these flavones enhanced adiponectin mRNA expression, increased lipolysis and enhanced the expression of lipolytic genes: adipose triglycerides lipase (ATGL), hormone sensitive lipase (HSL) and monoglycerides lipase (MAGL) in mature 3T3-L1 adipocytes. Overall, PMF was seen to be a more potent inhibitor of both PL activity and adipogenesis versus TMF. These results suggest that PMF and TMF possess anti-obesity activities and can be further evaluated for their anti-obesity effects.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Emily P Friar
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Emerald Taylor
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Christopher J Serpell
- School of Chemistry and Forensic Science, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom.
| | - Michelle D Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia.
| |
Collapse
|
9
|
Phung HM, Lee S, Hong S, Lee S, Jung K, Kang KS. Protective Effect of Polymethoxyflavones Isolated from Kaempferia parviflora against TNF-α-Induced Human Dermal Fibroblast Damage. Antioxidants (Basel) 2021; 10:1609. [PMID: 34679744 PMCID: PMC8533329 DOI: 10.3390/antiox10101609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
Similar to other organs, the skin undergoes a natural aging process. Moreover, constant direct exposure to environmental stresses, including ultraviolet irradiation, causes the signs of skin aging to appear rather early. Reactive oxygen species (ROS) and inflammatory responses accelerate skin damage in extrinsic aging. In this study, we aimed to investigate the skin protective effects of polymethoxyflavones found in Kaempferia parviflora against oxidative stress and inflammation-induced damage in human dermal fibroblasts (HDFs) stimulated by tumor necrosis factor-α (TNF-α). The experimental data identified 5,7,4' trimethoxyflavone (TMF) as the most potent constituent in preventing TNF-α-induced HDF damage among the tested compounds and it was not only effective in inhibiting matrix metalloproteinase-1 (MMP-1) production but also in stimulating collagen, type I, and alpha 1 (COLIA1) expression. TMF suppressed TNF-α-stimulated generation of ROS and pro-inflammatory mediators, such as cyclooxygenase-2 (COX-2), interleukin (IL)-1β, and IL-6 in HDFs. TMF also inhibited the pathways regulating fibroblast damage, including mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and nuclear factor-kappa B (NF-κB). In conclusion, TMF may be a potential agent for preventing skin aging and other dermatological disorders associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hung Manh Phung
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea;
| | - Sukyung Hong
- College of Pharmacy, C.H.A University, Seongnam 13488, Korea; (S.H.); (S.L.)
| | - Sojung Lee
- College of Pharmacy, C.H.A University, Seongnam 13488, Korea; (S.H.); (S.L.)
| | - Kiwon Jung
- College of Pharmacy, C.H.A University, Seongnam 13488, Korea; (S.H.); (S.L.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
10
|
Oliveira AKDS, de Oliveira E Silva AM, Pereira RO, Santos AS, Barbosa Junior EV, Bezerra MT, Barreto RSS, Quintans-Junior LJ, Quintans JSS. Anti-obesity properties and mechanism of action of flavonoids: A review. Crit Rev Food Sci Nutr 2021; 62:7827-7848. [PMID: 33970708 DOI: 10.1080/10408398.2021.1919051] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is a major public health problem, and there is increasing scientific interest in its mechanisms, as well as a search for new compounds with antioxidant and anti-inflammatory properties that can minimize the metabolic complications associated with its pathology. One potential source of these compounds is natural products; Among these, flavonoids are a promising group of natural substances. Flavonoids are active constituents with diverse biological activities and are widely found in plants kingdom. Numerous studies have shown that flavonoids can effectively inhibit obesity and related metabolic disorders. The review synthesizes recent evidence in respect of progress in the understanding of the anti-obesity effects of flavonoids. Such effects which occurs through the modulation of proteins, genes and transcriptional factors involved in decreasing lipogenesis, increasing lipolysis, expenditure energy, stimulating fatty acids B-oxidation, digestion and metabolism of carbohydrates. In addition to mitigating inflammatory responses and suppress oxidative stress. A better understanding of the modulating effects and mechanisms of flavonoids in relation to obesity will allow us to better use these compounds to treat or even prevent obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Anne Karoline de Souza Oliveira
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Ana Mara de Oliveira E Silva
- Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Nutrition, Federal University of Sergipe, UFS, São Cristóvão, SE, Brazil
| | | | | | | | - Mikaella Tuanny Bezerra
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Lucindo J Quintans-Junior
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Physiology, Aracaju, SE, Brazil
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Aracaju, SE, Brazil.,Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil.,Department of Physiology, Aracaju, SE, Brazil
| |
Collapse
|
11
|
Kim C, Hwang JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 2020; 29:1619-1640. [PMID: 33282430 PMCID: PMC7708614 DOI: 10.1007/s10068-020-00816-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle plays a vital role in the conversion of chemical energy into physical force. Muscle atrophy, characterized by a reduction in muscle mass, is a symptom of chronic disease (cachexia), aging (sarcopenia), and muscle disuse (inactivity). To date, several trials have been conducted to prevent and inhibit muscle atrophy development; however, few interventions are currently available for muscle atrophy. Recently, food ingredients, plant extracts, and phytochemicals have received attention as treatment sources to prevent muscle wasting. Flavonoids are bioactive polyphenol compounds found in foods and plants. They possess diverse biological activities, including anti-obesity, anti-diabetes, anti-cancer, anti-oxidation, and anti-inflammation. The effects of flavonoids on muscle atrophy have been investigated by monitoring molecular mechanisms involved in protein turnover, mitochondrial activity, and myogenesis. This review summarizes the reported effects of flavonoids on sarcopenia, cachexia, and disuse muscle atrophy, thus, providing an insight into the understanding of the associated molecular mechanisms.
Collapse
Affiliation(s)
- Changhee Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Jae-Kwan Hwang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
12
|
Ahmad B, Friar EP, Vohra MS, Garrett MD, Serpell CJ, Fong IL, Wong EH. Mechanisms of action for the anti-obesogenic activities of phytochemicals. PHYTOCHEMISTRY 2020; 180:112513. [PMID: 33010536 DOI: 10.1016/j.phytochem.2020.112513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The prevalence of obesity is increasing rapidly globally and has recently reached pandemic proportions. It is a multifactorial disorder linked to a number of non-communicable diseases such as type-2 diabetes, cardiovascular disease, and cancer. Over-nutrition and a sedentary lifestyle are considered the most significant causes of obesity; a healthy lifestyle and behavioural interventions are the most powerful ways to achieve successful weight loss, but to maintain this in the long term can prove difficult for many individuals, without medical intervention. Various pharmacological anti-obesogenic drugs have been tested and marketed in the past and have been moderately successful in the management of obesity, but their adverse effects on human health often outweigh the benefits. Natural products from plants, either in the form of crude extracts or purified phytochemicals, have been shown to have anti-obesogenic properties and are generally considered as nontoxic and cost-effective compared to synthetic alternatives. These plant products combat obesity by targeting the various pathways and/or regulatory functions intricately linked to obesity. Their mechanisms of action include inhibition of pancreatic lipase activities, an increase in energy expenditure, appetite regulation, lipolytic effects, and inhibition of white adipose tissue development. In this review, we discuss the distinct anti-obesogenic properties of recently reported plant extracts and specific bioactive compounds, along with their molecular mechanisms of action. This review will provide a common platform for understanding the different causes of obesity and the possible approaches to using plant products in tackling this worldwide health issue.
Collapse
Affiliation(s)
- Bilal Ahmad
- School of Biosciences, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Emily P Friar
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia
| | - Michelle D Garrett
- School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Isabel Lim Fong
- Department of Paraclinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences Taylor's University Lakeside Campus, No 1 Jalan Taylor's, 47500, Subang Jaya, Malaysia.
| |
Collapse
|
13
|
Chen D, Jia D, Wu X, Shi K, Ren C, Dou Y, Guo M, Wang J, Ma M, Wu Z, Shi HY, Li W, Feng Y, Wu F. A novel metformin derivative showed improvement of lipid metabolism in obese rats with type 2 diabetes. Clin Exp Pharmacol Physiol 2020; 47:1382-1392. [PMID: 32155673 DOI: 10.1111/1440-1681.13302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
In this study, we investigated the lipid metabolism regulatory activity of a novel metformin derivative (MD568) and its potential mechanism of action in obese rats with type 2 diabetes mellitus (T2 DM). Previous gene chip analysis of 3T3-L1 cells have shown that MD568 regulates the transcription of genes involved in the peroxisome proliferator-activated receptor (PPAR) signalling pathway, fatty acid metabolism, and glycerolipid metabolism. In this study, obese T2 DM rats were treated with MD568 (200 mg/kg) for 8 weeks. Results showed that MD568 significantly reduced the body weight gain, plasma glucose, insulin, total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels. MD568 treatment also improved the insulin resistance of obese T2 DM model rats. In particular, in white adipose tissue, MD568 inhibited the excessive volume increment of adipose cells by down-regulating the protein levels of CCAAT/enhancer-binding protein-α (C/EBP-α) and PPAR-γ, as well as the transcription of their target lipid metabolism-related genes. In the liver, MD568 inhibited hepatic fatty lesions and interfered with hepatic gluconeogenesis by regulating the expression of lipid metabolism-related genes and glycogen-related kinases. In conclusion, our results suggest that the newly synthesized MD568 affects the maintenance of lipid homeostasis in obese type 2 diabetic rats.
Collapse
Affiliation(s)
- Deqi Chen
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan Jia
- Integrated Chinese and Western Medicine, Post-doctoral Research Station, Jinan University, Guangzhou, China
- Health Science Centre, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Xia Wu
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kexin Shi
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou, China
| | - Cui Ren
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yonghui Dou
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingxin Guo
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou, China
| | - Juanxia Wang
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou, China
| | - Min Ma
- Integrated Chinese and Western Medicine, Post-doctoral Research Station, Jinan University, Guangzhou, China
| | - Zhengzhi Wu
- Health Science Centre, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - He-Yong Shi
- Respiratory and Critical Care Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Weimin Li
- Academy of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifan Feng
- Central Laboratory, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fuhai Wu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
14
|
Polymethoxyselenoflavones exert anti-obesity effects through activation of lipolysis and brown adipocyte metabolism. Int J Obes (Lond) 2020; 45:122-129. [PMID: 32467614 DOI: 10.1038/s41366-020-0606-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVES Polymethoxyselenoflavone (PMSF) is a compound that substitutes the oxygen atom in a flavonoid with selenium. This study aimed to investigate the effects of PMSFs on lipid metabolism in adipocytes and their anti-obesity potential. SUBJECTS/METHODS To test lipolytic and thermogenic effects of the compounds in vitro, adipocytes differentiated from immortalized pre-brown adipocyte progenitors and pre-white adipocyte cell lines were treated with 19 PMSFs. The expression levels of brown adipocyte markers and genes related to mitochondrial metabolism were analyzed by qPCR and western blot. In vivo anti-obesity effect was investigated using diet-induced obesity mouse models and adipocyte-specific ATGL knockout mice. RESULTS The qPCR analysis identified 2-(3,4-dimethoxyphenyl)-4H-selenochromen-4-one (DMPSC) as the most potent brown adipogenic candidate among the 19 compounds tested in this study. DMPSC treatment significantly increased the mitochondrial content and oxidative metabolism in adipocytes in vitro. Mechanistically, DMPSC treatment increased lipolysis through activation of PKA downstream signaling. Consistently, the in vivo treatment of DMPSC increased energy consumption, reduced body weight, and improved glucose tolerance in mice fed with high-fat diets. Moreover, DMPSC treatment increased brown adipocyte marker expression and mitochondrial content in adipose tissue of mice. The anti-obesity effects were absent in adipocyte-specific ATGL knockout mice, indicating that the DMPSC effect is mediated by cytosolic lipase-dependent mechanisms. CONCLUSIONS Collectively, our results indicated that DMPSC exerted anti-obesity effects partially through the PKA signaling-mediated activation of lipolysis and brown adipose tissue metabolism.
Collapse
|
15
|
Kim C, Hwang JK. The 5,7-Dimethoxyflavone Suppresses Sarcopenia by Regulating Protein Turnover and Mitochondria Biogenesis-Related Pathways. Nutrients 2020; 12:nu12041079. [PMID: 32295051 PMCID: PMC7230989 DOI: 10.3390/nu12041079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Sarcopenia is a muscle disease featured by the loss of muscle mass and dysfunction with advancing age. The 5,7-dimethoxyflavone (DMF), a major flavone found in Kaempferia parviflora, has biological activities, including anti-diabetes, anti-obesity, and anti-inflammation. However, its anti-sarcopenic effect remains to be elucidated. This current study investigated the inhibitory activity of DMF on sarcopenia. Eighteen-month-old mice were orally administered DMF at the dose of 25 mg·kg−1·day−1 or 50 mg·kg−1·day−1 for 8 weeks. DMF not only stimulated grip strength and exercise endurance but also increased muscle mass and volume. Besides, DMF stimulated the phosphatidylinositol 3-kinase-Akt pathway, consequently activating the mammalian target of rapamycin-eukaryotic initiation factor 4E-binding protein 1-70-kDa ribosomal protein S6 kinase pathway for protein synthesis. DMF reduced the mRNA expression of E3 ubiquitin ligase- and autophagy-lysosomal-related genes involved in proteolysis via the phosphorylation of Forkhead box O3. DMF upregulated peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, nuclear respiratory factor 1, and mitochondrial transcription factor A along with the increase of relative mitochondrial DNA content. DMF alleviated inflammatory responses by reducing the tumor necrosis factor-alpha and interleukin-6 serum and mRNA levels. Collectively, DMF can be used as a natural agent to inhibit sarcopenia via improving protein turnover and mitochondria function.
Collapse
|
16
|
Park W, Park MY, Song G, Lim W. 5,7‐Dimethoxyflavone induces apoptotic cell death in human endometriosis cell lines by activating the endoplasmic reticulum stress pathway. Phytother Res 2020; 34:2275-2286. [DOI: 10.1002/ptr.6677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Wonhyoung Park
- Department of Biotechnology Korea University Seoul Republic of Korea
| | - Min Young Park
- Department of Biotechnology Korea University Seoul Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology Korea University Seoul Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition Kookmin University Seoul Republic of Korea
| |
Collapse
|
17
|
Karadeniz F, Oh JH, Lee JI, Kim H, Seo Y, Kong CS. 6-Acetyl-2,2-Dimethylchroman-4-One Isolated from Artemisia princeps Suppresses Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells via Activation of AMPK. J Med Food 2020; 23:250-257. [DOI: 10.1089/jmf.2019.4653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
| | - Hojun Kim
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan, Korea
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan, Korea
- Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Korea Maritime and Ocean University, Busan, Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods and College of Medical and Life Sciences, Silla University, Busan, Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan, Korea
| |
Collapse
|
18
|
Sánchez M, Romero M, Gómez-Guzmán M, Tamargo J, Pérez-Vizcaino F, Duarte J. Cardiovascular Effects of Flavonoids. Curr Med Chem 2019; 26:6991-7034. [DOI: 10.2174/0929867326666181220094721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
:
Cardiovascular Disease (CVD) is the major cause of death worldwide, especially in Western
society. Flavonoids are a large group of polyphenolic compounds widely distributed in plants, present
in a considerable amount in fruit and vegetable. Several epidemiological studies found an inverse association
between flavonoids intake and mortality by CVD. The antioxidant effect of flavonoids was
considered the main mechanism of action of flavonoids and other polyphenols. In recent years, the role
of modulation of signaling pathways by direct interaction of flavonoids with multiple protein targets,
namely kinases, has been increasingly recognized and involved in their cardiovascular protective effect.
There are strong evidence, in in vitro and animal experimental models, that some flavonoids induce
vasodilator effects, improve endothelial dysfunction and insulin resistance, exert platelet antiaggregant
and atheroprotective effects, and reduce blood pressure. Despite interacting with multiple targets, flavonoids
are surprisingly safe. This article reviews the recent evidence about cardiovascular effects that
support a beneficial role of flavonoids on CVD and the potential molecular targets involved.
Collapse
Affiliation(s)
- Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
19
|
Na HH, Kim KC. Homeostatic balance of histone acetylation and deconstruction of repressive chromatin marker H3K9me3 during adipocyte differentiation of 3T3-L1 cells. Genes Genomics 2018; 40:1301-1308. [PMID: 30094782 DOI: 10.1007/s13258-018-0725-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/29/2018] [Indexed: 12/30/2022]
Abstract
Background Adipocyte differentiation is completed by changing gene expression. Chromatin is closely related to gene expression. Therefore, its structure might be changed for adipocyte differentiation. Mouse 3T3-L1 preadipocytes have been used as a cell model to study molecular mechanisms of adipogenesis. Objective To examine changes of chromatin modification and expression of histone modifying enzymes during adipocyte differentiation. Methods Microscopic analysis and Oil Red O staining were performed to determine distinct phenotype of adipocyte differentiation. RT-PCR and Western blot analysis were used to examine expression levels of histone modifying enzymes during adipocyte differentiation. Histone modifications were examined by immunostaining analysis. Results Expression levels of P300 and cbp were increased during adipocyte differentiation. However, acetylation of histones was not quantitatively changed postdifferentiation of 3T3-L1 cells compared to that at pre-differentiation. RT-PCR and Western blot analyses showed that expression levels of hdac2 and hdac3 were increased during adipocyte differentiation, suggesting histone acetylation at chromatin level was homeostatically controlled by increased expression of both HATs and HDACs. Tri-methylation level of H3K9 (H3K9me3), but not that of H3K27me3, was significantly decreased during adipocyte differentiation. Decreased expression of setdb1 was consistent with reduced pattern of H3K9me3. Knock-down of setdb1 induced adipocyte differentiation. This suggests that setdb1 is a key chromatin modifier that modulates repressive chromatin. Conclusion These results suggest that there exist extensive mechanisms of chromatin modifications for homeostatic balance of chromatin acetylation and deconstruction of repressive chromatin during adipocyte differentiation.
Collapse
Affiliation(s)
- Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
20
|
Jia D, Li Z, Gao Y, Feng Y, Li W. A novel triazine ring compound (MD568) exerts in vivo and in vitro effects on lipid metabolism. Biomed Pharmacother 2018; 103:790-799. [DOI: 10.1016/j.biopha.2018.04.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
|
21
|
Standardized Kaempferia parviflora Wall. ex Baker (Zingiberaceae) Extract Inhibits Fat Accumulation and Muscle Atrophy in ob/ob Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8161042. [PMID: 29997677 PMCID: PMC5994587 DOI: 10.1155/2018/8161042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
Obesity, a metabolic disorder caused by an imbalance between energy intake and energy expenditure, is accompanied with fat accumulation and skeletal muscle atrophy. Kaempferia parviflora Wall. ex Baker, also called black ginger, is known to increase physical fitness performance and improve energy metabolism. In this study, we investigated whether Kaempferia parviflora extract (KPE) alleviates both obesity and muscle atrophy using ob/ob mice. Wild-type C57BL/6J and ob/ob mice were provided with a normal diet ad libitum, and ob/ob mice were orally given KPE at a dose of 100 mg/kg/day or 200 mg/kg/day for eight weeks. KPE significantly decreased body weight, fat volume, and fat weight without affecting appetite. It inhibited the expression of adipogenic transcription factors and lipogenic enzymes by upregulating AMP-activated protein kinase (AMPK) in epididymal fat. In contrast, it markedly increased the muscle fiber size, muscle volume, and muscle mass, resulting in the enhancement of muscle function, such as exercise endurance and grip strength. On the molecular level, it activated the phosphatidylinositol 3 kinase (PI3K)/Akt pathway, a key regulator in protein synthesis in skeletal muscle. KPE could be a promising material to alleviate obesity by inhibiting adipogenesis, lipogenesis, and muscle atrophy.
Collapse
|
22
|
Ochiai W, Kobayashi H, Kitaoka S, Kashiwada M, Koyama Y, Nakaishi S, Nagai T, Aburada M, Sugiyama K. Effect of the active ingredient of Kaempferia parviflora, 5,7-dimethoxyflavone, on the pharmacokinetics of midazolam. J Nat Med 2018; 72:607-614. [PMID: 29550915 DOI: 10.1007/s11418-018-1184-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/26/2018] [Indexed: 11/28/2022]
Abstract
5,7-Dimethoxyflavone (5,7-DMF), one of the major components of Kaempferia parviflora, has anti-obesity, anti-inflammatory, and antineoplastic effects. On the other hand, in vitro studies have reported that it directly inhibits the drug metabolizing enzyme family cytochrome P450 (CYP) 3As. In this study, its safety was evaluated from a pharmacokinetic point of view, based on daily ingestion of 5,7-DMF. Midazolam, a substrate of CYP3As, was orally administered to mice treated with 5,7-DMF for 10 days, and its pharmacokinetic properties were investigated. In the group administered 5,7-DMF, the area under the curve (AUC) of midazolam increased by 130% and its biological half-life was extended by approximately 100 min compared to the control group. Compared to the control group, 5,7-DMF markedly decreased the expression of CYP3A11 and CYP3A25 in the liver. These results suggest that continued ingestion of 5,7-DMF decreases the expression of CYP3As in the liver, consequently increasing the blood concentrations of drugs metabolized by CYP3As.
Collapse
Affiliation(s)
- Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Hiroko Kobayashi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Satoshi Kitaoka
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mayumi Kashiwada
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yuya Koyama
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Saho Nakaishi
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tomomi Nagai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Masaki Aburada
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Kiyoshi Sugiyama
- Department of Functional Molecule, Kinetics Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
23
|
Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:165-176. [PMID: 29191638 DOI: 10.1016/j.bbalip.2017.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/28/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) has been recognized as an important gasotransmitter analogous to nitric oxide and carbon monoxide. Cystathionine gamma-lyase (CSE)-derived H2S is implicated in the regulation of insulin resistance and glucose metabolism, but the involvement of CSE/H2S system in energy homeostasis and fat mass has not been extensively explored. In this study, a potential functional role of the CSE/H2S system in in vitro adipocyte differentiation and in vivo adipogenesis and the underlying mechanism was investigated. CSE expression and H2S production were increased during adipocyte differentiation, and that the pattern of CSE mRNA expression was similar to that of CCAAT/enhancer-binding protein (C/EBP) β and δ, two key regulators for adipogenesis. C/EBPβ and γ bind to the CCAAT box in CSE promoter and stimulate CSE gene transcription. H2S induced PPARγ transactivation activity by S-sulfhydrating all the cysteine residues in the DNA binding domain and stimulated adipogenesis. High fat diet-induced fat mass was lost in CSE deficient mice, and exogenously applied H2S promoted fat mass accumulation in fruit flies. In conclusion, CSE/H2S system is essential for adipogenesis and fat mass accumulation through enhancement of PPARγ function in adipocytes. This study suggests that the CSE/H2S system is involved in the pathogenesis of obesity in mice.
Collapse
|
24
|
Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring. Br J Nutr 2017; 118:788-803. [PMID: 29110748 DOI: 10.1017/s0007114517002884] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.
Collapse
|
25
|
Standardized Kaempferia parviflora Extract Inhibits Intrinsic Aging Process in Human Dermal Fibroblasts and Hairless Mice by Inhibiting Cellular Senescence and Mitochondrial Dysfunction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6861085. [PMID: 28831286 PMCID: PMC5558676 DOI: 10.1155/2017/6861085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/28/2017] [Indexed: 01/04/2023]
Abstract
Intrinsic skin aging is a complex biological phenomenon mainly caused by cellular senescence and mitochondrial dysfunction. This study evaluated the inhibitory effect of Kaempferia parviflora Wall ex. Baker ethanol extract (KPE) on H2O2-stimulated cellular senescence and mitochondrial dysfunction both in vitro and in vivo. KPE significantly increased cell growth and suppressed senescence-associated β-galactosidase activation. KPE inhibited the expression of cell-cycle inhibitors (p53, p21, p16, and pRb) and stimulated the expression of cell-cycle activators (E2F1 and E2F2). H2O2-induced hyperactivation of the phosphatidylinositol 3-kinase/protein kinase B (AKT) signaling pathway was suppressed by KPE through regulated expression of forkhead box O3a (FoxO3a) and mammalian target of rapamycin (mTOR). KPE attenuated inflammatory mediators (interleukin-6 (IL-6), IL-8, nuclear factor kappa B (NF-κB), and cyclooxygenase-2 (COX-2)) and increased the mRNA expression of PGC-1α, ERRα, NRF1, and Tfam, which modulate mitochondrial biogenesis and function. Consequently, reduced ATP levels and increased ROS level were also reversed by KPE treatment. In hairless mice, KPE inhibited wrinkle formation, skin atrophy, and loss of elasticity by increasing the collagen and elastic fibers. The results indicate that KPE prevents intrinsic aging process in hairless mice by inhibiting cellular senescence and mitochondrial dysfunction, suggesting its potential as a natural antiaging agent.
Collapse
|