1
|
Guan L, Eisenmenger A, Crasta KC, Sandalova E, Maier AB. Therapeutic effect of dietary ingredients on cellular senescence in animals and humans: A systematic review. Ageing Res Rev 2024; 95:102238. [PMID: 38382678 DOI: 10.1016/j.arr.2024.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Cellular senescence has been regarded as a therapeutic target for ageing and age-related diseases. Several senotherapeutic agents have been proposed, including compounds derived from natural products which hold the translational potential to promote healthy ageing. This systematic review examined the association of dietary ingredients with cellular senescence in animals and humans, with an intent to identify dietary ingredients with senotherapeutic potential. METHODS This systematic review was registered at PROSPERO International prospective register of systematic reviews (Reg #: CRD42022338885). The databases PubMed and Embase were systematically searched for key terms related to cellular senescence, senescence markers, diets, nutrients and bioactive compounds. Intervention and observational studies on human and animals investigating the effects of dietary ingredients via oral administration on cellular senescence load were included. The SYRCLE's risk of bias tool and Cochrane risk of bias tool v2.0 were used to assess the risk of bias for animal and human studies respectively. RESULTS Out of 5707 identified articles, 83 articles consisting of 78 animal studies and 5 human studies aimed to reduce cellular senescence load using dietary ingredients. In animal studies, the most-frequently used senescence model was normative ageing (26 studies), followed by D-galactose-induced models (17 studies). Resveratrol (8 studies), vitamin E (4 studies) and soy protein isolate (3 studies) showed positive effects on reducing the level of senescence markers such as p53, p21, p16 and senescence-associated ß-galactosidase in various tissues of physiological systems. In three out of five human studies, ginsenoside Rg1 had no positive effect on reducing senescence in muscle tissues after exercise. The risk of bias for both animal and human studies was largely unclear. CONCLUSION Resveratrol, vitamin E and soy protein isolate are promising senotherapeutics studied in animal models. Studies testing dietary ingredients with senotherapeutic potential in humans are limited and translation is highly warranted.
Collapse
Affiliation(s)
- Lihuan Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Anna Eisenmenger
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Karen C Crasta
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Physiology, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Agency for Science, Technology & Research (A⁎STAR), Institute of Molecular and Cell Biology (IMCB), Singapore
| | - Elena Sandalova
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands.
| |
Collapse
|
2
|
Aref M, FaragAllah EM, Goda NIA, Abu-Alghayth MH, Abomughaid MM, Mahboub HH, Alwutayd KM, Elsherbini HA. Chia seeds ameliorate cardiac disease risk factors via alleviating oxidative stress and inflammation in rats fed high-fat diet. Sci Rep 2024; 14:2940. [PMID: 38316807 PMCID: PMC10844609 DOI: 10.1038/s41598-023-41370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/25/2023] [Indexed: 02/07/2024] Open
Abstract
Obesity upsurges the risk of developing cardiovascular disease, primarily heart failure and coronary heart disease. Chia seeds have a high concentration of dietary fiber and increased concentrations of anti-inflammatoryand antioxidant compounds. They are used for weight loss plus enhancing blood glucose and lipid profile. The current perspective was commenced to examine the protective influence of chia seeds ingestion on cardiovascular disease risk factors in high-fat diet-fed rats. Forty male albino rats (with an initial body weight of 180-200 g) were used in this study. Rats were randomly and equally divided into 4 groups: Group I was the control group and group II was a control group with chia seeds supplementation. Group III was a high-fat diet group (HFD) that received HFD for 10 weeks and group IV was fed on HFD plus chia seeds for 10 weeks. In all groups Echocardiographic measurements were performed, initial and final BMI, serum glucose, AC/TC ratio, lipid profile, insulin (with a computed HOMA-IR), creatinine phosphokinase-muscle/brain (CPK-MB), CRP, and cardiac troponin I (cTnI) and MAP were estimated. Whole heart weight (WHW) was calculated, and then WHW/body weight (BW) ratio was estimated. Eventually, a histopathological picture of cardiac tissues was performed to assess the changes in the structure of the heart under Haematoxylin and Eosin and Crossmon's trichrome stain. Ingestion of a high diet for 10 weeks induced a clear elevation in BMI, AC/ TC, insulin resistance, hyperlipidemia, CRP, CPK-MB, and cTnI in all HFD groups. Moreover, there was a significant increase in MAP, left ventricular end diastolic diameter (LVEDD), and left ventricular end systolic diameter (LVESD). Furthermore, histological cardiac examination showed structural alteration of the normal structure of the heart tissue with an increase in collagen deposition. Also, the Bcl-2 expression in the heart muscle was significantly lower, but Bax expression was significantly higher. Chia seeds ingestion combined with HFD noticeably ameliorated the previously-recorded biochemical biomarkers, hemodynamic and echocardiography measures, and histopathological changes. Outcomes of this report reveal that obesity is a hazard factor for cardiovascular disease and chia seeds could be a good candidate for cardiovascular system protection.
Collapse
Affiliation(s)
- Mohamed Aref
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Sharkia, Egypt
| | | | - Nehal I A Goda
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, 67714, Bisha, Saudi Arabia
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, 67714, Bisha, Saudi Arabia
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia, Egypt.
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Hadeel A Elsherbini
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Senescent cells in rabbit, nutria and chinchilla testes-Results from histochemical and immunohistochemical studies. Anim Reprod Sci 2021; 226:106701. [PMID: 33516138 DOI: 10.1016/j.anireprosci.2021.106701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/31/2022]
Abstract
Rabbit, nutria and chinchilla testes were evaluated to compare testicular cellular senescence. There were no major species-specific differences in structure of either seminiferous tubules or interstitial tissue. There, however, were occasional abnormalities in seminiferous tubule structure with there being multinucleated and exfoliated cells present in rabbit testes. Furthermore, there were seminiferous tubules without a lumen that were filled with premeiotic/meiotic cells in nutria; and tubules with vacuolization with there being no post-meiotic cells in chinchillas. There were no differences in distribution or content of acids, total proteins and polysaccharides in the testis of any of the three species. Results using comparative immunohistochemistry procedures indicated the testes contained a few senescent cells in seminiferous tubules with typical morphology and there was a large number of senescent cells in seminiferous tubules of nutrias and chinchillas that had an abnormal structure (P <0.001). Compared to rabbit testes, in which there was the least number of senescent cells in seminiferous tubules, there was a greater abundance of senescence markers in both nutria and chinchilla testes (P < 0.05; P < 0.001, respectively). Furthermore, there were small abundances of caspase 3 and LC3 in the testes of all species. In chinchilla testes, there was a lesser concentration of cholesterol (P < 0.001) and testosterone compared with the other species. Cellular senescence in testes, therefore, can be assessed by detection of morpho-functional disorders of the testis of the three species evaluated in the present study.
Collapse
|
4
|
Ramisz G, Turek W, Chmurska-Gasowska M, Rak A, Pietsch-Fulbiszewska A, Galuszka A, Kotula-Balak M, Tarasiuk K. Senescence and adiponectin signaling - Studies in canine testis. Ann Anat 2020; 234:151606. [PMID: 33096233 DOI: 10.1016/j.aanat.2020.151606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The meaning of senescence for tissue physiological and pathological conditions is poorly known. Based on initial reports especially proteins and mechanisms that regulate this process are necessary to be determinate. METHODS The main aim of the study was to investigate the presence of senescent cells in canine testicular tissue (mixed breed testes; n = 60) in relation to adiponectin signaling. In detail, new information on the senescence cell number, as well as senescence and adiponectin signaling mechanisms in cryptorchid and germ cell tumor testes were provided with the use of immunohistochemical and colorimetric analyses. RESULTS Comparison of immunohistochemical results, in cryptorchid and tumor testes revealed increased number of senescent cells (p16 and γH2AX markers). Increased expression of adiponectin and adiponectin receptor 1, as well as extracellular signal-activated kinase (ERK1/2) in pathological testes were detected. In addition, decreased cholesterol and increased testosterone levels in tumor testis were found. CONCLUSION The present study is the first to demonstrate the presence as well as the differences that exist in senecent cell number in mixed breed dog testes with cryptorchidism and germ cell tumor. Altered expression of adiponectin signaling and ERK1/2 signaling pathways together with altered cholesterol and testosterone levels reflect important senescence role in disturbed functions of canine testis. Moreover, the application of studied here senescence regulating molecules for detection and prevention against pathologies of the male gonad should be furtherly considered.
Collapse
Affiliation(s)
- Grzegorz Ramisz
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Wiktor Turek
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Maria Chmurska-Gasowska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - Agnieszka Pietsch-Fulbiszewska
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Anna Galuszka
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Malgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - Kazimierz Tarasiuk
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
5
|
Pandurangan SB, Al-Maiman SA, Al-Harbi LN, Alshatwi AA. Beneficial Fatty Acid Ratio of Salvia hispanica L. (Chia Seed) Potentially Inhibits Adipocyte Hypertrophy, and Decreases Adipokines Expression and Inflammation in Macrophage. Foods 2020; 9:foods9030368. [PMID: 32235695 PMCID: PMC7143507 DOI: 10.3390/foods9030368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to determine the role of Salvia hispanica L., (chia seed) fatty acid content in adipocyte lipid accumulation and human macrophage immunoregulatory potential. Chia seed fatty acid was extracted using hexane by the cold percolation method. A gas chromatography-mass spectrometry (GC-MS) analysis showed a 3:1 ratio of omega 3 and omega 6 fatty acid composition and it was more beneficial for human health. We treated it with increasing concentrations (0–6.4 μg/mL) of chia seed fatty acid extract to determine the cytotoxicity on the preadipocytes and macrophage; no significant cytotoxicity was observed. Chia seed, in 0.2 and 0.4 μg/mL doses, significantly arrested adipocyte hypertrophy and macrophage foam cell development. The gene expression levels of adipocyte confirmed the increased expression of adipocyte mitochondrial thermogenesis related genes, such as uncoupling protein-1 (UCP-1), peroxisome proliferator activated receptor gamma coactivator 1 alpha (PPARγC1α) and PR domain containing 16 (PRDM16); and the down regulated expression of the lipid synthesis related gene sterol regulatory element binding of protein-1c (SREBP-1c). In addition, adipogenesis related genes, such as the proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα) expressions, have been down regulated by chia seed treatment. Macrophage treated with chia seed-treated adipocyte condition media significantly inhibited the obesity associated inflammatory genes and protein expression levels, such as monocyte chemo attractant protein-1 (MCP-1), prostaglandins E2, interleukin-6, plasminogen activator inhibitor-1 (PAI-1) and tumor necrosis factor-α (TNF-α). In conclusion, a 3:1 ratio of omega 3 and omega 6 fatty acid composition of chia seed fatty acid content potentially inhibits lipid accumulation, and enhanced fatty acid oxidation, via UCP-1 and PRDM16 expression. Macrophage recruitment to adipocyte and the development of obesity associated inflammation was suppressed by chia seeds.
Collapse
Affiliation(s)
| | | | | | - Ali A. Alshatwi
- Correspondence: ; Tel.: +966-504236535 or +966-46-93319 (Office)
| |
Collapse
|
6
|
Enes BN, Moreira LPD, Silva BP, Grancieri M, Lúcio HG, Venâncio VP, Mertens-Talcott SU, Rosa COB, Martino HSD. Chia seed (Salvia hispanica L.) effects and their molecular mechanisms on unbalanced diet experimental studies: A systematic review. J Food Sci 2020; 85:226-239. [PMID: 31972052 DOI: 10.1111/1750-3841.15003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/05/2019] [Accepted: 11/22/2019] [Indexed: 01/06/2023]
Abstract
The aim of this review was to compile evidence and understand chia seed effects on unbalanced diet animal studies and the molecular mechanisms on metabolic biomarker modulation. A systematic review was conducted in electronic databases, following PRISMA recommendations. Risk of bias and quality was assessed using SYRCLE toll and ARRIVE guidelines. Seventeen articles were included. Throughout the studies, chia's main effects are associated with AMPK modulation: improvement of glucose and insulin tolerance, lipogenesis, antioxidant activity, and inflammation. Details about randomization and allocation concealment were insufficient, as well as information about blind protocols. Sample size, chia dose, and number of animals evaluated for each parameter were found to be lacking information among the studies. Based on experimental study data, chia has bioactive potential, and its daily consumption may reduce the risk of chronic disease development, mainly due to the antioxidant, anti-inflammatory, hypoglycemic, and hypolipidemic effects of the seed. PRACTICAL APPLICATION: The consumption of chia seeds may improve lipid profile, insulin and glucose tolerance, and reduce risk of cardiovascular disease. Whole seed or its oil presents positive effect, but the effects of chia oil can act faster than the seed.
Collapse
Affiliation(s)
- Bárbara N Enes
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luiza P D Moreira
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Bárbara P Silva
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Mariana Grancieri
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Haira G Lúcio
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Vinícius P Venâncio
- Dept. of Nutrition and Food Science, Texas A&M Univ., College Station, TX, 77843, USA
| | | | - Carla O B Rosa
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Hércia S D Martino
- Dept. of Nutrition and Health, Federal Univ. of Viçosa, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
7
|
Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging (Albany NY) 2019; 11:9128-9146. [PMID: 31644429 PMCID: PMC6834426 DOI: 10.18632/aging.102379] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
Tissue accumulation of p16INK4a-positive senescent cells is associated with age-related disorders, such as osteoarthritis (OA). These cell-cycle arrested cells affect tissue function through a specific secretory phenotype. The links between OA onset and senescence remain poorly described. Using experimental OA protocol and transgenic Cdkn2a+/luc and Cdkn2aluc/luc mice, we found that the senescence-driving p16INK4a is a marker of the disease, expressed by the synovial tissue, but is also an actor: its somatic deletion partially protects against cartilage degeneration. We test whether by becoming senescent, the mesenchymal stromal/stem cells (MSCs), found in the synovial tissue and sub-chondral bone marrow, can contribute to OA development. We established an in vitro p16INK4a-positive senescence model on human MSCs. Upon senescence induction, their intrinsic stem cell properties are altered. When co-cultured with OA chondrocytes, senescent MSC show also a seno-suppressive properties impairment favoring tissue degeneration. To evaluate in vivo the effects of p16INK4a-senescent MSC on healthy cartilage, we rely on the SAMP8 mouse model of accelerated senescence that develops spontaneous OA. MSCs isolated from these mice expressed p16INK4a. Intra-articular injection in 2-month-old C57BL/6JRj male mice of SAMP8-derived MSCs was sufficient to induce articular cartilage breakdown. Our findings reveal that senescent p16INK4a-positive MSCs contribute to joint alteration.
Collapse
|
8
|
Wang CC, Guo Y, Zhou MM, Xue CH, Chang YG, Zhang TT, Wang YM. Comparative studies of DHA-enriched phosphatidylcholine and recombination of DHA-ethyl ester with egg phosphatidylcholine on ameliorating memory and cognitive deficiency in SAMP8 mice. Food Funct 2019; 10:938-950. [DOI: 10.1039/c8fo01822g] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DHA-PLs (DHA-PC) could not be substituted by recombination of commercial fish oil with DHA-free PC in alleviating age-related memory loss and cognitive deficiency in SAMP8 mice.
Collapse
Affiliation(s)
- Cheng-Cheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Ying Guo
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Miao-Miao Zhou
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Chang-Hu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| | - Yao-Guang Chang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|