1
|
Molins B, Rodríguez A, Llorenç V, Adán A. Biomaterial engineering strategies for modeling the Bruch's membrane in age-related macular degeneration. Neural Regen Res 2024; 19:2626-2636. [PMID: 38595281 PMCID: PMC11168499 DOI: 10.4103/nrr.nrr-d-23-01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 04/11/2024] Open
Abstract
Age-related macular degeneration, a multifactorial inflammatory degenerative retinal disease, ranks as the leading cause of blindness in the elderly. Strikingly, there is a scarcity of curative therapies, especially for the atrophic advanced form of age-related macular degeneration, likely due to the lack of models able to fully recapitulate the native structure of the outer blood retinal barrier, the prime target tissue of age-related macular degeneration. Standard in vitro systems rely on 2D monocultures unable to adequately reproduce the structure and function of the outer blood retinal barrier, integrated by the dynamic interaction of the retinal pigment epithelium, the Bruch's membrane, and the underlying choriocapillaris. The Bruch's membrane provides structural and mechanical support and regulates the molecular trafficking in the outer blood retinal barrier, and therefore adequate Bruch's membrane-mimics are key for the development of physiologically relevant models of the outer blood retinal barrier. In the last years, advances in the field of biomaterial engineering have provided novel approaches to mimic the Bruch's membrane from a variety of materials. This review provides a discussion of the integrated properties and function of outer blood retinal barrier components in healthy and age-related macular degeneration status to understand the requirements to adequately fabricate Bruch's membrane biomimetic systems. Then, we discuss novel materials and techniques to fabricate Bruch's membrane-like scaffolds for age-related macular degeneration in vitro modeling, discussing their advantages and challenges with a special focus on the potential of Bruch's membrane-like mimics based on decellularized tissue.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Andrea Rodríguez
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Víctor Llorenç
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic Barcelona, Spain
| | - Alfredo Adán
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d’Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Institut Clínic d’Oftalmologia (ICOF), Hospital Clínic Barcelona, Spain
| |
Collapse
|
2
|
Galgani G, Bray G, Martelli A, Calderone V, Citi V. In Vitro Models of Diabetes: Focus on Diabetic Retinopathy. Cells 2024; 13:1864. [PMID: 39594613 PMCID: PMC11592768 DOI: 10.3390/cells13221864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetic retinopathy is a major eye complication in patients with diabetes mellitus, and it is the leading cause of blindness and visual impairment in the world. Chronic hyperglycemia induces endothelial damage with consequent vascular lesions, resulting in global vasculitis, which affects the small vessels of the retina. These vascular lesions cause ischemic conditions in certain areas of the retina, with a consequent increase in the release of pro-angiogenic mediators. In addition to pharmacological interventions for controlling the blood glycaemic level, the main strategies for treating diabetic retinopathy are the intravitreal injections of drugs, surgical treatments, and vitrectomies. The complexity of diabetic retinopathy is due to its close interactions with different cell types (endothelial cells, astrocytes, and Müller cells). The evaluation of the efficacy of novel pharmacological strategies is mainly performed through in vivo models. However, the use of different animal species leads to heterogenic results and ethical concerns. For these reasons, the development of new and reliable in vitro models, such as cell co-cultures and eye organoids, represents an urgent need in this area of research. This review features an overview of the in vitro models used to date and highlights the advances in technology used to study this pathology.
Collapse
Affiliation(s)
- Giulia Galgani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.G.); (A.M.); (V.C.); (V.C.)
| | - Giorgia Bray
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.G.); (A.M.); (V.C.); (V.C.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.G.); (A.M.); (V.C.); (V.C.)
- Interuniversity Centre for the Promotion of the 3R Principles in Teaching and Research, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.G.); (A.M.); (V.C.); (V.C.)
- Interuniversity Centre for the Promotion of the 3R Principles in Teaching and Research, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (G.G.); (A.M.); (V.C.); (V.C.)
- Interuniversity Centre for the Promotion of the 3R Principles in Teaching and Research, Italy
| |
Collapse
|
3
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
4
|
Zhou Y, Zhao C, Shi Z, Heger Z, Jing H, Shi Z, Dou Y, Wang S, Qiu Z, Li N. A Glucose-Responsive Hydrogel Inhibits Primary and Secondary BRB Injury for Retinal Microenvironment Remodeling in Diabetic Retinopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402368. [PMID: 39031576 PMCID: PMC11348052 DOI: 10.1002/advs.202402368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Indexed: 07/22/2024]
Abstract
Current diabetic retinopathy (DR) treatment involves blood glucose regulation combined with laser photocoagulation or intravitreal injection of vascular endothelial growth factor (VEGF) antibodies. However, due to the complex pathogenesis and cross-interference of multiple biochemical pathways, these interventions cannot block disease progression. Recognizing the critical role of the retinal microenvironment (RME) in DR, it is hypothesized that reshaping the RME by simultaneously inhibiting primary and secondary blood-retinal barrier (BRB) injury can attenuate DR. For this, a glucose-responsive hydrogel named Cu-PEI/siMyD88@GEMA-Con A (CSGC) is developed that effectively delivers Cu-PEI/siMyD88 nanoparticles (NPs) to the retinal pigment epithelium (RPE). The Cu-PEI NPs act as antioxidant enzymes, scavenging ROS and inhibiting RPE pyroptosis, ultimately blocking primary BRB injury by reducing microglial activation and Th1 differentiation. Simultaneously, MyD88 expression silence in combination with the Cu-PEI NPs decreases IL-18 production, synergistically reduces VEGF levels, and enhances tight junction proteins expression, thus blocking secondary BRB injury. In summary, via remodeling the RME, the CSGC hydrogel has the potential to disrupt the detrimental cycle of cross-interference between primary and secondary BRB injury, providing a promising therapeutic strategy for DR.
Collapse
Affiliation(s)
- Yue Zhou
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Department of PharmacyTianjin Union Medical CenterNankai UniversityTianjin300122P. R. China
| | - Chan Zhao
- Department of OphthalmologyPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730P. R. China
- Key Laboratory of Ocular Fundus DiseasesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Zhiyuan Shi
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zbynek Heger
- Department of Chemistry and BiochemistryMendel University in BrnoBrnoCZ‐61300Czech Republic
| | - HuaQing Jing
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zhengming Shi
- Department of OphthalmologyPeking Union Medical College HospitalChinese Academy of Medical SciencesBeijing100730P. R. China
- Key Laboratory of Ocular Fundus DiseasesChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100730P. R. China
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Zitong Qiu
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High‐EfficiencySchool of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| |
Collapse
|
5
|
Kim J, Yoon T, Lee S, Kim PJ, Kim Y. Reconstitution of human tissue barrier function for precision and personalized medicine. LAB ON A CHIP 2024; 24:3347-3366. [PMID: 38895863 DOI: 10.1039/d4lc00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tissue barriers in a body, well known as tissue-to-tissue interfaces represented by endothelium of the blood vessels or epithelium of organs, are essential for maintaining physiological homeostasis by regulating molecular and cellular transports. It is crucial for predicting drug response to understand physiology of tissue barriers through which drugs are absorbed, distributed, metabolized and excreted. Since the FDA Modernization Act 2.0, which prompts the inception of alternative technologies for animal models, tissue barrier chips, one of the applications of organ-on-a-chip or microphysiological system (MPS), have only recently been utilized in the context of drug development. Recent advancements in stem cell technology have brightened the prospects for the application of tissue barrier chips in personalized medicine. In past decade, designing and engineering these microfluidic devices, and demonstrating the ability to reconstitute tissue functions were main focus of this field. However, the field is now advancing to the next level of challenges: validating their utility in drug evaluation and creating personalized models using patient-derived cells. In this review, we briefly introduce key design parameters to develop functional tissue barrier chip, explore the remarkable recent progress in the field of tissue barrier chips and discuss future perspectives on realizing personalized medicine through the utilization of tissue barrier chips.
Collapse
Affiliation(s)
- Jaehoon Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Taehee Yoon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sungryeong Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Paul J Kim
- Department of Psychiatry & Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Dennison NR, Fusenig M, Grönnert L, Maitz MF, Ramirez Martinez MA, Wobus M, Freudenberg U, Bornhäuser M, Friedrichs J, Westenskow PD, Werner C. Precision Culture Scaling to Establish High-Throughput Vasculogenesis Models. Adv Healthc Mater 2024; 13:e2400388. [PMID: 38465502 DOI: 10.1002/adhm.202400388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 03/12/2024]
Abstract
Hydrogel-based 3D cell cultures can recapitulate (patho)physiological phenomena ex vivo. However, due to their complex multifactorial regulation, adapting these tissue and disease models for high-throughput screening workflows remains challenging. In this study, a new precision culture scaling (PCS-X) methodology combines statistical techniques (design of experiment and multiple linear regression) with automated, parallelized experiments and analyses to customize hydrogel-based vasculogenesis cultures using human umbilical vein endothelial cells and retinal microvascular endothelial cells. Variations of cell density, growth factor supplementation, and media composition are systematically explored to induce vasculogenesis in endothelial mono- and cocultures with mesenchymal stromal cells or retinal microvascular pericytes in 384-well plate formats. The developed cultures are shown to respond to vasculogenesis inhibitors in a compound- and dose-dependent manner, demonstrating the scope and power of PCS-X in creating parallelized tissue and disease models for drug discovery and individualized therapies.
Collapse
Affiliation(s)
- Nicholas R Dennison
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Maximilian Fusenig
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Lisa Grönnert
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | | | - Manja Wobus
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Martin Bornhäuser
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Peter D Westenskow
- Ocular Technologies, Immunology, Infectious Diseases and Ophthalmology, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, 4070, Switzerland
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Center for Regenerative Therapies Dresden and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307, Dresden, Germany
| |
Collapse
|
7
|
Faria MJ, González-Méijome JM, Real Oliveira MECD, Carracedo G, Lúcio M. Recent advances and strategies for nanocarrier-mediated topical therapy and theranostic for posterior eye disease. Adv Drug Deliv Rev 2024; 210:115321. [PMID: 38679293 DOI: 10.1016/j.addr.2024.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Posterior eye disorders, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, have a significant impact on human quality of life and are the primary cause of age-related retinal diseases among adults. There is a pressing need for innovative topical approaches to treat posterior eye disorders, as current methods often rely on invasive procedures with inherent risks. Limited success was attained in the realm of topical ophthalmic delivery through non-invasive means. Additionally, there exists a dearth of literature that delves into the potential of this approach for drug delivery and theranostic purposes, or that offers comprehensive design strategies for nanocarrier developers to surmount the significant physiological ocular barriers. This review offers a thorough and up-to-date state-of-the-art overview of 40 studies on therapeutic loaded nanocarriers and theranostic devices that, to the best of our knowledge, represent all successful works that reached posterior eye segments through a topical non-invasive administration. Most importantly, based on the successful literature studies, this review provides a comprehensive summary of the potential design strategies that can be implemented during nanocarrier development to overcome each ocular barrier.
Collapse
Affiliation(s)
- Maria João Faria
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - José M González-Méijome
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; CEORLab - Clinical and Experimental Optometry Research Lab, Centre of Physics, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - M Elisabete C D Real Oliveira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, University Complutense of Madrid, C/Arcos de Jalon 118, Madrid 28037, Spain.
| | - Marlene Lúcio
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal; CBMA - Centre of Molecular and Environmental Biology, Department of Biology, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
8
|
Ponmozhi J, Dhinakaran S, Kocsis D, Iván K, Erdő F. Models for barrier understanding in health and disease in lab-on-a-chips. Tissue Barriers 2024; 12:2221632. [PMID: 37294075 PMCID: PMC11042069 DOI: 10.1080/21688370.2023.2221632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The maintenance of body homeostasis relies heavily on physiological barriers. Dysfunction of these barriers can lead to various pathological processes, including increased exposure to toxic materials and microorganisms. Various methods exist to investigate barrier function in vivo and in vitro. To investigate barrier function in a highly reproducible manner, ethically, and high throughput, researchers have turned to non-animal techniques and micro-scale technologies. In this comprehensive review, the authors summarize the current applications of organ-on-a-chip microfluidic devices in the study of physiological barriers. The review covers the blood-brain barrier, ocular barriers, dermal barrier, respiratory barriers, intestinal, hepatobiliary, and renal/bladder barriers under both healthy and pathological conditions. The article then briefly presents placental/vaginal, and tumour/multi-organ barriers in organ-on-a-chip devices. Finally, the review discusses Computational Fluid Dynamics in microfluidic systems that integrate biological barriers. This article provides a concise yet informative overview of the current state-of-the-art in barrier studies using microfluidic devices.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore, India
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
9
|
Maurissen TL, Spielmann AJ, Schellenberg G, Bickle M, Vieira JR, Lai SY, Pavlou G, Fauser S, Westenskow PD, Kamm RD, Ragelle H. Modeling early pathophysiological phenotypes of diabetic retinopathy in a human inner blood-retinal barrier-on-a-chip. Nat Commun 2024; 15:1372. [PMID: 38355716 PMCID: PMC10866954 DOI: 10.1038/s41467-024-45456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Diabetic retinopathy (DR) is a microvascular disorder characterized by inner blood-retinal barrier (iBRB) breakdown and irreversible vision loss. While the symptoms of DR are known, disease mechanisms including basement membrane thickening, pericyte dropout and capillary damage remain poorly understood and interventions to repair diseased iBRB microvascular networks have not been developed. In addition, current approaches using animal models and in vitro systems lack translatability and predictivity to finding new target pathways. Here, we develop a diabetic iBRB-on-a-chip that produces pathophysiological phenotypes and disease pathways in vitro that are representative of clinical diagnoses. We show that diabetic stimulation of the iBRB-on-a-chip mirrors DR features, including pericyte loss, vascular regression, ghost vessels, and production of pro-inflammatory factors. We also report transcriptomic data from diabetic iBRB microvascular networks that may reveal drug targets, and examine pericyte-endothelial cell stabilizing strategies. In summary, our model recapitulates key features of disease, and may inform future therapies for DR.
Collapse
Affiliation(s)
- Thomas L Maurissen
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Alena J Spielmann
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Gabriella Schellenberg
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marc Bickle
- Roche Pharma Research and Early Development, Institute of Human Biology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jose Ricardo Vieira
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Si Ying Lai
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Peter D Westenskow
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Héloïse Ragelle
- Roche Pharma Research and Early Development, Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
10
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
11
|
D'Amico AG, Maugeri G, Magrì B, Lombardo C, Saccone S, Federico C, Cavallaro P, Giunta S, Bucolo C, D'Agata V. PACAP-ADNP axis prevents outer retinal barrier breakdown and choroidal neovascularization by interfering with VEGF secreted from retinal pigmented epitelium cells. Peptides 2023; 168:171065. [PMID: 37495040 DOI: 10.1016/j.peptides.2023.171065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
During diabetic retinopathy (DR) progression, the retina undergoes various metabolic changes, including hypoxia-signalling cascade induction in the cells of retinal pigmented epithelium (RPE). The overexpression of hypoxic inducible factors causes transcription of many target genes including vascular endothelial growth factor (VEGF). The RPE cells form the outer blood retinal barrier (oBRB), a specialized structure that regulates ions and metabolites flux into the retina to maintain a suitable quality of its extracellular microenvironment. VEGF worsens retinal condition since its secretion from the basolateral compartment of RPE cells compromises the barrier's integrity and induces choroidal neovascularization. In this work, we hypothesized that PACAP prevents the damage to oBRB and controls choroidal neovascularization through the induction of ADNP. Firstly, we demonstrated that ADNP is expressed in Streptozotocin (STZ)-induced diabetic animals. To validate our hypothesis, we cultured endothelial cells (H5V) forming vessels-like structures, in a conditioned medium (CM) derived from ARPE-19 cells exposed to hyperglycaemic/hypoxic insult, containing a known VEGF concentration. The involvement of PACAP-ADNP axis on oBRB integrity was evaluated through the measurement of trans-epithelial-electrical resistance and permeability assay performed on ARPE cell monolayer cultured in CM and by analysing the expression of two tight junction forming proteins, ZO1 and occludin. By culturing H5V in CM, we demonstrated that PACAP-ADNP axis counteracted vessels-like structures formation promoted by VEGF. In conclusion, the results suggested a primary role of PACAP/ADNP axis in preventing oBRB damage and in controlling aberrant choroidal neovascularization induced by VEGF secreted from RPE cells exposed to hyperglycaemia/hypoxic insult in DR.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Drug and Health Sciences, Section of System Biology, University of Catania, 95125 Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Benedetta Magrì
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy
| | - Paola Cavallaro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Italy
| | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy.
| |
Collapse
|
12
|
Nam U, Lee S, Jeon JS. Generation of a 3D Outer Blood-Retinal Barrier with Advanced Choriocapillaris and Its Application in Diabetic Retinopathy in a Microphysiological System. ACS Biomater Sci Eng 2023; 9:4929-4939. [PMID: 37494673 DOI: 10.1021/acsbiomaterials.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The outer blood-retinal barrier (oBRB) provides an optimal environment for the function of the photoreceptor by regulating the exchange of molecules between subretinal space and the choriocapillaris, and its dysfunction could impair the photoreceptor's function and vision. The existing in vitro models have limitations in reproducing the barrier function or physiological characteristics of oBRB and choriocapillaris. Here, we engineered a microphysiological system-based oBRB-choriocapillaris model that simultaneously incorporates the desired physiological characteristics and is simple to fabricate. First, we generated microvascular networks to mimic choriocapillaris and investigated the role of fibroblasts in vasculogenesis. By adding retinal pigment epithelial cells to one side of blood vessels formed with endothelial cells and fibroblasts and optimizing their culture medium conditions, we established an oBRB-choriocapillaris model. To verify the physiological similarity of our oBRB-choriocapillaris model, we identified the polarization and expression of the tight junction of the retinal pigment epithelium, Bruch's membrane, and the fenestral diaphragm of choriocapillaris. Finally, we tried to recapitulate the diabetes mellitus environment in our model with hyperglycemia and diabetes-related cytokines. This induced a decrease in tight junction integrity, loss of barrier function, and shrinkage of blood vessels, similar to the in vivo pathological changes observed in the oBRB and choriocapillaris. The oBRB-choriocapillaris model developed using a microphysiological system is expected to offer a valuable in vitro platform for retinal and choroidal vascular diseases in preclinical applications.
Collapse
Affiliation(s)
- Ungsig Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seokhun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Tong Z, Esser L, Galettis P, Rudd D, Easton CD, Nilghaz A, Peng B, Zhu D, Thissen H, Martin JH, Voelcker NH. Fluoropolymer Functionalization of Organ-on-Chip Platform Increases Detection Sensitivity for Cannabinoids. BIOSENSORS 2023; 13:779. [PMID: 37622865 PMCID: PMC10452156 DOI: 10.3390/bios13080779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Microfluidic technology is applied across various research areas including organ-on-chip (OOC) systems. The main material used for microfluidics is polydimethylsiloxane (PDMS), a silicone elastomer material that is biocompatible, transparent, and easy to use for OOC systems with well-defined microstructures. However, PDMS-based OOC systems can absorb hydrophobic and small molecules, making it difficult and erroneous to make quantitative analytical assessments for such compounds. In this paper, we explore the use of a synthetic fluoropolymer, poly(4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole-co-tetrafluoroethylene) (Teflon™ AF 2400), with excellent "non-stick" properties to functionalize OOC systems. Cannabinoids, including cannabidiol (CBD), are classes of hydrophobic compounds with a great potential for the treatment of anxiety, depression, pain, and cancer. By using CBD as a testing compound, we examined and systematically quantified CBD absorption into PDMS by means of an LC-MS/MS analysis. In comparison to the unmodified PDMS microchannels, an increase of approximately 30× in the CBD signal was detected with the fluoropolymer surface modification after 3 h of static incubation. Under perfusion conditions, we observed an increase of nearly 15× in the CBD signals from the surface-modified microchannels than from the unmodified microchannels. Furthermore, we also demonstrated that fluoropolymer-modified microchannels are compatible for culturing hCMEC/D3 endothelial cells and for CBD perfusion experiments.
Collapse
Affiliation(s)
- Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
| | - Lars Esser
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia; (L.E.); (C.D.E.); (H.T.)
| | - Peter Galettis
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, Faculty of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia;
- Centre Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
| | - Christopher D. Easton
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia; (L.E.); (C.D.E.); (H.T.)
| | - Azadeh Nilghaz
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
- Institute for Frontier Materials, Deakin University, Waurn Pounds, VIC 3216, Australia
| | - Bo Peng
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
- Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Douer Zhu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
| | - Helmut Thissen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC 3168, Australia; (L.E.); (C.D.E.); (H.T.)
| | - Jennifer H. Martin
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, Faculty of Health, Medicine & Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia;
- Centre Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (Z.T.); (D.R.); (A.N.); (B.P.); (D.Z.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
14
|
Saha B, Roy A, Beltramo E, Sahoo OS. Stem cells and diabetic retinopathy: From models to treatment. Mol Biol Rep 2023; 50:4517-4526. [PMID: 36842153 DOI: 10.1007/s11033-023-08337-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Diabetic retinopathy is a common yet complex microvascular disease, caused as a complication of diabetes mellitus. Associated with hyperglycemia and subsequent metabolic abnormalities, advanced stages of the disease lead to fibrosis, subsequent visual impairment and blindness. Though clinical postmortems, animal and cell models provide information about the progression and prognosis of diabetic retinopathy, its underlying pathophysiology still needs a better understanding. In addition to it, the loss of pericytes, immature retinal angiogenesis and neuronal apoptosis portray the disease treatment to be challenging. Indulged with cell loss of both vascular and neuronal type cells, novel therapies like cell replacement strategies by various types of stem cells have been sightseen as a possible treatment of the disease. This review provides insight into the pathophysiology of diabetic retinopathy, current models used in modelling the disease, as well as the varied aspects of stem cells in generating three-dimensional retinal models. Further outlook on stem cell therapy and the future directions of stem cell treatment in diabetic retinopathy have also been contemplated.
Collapse
Affiliation(s)
- Bihan Saha
- National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Akshita Roy
- Autonomous State Medical College, Fatehpur, 212601, Uttar Pradesh, India
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, 10124, Turin, Italy
| | - Om Saswat Sahoo
- National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
15
|
Kravchenko SV, Myasnikova VV, Sakhnov SN. [Application of the organ-on-a-chip technology in experimental ophthalmology]. Vestn Oftalmol 2023; 139:114-120. [PMID: 36924523 DOI: 10.17116/oftalma2023139011114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Organ-on-chip is a microfluidic device that can reproduce in vitro the minimal functional unit of an organ or system of organs and model various physiological processes and body structures with high accuracy. This review covers the main approaches to the use of the organ-on-chip technology in modern experimental ophthalmology. The analysis of literature sources revealed the following main applications of the organ-on-chip technology in ophthalmology; the technology allows modeling the anterior eye surface and its diseases, such as dry eye syndrome, as well as disorders of the posterior segment of the eye such as age-related macular degeneration, diabetic macular edema, diabetic retinopathy, glaucoma. Culturing of eye tissues in microfluidic systems helps identify the toxic effects and pharmacological activity of new compounds, and provides an opportunity for deeper understanding of the normal physiology of the eye and the pathogenesis of ocular diseases. In addition, the technology can reduce the cost and duration of experiments. Thus, the organ-on-a-chip technology has a great potential in the field of experimental ophthalmology and preclinical trials of new ophthalmic drugs.
Collapse
Affiliation(s)
- S V Kravchenko
- Krasnodar branch of S.N. Fedorov National Medical Research Center «MNTK «Eye Microsurgery», Krasnodar, Russia
| | - V V Myasnikova
- Krasnodar branch of S.N. Fedorov National Medical Research Center «MNTK «Eye Microsurgery», Krasnodar, Russia
- Kuban State Medical University, Krasnodar, Russia
| | - S N Sakhnov
- Krasnodar branch of S.N. Fedorov National Medical Research Center «MNTK «Eye Microsurgery», Krasnodar, Russia
- Kuban State Medical University, Krasnodar, Russia
| |
Collapse
|
16
|
Molins B, Mesquida M, Adan A. Bioengineering approaches for modelling retinal pathologies of the outer blood-retinal barrier. Prog Retin Eye Res 2022:101097. [PMID: 35840488 DOI: 10.1016/j.preteyeres.2022.101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Alterations of the junctional complex of the outer blood-retinal barrier (oBRB), which is integrated by the close interaction of the retinal pigment epithelium, the Bruch's membrane, and the choriocapillaris, contribute to the loss of neuronal signalling and subsequent vision impairment in several retinal inflammatory disorders such as age-related macular degeneration and diabetic retinopathy. Reductionist approaches into the mechanisms that underlie such diseases have been hindered by the absence of adequate in vitro models using human cells to provide the 3D dynamic architecture that enables expression of the in vivo phenotype of the oBRB. Conventional in vitro cell models are based on 2D monolayer cellular cultures, unable to properly recapitulate the complexity of living systems. The main drawbacks of conventional oBRB models also emerge from the cell sourcing, the lack of an appropriate Bruch's membrane analogue, and the lack of choroidal microvasculature with flow. In the last years, the advent of organ-on-a-chip, bioengineering, and stem cell technologies is providing more advanced 3D models with flow, multicellularity, and external control over microenvironmental properties. By incorporating additional biological complexity, organ-on-a-chip devices can mirror physiologically relevant properties of the native tissue while offering additional set ups to model and study disease. In this review we first examine the current understanding of oBRB biology as a functional unit, highlighting the coordinated contribution of the different components to barrier function in health and disease. Then we describe recent advances in the use of pluripotent stem cells-derived retinal cells, Bruch's membrane analogues, and co-culture techniques to recapitulate the oBRB. We finally discuss current advances and challenges of oBRB-on-a-chip technologies for disease modelling.
Collapse
Affiliation(s)
- Blanca Molins
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain.
| | - Marina Mesquida
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alfredo Adan
- Group of Ocular Inflammation: Clinical and Experimental Studies, Institut d'Investigacions Biomèdiques Agustí Pi I Sunyer (IDIBAPS), C/ Sabino de Arana 1, 08028, Barcelona, Spain; Instituto Clínic de Oftalmología, Hospital Clínic Barcelona, C/ Sabino de Arana 1, 08028, Barcelona, Spain
| |
Collapse
|
17
|
Miny L, Maisonneuve BGC, Quadrio I, Honegger T. Modeling Neurodegenerative Diseases Using In Vitro Compartmentalized Microfluidic Devices. Front Bioeng Biotechnol 2022; 10:919646. [PMID: 35813998 PMCID: PMC9263267 DOI: 10.3389/fbioe.2022.919646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
The human brain is a complex organ composed of many different types of cells interconnected to create an organized system able to efficiently process information. Dysregulation of this delicately balanced system can lead to the development of neurological disorders, such as neurodegenerative diseases (NDD). To investigate the functionality of human brain physiology and pathophysiology, the scientific community has been generated various research models, from genetically modified animals to two- and three-dimensional cell culture for several decades. These models have, however, certain limitations that impede the precise study of pathophysiological features of neurodegeneration, thus hindering therapeutical research and drug development. Compartmentalized microfluidic devices provide in vitro minimalistic environments to accurately reproduce neural circuits allowing the characterization of the human central nervous system. Brain-on-chip (BoC) is allowing our capability to improve neurodegeneration models on the molecular and cellular mechanism aspects behind the progression of these troubles. This review aims to summarize and discuss the latest advancements of microfluidic models for the investigations of common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Louise Miny
- NETRI, Lyon, France
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
| | | | - Isabelle Quadrio
- BIORAN Team, Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Lyon 1 University, Bron, France
- Laboratory of Neurobiology and Neurogenetics, Department of Biochemistry and Molecular Biology, Lyon University Hospital, Bron, France
| | | |
Collapse
|
18
|
Castro NG, Cohen R, Vazquez M. Re: "Organ-On-A-Chip Technologies for Advanced Blood-Retinal Barrier Models," by Ragelle et al. J Ocul Pharmacol Ther 2022; 38:329-330. [PMID: 35687506 PMCID: PMC9242710 DOI: 10.1089/jop.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Natalia G. Castro
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Rick Cohen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,Address correspondence to: Dr. Maribel Vazquez, Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
19
|
Martinelli I, Tayebati SK, Tomassoni D, Nittari G, Roy P, Amenta F. Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells 2022; 11:cells11071120. [PMID: 35406683 PMCID: PMC8997725 DOI: 10.3390/cells11071120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Brain and retinal organoids are functional and dynamic in vitro three-dimensional (3D) structures derived from pluripotent stem cells that spontaneously organize themselves to their in vivo counterparts. Here, we review the main literature data of how these organoids have been developed through different protocols and how they have been technically analyzed. Moreover, this paper reviews recent advances in using organoids to model neurological and retinal diseases, considering their potential for translational applications but also pointing out their limitations. Since the blood–brain barrier (BBB) and blood–retinal barrier (BRB) are understood to play a fundamental role respectively in brain and eye functions, both in health and in disease, we provide an overview of the progress in the development techniques of in vitro models as reliable and predictive screening tools for BBB and BRB-penetrating compounds. Furthermore, we propose potential future directions for brain and retinal organoids, in which dedicated biobanks will represent a novel tool for neuroscience and ophthalmology research.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
- Correspondence:
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Giulio Nittari
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (S.K.T.); (G.N.); (F.A.)
| |
Collapse
|
20
|
Mut SR, Mishra S, Vazquez M. A Microfluidic Eye Facsimile System to Examine the Migration of Stem-like Cells. MICROMACHINES 2022; 13:mi13030406. [PMID: 35334698 PMCID: PMC8954941 DOI: 10.3390/mi13030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023]
Abstract
Millions of adults are affected by progressive vision loss worldwide. The rising incidence of retinal diseases can be attributed to damage or degeneration of neurons that convert light into electrical signals for vision. Contemporary cell replacement therapies have transplanted stem and progenitor-like cells (SCs) into adult retinal tissue to replace damaged neurons and restore the visual neural network. However, the inability of SCs to migrate to targeted areas remains a fundamental challenge. Current bioengineering projects aim to integrate microfluidic technologies with organotypic cultures to examine SC behaviors within biomimetic environments. The application of neural phantoms, or eye facsimiles, in such systems will greatly aid the study of SC migratory behaviors in 3D. This project developed a bioengineering system, called the μ-Eye, to stimulate and examine the migration of retinal SCs within eye facsimiles using external chemical and electrical stimuli. Results illustrate that the imposed fields stimulated large, directional SC migration into eye facsimiles, and that electro-chemotactic stimuli produced significantly larger increases in cell migration than the individual stimuli combined. These findings highlight the significance of microfluidic systems in the development of approaches that apply external fields for neural repair and promote migration-targeted strategies for retinal cell replacement therapy.
Collapse
Affiliation(s)
- Stephen Ryan Mut
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ 08854, USA;
| | - Shawn Mishra
- Regeneron, 777 Old Saw Mill River Rd, Tarrytown, NY 10591, USA;
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd, Piscataway, NJ 08854, USA;
- Correspondence:
| |
Collapse
|
21
|
Maurissen TL, Pavlou G, Bichsel C, Villaseñor R, Kamm RD, Ragelle H. Microphysiological Neurovascular Barriers to Model the Inner Retinal Microvasculature. J Pers Med 2022; 12:jpm12020148. [PMID: 35207637 PMCID: PMC8876566 DOI: 10.3390/jpm12020148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Blood-neural barriers regulate nutrient supply to neuronal tissues and prevent neurotoxicity. In particular, the inner blood-retinal barrier (iBRB) and blood–brain barrier (BBB) share common origins in development, and similar morphology and function in adult tissue, while barrier breakdown and leakage of neurotoxic molecules can be accompanied by neurodegeneration. Therefore, pre-clinical research requires human in vitro models that elucidate pathophysiological mechanisms and support drug discovery, to add to animal in vivo modeling that poorly predict patient responses. Advanced cellular models such as microphysiological systems (MPS) recapitulate tissue organization and function in many organ-specific contexts, providing physiological relevance, potential for customization to different population groups, and scalability for drug screening purposes. While human-based MPS have been developed for tissues such as lung, gut, brain and tumors, few comprehensive models exist for ocular tissues and iBRB modeling. Recent BBB in vitro models using human cells of the neurovascular unit (NVU) showed physiological morphology and permeability values, and reproduced brain neurological disorder phenotypes that could be applicable to modeling the iBRB. Here, we describe similarities between iBRB and BBB properties, compare existing neurovascular barrier models, propose leverage of MPS-based strategies to develop new iBRB models, and explore potentials to personalize cellular inputs and improve pre-clinical testing.
Collapse
Affiliation(s)
- Thomas L. Maurissen
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Georgios Pavlou
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA;
| | - Colette Bichsel
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Roche Pharma Research and Early Development, Institute for Translational Bioengineering, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roberto Villaseñor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., MIT Building, Room NE47-321, Cambridge, MA 02139, USA
- Correspondence: (R.D.K.); (H.R.)
| | - Héloïse Ragelle
- Roche Pharma Research and Early Development, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland;
- Correspondence: (R.D.K.); (H.R.)
| |
Collapse
|
22
|
Ragelle H, Dernick K, Westenskow PD, Kustermann S. Retinal Microvasculature-on-a-Chip for Modeling VEGF-Induced Permeability. Methods Mol Biol 2022; 2475:239-257. [PMID: 35451763 DOI: 10.1007/978-1-0716-2217-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Relevant human in vitro models of the retinal microvasculature can be used to study the role of disease mediators on retinal barrier dysfunction and assess the efficacy of early drug candidates. This chapter describes an organ-on-a-chip model of the retinal microvasculature that allows for facile quantification of barrier permeability in response to leakage mediators, such as Vascular Endothelial Growth Factor (VEGF), and enables screening of VEGF-induced permeability inhibitors. This chapter also presents an automated confocal imaging method for the visualization of endothelial tube morphology as an additional measure of barrier integrity.
Collapse
Affiliation(s)
- Héloïse Ragelle
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Karen Dernick
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Peter D Westenskow
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Kustermann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
23
|
Maoz BM. Brain-on-a-Chip: Characterizing the next generation of advanced in vitro platforms for modeling the central nervous system. APL Bioeng 2021; 5:030902. [PMID: 34368601 PMCID: PMC8325567 DOI: 10.1063/5.0055812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain creates significant, almost insurmountable challenges for neurological drug development. Advanced in vitro platforms are increasingly enabling researchers to overcome these challenges, by mimicking key features of the brain's composition and functionality. Many of these platforms are called "Brains-on-a-Chip"-a term that was originally used to refer to microfluidics-based systems containing miniature engineered tissues, but that has since expanded to describe a vast range of in vitro central nervous system (CNS) modeling approaches. This Perspective seeks to refine the definition of a Brain-on-a-Chip for the next generation of in vitro platforms, identifying criteria that determine which systems should qualify. These criteria reflect the extent to which a given platform overcomes the challenges unique to in vitro CNS modeling (e.g., recapitulation of the brain's microenvironment; inclusion of critical subunits, such as the blood-brain barrier) and thereby provides meaningful added value over conventional cell culture systems. The paper further outlines practical considerations for the development and implementation of Brain-on-a-Chip platforms and concludes with a vision for where these technologies may be heading.
Collapse
Affiliation(s)
- Ben M. Maoz
- Author to whom correspondence should be addressed:
| |
Collapse
|
24
|
Antimisiaris S, Marazioti A, Kannavou M, Natsaridis E, Gkartziou F, Kogkos G, Mourtas S. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev 2021; 174:53-86. [PMID: 33539852 DOI: 10.1016/j.addr.2021.01.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Localized or topical administration of drugs may be considered as a potential approach for overcoming the problems caused by the various biological barriers encountered in drug delivery. The combination of using localized administration routes and delivering drugs in nanoparticulate formulations, such as liposomes, may have additional advantages. Such advantages include prolonged retention of high drug loads at the site of action and controlled release of the drug, ensuring prolonged therapeutic effect; decreased potential for side-effects and toxicity (due to the high topical concentrations of drugs); and increased protection of drugs from possible harsh environments at the site of action. The use of targeted liposomal formulations may further potentiate any acquired therapeutic advantages. In this review we present the most advanced cases of localized delivery of liposomal formulations of drugs, which have been investigated pre-clinically and clinically in the last ten years, together with the reported therapeutic advantages, in each case.
Collapse
|
25
|
Dihydrotanshinone, a Natural Diterpenoid, Preserves Blood-Retinal Barrier Integrity via P2X7 Receptor. Int J Mol Sci 2020; 21:ijms21239305. [PMID: 33291318 PMCID: PMC7730037 DOI: 10.3390/ijms21239305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Activation of P2X7 signaling, due to high glucose levels, leads to blood retinal barrier (BRB) breakdown, which is a hallmark of diabetic retinopathy (DR). Furthermore, several studies report that high glucose (HG) conditions and the related activation of the P2X7 receptor (P2X7R) lead to the over-expression of pro-inflammatory markers. In order to identify novel P2X7R antagonists, we carried out virtual screening on a focused compound dataset, including indole derivatives and natural compounds such as caffeic acid phenethyl ester derivatives, flavonoids, and diterpenoids. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring and structural fingerprint clustering of docking poses from virtual screening highlighted that the diterpenoid dihydrotanshinone (DHTS) clustered with the well-known P2X7R antagonist JNJ47965567. A human-based in vitro BRB model made of retinal pericytes, astrocytes, and endothelial cells was used to assess the potential protective effect of DHTS against HG and 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate (BzATP), a P2X7R agonist, insult. We found that HG/BzATP exposure generated BRB breakdown by enhancing barrier permeability (trans-endothelial electrical resistance (TEER)) and reducing the levels of ZO-1 and VE-cadherin junction proteins as well as of the Cx-43 mRNA expression levels. Furthermore, HG levels and P2X7R agonist treatment led to increased expression of pro-inflammatory mediators (TLR-4, IL-1β, IL-6, TNF-α, and IL-8) and other molecular markers (P2X7R, VEGF-A, and ICAM-1), along with enhanced production of reactive oxygen species. Treatment with DHTS preserved the BRB integrity from HG/BzATP damage. The protective effects of DHTS were also compared to the validated P2X7R antagonist, JNJ47965567. In conclusion, we provided new findings pointing out the therapeutic potential of DHTS, which is an inhibitor of P2X7R, in terms of preventing and/or counteracting the BRB dysfunctions elicited by HG conditions.
Collapse
|
26
|
Ghareeb AE, Lako M, Steel DH. Coculture techniques for modeling retinal development and disease, and enabling regenerative medicine. Stem Cells Transl Med 2020; 9:1531-1548. [PMID: 32767661 PMCID: PMC7695644 DOI: 10.1002/sctm.20-0201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Stem cell-derived retinal organoids offer the opportunity to cure retinal degeneration of wide-ranging etiology either through the study of in vitro models or the generation of tissue for transplantation. However, despite much work in animals and several human pilot studies, satisfactory therapies have not been developed. Two major challenges for retinal regenerative medicine are (a) physical cell-cell interactions, which are critical to graft function, are not formed and (b) the host environment does not provide suitable queues for development. Several strategies offer to improve the delivery, integration, maturation, and functionality of cell transplantation. These include minimally invasive delivery, biocompatible material vehicles, retinal cell sheets, and optogenetics. Optimizing several variables in animal models is practically difficult, limited by anatomical and disease pathology which is often different to humans, and faces regulatory and ethical challenges. High-throughput methods are needed to experimentally optimize these variables. Retinal organoids will be important to the success of these models. In their current state, they do not incorporate a representative retinal pigment epithelium (RPE)-photoreceptor interface nor vascular elements, which influence the neural retina phenotype directly and are known to be dysfunctional in common retinal diseases such as age-related macular degeneration. Advanced coculture techniques, which emulate the RPE-photoreceptor and RPE-Bruch's-choriocapillaris interactions, can incorporate disease-specific, human retinal organoids and overcome these drawbacks. Herein, we review retinal coculture models of the neural retina, RPE, and choriocapillaris. We delineate the scientific need for such systems in the study of retinal organogenesis, disease modeling, and the optimization of regenerative cell therapies for retinal degeneration.
Collapse
Affiliation(s)
- Ali E. Ghareeb
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation TrustSunderlandUK
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - Majlinda Lako
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| | - David H. Steel
- Sunderland Eye Infirmary, South Tyneside and Sunderland NHS Foundation TrustSunderlandUK
- Biosciences Institute, Newcastle UniversityNewcastle‐upon‐TyneUK
| |
Collapse
|
27
|
Ragelle H, Dernick K, Khemais S, Keppler C, Cousin L, Farouz Y, Louche C, Fauser S, Kustermann S, Tibbitt MW, Westenskow PD. Human Retinal Microvasculature-on-a-Chip for Drug Discovery. Adv Healthc Mater 2020; 9:e2001531. [PMID: 32975047 DOI: 10.1002/adhm.202001531] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Retinal cells within neurovascular units generate the blood-retinal barrier (BRB) to regulate the local retinal microenvironment and to limit access to inflammatory cells. Breakdown of the endothelial junctional complexes in the BRB negatively affects neuronal signaling and ultimately causes vision loss. As new therapeutics are being developed either to prevent barrier disruption or to restore barrier function, access to physiologically relevant human in vitro tissue models that recapitulate important features of barrier biology is essential for disease modeling, target validation, and toxicity assessment. Here, a tunable organ-on-a-chip model of the retinal microvasculature using human retinal microvascular endothelial cells with integrated flow is described. Automated imaging and image analysis methods are employed for facile screening of leakage mediators and cytokine inhibitors on barrier properties. The developed retinal microvasculature-on-a-chip will enable improved understanding of BRB biology and provide an additional tool for drug discovery.
Collapse
Affiliation(s)
- Héloïse Ragelle
- Roche Pharma Research and Early Development Roche Innovation Center Basel F. Hoffmann‐La Roche Ltd. Basel 4070 Switzerland
| | - Karen Dernick
- Roche Pharma Research and Early Development Roche Innovation Center Basel F. Hoffmann‐La Roche Ltd. Basel 4070 Switzerland
| | - Sonia Khemais
- Roche Pharma Research and Early Development Roche Innovation Center Basel F. Hoffmann‐La Roche Ltd. Basel 4070 Switzerland
| | - Cordula Keppler
- Roche Pharma Research and Early Development Roche Innovation Center Basel F. Hoffmann‐La Roche Ltd. Basel 4070 Switzerland
| | - Lucien Cousin
- Macromolecular Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Zurich 8092 Switzerland
| | - Yohan Farouz
- Roche Pharma Research and Early Development Roche Innovation Center Basel F. Hoffmann‐La Roche Ltd. Basel 4070 Switzerland
| | - Chris Louche
- Roche Pharma Research and Early Development Roche Innovation Center Basel F. Hoffmann‐La Roche Ltd. Basel 4070 Switzerland
| | - Sascha Fauser
- Roche Pharma Research and Early Development Roche Innovation Center Basel F. Hoffmann‐La Roche Ltd. Basel 4070 Switzerland
| | - Stefan Kustermann
- Roche Pharma Research and Early Development Roche Innovation Center Basel F. Hoffmann‐La Roche Ltd. Basel 4070 Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Zurich 8092 Switzerland
| | - Peter D. Westenskow
- Roche Pharma Research and Early Development Roche Innovation Center Basel F. Hoffmann‐La Roche Ltd. Basel 4070 Switzerland
| |
Collapse
|