1
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
2
|
Xu X, Zhao R, Ma W, Zhao Q, Zhang G. Comparison of lipid deposition of intramuscular preadipocytes in Tan sheep co-cultured with satellite cells or alone. J Anim Physiol Anim Nutr (Berl) 2021; 106:733-741. [PMID: 34189825 DOI: 10.1111/jpn.13599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to investigate the effect of the skeletal muscle satellite cells (SMSCs) on the lipid deposition of the intramuscular preadipocytes (IMPs) in a co-culture system of the Tan sheep cells. The SMSCs and IMPs from Tan sheep were separated and cultured. After the two kinds of cells were separated and cultured, they were inoculated onto a transwell cell chamber co-culture plate for co-cultivation. When the cell density reached more than 90%, the cells were induced to differentiate. After the induction of the SMSCs differentiation for 8 days, the level of the IMPs differentiation and the expression levels of the differentiation marker genes and the key enzymes of the lipid metabolism were assessed. The results showed that the number and area of the lipid droplets in the IMPs in the co-culture system were significantly reduced compared to those in the IMPs culture alone (p < 0.05). Meanwhile, the expression levels of the PPARγ, c/EBPα, ACC, FAS mRNA in the IMPs were significantly decreased (p < 0.05); the expression level of aP2 mRNA was decreased, but the difference was not significant (p > 0.05).These findings indicate that the SMSCs of the Tan sheep in the co-culture system inhibited the lipid deposition by the IMPs.
Collapse
Affiliation(s)
- Xiaochun Xu
- North Minzu University/Collaborative Innovation Center for Food Production and Safety, Yinchuan, China
| | - Rui Zhao
- North Minzu University/Collaborative Innovation Center for Food Production and Safety, Yinchuan, China
| | - Wenping Ma
- North Minzu University/Collaborative Innovation Center for Food Production and Safety, Yinchuan, China
| | - Qingmei Zhao
- North Minzu University/Collaborative Innovation Center for Food Production and Safety, Yinchuan, China
| | - Guijie Zhang
- Ningxia University/School of Agriculture, Yinchuan, China
| |
Collapse
|
3
|
Brombacher EC, Everts B. Shaping of Dendritic Cell Function by the Metabolic Micro-Environment. Front Endocrinol (Lausanne) 2020; 11:555. [PMID: 33013685 PMCID: PMC7493661 DOI: 10.3389/fendo.2020.00555] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Nutrients are required for growth and survival of all cells, but are also crucially involved in cell fate determination of many cell types, including immune cells. There is a growing appreciation that the metabolic micro-environment also plays a major role in shaping the functional properties of dendritic cells (DCs). Under pathological conditions nutrient availability can range from a very restricted supply, such as seen in a tumor micro-environment, to an overabundance of nutrients found in for example obese adipose tissue. In this review we will discuss what is currently known about the metabolic requirements for DC differentiation and immunogenicity and compare that to how function and fate of DCs under pathological conditions can be affected by alterations in environmental levels of carbohydrates, lipids and amino acids as well as by other metabolic cues, including availability of oxygen, redox homeostasis and lactate levels. Many of these insights have been generated using in vitro model systems, which have revealed highly diverse effects of different metabolic cues on DC function. However, they also stress the importance of shifting toward more physiologically relevant experimental settings to be able to fully delineate the role of the metabolic surroundings in its full complexity in shaping the functional properties of DCs in health and disease.
Collapse
|
4
|
Gil-Ortega M, Garidou L, Barreau C, Maumus M, Breasson L, Tavernier G, García-Prieto CF, Bouloumié A, Casteilla L, Sengenès C. Native adipose stromal cells egress from adipose tissue in vivo: evidence during lymph node activation. Stem Cells 2014; 31:1309-20. [PMID: 23533182 DOI: 10.1002/stem.1375] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/13/2013] [Indexed: 02/05/2023]
Abstract
Adipose tissue (AT) has become accepted as a source of multipotent progenitor cells, the adipose stromal cells (ASCs). In this regard, considerable work has been performed to harvest and characterize this cell population as well as to investigate the mechanisms by which transplanted ASCs mediate tissue regeneration. In contrast the endogenous release of native ASCs by AT has been poorly investigated. In this work, we show that native ASCs egress from murine AT. Indeed, we demonstrated that the release of native ASCs from AT can be evidenced both using an ex vivo perfusion model that we set up and in vivo. Such a mobilization process is controlled by CXCR4 chemokine receptor. In addition, once mobilized from AT, circulating ASCs were found to navigate through lymph fluid and to home into lymph nodes (LN). Therefore, we demonstrated that, during the LN activation, the fat depot encapsulating the activated LN releases native ASCs, which in turn invade the activated LN. Moreover, the ASCs invading the LN were visualized in close physical interaction with podoplanin and ER-TR7 positive structures corresponding to the stromal network composing the LN. This dynamic was impaired with CXCR4 neutralizing antibody. Taken together, these data provide robust evidences that native ASCs can traffic in vivo and that AT might provide stromal cells to activated LNs.
Collapse
|
5
|
Ludwig T, Worsch S, Heikenwalder M, Daniel H, Hauner H, Bader BL. Metabolic and immunomodulatory effects of n-3 fatty acids are different in mesenteric and epididymal adipose tissue of diet-induced obese mice. Am J Physiol Endocrinol Metab 2013; 304:E1140-56. [PMID: 23482450 DOI: 10.1152/ajpendo.00171.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In studies emphasizing antiobesogenic and anti-inflammatory effects of long-chain n-3 polyunsaturated fatty acids (LC-n-3 PUFA), diets with very high fat content, not well-defined fat quality, and extreme n-6/n-3 PUFA ratios have been applied frequently. Additionally, comparative analyses of visceral adipose tissues (VAT) were neglected. Considering the link of visceral obesity to insulin resistance or inflammatory bowel diseases, we hypothesized that VAT, especially mesenteric adipose tissue (MAT), may exhibit differential responsiveness to diets through modulation of metabolic and inflammatory processes. Here, we aimed to assess dietary LC-n-3 PUFA effects on MAT and epididymal adipose tissue (EAT) and on MAT-adjacent liver and intestine in diet-induced obese mice fed defined soybean/palm oil-based diets. High-fat (HF) and LC-n-3 PUFA-enriched high-fat diet (HF/n-3) contained moderately high fat with unbalanced and balanced n-6/n-3 PUFA ratios, respectively. Body composition/organ analyses, glucose tolerance test, measurements of insulin, lipids, mRNA and protein expression, and immunohistochemistry were applied. Compared with HF, HF/n-3 mice showed reduced fat mass, smaller adipocytes in MAT than EAT, improved insulin level, and lower hepatic triacylglycerol and plasma NEFA levels, consistent with liver and brown fat gene expression. Gene expression arrays pointed to immune cell activation in MAT and alleviation of intestinal endothelial cell activation. Validations demonstrated simultaneously upregulated pro- (TNFα, MCP-1) and anti-inflammatory (IL-10) cytokines and M1/M2-macrophage markers in VAT and reduced CD4/CD8α expression in MAT and spleen. Our data revealed differential responsiveness to diets for VAT through preferentially metabolic alterations in MAT and inflammatory processes in EAT. LC-n-3 PUFA effects were pro- and anti-inflammatory and disclose T cell-immunosuppressive potential.
Collapse
Affiliation(s)
- Tobias Ludwig
- Clinical Nutritional Medicine Unit, ZIEL-Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Because obesity is associated with diverse chronic diseases, little attention has been directed to the multiple beneficial functions of adipose tissue. Adipose tissue not only provides energy for growth, reproduction and immune function, but also secretes and receives diverse signaling molecules that coordinate energy allocation between these functions in response to ecological conditions. Importantly, many relevant ecological cues act on growth and physique, with adiposity responding as a counterbalancing risk management strategy. The large number of individual alleles associated with adipose tissue illustrates its integration with diverse metabolic pathways. However, phenotypic variation in age, sex, ethnicity and social status is further associated with different strategies for storing and using energy. Adiposity therefore represents a key means of phenotypic flexibility within and across generations, enabling a coherent life-history strategy in the face of ecological stochasticity. The sensitivity of numerous metabolic pathways to ecological cues makes our species vulnerable to manipulative globalized economic forces. The aim of this article is to understand how human adipose tissue biology interacts with modern environmental pressures to generate excess weight gain and obesity. The disease component of obesity might lie not in adipose tissue itself, but in its perturbation by our modern industrialized niche. Efforts to combat obesity could be more effective if they prioritized 'external' environmental change rather than attempting to manipulate 'internal' biology through pharmaceutical or behavioral means.
Collapse
Affiliation(s)
- Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
7
|
Reynolds CM, McGillicuddy FC, Harford KA, Finucane OM, Mills KHG, Roche HM. Dietary saturated fatty acids prime the NLRP3 inflammasome via TLR4 in dendritic cells-implications for diet-induced insulin resistance. Mol Nutr Food Res 2012; 56:1212-22. [PMID: 22700321 DOI: 10.1002/mnfr.201200058] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/05/2012] [Accepted: 04/17/2012] [Indexed: 12/25/2022]
Abstract
SCOPE Inflammasome-mediated inflammation is a critical regulator of obesity-induced insulin resistance (IR). We hypothesized that saturated fatty acids (SFA) directly prime the NLRP3 inflammasome via TLR4 concurrent with IR. We focused on dendritic cells (DCs) (CD11c(+) CD11b(+) F4/80(-) ), which are recruited into obese adipose tissue following high-fat diet (HFD) challenge and are a key cell in inflammasome biology. METHODS AND RESULTS C57BL/6 mice were fed HFD for 16 weeks (45% kcal palm oil), glucose homeostasis was monitored by glucose and insulin tolerance tests. Stromal vascular fraction (SVF) cells were isolated from adipose and analyzed for CD11c(+) CD11b(+) F480(-) DC. Following coculture with bone marrow derived DC (BMDC) insulin-stimulated (3) H-glucose transport into adipocytes, IL-1β secretion and caspase-1 activation was monitored. BMDCs primed with LPS (100 ng/mL), linoleic acid (LA; 200 μM), or palmitic acid (PA; 200 μM) were used to monitor inflammasome activation. We demonstrated significant infiltration of DCs into adipose after HFD. HFD-derived DCs reduce adipocyte insulin sensitivity upon coculture co-incident with enhanced adipocyte caspase-1 activation/IL-1β secretion. HFD-derived DCs are skewed toward a pro-inflammatory phenotype with increased IL-1β secretion, IL-1R1, TLR4, and caspase-1 expression. Complementary in vitro experiments demonstrate that TLR4 is critical in propagating SFA-mediated inflammasome activation. CONCLUSION SFA represent metabolic triggers priming the inflammasome, promoting adipocyte inflammation/IR, suggesting direct effects of SFA on inflammasome activation via TLR4.
Collapse
Affiliation(s)
- Clare M Reynolds
- Nutrigenomics Research Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
8
|
Prentice AM, van der Merwe L. Impact of fatty acid status on immune function of children in low-income countries. MATERNAL & CHILD NUTRITION 2011; 7 Suppl 2:89-98. [PMID: 21366869 PMCID: PMC6860810 DOI: 10.1111/j.1740-8709.2011.00313.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In vitro and animal studies point to numerous mechanisms by which fatty acids, especially long-chain polyunsaturated fatty acids (LCPUFA), can modulate the innate and adaptive arms of the immune system. These data strongly suggest that improving the fatty acid supply of young children in low-income countries might have immune benefits. Unfortunately, there have been virtually no studies of fatty acid/immune interactions in such settings. Clinical trial registers list over 150 randomized controlled trials (RCTs) involving PUFAs, only one in a low-income setting (the Gambia). We summarize those results here. There was evidence for improved growth and nutritional status, but the primary end point of chronic environmental enteropathy showed no benefit, possibly because the infants were still substantially breastfed. In high-income settings, there have been RCTs with fatty acids (usually LCPUFAs) in relation to 18 disease end points, for some of which there have been numerous trials (asthma, inflammatory bowel disease and rheumatoid arthritis). For these diseases, the evidence is judged reasonable for risk reduction for childhood asthma (but not in adults), as yielding possible benefit in Crohn's disease (insufficient evidence in ulcerative colitis) and for convincing evidence for rheumatoid arthritis at sufficient dose levels, though formal meta-analyses are not yet available. This analysis suggests that fatty acid interventions could yield immune benefits in children in poor settings, especially in non-breastfed children and in relation to inflammatory conditions such as persistent enteropathy. Benefits might include improved responses to enteric vaccines, which frequently perform poorly in low-income settings, and these questions merit randomized trials.
Collapse
Affiliation(s)
- Andrew M Prentice
- MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK.
| | | |
Collapse
|
9
|
Caesar R, Manieri M, Kelder T, Boekschoten M, Evelo C, Müller M, Kooistra T, Cinti S, Kleemann R, Drevon CA. A combined transcriptomics and lipidomics analysis of subcutaneous, epididymal and mesenteric adipose tissue reveals marked functional differences. PLoS One 2010; 5:e11525. [PMID: 20634946 PMCID: PMC2902507 DOI: 10.1371/journal.pone.0011525] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 06/13/2010] [Indexed: 01/21/2023] Open
Abstract
Depot-dependent differences in adipose tissue physiology may reflect specialized functions and local interactions between adipocytes and surrounding tissues. We combined time-resolved microarray analyses of mesenteric- (MWAT), subcutaneous- (SWAT) and epididymal adipose tissue (EWAT) during high-fat feeding of male transgenic ApoE3Leiden mice with histology, targeted lipidomics and biochemical analyses of metabolic pathways to identify differentially regulated processes and site-specific functions. EWAT was found to exhibit physiological zonation. De novo lipogenesis in fat proximal to epididymis was stably low, whereas de novo lipogenesis distal to epididymis and at other locations was down-regulated in response to high-fat diet. The contents of linoleic acid and α-linolenic acid in EWAT were increased compared to other depots. Expression of the androgen receptor (Ar) was higher in EWAT than in MWAT and SWAT. We suggest that Ar may mediate depot-dependent differences in de novo lipogenesis rate and propose that accumulation of linoleic acid and α-linolenic acid in EWAT is favored by testosterone-mediated inhibition of de novo lipogenesis and may promote further elongation and desaturation of these polyunsaturated fatty acids during spermatogenesis.
Collapse
Affiliation(s)
- Robert Caesar
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wells JC, Griffin L, Treleaven P. Independent changes in female body shape with parity and age: A life-history approach to female adiposity. Am J Hum Biol 2009; 22:456-62. [DOI: 10.1002/ajhb.21017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
11
|
Abstract
Despite observations of a link between lymphatic vessels and lipids that date as far back as 300, a link between lymphatic vessels and adipose tissue has only recently been recognized. This review will summarize documented evidence that supports a close relationship between lymphatic vessels and adipose tissue biology. Lymphatic vessels mediate lipid absorption and transport, share an intimate spatial association with adipose tissue, and regulate the traffic of immune cells that rely on specialized adipose tissue depots as a reservior of energy deployed to fight infection. Important links between inflammation and adipose tissue biology will also be discussed in this article, as will recent evidence connecting lymphatic vascular dysfunction with the onset of obesity. There seems little doubt that future research in this topical field will ensure that the link between lymphatic vascular function and adipose tissue is firmly established.
Collapse
Affiliation(s)
- Natasha L Harvey
- Florey Research Fellow, Division of Haematology, The Hanson Institute, IMVS, Rundle Mall, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
12
|
Klein J, Permana PA, Owecki M, Chaldakov GN, Böhm M, Hausman G, Lapière CM, Atanassova P, Sowiński J, Fasshauer M, Hausman DB, Maquoi E, Tonchev AB, Peneva VN, Vlachanov KP, Fiore M, Aloe L, Slominski A, Reardon CL, Ryan TJ, Pond CM, Ryan TJ. What are subcutaneous adipocytes really good for? Exp Dermatol 2007; 16:45-70. [PMID: 17181636 DOI: 10.1111/j.1600-0625.2006.00519_1.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our acute awareness of the cosmetic, psychosocial and sexual importance of subcutaneous adipose tissue contrasts dramatically with how poorly we have understood the biology of this massive, enigmatic, often ignored and much-abused skin compartment. Therefore, it is timely to recall the exciting, steadily growing, yet underappreciated body of evidence that subcutaneous adipocytes are so much more than just 'fat guys', hanging around passively to conspire, at most, against your desperate attempts to maintain ideal weight. Although the subcutis, quantitatively, tends to represent the dominant architectural component of human skin, conventional wisdom confines its biological key functions to those of energy storage, physical buffer, thermoregulation and thermoinsulation. However, already the distribution of human superficial adipose tissue, by itself, questions how justified the popular belief is that 'skin fat' (which actually may be more diverse than often assumed) serves primarily thermoinsulatory purposes. And although the metabolic complications of obesity are well appreciated, our understanding of how exactly subcutaneous adipocytes contribute to extracutaneous disease - and even influence important immune and brain functions! - is far from complete. The increasing insights recently won into subcutaneous adipose tissue as a cytokine depot that regulates innate immunity and cell growth exemplarily serve to illustrate the vast open research expanses that remain to be fully explored in the subcutis. The following public debate carries you from the evolutionary origins and the key functional purposes of adipose tissue, via adipose-derived stem cells and adipokines straight to the neuroendocrine, immunomodulatory and central nervous effects of signals that originate in the subcutis - perhaps, the most underestimated tissue of the human body. The editors are confident that, at the end, you shall agree: No basic scientist and no doctor with a serious interest in skin, and hardly anyone else in the life sciences, can afford to ignore the subcutaneous adipocyte - beyond its ample impact on beauty, benessence and body mass.
Collapse
Affiliation(s)
- J Klein
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ralf Paus L, Klein J, Permana PA, Owecki M, Chaldakov GN, Böhm M, Hausman G, Lapière CM, Atanassova P, Sowiński J, Fasshauer M, Hausman DB, Maquoi E, Tonchev AB, Peneva VN, Vlachanov KP, Fiore M, Aloe L, Slominski A, Reardon CL, Ryan TJ, Pond CM. What are subcutaneous adipocytesreallygood for…? Exp Dermatol 2007. [DOI: 10.1111/j.1600-0625.2006.00519.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Macia L, Delacre M, Abboud G, Ouk TS, Delanoye A, Verwaerde C, Saule P, Wolowczuk I. Impairment of dendritic cell functionality and steady-state number in obese mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:5997-6006. [PMID: 17056524 DOI: 10.4049/jimmunol.177.9.5997] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a finely tuned interplay between immune and neuroendocrine systems. Metabolic disturbances like obesity will have serious consequences on immunity both at the cellular and at the cytokine expression levels. Our in vivo results confirm the immune deficiency of ob/ob mice, leptin deficient and massively obese, characterized by a reduced Ag-specific T cell proliferation after keyhole limpet hemocyanin immunization. In this report, we show that dendritic cells (DCs), major APCs involved in T lymphocyte priming, are affected in obese mice. Both their function and their steady-state number are disturbed. We demonstrate that DCs from ob/ob mice are less potent in stimulation of allogenic T cells in vitro. This impaired functionality is not associated with altered expression of phenotypic markers but with the secretion of immunosuppressive cytokines such as TGF-beta. Moreover, we show increased in vivo steady-state number of epidermal DCs in ob/ob mice, which is not due to a migratory defect. The ob/ob mice are characterized by the absence of functional leptin, a key adipokine linking nutrition, metabolism, and immune functions. Interestingly, intradermal injection of leptin is able to restore epidermal DC number in obese mice. Thus, DCs might be directly sensitive to metabolic disturbances, providing a partial explanation of the immunodeficiency associated with obesity.
Collapse
Affiliation(s)
- Laurence Macia
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8527, Institut de Biologie de Lille/Institut Pasteur de Lille, 1 Rue Albert Calmette, 59019 Lille cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Westcott EDA, Mattacks CA, Windsor ACJ, Knight SC, Pond CM. Perinodal Adipose Tissue and Fatty Acid Composition of Lymphoid Tissues in Patients with and without Crohn's Disease and Their Implications for the Etiology and Treatment of CD. Ann N Y Acad Sci 2006; 1072:395-400. [PMID: 17057221 DOI: 10.1196/annals.1326.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The physiological bases for roles of adipose tissue and fatty acids in the symptoms and dietary treatments of Crohn's disease are poorly understood. The hypothesis developed from experiments on rodents that perinodal adipocytes are specialized to provision adjacent lymphoid tissues was tested by comparing the composition of triacylglycerol fatty acids in homologous samples of mesenteric adipose tissue and lymph nodes from patients with or without Crohn's disease. Mesenteric perinodal and other adipose tissue, and lymph nodes, were collected during elective surgery for Crohn's disease and other conditions. Fatty acids were extracted, identified, and quantified by thin-layer and gas-liquid chromatography. Perinodal adipose tissue contained more unsaturated fatty acids than other adipose tissue in controls, as reported for other mammals, but site-specific differences were absent in Crohn's disease. Lipids from adipose and lymphoid tissues had more saturated fatty acids, but fewer polyunsaturates in Crohn's disease patients than controls. In adipose tissue samples, depletion of n-3 polyunsaturates was greatest, but n-6 polyunsaturates, particularly arachidonic acid, were preferentially reduced in lymphoid cells. Ratios of n-6/n-3 polyunsaturates were higher in adipose tissue but lower in lymphoid cells in Crohn's disease patients than in controls. Site-specific differences in fatty acid composition in normal human mesentery are consistent with local interactions between lymph node lymphoid cells and adjacent adipose tissue. But these site-specific properties are absent in Crohn's disease, causing anomalies in composition of lymphoid cell fatty acids, which may explain the efficacy of elemental diets containing oils rich in n-6 polyunsaturates.
Collapse
Affiliation(s)
- Edward D A Westcott
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow HA1 3UJ, UK
| | | | | | | | | |
Collapse
|
16
|
Sadler D, Mattacks CA, Pond CM. Changes in adipocytes and dendritic cells in lymph node containing adipose depots during and after many weeks of mild inflammation. J Anat 2005; 207:769-81. [PMID: 16367804 PMCID: PMC1571578 DOI: 10.1111/j.1469-7580.2005.00506.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2005] [Indexed: 11/26/2022] Open
Abstract
The time course and cellular basis for inflammation-induced hypertrophy of adipose tissue were investigated over 20 weeks in mature male rats. Mild inflammation was induced by subcutaneous injection of 20 microg lipopolysaccharide into one hind-leg three times/week for 4 or 8 weeks, followed by up to 12 weeks 'rest' without intervention. Mean volume and frequency of apoptosis (TUNEL assay) were measured in adipocytes isolated from sites defined by their anatomical relations to lymph nodes, plus numbers of CCL21-stimulated lymph node-derived and adipose tissue-derived dendritic cells. Experimental inflammation increased dendritic cells and adipocyte apoptosis in the locally stimulated popliteal depot and the lymphoid tissue-associated regions of the contralateral popliteal and mesentery and omentum. Responses declined slowly after inflammation ended, but all measurements from the locally stimulated popliteal depot, and the omentum, were still significantly different from controls after 12 weeks rest. The locally stimulated popliteal adipose tissue enlarged by 5% within 4 weeks and remained larger than the control. We conclude that prolonged inflammation induces permanent enlargement, greater adipocyte turnover and increased dendritic cell surveillance in the adjacent adipose tissue and the omentum. The experiment suggests a mechanism for selective hypertrophy of lymphoid tissue-associated adipose tissue in chronic stress and inflammatory disorders, including impaired lymph drainage, Crohn's disease and HIV-associated lipodystrophy, and a link between evolutionary fitness, sexual selection and aesthetically pleasing body symmetry. It would be useful for further study of molecular mechanisms in inflammation-induced local hypertrophy of adipose tissue and development of specific therapies that avoid interference with whole-body lipid metabolism.
Collapse
Affiliation(s)
- Dawn Sadler
- Department of Biological Sciences, The Open University, Milton Keynes, UK
| | | | | |
Collapse
|
17
|
Maroof A, English NR, Bedford PA, Gabrilovich DI, Knight SC. Developing dendritic cells become 'lacy' cells packed with fat and glycogen. Immunology 2005; 115:473-83. [PMID: 16011516 PMCID: PMC1782181 DOI: 10.1111/j.1365-2567.2005.02181.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
On maturation, dendritic cells (DCs) become highly active cells equipped for antigen uptake, migration and clustering and activation of T cells. We therefore asked whether DCs acquire fat and glycogen stores as they mature. DCs were generated from mouse bone marrow stem cells by culturing with granulocyte-macrophage colony-stimulating factor (GM-CSF) for 7-8 days. Stimulation of the DCs with lipopolysaccharide (LPS) for the last 24 hr of culture, or exposure to 1-15 ng/ml of interleukin (IL)-4 during development, resulted in production of DCs not only with an increased ability to stimulate T cells but also with an increasingly lacy appearance on transmission electron microscopy, with multiple unstained areas in the cytoplasm. This changed morphology was associated with the presence of increasing amounts of fat and glycogen, identified by Sudan Black and periodic acid leukofushin/Schiff (PAS) staining, respectively. Lacy DCs up-regulated type 1 and type 2 scavenger receptors, providing possible mechanisms contributing to these changes. Lacy DCs were found occasionally amongst freshly isolated splenic and lymph node DCs. DCs can be isolated from human adipose tissue, and we tested whether lacy DCs acquiring fat and glycogen were present in mouse omentum. CD45+ cells migrating from the omentum expressed specific DC markers CD11c and 33D1, costimulatory molecules and major histocompatibility complex (MHC) class II, and most showed darkly staining fat inclusions. Thus, during development, DCs can acquire large amounts of fat and glycogen, accumulation of which is promoted by antigen exposure and modulated by the cytokine milieu and location, and which may act as a link between energy stores and immune function.
Collapse
Affiliation(s)
- Asher Maroof
- Antigen Presentation Research Group, Imperial College London, Harrow, UK
| | | | | | | | | |
Collapse
|
18
|
Westcott E, Windsor A, Mattacks C, Pond C, Knight S. Fatty acid compositions of lipids in mesenteric adipose tissue and lymphoid cells in patients with and without Crohn's disease and their therapeutic implications. Inflamm Bowel Dis 2005; 11:820-7. [PMID: 16116316 DOI: 10.1097/01.mib.0000179213.80778.9a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND The physiological bases for roles of adipose tissue and fatty acids in the symptoms and dietary treatments of Crohn's disease (CD) are poorly understood. The hypothesis developed from experiments on rodents that perinodal adipocytes are specialized to provision adjacent lymphoid tissues was tested by comparing the composition of triacylglycerol and phospholipid fatty acids in homologous samples of mesenteric adipose tissue and lymph nodes from patients with or without CD. METHODS Mesenteric perinodal and other adipose tissue and lymph nodes were collected during elective surgery for CD and other conditions. Fatty acids were extracted, identified, and quantified by thin-layer and gas-liquid chromatography. RESULTS Perinodal adipose tissue contained more unsaturated fatty acids than other adipose tissue in controls, as reported for other mammals, but site-specific differences were absent in CD. Lipids from adipose and lymphoid tissues had more saturated fatty acids but fewer polyunsaturates in patients with CD than controls. In adipose tissue samples, depletion of n-3 polyunsaturates was greatest, but n-6 polyunsaturates, particularly arachidonic acid, were preferentially reduced in lymphoid cells. Ratios of n-6/n-3 polyunsaturates were higher in adipose tissue but lower in lymphoid cells in patients with CD than in controls. CONCLUSIONS Site-specific differences in fatty acid composition in normal human mesentery are consistent with local interactions between lymph node lymphoid cells and adjacent adipose tissue. These site-specific properties are absent in CD, causing anomalies in composition of lymphoid cell fatty acids, which may explain the efficacy of elemental diets containing oils rich in n-6 polyunsaturates.
Collapse
Affiliation(s)
- Edward Westcott
- Antigen Presentation Research Group, Imperial College, London, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Abstract
Adipocytes anatomically associated with lymph nodes (and omental milky spots) have many special properties including fatty acid composition and the control of lipolysis that equip them to interact locally with lymphoid cells. Lymph node lymphocytes and tissue dendritic cells acquire their fatty acids from the contiguous adipocytes. Lymph node-derived dendritic cells suppress lipolysis in perinodal adipocytes but those that permeate the adipose tissue stimulate lipolysis, especially after minor, local immune stimulation. Inflammation alters the composition of fatty acids incorporated into dendritic cells, and that of node-containing adipose tissue, counteracting the effects of dietary lipids. Thus these specialised adipocytes partially emancipate the immune system from fluctuations in the abundance and composition of dietary lipids. Prolonged, low-level immune stimulation induces the local formation of more adipocytes, especially adjacent to the inflamed lymph node. This mechanism may contribute to hypertrophy of the mesentery and omentum in chronic inflammatory diseases such as HIV-infection, and in smokers. Paracrine interactions between adipose and lymphoid tissues are enhanced by diets rich in n-6 fatty acids and attentuated by fish oils. The latter improve immune function and body conformation in animals and people. The partitioning of adipose tissue in many depots, some specialised for local, paracrine interactions with other tissues, is a fundamental feature of mammals.
Collapse
Affiliation(s)
- Caroline M Pond
- Department of Biological Sciences, The Open University, Milton Keynes MK7 6AA, UK.
| |
Collapse
|
20
|
|