1
|
Hassanzadeh N, Dekamin MG, Valiey E. A supramolecular magnetic and multifunctional Titriplex V-grafted chitosan organocatalyst for the synthesis of acridine-1,8-diones and 2-amino-3-cyano-4 H-pyran derivatives. NANOSCALE ADVANCES 2024:d4na00264d. [PMID: 39502107 PMCID: PMC11533062 DOI: 10.1039/d4na00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
In this research, a new supramolecular magnetic modified chitosan, namely, Fe3O4@CS-TDI-Titriplex V, was designed and prepared conveniently by grafting diethylenetriaminepentaacetic acid (Titriplex V) onto a biopolymeric chitosan backbone having urethane, urea, ester and amide functional groups. The obtained magnetic biopolymeric nanomaterial was properly characterized by different spectroscopic, microscopic or analytical methods including FTIR spectroscopy, EDX spectroscopy, XRD, FESEM, TG-DTA and VSM. The application of the supramolecular Fe3O4@CS-TDI-Titriplex V nanocomposite as a heterogeneous solid acidic organocatalyst was investigated to promote the three-component synthesis of both acridinediones and 2-amino-3-cyano-4H-pyran derivatives as important pharmaceutical scaffolds under green conditions. The obtained nanomaterial exhibited proper catalytic activity in the above mentioned transformations through multicomponent reaction (MCR) strategies. The reactions proceeded very well in the presence of the Fe3O4@CS-TDI-Titriplex V solid acid nanomaterial in EtOH to afford the corresponding acridinediones and 2-amino-3-cyano-4H-pyran derivatives in high to excellent yields. The key advantages of the present protocol include the use of a renewable, biopolymeric and biodegradable solid acid as well as a simple procedure for the preparation of the hybrid material. Furthermore, the Fe3O4@CS-TDI-Titriplex V nanomaterial was used four times with a slight decrease in its catalytic activity.
Collapse
Affiliation(s)
- Najmeh Hassanzadeh
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| |
Collapse
|
2
|
Khakpour S, Hosano N, Moosavi-Nejad Z, Farajian AA, Hosano H. Advancing Tumor Therapy: Development and Utilization of Protein-Based Nanoparticles. Pharmaceutics 2024; 16:887. [PMID: 39065584 PMCID: PMC11279530 DOI: 10.3390/pharmaceutics16070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Protein-based nanoparticles (PNPs) in tumor therapy hold immense potential, combining targeted delivery, minimal toxicity, and customizable properties, thus paving the way for innovative approaches to cancer treatment. Understanding the various methods available for their production is crucial for researchers and scientists aiming to harness these nanoparticles for diverse applications, including tumor therapy, drug delivery, imaging, and tissue engineering. This review delves into the existing techniques for producing PNPs and PNP/drug complexes, while also exploring alternative novel approaches. The methods outlined in this study were divided into three key categories based on their shared procedural steps: solubility change, solvent substitution, and thin flow methods. This classification simplifies the understanding of the underlying mechanisms by offering a clear framework, providing several advantages over other categorizations. The review discusses the principles underlying each method, highlighting the factors influencing the nanoparticle size, morphology, stability, and functionality. It also addresses the challenges and considerations associated with each method, including the scalability, reproducibility, and biocompatibility. Future perspectives and emerging trends in PNPs' production are discussed, emphasizing the potential for innovative strategies to overcome current limitations, which will propel the field forward for biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Shirin Khakpour
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran
| | - Amir A. Farajian
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA;
| | - Hamid Hosano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| |
Collapse
|
3
|
Wu H, Ye J, Zhang M, Zhang L, Lin S, Li Q, Liu Y, Han Y, Huang C, Wu Y, Cheng Y, Cai S, Ke L, Liu G, Li W, Chu C. A SU6668 pure nanoparticle-based eyedrops: toward its high drug Accumulation and Long-time treatment for corneal neovascularization. J Nanobiotechnology 2024; 22:290. [PMID: 38802884 PMCID: PMC11129376 DOI: 10.1186/s12951-024-02510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Corneal neovascularization (CNV) is one of the common blinding factors worldwide, leading to reduced vision or even blindness. However, current treatments such as surgical intervention and anti-VEGF agent therapy still have some shortcomings or evoke some adverse effects. Recently, SU6668, an inhibitor targeting angiogenic tyrosine kinases, has demonstrated growth inhibition of neovascularization. But the hydrophobicity and low ocular bioavailability limit its application in cornea. Hereby, we proposed the preparation of SU6668 pure nanoparticles (NanoSU6668; size ~135 nm) using a super-stable pure-nanomedicine formulation technology (SPFT), which possessed uniform particle size and excellent aqueous dispersion at 1 mg/mL. Furthermore, mesenchymal stem cell membrane vesicle (MSCm) was coated on the surface of NanoSU6668, and then conjugated with TAT cell penetrating peptide, preparing multifunctional TAT-MSCm@NanoSU6668 (T-MNS). The T-MNS at a concentration of 200 µg/mL was treated for CNV via eye drops, and accumulated in blood vessels with a high targeting performance, resulting in elimination of blood vessels and recovery of cornea transparency after 4 days of treatment. Meanwhile, drug safety test confirmed that T-MNS did not cause any damage to cornea, retina and other eye tissues. In conclusion, the T-MNS eye drop had the potential to treat CNV effectively and safely in a low dosing frequency, which broke new ground for CNV theranostics.
Collapse
Affiliation(s)
- Han Wu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Jinfa Ye
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Minjie Zhang
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Department of Rheumatology and Clinical Immunology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, XM, 361000, China
- Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Lingyu Zhang
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Sijie Lin
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Qingjian Li
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yanbo Liu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yun Han
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Caihong Huang
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yiming Wu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yuhang Cheng
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Shundong Cai
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Lang Ke
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361002, China.
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| | - Wei Li
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China.
| | - Chengchao Chu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China.
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Loiseau A, Raîche-Marcoux G, Maranda C, Bertrand N, Boisselier E. Animal Models in Eye Research: Focus on Corneal Pathologies. Int J Mol Sci 2023; 24:16661. [PMID: 38068983 PMCID: PMC10706114 DOI: 10.3390/ijms242316661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The eye is a complex sensory organ that enables visual perception of the world. The dysfunction of any of these tissues can impair vision. Conduction studies on laboratory animals are essential to ensure the safety of therapeutic products directly applied or injected into the eye to treat ocular diseases before eventually proceeding to clinical trials. Among these tissues, the cornea has unique homeostatic and regenerative mechanisms for maintaining transparency and refraction of external light, which are essential for vision. However, being the outermost tissue of the eye and directly exposed to the external environment, the cornea is particularly susceptible to injury and diseases. This review highlights the evidence for selecting appropriate animals to better understand and treat corneal diseases, which rank as the fifth leading cause of blindness worldwide. The development of reliable and human-relevant animal models is, therefore, a valuable research tool for understanding and translating fundamental mechanistic findings, as well as for assessing therapeutic potential in humans. First, this review emphasizes the unique characteristics of animal models used in ocular research. Subsequently, it discusses current animal models associated with human corneal pathologies, their utility in understanding ocular disease mechanisms, and their role as translational models for patients.
Collapse
Affiliation(s)
- Alexis Loiseau
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Gabrielle Raîche-Marcoux
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Cloé Maranda
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Nicolas Bertrand
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, Québec, QC G1V 4G2, Canada;
| | - Elodie Boisselier
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| |
Collapse
|
5
|
Haleem A, Javaid M, Singh RP, Rab S, Suman R. Applications of Nanotechnology in Medical field. GLOBAL HEALTH JOURNAL 2023. [DOI: 10.1016/j.glohj.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
6
|
Zhang C, Yin Y, Zhao J, Li Y, Wang Y, Zhang Z, Niu L, Zheng Y. An Update on Novel Ocular Nanosystems with Possible Benefits in the Treatment of Corneal Neovascularization. Int J Nanomedicine 2022; 17:4911-4931. [PMID: 36267540 PMCID: PMC9578304 DOI: 10.2147/ijn.s375570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Corneal neovascularization (CNV) is an ocular pathological change that results from an imbalance between angiogenic factors and antiangiogenic factors as a result of various ocular insults, including infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation. Current clinical strategies for the treatment of CNV include pharmacological treatment and surgical intervention. Despite some degree of success, the current treatment strategies are restricted by limited efficacy, adverse effects, and a short duration of action. Recently, gene-based antiangiogenic therapy has become an emerging strategy that has attracted considerable interest. However, potential complications with the use of viral vectors, such as potential genotoxicity resulting from long-term expression and nonspecific targeting, cannot be ignored. The use of ocular nanosystems (ONS) based on nanotechnology has emerged as a great advantage in ocular disease treatment during the last two decades. The potential functions of ONS range from nanocarriers, which deliver drugs and genes to target sites in the eye, to therapeutic agents themselves. Various preclinical studies conducted to date have demonstrated promising results of the use of ONS in the treatment of CNV. In this review, we provide an overview of CNV and its current therapeutic strategies and summarize the properties and applications of various ONS related to the treatment of CNV reported to date. Our goal is to provide a comprehensive review of these considerable advances in ONS in the field of CNV therapy over the past two decades to fill the gaps in previous related reports. Finally, we discuss existing challenges and future perspectives of the use of ONS in CNV therapy, with the goal of providing a theoretical contribution to facilitate future practical growth in the area.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuan Yin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanxia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuanping Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhaoying Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Lingzhi Niu
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People’s Republic of China,Correspondence: Yajuan Zheng, Email
| |
Collapse
|
7
|
Sharifi S, Mahmoud NN, Voke E, Landry MP, Mahmoudi M. Importance of Standardizing Analytical Characterization Methodology for Improved Reliability of the Nanomedicine Literature. NANO-MICRO LETTERS 2022; 14:172. [PMID: 35987931 PMCID: PMC9392440 DOI: 10.1007/s40820-022-00922-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 05/15/2023]
Abstract
Understanding the interaction between biological structures and nanoscale technologies, dubbed the nano-bio interface, is required for successful development of safe and efficient nanomedicine products. The lack of a universal reporting system and decentralized methodologies for nanomaterial characterization have resulted in a low degree of reliability and reproducibility in the nanomedicine literature. As such, there is a strong need to establish a characterization system to support the reproducibility of nanoscience data particularly for studies seeking clinical translation. Here, we discuss the existing key standards for addressing robust characterization of nanomaterials based on their intended use in medical devices or as pharmaceuticals. We also discuss the challenges surrounding implementation of such standard protocols and their implication for translation of nanotechnology into clinical practice. We, however, emphasize that practical implementation of standard protocols in experimental laboratories requires long-term planning through integration of stakeholders including institutions and funding agencies.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Nouf N Mahmoud
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, 2713, Doha, Qatar
| | - Elizabeth Voke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Antibacterial and Antibiofilm Activity of Mercaptophenol Functionalized-Gold Nanorods Against a Clinical Isolate of Methicillin-Resistant Staphylococcus aureus. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractGold nanorods (AuNRs) were synthesized by the seed-mediated wet chemical method using a binary surfactant system. AuNRs were stabilized with polyethylene glycol, then functionalized with 4-mercaptophenol (4-MPH) ligand by surface ligand exchange. The surface-functionalized AuNRs (4-MPH-AuNRs) exhibited a typical UV–vis spectrum of AuNRs with a slightly shifted longitudinal peak. Furthermore, 4-MPH-AuNRs demonstrated a similar Fourier-Transformed Infrared spectrum to 4-MPH and a fading of the thiol band, which suggests a successful functionalization through thiol-gold binding. The antibacterial and antibiofilm activities of 4-MPH-AuNRs were evaluated against a clinical isolate of Methicillin-Resistant Staphylococcus aureus (MRSA). The results indicate that 4-MPH-AuNRs exhibit a bactericidal activity with a minimum inhibitory concentration (MIC) of ~ 6.25 $$\upmu$$
μ
g/mL against a planktonic suspension of MRSA. Furthermore, 4-MPH-AuNRs resulted in a 1.8–2.9 log-cycle reduction of MRSA biofilm viable count over a concentration range of 100–6.0 $$\upmu$$
μ
g/mL. The bacterial uptake of the surface-modified nanorods was investigated by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) imaging; the results reveal that the nanorods were internalized into the bacterial cells after 6 h (h) of exposure. SEM imaging revealed a significant accumulation of the nanorods at the bacterial cell wall and a possible cellular internalization. Thus, 4-MPH-AuNRs can be considered a potential antibacterial agent, particularly against MRSA strain biofilms.
Collapse
|
9
|
Goswami DG, Mishra N, Kant R, Agarwal C, Ammar DA, Petrash JM, Tewari-Singh N, Agarwal R. Effect of dexamethasone treatment at variable therapeutic windows in reversing nitrogen mustard-induced corneal injuries in rabbit ocular in vivo model. Toxicol Appl Pharmacol 2022; 437:115904. [PMID: 35108561 PMCID: PMC8849585 DOI: 10.1016/j.taap.2022.115904] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/25/2022]
Abstract
Nitrogen mustard (NM) is an analogue of the potent vesicating agent sulfur mustard, with well-established ocular injury models in rabbit eyes to study vesicant-induced ocular toxicity. The effects of NM-exposure to eyes may include irritation, redness, inflammation, fibrosis, epithelial degradation, blurred vision, partial/complete blindness, which may be temporary or permanent, depending on the route, duration, and dosage of exposure. Effective countermeasures against vesicant exposure are presently not available and are warranted in case of any terrorist activity or accidental leakage from stockpiles. Herein, our focus was to evaluate whether dexamethasone (DEX), an FDA approved potent corticosteroid with documented anti-inflammatory activities, could be an effective treatment modality. Accordingly, utilizing NM-induced corneal injuries in rabbit ocular in vivo model, we examined and compared the efficacy of DEX treatments when administration was started at early (2 h), intermediate (4 h), and late (6 h) therapeutic windows of intervention after NM-exposure and administered every 8 h thereafter. The effects of NM-exposure and DEX treatments were evaluated on clinical (corneal opacity, ulceration, and neovascularization), biological (epithelial thickness, epithelial-stromal separation, blood vessels density, and inflammatory cell and keratocyte counts) and molecular (COX-2 and VEGF expression) parameters, at day 1, 3, 7 and 14. Results indicated that DEX treatment markedly and effectively reversed the NM-induced injury markers in rabbit corneas. Early administration of DEX at 2 h was found to be most effective in reversing NM-induced corneal injuries, followed by DEX 4 h and DEX 6 h administration initiation, indicating that DEX has best efficacy at the early therapeutic window in our study model.
Collapse
Affiliation(s)
- Dinesh G. Goswami
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Neha Mishra
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rama Kant
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David A. Ammar
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - J. Mark Petrash
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America,Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
10
|
Wang JH, Tseng CL, Lin FL, Chen J, Hsieh EH, Lama S, Chuang YF, Kumar S, Zhu L, McGuinness MB, Hernandez J, Tu L, Wang PY, Liu GS. Topical application of TAK1 inhibitor encapsulated by gelatin particle alleviates corneal neovascularization. Theranostics 2022; 12:657-674. [PMID: 34976206 PMCID: PMC8692906 DOI: 10.7150/thno.65098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Rationale: Corneal neovascularization (CoNV) is a severe complication of various types of corneal diseases, that leads to permanent visual impairment. Current treatments for CoNV, such as steroids or anti-vascular endothelial growth factor agents, are argued over their therapeutic efficacy and adverse effects. Here, we demonstrate that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) plays an important role in the pathogenesis of CoNV. Methods: Angiogenic activities were assessed in ex vivo and in vitro models subjected to TAK1 inhibition by 5Z-7-oxozeaenol, a selective inhibitor of TAK1. RNA-Seq was used to examine pathways that could be potentially affected by TAK1 inhibition. A gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol was developed as the eyedrop to treat CoNV in a rodent model. Results: We showed that 5Z-7-oxozeaenol reduced angiogenic processes through impeding cell proliferation. Transcriptome analysis suggested 5Z-7-oxozeaenol principally suppresses cell cycle and DNA replication, thereby restraining cell proliferation. In addition, inhibition of TAK1 by 5Z-7-oxozeaenol blocked TNFα-mediated NFκB signalling, and its downstream genes related to angiogenesis and inflammation. 5Z-7-oxozeaenol also ameliorated pro-angiogenic activity, including endothelial migration and tube formation. Furthermore, topical administration of the gelatin-nanoparticles-encapsulated 5Z-7-oxozeaenol led to significantly greater suppression of CoNV in a mouse model compared to the free form of 5Z-7-oxozeaenol, likely due to extended retention of 5Z-7-oxozeaenol in the cornea. Conclusion: Our study shows the potential of TAK1 as a therapeutic target for pathological angiogenesis, and the gelatin nanoparticle coupled with 5Z-7-oxozeaenol as a promising new eyedrop administration model in treatment of CoNV.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jinying Chen
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Suraj Lama
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yu-Fan Chuang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Satheesh Kumar
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Linxin Zhu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Myra B. McGuinness
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Jessika Hernandez
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Leilei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- Aier Eye Institute, Changsha, Hunan, China
| |
Collapse
|
11
|
Gao Y, Li C, Li X, Zhang M. Establishment of the New Zealand white rabbit animal model of fatty keratopathy associated with corneal neovascularization. Open Life Sci 2021; 16:1261-1267. [PMID: 34909477 PMCID: PMC8642820 DOI: 10.1515/biol-2021-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/15/2022] Open
Abstract
The term fatty keratopathy is used to describe the phenomenon of fat deposition caused by corneal neovascularization, which will severely affect the eye's beauty and vision. The purpose of this study was to establish a New Zealand white rabbit animal model of fatty keratopathy, that is, the establishment of an animal model of fatty keratopathy. The goal was achieved by the combination of a corneal neovascularization animal model and a hyperlipidemia animal model. Two groups were created according to the experimental sequence. The first group initially induced a corneal neovascularization pattern and later induced a hyperlipidemia pattern, and the second group followed the opposite sequence. The results of the two groups showed that all the significant crystalline deposits of the cornea were visible. So the animal models of fatty keratopathy were successfully established in both groups.
Collapse
Affiliation(s)
- Yikui Gao
- Ophthalmology Department, The Eighth People’s Hospital of Qingdao, Qingdao 266000, China
| | - Cong Li
- Ophthalmology Department, The Eighth People’s Hospital of Qingdao, Qingdao 266000, China
| | - Xiaoyun Li
- Ophthalmology Department, The Eighth People’s Hospital of Qingdao, Qingdao 266000, China
| | - Minghong Zhang
- Refraction Department, Qingdao Aier Eye Hospital, Qingdao 266400, China
| |
Collapse
|
12
|
Chen J, Ding X, Du W, Tang X, Yu WZ. Inhibition of corneal neovascularization by topical application of nintedanib in rabbit models. Int J Ophthalmol 2021; 14:1666-1673. [PMID: 34804855 DOI: 10.18240/ijo.2021.11.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate the potential efficacy and mechanisms of nintedanib in corneal neovascularization (NV) in rabbit models. METHODS Corneal NV was induced using 1 mol/L NaOH. Rabbits (n=21) were randomized to 3 groups: Group 1 were treated with 0.9% NaCl, Group 2 with Avastin (5 mg/mL), and Group 3 with nintedanib (1 mg/mL). All treatments started 1d after alkaline burns and were topically performed 3 times a day for 2wk. Photographs were taken on a slit lamp microscope on day 7 and 14. The NV area, the length of the vascularization and angiogenesis index (AI) were used to evaluate the corneal NV. On day 14, the immunohistochemical (IHC) studies of the cornea were examined. Western blot was performed to test the expression levels of vascular endothelial growth factor (VEGF), Akt, p-Akt, P38, p-P38, MMP-2 and MMP-9. RESULTS The corneal NV area, vessel length and AI in Group 3 were significantly lower than Group 2, with both being lower than Group 1. IHC staining showed that VEGF was significantly overexpressed in the epithelium and stroma of cornea following alkaline burns. In contrast, the level of VEGF was significantly suppressed in both Group 2 and Group 3. Western blot results further confirmed that, compared with Group 1, Group 3 had significantly reduced expressions of VEGF, Akt, p-Akt, p-P38, MMP-2, and MMP-9 in corneal tissues. Trends of lower levels of MMP-2, AKT, and p-AKT in Group 3 than Group 2 were identified. CONCLUSION Nintedanib and Avastin can effectively inhibit corneal NV, with P38 MAPK and AKT signaling pathways being possibly involved. Nintedanib seems more effective than Avastin and has the potential to be a novel therapy for preventing corneal NV.
Collapse
Affiliation(s)
- Juan Chen
- Department of Ophthalmology, Peking University People's Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Xue Ding
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Wei Du
- Department of Ophthalmology, Peking University People's Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Xin Tang
- Department of Ophthalmology, Peking University People's Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Wen-Zhen Yu
- Department of Ophthalmology, Peking University People's Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing 100044, China
| |
Collapse
|
13
|
Goswami DG, Mishra N, Kant R, Agarwal C, Croutch CR, Enzenauer RW, Petrash MJ, Tewari-Singh N, Agarwal R. Pathophysiology and inflammatory biomarkers of sulfur mustard-induced corneal injury in rabbits. PLoS One 2021; 16:e0258503. [PMID: 34637469 PMCID: PMC8509852 DOI: 10.1371/journal.pone.0258503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Sulfur mustard (SM) is a cytotoxic, vesicating, chemical warfare agent, first used in 1917; corneas are particularly vulnerable to SM exposure. They may develop inflammation, ulceration, neovascularization (NV), impaired vision, and partial/complete blindness depending upon the concentration of SM, exposure duration, and bio-physiological conditions of the eyes. Comprehensive in vivo studies have established ocular structural alterations, opacity, NV, and inflammation upon short durations (<4 min) of SM exposure. In this study, detailed analyses of histopathological alterations in corneal structure, keratocytes, inflammatory cells, blood vessels, and expressions of cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, vascular endothelial growth factor (VEGF), and cytokines were performed in New Zealand white rabbits, in a time-dependent manner till 28 days, post longer durations (5 and 7 min) of ocular SM exposure to establish quantifiable endpoints of injury and healing. Results indicated that SM exposure led to duration-dependent increases in corneal thickness, opacity, ulceration, epithelial-stromal separation, and epithelial degradation. Significant increases in NV, keratocyte death, blood vessels, and inflammatory markers (COX-2, MMP-9, VEGF, and interleukin-8) were also observed for both exposure durations compared to the controls. Collectively, these findings would benefit in temporal delineation of mechanisms underlying SM-induced corneal toxicity and provide models for testing therapeutic interventions.
Collapse
Affiliation(s)
- Dinesh G. Goswami
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Neha Mishra
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rama Kant
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Claire R. Croutch
- Medical Countermeasures Division, MRIGlobal, Kansas City, Missouri, United States of America
| | - Robert W. Enzenauer
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Mark J. Petrash
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
14
|
Liu Y, Shu Y, Yin L, Xie T, Zou J, Zhan P, Wang Y, Wei T, Zhu L, Yang X, Wang W, Cai J, Li Y, Yao Y, Wang X. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation. Exp Eye Res 2021; 207:108568. [PMID: 33839112 DOI: 10.1016/j.exer.2021.108568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022]
Abstract
Hydrocinnamoyl-L-valylpyrrolidine (AS-1), a synthetic low-molecule mimetic of myeloid differentiation primary response gene 88 (MyD88), inhibits inflammation by disrupting the interaction between the interleukin-1 receptor (IL-1R) and MyD88. Here, we describe the effects of AS-1 on injury-induced increases in inflammation and neovascularization in mouse corneas. Mice were administered a subconjunctival injection of 8 μL AS-1 diluent before or after corneal alkali burn, followed by evaluation of corneal resurfacing and corneal neovascularization (CNV) by slit-lamp biomicroscopy and clinical assessment. Corneal inflammation was assessed by whole-mount CD45+ immunofluorescence staining, and corneal hemangiogenesis and lymphangiogenesis following injury were evaluated by immunostaining for the vascular markers isolectin B4 (IB4) and the lymphatic vascularized marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), respectively. Additionally, corneal tissues were collected to determine the expression of 35 cytokines, and we detected activation of IL-1RI, MyD88, and mitogen-activated protein kinase (MAPK). The results showed that alkali conditions increased the number of CD45+ cells and expression of vascular endothelial growth factor (VEGF)-A, VEGF-C, and LYVE1 in corneas, with these levels decreased in the AS-1-treated group. Moreover, AS-1 effectively prevented alkali-induced cytokine production, blocked interactions between IL-1RI and MyD88, and inhibited MAPK activation post-alkali burn. These results indicated that AS-1 prevented alkali-induced corneal hemangiogenesis and lymphangiogenesis by blocking IL-1RI-MyD88 interaction, as well as extracellular signal-regulated kinase phosphorylation, and could be efficacious for the prevention and treatment of corneal alkali burn.
Collapse
Affiliation(s)
- Yanqiu Liu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Yishun Shu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Li Yin
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Pengfei Zhan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Yangningzhi Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Tingting Wei
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Xusheng Yang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Wenjuan Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, 211100, People's Republic of China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| |
Collapse
|
15
|
Di Zazzo A, Gaudenzi D, Yin J, Coassin M, Fernandes M, Dana R, Bonini S. Corneal angiogenic privilege and its failure. Exp Eye Res 2021; 204:108457. [PMID: 33493471 PMCID: PMC10760381 DOI: 10.1016/j.exer.2021.108457] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022]
Abstract
The cornea actively maintains its own avascular status to preserve its ultimate optical function. This corneal avascular state is also defined as "corneal angiogenic privilege", which results from a critical and sensitive balance between anti-angiogenic and pro-angiogenic mechanisms. In our review, we aim to explore the complex equilibrium among multiple mediators which prevents neovascularization in the resting cornea, as well as to unveil the evolutive process which leads to corneal angiogenesis in response to different injuries.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy.
| | - Daniele Gaudenzi
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Jia Yin
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Merle Fernandes
- Cornea and Anterior Segment Services, LV Prasad Eye Institute, GMR Varalakshmi Campus, Visakhapatnam, India
| | - Reza Dana
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Stefano Bonini
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
16
|
Nicholas MP, Mysore N. Corneal neovascularization. Exp Eye Res 2020; 202:108363. [PMID: 33221371 DOI: 10.1016/j.exer.2020.108363] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
The optical clarity of the cornea is essential for maintaining good visual acuity. Corneal neovascularization, which is a major cause of vision loss worldwide, leads to corneal opacification and often contributes to a cycle of chronic inflammation. While numerous factors prevent angiogenesis within the cornea, infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation can all disrupt these homeostatic safeguards to promote neovascularization. Here, we summarize its etiopathogenesis and discuss the molecular biology of angiogenesis within the cornea. We then review the clinical assessment and diagnostic evaluation of corneal neovascularization. Finally, we describe current and emerging therapies.
Collapse
Affiliation(s)
- Matthew P Nicholas
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA
| | - Naveen Mysore
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA.
| |
Collapse
|
17
|
Dave V, Sharma R, Gupta C, Sur S. Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids Surf B Biointerfaces 2020; 194:111151. [DOI: 10.1016/j.colsurfb.2020.111151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
|
18
|
Topical Application of Hyaluronic Acid-RGD Peptide-Coated Gelatin/Epigallocatechin-3 Gallate (EGCG) Nanoparticles Inhibits Corneal Neovascularization Via Inhibition of VEGF Production. Pharmaceutics 2020; 12:pharmaceutics12050404. [PMID: 32354067 PMCID: PMC7284559 DOI: 10.3390/pharmaceutics12050404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2022] Open
Abstract
Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate (EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization. Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV.
Collapse
|
19
|
Llabot JM, Luis de Redin I, Agüeros M, Dávila Caballero MJ, Boiero C, Irache JM, Allemandi D. In vitro characterization of new stabilizing albumin nanoparticles as a potential topical drug delivery system in the treatment of corneal neovascularization (CNV). J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.04.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Acute corneal injury in rabbits following nitrogen mustard ocular exposure. Exp Mol Pathol 2019; 110:104275. [PMID: 31233733 DOI: 10.1016/j.yexmp.2019.104275] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/22/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
Sulfur mustard (SM), a potent vesicating chemical warfare agent, and its analog nitrogen mustard (NM), are both strong bi-functional alkylating agents. Eyes, skin, and the respiratory system are the main targets of SM and NM exposure; however, ocular tissue is most sensitive, resulting in severe ocular injury. The mechanism of ocular injury from vesicating agents' exposure is not completely understood. To understand the injury mechanism from exposure to vesicating agents, NM has been previously employed in our toxicity studies on primary human corneal epithelial cells and ex vivo rabbit cornea organ culture model. In the current study, corneal toxicity from NM ocular exposure (1%) was analyzed for up to 28 days post-exposure in New Zealand White male rabbits to develop an acute corneal injury model. NM exposure led to conjunctival and eyelid swelling within a few hours after exposure, in addition to significant corneal opacity and ulceration. An increase in total corneal thickness and epithelial degradation was observed starting at day 3 post-NM exposure, which was maximal at day 14 post-exposure and did not resolve until 28 days post-exposure. There was an NM-induced increase in the number of blood vessels and inflammatory cells, and a decrease in keratocytes in the corneal stroma. NM exposure resulted in increased expression levels of cyclooxygenase-2, Interleukin-8, vascular endothelial growth factor and Matrix Metalloproteinase 9 indicating their involvement in NM-induced corneal injury. These clinical, biological, and molecular markers could be useful for the evaluation of acute corneal injury and to screen for therapies against NM- and SM-induced ocular injury.
Collapse
|
21
|
Zavarshani M, Ahmadi M, Dastmalchi Saei H, Tehrani AA, Dalir Naghadeh B. Comparison Therapeutic Effects of Ciprofloxacin, Silver Nanoparticles and Their Combination in the Treatment of Pseudomonas keratitis in Rabbit: An Experimental Study. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:320-327. [PMID: 31089366 PMCID: PMC6487424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pseudomonas aeruginosa is one of the most common causes of keratitis. The current study was done to evaluate the therapeutic effects of antibacterial combinations with Silver nanoparticles (Ag-NPs) and Ciprofloxacin in experimental Pseudomonas keratitis. Sixty four New Zealand rabbits were prepared. All rabbits were randomly categorized into eight groups (each group containing eight rabbits): Control +, Control -, Ciprofloxacin, Ag-NPs, Ciprofloxacin plus Betamethasone, Ag-NPs plus Betamethasone, Ciprofloxacin plus Ag-NPs, and Ciprofloxacin plus Ag-NPs plus Betamethasone. Twelve hours after bacterial inoculation into the cornea, the eyes were examined daily to evaluate the number of days of ocular discharge and blepharospasm. Also, after 108 and 204 h, first grading of corneal opacity was done and then four rabbits of each groups were euthanized for bacterial count. The results showed that the means of days of blepharospasm, ocular discharge, and bacterial counts (log CFU mL-1) were significantly different in the treatment groups at 108 and 204 h (P <0.0005, ANOVA). According to Tukey's test, Ciprofloxacin plus Ag-NPs plus Betamethasone group was significantly less than Control +, Ag-NPs, and Ag-NPs plus Betamethasone groups for these variables (P < 0.05). The mean rank of opacity scores was significantly different between treatment groups (P = 0.01, Kruskal-Wallis). Mann-Whitney U-test revealed that Ciprofloxacin plus Ag-NPs plus Betamethasone group had significantly better score than Control +, Ag-NPs, and Ag-NPs plus Betamethasone groups (P < 0.05). It seems Ag-NPs can be an appropriate adjuvant for Ciprofloxacin, but due to the results they can't be an alternative for Ciprofloxacin to treat Pseudomonas keratitis.
Collapse
Affiliation(s)
- Mohammad Zavarshani
- Microbiology Department, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Malahat Ahmadi
- Microbiology Department, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.,Corresponding author: E-mail:
| | - Habib Dastmalchi Saei
- Microbiology Department, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Ali Asghar Tehrani
- Pathobiology Department, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Bahram Dalir Naghadeh
- Clinical SciencesDepartment, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
22
|
Masse F, Ouellette M, Lamoureux G, Boisselier E. Gold nanoparticles in ophthalmology. Med Res Rev 2018; 39:302-327. [DOI: 10.1002/med.21509] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Florence Masse
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Mathieu Ouellette
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Guillaume Lamoureux
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| | - Elodie Boisselier
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie; Faculté de médecine, Université Laval; Quebec Canada
| |
Collapse
|
23
|
Liu S, Romano V, Steger B, Kaye SB, Hamill KJ, Willoughby CE. Gene-based antiangiogenic applications for corneal neovascularization. Surv Ophthalmol 2018; 63:193-213. [DOI: 10.1016/j.survophthal.2017.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
|
24
|
Mandal A, Cholkar K, Khurana V, Shah A, Agrahari V, Bisht R, Pal D, Mitra AK. Topical Formulation of Self-Assembled Antiviral Prodrug Nanomicelles for Targeted Retinal Delivery. Mol Pharm 2017; 14:2056-2069. [PMID: 28471177 DOI: 10.1021/acs.molpharmaceut.7b00128] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Topical drug administration for back of the eye delivery is extremely challenging due to the presence of protection mechanisms and physiological barriers. Self-assembled polymeric nanomicelles have emerged as promising vehicles for drug delivery. Apart from serving as an inert nanocarrier for therapeutic agents, polymeric nanomicelles are known to bypass mononuclear phagocytic system (MPS) and efflux transporters thereby improving drug bioavailability. In this investigation, a highly efficacious biotinylated lipid prodrug of cyclic cidofovir (B-C12-cCDF) was formulated within polymeric nanomicelles as a carrier for targeted retinal delivery. Polymeric nanomicelles were prepared from polyoxyethylene hydrogenated castor oil 40 (HCO-40) and octoxynol 40 (OC-40). In vitro release studies revealed that B-C12-cCDF-loaded nanomicelles released B-C12-cCDF at a faster rate in stimulated tear fluid (STF) in comparison to PBST. MTT and LDH assays demonstrated negligible cytotoxicity of B-C12-cCDF-loaded nanomicelles relative to CDF and B-C12-cCDF in HRPE (human retinal pigment epithelial, D407), HCE-T (human corneal epithelial), and CCL 20.2 (human conjunctival epithelial) cells. Confocal laser scanning microscopy and flow cytometry analyses indicated that B-C12-cCDF-loaded nanomicelles were efficiently internalized into D407 and HCE-T cells in contrast to CDF and B-C12-cCDF. Moreover, little B-C12-cCDF was also observed in the nuclei after 24 h of incubation. Polymeric nanomicelles carrying the transporter targeted prodrug did not produce any cytotoxic effects and were internalized into the cells effectively. Permeability experiments across HCE-T cells further confirmed significant transport of prodrug loaded nanomicelles and their subsequent uptake into D407 cells. These findings indicate that HCO-40/OC-40 based polymeric nanomicelles could become a promising topical delivery system for ocular administration of antiviral agents.
Collapse
Affiliation(s)
| | - Kishore Cholkar
- Ricon Pharmaceuticals LLC, 100 Ford Road, Denville, New Jersey 07834, United States
| | - Varun Khurana
- Nevakar LLC, R&D, Bridgewater, New Jersey 08807, United States
| | | | | | - Rohit Bisht
- Buchanan Ocular Therapeutic Unit, Department of Ophthalmology, Faculty of Medical and Health Sciences, University of Auckland , Auckland 1142, New Zealand
| | | | | |
Collapse
|
25
|
Anti-angiogenic effect of hexahydrocurcumin in rat corneal neovascularization. Int Ophthalmol 2017; 38:747-756. [DOI: 10.1007/s10792-017-0530-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
26
|
Xia T. Multifunctional nanotherapeutics for treatment of ocular disease. ANNALS OF EYE SCIENCE 2017; 2:22. [PMID: 30123872 PMCID: PMC6097193 DOI: 10.21037/aes.2017.03.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Center for Environmental Implications of Nanotechnology (CEIN), California NanoSystems Institute (CNSI), University of California Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
27
|
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release 2016; 240:77-92. [PMID: 26518723 PMCID: PMC4896846 DOI: 10.1016/j.jconrel.2015.10.049] [Citation(s) in RCA: 283] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023]
Abstract
This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has - and will continue to have - a profound impact on both clinical outcomes and the development of new products.
Collapse
Affiliation(s)
- Ritu Goyal
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Lauren K Macri
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
28
|
Cai Y, Alio del Barrio JL, Wilkins MR, Ang M. Serial optical coherence tomography angiography for corneal vascularization. Graefes Arch Clin Exp Ophthalmol 2016; 255:135-139. [DOI: 10.1007/s00417-016-3505-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/04/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022] Open
|
29
|
Han H, Son S, Son S, Kim N, Yhee JY, Lee JH, Choi JS, Joo CK, Lee H, Lee D, Kim WJ, Kim SH, Kwon IC, Kim H, Kim K. Reducible Polyethylenimine Nanoparticles for Efficient siRNA Delivery in Corneal Neovascularization Therapy. Macromol Biosci 2016; 16:1583-1597. [DOI: 10.1002/mabi.201600051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/14/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Hyounkoo Han
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Sohee Son
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Sejin Son
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Namho Kim
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Ji Young Yhee
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Jae Hyeop Lee
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Jun-Sub Choi
- Department of Ophthalmology and Visual Science; Seoul St. Mary's Hospital; College of Medicine; The Catholic University of Korea; 505, Banpo-dong Seocho-gu Seoul 137-040 South Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science; Seoul St. Mary's Hospital; College of Medicine; The Catholic University of Korea; 505, Banpo-dong Seocho-gu Seoul 137-040 South Korea
| | - Hohyeon Lee
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Duhwan Lee
- Center for Self-Assembly and Complexity; Institute for Basic Science (IBS); Pohang 790-784 South Korea
- Department of Chemistry Polymer Research Institute; Pohang University of Science and Technology (POSTECH); Pohang 790-784 South Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity; Institute for Basic Science (IBS); Pohang 790-784 South Korea
- Department of Chemistry Polymer Research Institute; Pohang University of Science and Technology (POSTECH); Pohang 790-784 South Korea
| | - Sun Hwa Kim
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Ick Chan Kwon
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Kwangmeyung Kim
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| |
Collapse
|
30
|
Schopf LR, Popov AM, Enlow EM, Bourassa JL, Ong WZ, Nowak P, Chen H. Topical Ocular Drug Delivery to the Back of the Eye by Mucus-Penetrating Particles. Transl Vis Sci Technol 2015; 4:11. [PMID: 26101724 DOI: 10.1167/tvst.4.3.11] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/19/2015] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Enhanced drug exposure to the ocular surface typically relies on inclusion of viscosity-enabling agents, whereas delivery to the back of the eye generally focuses on invasive means, such as intraocular injections. Using our novel mucus-penetrating particle (MPP) technology, which rapidly and uniformly coats and penetrates mucosal barriers, we evaluated if such drug formulations could increase ocular drug exposure and improve topical drug delivery. METHODS Pharmacokinetic (PK) profiling of topically administered loterprednol etabonate formulated as MPP (LE-MPP) was performed in rabbits and a larger species, the mini-pig. Pharmacodynamic evaluation was done in a rabbit model of VEGF-induced retinal vascular leakage. Cellular potency and PK profile were determined for a second compound, KAL821, a novel receptor tyrosine kinase inhibitor (RTKi). RESULTS We demonstrated in animals that administration of LE-MPP increased exposure at the ocular surface and posterior compartments. Furthermore using a rabbit vascular leakage model, we demonstrated that biologically effective drug concentrations of LE were delivered to the back of the eye using the MPP technology. We also demonstrated that a novel RTKi formulated as MPPs provided drug levels to the back of the eye above its cellular inhibitory concentration. CONCLUSIONS Topical dosing of MPPs of LE or KAL821 enhanced drug exposure at the front of the eye, and delivered therapeutically relevant drug concentrations to the back of the eye, in animals. TRANSLATIONAL RELEVANCE These preclinical data support using MPP technology to engineer topical formulations to deliver therapeutic drug levels to the back of the eye and could provide major advancements in managing sight-threatening diseases.
Collapse
|
31
|
Pradhan N, Guha R, Chowdhury S, Nandi S, Konar A, Hazra S. Curcumin nanoparticles inhibit corneal neovascularization. J Mol Med (Berl) 2015; 93:1095-106. [PMID: 25877858 DOI: 10.1007/s00109-015-1277-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022]
Abstract
UNLABELLED Corneal neovascularization is a leading cause for compromised vision. Therapeutic prevention of corneal neovascularization is a major clinical challenge, and there is a compelling need to seek effective and safe therapy for this pathology. This study is aimed to evaluate curcumin nanoparticle for prevention of corneal neovascularization. MePEG-PCL nanoparticles were successfully prepared and characterized. The nanoparticle of curcumin has shown increased efficiency in preventing angiogenic sprouting in vitro. Topical delivery of curcumin nanoparticle in the eye showed enhanced retention of curcumin in the cornea, and significant improvement in prevention of corneal neovascularization over free curcumin as graded clinically and by histopathology; suppression in the expression of VEGF, inflammatory cytokines, and MMP was evidenced in the treated cornea. Curcumin inhibited NFκB in LPS-induced corneal cells. Histopathology and scanning electron microscopy showed absence of any adverse change in the corneal structure following application of curcumin nanoparticle. Therefore, we conclude that curcumin nanoparticle can be a potential candidate for prevention of corneal neovascularization. KEY MESSAGE • Curcumin nanoparticles show enhanced retention of curcumin in the cornea. • Curcumin NPs suppress the expression of VEGF, inflammatory cytokines, and MMP. • Curcumin NPs prevent corneal neovascularization by suppressing the NFκB pathway. • Curcumin NPs may be a promising candidate for prevention of corneal neovascularization.
Collapse
Affiliation(s)
- Nirparaj Pradhan
- West Bengal University of Animal and Fishery Sciences, 37 & 68 Kshudiram Bose Sarani, Belgachia, Kolkata, 700037, West Bengal, India
| | - Rajdeep Guha
- CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata, 700032, West Bengal, India
| | - Sushovan Chowdhury
- CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata, 700032, West Bengal, India
| | - Sudip Nandi
- CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata, 700032, West Bengal, India
| | - Aditya Konar
- CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata, 700032, West Bengal, India.
| | - Sarbani Hazra
- West Bengal University of Animal and Fishery Sciences, 37 & 68 Kshudiram Bose Sarani, Belgachia, Kolkata, 700037, West Bengal, India.
| |
Collapse
|
32
|
Çakmak H, Ergin K, Bozkurt G, Kocatürk T, Evliçoğlu GE. The effects of topical everolimus and sunitinib on corneal neovascularization. Cutan Ocul Toxicol 2015; 35:97-103. [PMID: 25864572 DOI: 10.3109/15569527.2015.1034360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To evaluate the effects of topical everolimus and sunitinib on corneal neovascularization (CNV). METHODS CNV was induced by application of silver nitrate to the cornea for all groups. Rats were divided into four groups of 10 rats each, and two corneas were obtained from each rat. Group I received 1 mg/ml everolimus, Group II received 0.5 mg/ml sunitinib, Group IV received no treatment (control group) and Group IV received 1% Dimethylsulfoxide (DMSO). All treatments were administrated twice daily for 2 weeks. The right corneas were used for extracellular signal-regulated kinase 1/2 (ERK 1/2) protein analysis by western blot analysis and the left corneas were used for ERK 1/2 and vascular endothelial growth factor-receptor (VEGFR-2) gene expression analysis by quantitative real-time PCR. RESULTS VEGFR-2 mRNA expression levels (ΔCt, median, min-max) were reduced in the everolimus 1.0 (0.25-1.81) and sunitinib 1.06 (0.24-2.68) treated groups compared with the control 4.74 (1.02-14.74) and DMSO groups 7.41 (0.72-13.10). The expression of ERK 1/2 protein and mRNA levels were reduced in everolimus group compared with the control group (p < 0.05). These differences were not seen between the sunitinib and control groups. CONCLUSION Topical administration of both everolimus and sunitinib reduced VEGFR-2 levels and inhibited CNV. In additon, everolimus reduced ERK 1/2 levels and seems to be more effective than sunitinib on CNV.
Collapse
Affiliation(s)
| | - Kemal Ergin
- b Department of Histology and Embryology , and
| | - Gökay Bozkurt
- c Department of Genetics, Adnan Menderes University Medical Faculty , Aytepe , Aydin , Turkey
| | | | | |
Collapse
|
33
|
Hsu CC, Peng CH, Hung KH, Lee YY, Lin TC, Jang SF, Liu JH, Chen YT, Woung LC, Wang CY, Tsa CY, Chiou SH, Chen SJ, Chang YL. Stem Cell Therapy for Corneal Regeneration Medicine and Contemporary Nanomedicine for Corneal Disorders. Cell Transplant 2014; 24:1915-30. [PMID: 25506885 DOI: 10.3727/096368914x685744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ocular surface is the outermost part of the visual system that faces many extrinsic or intrinsic threats, such as chemical burn, infectious pathogens, thermal injury, Stevens-Johnson syndrome, ocular pemphegoid, and other autoimmune diseases. The cornea plays an important role in conducting light into the eyes and protecting intraocular structures. Several ocular surface diseases will lead to the neovascularization or conjunctivalization of corneal epithelium, leaving opacified optical media. It is believed that some corneal limbal cells may present stem cell-like properties and are capable of regenerating corneal epithelium. Therefore, cultivation of limbal cells and reconstruction of the ocular surface with these limbal cell grafts have attracted tremendous interest in the past few years. Currently, stem cells are found to potentiate regenerative medicine by their capability of differentiation into multiple lineage cells. Among these, the most common cell sources for clinical use are embryonic, adult, and induced stem cells. Different stem cells have varied specific advantages and limitations for in vivo and in vitro expansion. Other than ocular surface diseases, culture and transplantation of corneal endothelial cells is another major issue for corneal decompensation and awaits further studies to find out comprehensive solutions dealing with nonregenerative corneal endothelium. Recently, studies of in vitro endothelium culture and ρ-associated kinase (ROCK) inhibitor have gained encouraging results. Some clinical trials have already been finished and achieved remarkable vision recovery. Finally, nanotechnology has shown great improvement in ocular drug delivery systems during the past two decades. Strategies to reconstruct the ocular surface could combine with nanoparticles to facilitate wound healing, drug delivery, and even neovascularization inhibition. In this review article, we summarized the major advances of corneal limbal stem cells, limbal stem cell deficiency, corneal endothelial cell culture/transplantation, and application of nanotechnology on ocular surface reconstruction. We also illustrated potential applications of current knowledge for the future treatment of ocular surface diseases.
Collapse
Affiliation(s)
- Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sharaf MG, Cetinel S, Heckler L, Damji K, Unsworth L, Montemagno C. Nanotechnology-Based Approaches for Ophthalmology Applications: Therapeutic and Diagnostic Strategies. Asia Pac J Ophthalmol (Phila) 2014; 3:172-80. [PMID: 26107588 DOI: 10.1097/apo.0000000000000059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The purpose of this article was to review recent advances in applications of nanotechnology in ophthalmology. DESIGN Literature review. METHODS Research articles about nanotechnology-based treatments for particular eye diseases and diagnostic technologies were searched through Web of Science, and the most recent advances were reported. RESULTS Nanotechnology enabled to improve drug and gene delivery systems, medicine solubility and short half-life in biological systems, controlled release, targeted delivery, bioavailability, diffusion limitations, and biocompatibility so far. These promising achievements are the assurance of next-generation treatment technologies. As well as treatment, nanofabrications systems such as microelectromechanical manufacturing systems removed the limitations of nanodevice generations and led the development of diagnostic tools such as intraocular pressure monitors and biosensors. CONCLUSIONS The pursuit of personalized medicine approaches for combating ocular diseases may be possible only through the development of nanotechnology platforms that include molecular-level engineering. Nanoparticle engineering is a common thread; herein, we attempt to show unmodified nanoparticles as well as interesting and representative biomimetic strategies can be used for specific diseases. Finally, through combining microelectromechanical and nanoelectromechanical manufacturing system strategies, interesting manufacturing and sensor development can be accomplished for early detection and, in some cases, treatment of ocular diseases.
Collapse
Affiliation(s)
- Mehdi Ghaffari Sharaf
- From the *Chemical & Materials Engineering, †Ingenuity Lab, and ‡Ophthalmology and Visual Sciences, University of Alberta; and §National Institute of Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|