1
|
Hor JL, Schrom EC, Wong-Rolle A, Vistain L, Shang W, Dong Q, Zhao C, Jin C, Germain RN. PD-1 controls differentiation, survival, and TCR affinity evolution of stem-like CD8+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606241. [PMID: 39211103 PMCID: PMC11360996 DOI: 10.1101/2024.08.02.606241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Stem-like progenitors are a critical subset of cytotoxic T cells that self-renew and give rise to expanded populations of effector cells critical for successful checkpoint blockade immunotherapy. Emerging evidence suggests that the tumor-draining lymph nodes can support the continuous generation of these stem-like cells that replenish the tumor sites and act as a critical source of expanded effector populations, underlining the importance of understanding what factors promote and maintain activated T cells in the stem-like state. Using advanced 3D multiplex immunofluorescence imaging, here we identified antigen-presentation niches in tumor-draining lymph nodes that support the expansion, maintenance, and affinity evolution of a unique population of TCF-1+PD-1+SLAMF6 hi stem-like CD8+ T cells. Our results show that contrary to the prevailing view that persistent TCR signaling drives terminal effector differentiation, prolonged antigen engagement well beyond the initial priming phase sustained the proliferation and self-renewal of these stem-like T cells in vivo . The inhibitory PD-1 pathway plays a central role in this process by mediating the fine-tuning of TCR and co-stimulatory signal input that enables selective expansion of high affinity TCR stem-like clones, enabling them to act as a renewable source of high affinity effector cells. PD-1 checkpoint blockade disrupts this fine tuning of input signaling, leading to terminal differentiation to the effector state or death of the most avid anti-tumor stem-like cells. Our results thus reveal an unexpected relationship between TCR ligand affinity recognition, a key negative feedback regulatory loop, and T cell stemness programming. Furthermore, these findings raise questions about whether anti-PD-1 checkpoint blockade during cancer immunotherapy provides a short-term anti-tumor effect that comes at the cost of diminishing efficacy due to progressive loss of these critical high affinity stem-like precursors.
Collapse
|
2
|
Batool R, Soler M, Singh R, Lechuga LM. A novel biomimetic nanoplasmonic sensor for rapid and accurate evaluation of checkpoint inhibitor immunotherapy. Anal Bioanal Chem 2024:10.1007/s00216-024-05398-3. [PMID: 38902345 DOI: 10.1007/s00216-024-05398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Immune checkpoint inhibitors (ICIs) emerged as promising immunotherapies for cancer treatment, harnessing the patient's immune system to fight and eliminate tumor cells. However, despite their potential and proven efficacies, checkpoint inhibitors still face important challenges such as the tumor heterogeneity and resistance mechanisms, and the complex in vitro testing, which limits their widespread applicability and implementation to treat cancer. To address these challenges, we propose a novel analytical technique utilizing biomimetic label-free nanoplasmonic biosensors for rapid and reliable screening and evaluation of checkpoint inhibitors. We have designed and fabricated a low-density nanostructured plasmonic sensor based on gold nanodisks that enables the direct formation of a functional supported lipid bilayer, which acts as an artificial cell membrane for tumor ligand immobilization. With this biomimetic scaffold, our biosensing approach provides real-time, highly sensitive analysis of immune checkpoint pathways and direct assessment of the blocking effects of monoclonal antibodies in less than 20 min/test. We demonstrate the accuracy of our biomimetic sensor for the study of the programmed cell death protein 1 (PD1) checkpoint pathway, achieving a limit of detection of 6.7 ng/mL for direct PD1/PD-L1 interaction monitoring. Besides, we have performed dose-response inhibition curves for an anti-PD1 monoclonal antibody, obtaining a half maximal inhibitory concentration (IC50) of 0.43 nM, within the same range than those obtained with conventional techniques. Our biomimetic sensor platform combines the potential of plasmonic technologies for rapid label-free analysis with the reliability of cell-based assay in terms of ligand mobility. The biosensor is integrated in a compact user-friendly device for the straightforward implementation in biomedical and pharmaceutical laboratories.
Collapse
Affiliation(s)
- Razia Batool
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193, Bellaterra, Barcelona, Spain
| | - Maria Soler
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193, Bellaterra, Barcelona, Spain.
| | - Rukmani Singh
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193, Bellaterra, Barcelona, Spain
| | - Laura M Lechuga
- Nanobiosensors and Bioanalytical Applications Group (NanoB2A), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, BIST and CIBER-BBN, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
3
|
Sawant A, Shi F, Lopes EC, Hu Z, Abdelfattah S, Baul J, Powers J, Hinrichs CS, Rabinowitz JD, Chan CS, Lattime EC, Ganesan S, White E. Immune Checkpoint Blockade Delays Cancer and Extends Survival in Murine DNA Polymerase Mutator Syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.597960. [PMID: 38915517 PMCID: PMC11195045 DOI: 10.1101/2024.06.10.597960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mutations in polymerases Pold1 and Pole exonuclease domains in humans are associated with increased cancer incidence, elevated tumor mutation burden (TMB) and response to immune checkpoint blockade (ICB). Although ICB is approved for treatment of several cancers, not all tumors with elevated TMB respond. Here we generated Pold1 and Pole proofreading mutator mice and show that ICB treatment of mice with high TMB tumors did not improve survival as only a subset of tumors responded. Similarly, introducing the mutator alleles into mice with Kras/p53 lung cancer did not improve survival, however, passaging mutator tumor cells in vitro without immune editing caused rejection in immune-competent hosts, demonstrating the efficiency by which cells with antigenic mutations are eliminated. Finally, ICB treatment of mutator mice earlier, before observable tumors delayed cancer onset, improved survival, and selected for tumors without aneuploidy, suggesting the use of ICB in individuals at high risk for cancer prevention. Highlights Germline somatic and conditional Pold1 and Pole exonuclease domain mutations in mice produce a mutator phenotype. Spontaneous cancers arise in mutator mice that have genomic features comparable to human tumors with these mutations.ICB treatment of mutator mice with tumors did not improve survival as only a subset of tumors respond. Introduction of the mutator alleles into an autochthonous mouse lung cancer model also did not produce immunogenic tumors, whereas passaging mutator tumor cells in vitro caused immune rejection indicating efficient selection against antigenic mutations in vivo . Prophylactic ICB treatment delayed cancer onset, improved survival, and selected for tumors with no aneuploidy.
Collapse
|
4
|
Martinez Valenzuela L, Gómez-Preciado F, Guiteras J, Antón Pampols P, Gomà M, Fulladosa X, Cruzado JM, Torras J, Draibe J. Immune checkpoint inhibitors induce acute interstitial nephritis in mice with increased urinary MCP1 and PD-1 glomerular expression. J Transl Med 2024; 22:421. [PMID: 38702780 PMCID: PMC11069287 DOI: 10.1186/s12967-024-05177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) induce acute interstitial nephritis (AIN) in 2-5% of patients, with a clearly higher incidence when they are combined with platinum derivatives. Unfortunately, suitable disease models and non-invasive biomarkers are lacking. To fill this gap in our understanding, we investigated the renal effects of cisplatin and anti-PD-L1 antibodies in mice, assessing PD-1 renal expression and cytokine levels in mice with AIN, and then we compared these findings with those in AIN-diagnosed cancer patients. METHODS Twenty C57BL6J mice received 200 µg of anti-PD-L1 antibody and 5 mg/kg cisplatin intraperitoneally and were compared with those receiving cisplatin (n = 6), anti-PD-L1 (n = 7), or saline (n = 6). After 7 days, the mice were euthanized. Serum and urinary concentrations of TNFα, CXCL10, IL-6, and MCP-1 were measured by Luminex. The kidney sections were stained to determine PD-1 tissue expression. Thirty-nine cancer patients with AKI were enrolled (AIN n = 33, acute tubular necrosis (ATN) n = 6), urine MCP-1 (uMCP-1) was measured, and kidney sections were stained to assess PD-1 expression. RESULTS Cisplatin and anti PD-L1 treatment led to 40% AIN development (p = 0.03) in mice, accompanied by elevated serum creatinine and uMCP1. AIN-diagnosed cancer patients also had higher uMCP1 levels than ATN-diagnosed patients, confirming our previous findings. Mice with AIN exhibited interstitial PD-1 staining and stronger glomerular PD-1 expression, especially with combination treatment. Conversely, human AIN patients only showed interstitial PD-1 positivity. CONCLUSIONS Only mice receiving cisplatin and anti-PDL1 concomitantly developed AIN, accompanied with a more severe kidney injury. AIN induced by this drug combination was linked to elevated uMCP1, consistently with human AIN, suggesting that uMCP1 can be potentially used as an AIN biomarker.
Collapse
Affiliation(s)
- Laura Martinez Valenzuela
- Nephrology Department, Bellvitge University Hospital. Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Feixa Llarga S/N, Barcelona, 08907, Spain.
| | - Francisco Gómez-Preciado
- Nephrology Department, Bellvitge University Hospital. Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Feixa Llarga S/N, Barcelona, 08907, Spain
| | - Jordi Guiteras
- Experimental Nephrology Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08907, Spain
- Fundació Bosch i Gimpera, University of Barcelona, Barcelona, 08028, Spain
| | - Paula Antón Pampols
- Nephrology Department, Bellvitge University Hospital. Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Feixa Llarga S/N, Barcelona, 08907, Spain
| | - Montserrat Gomà
- Pathology Department, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Xavier Fulladosa
- Nephrology Department, Bellvitge University Hospital. Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Feixa Llarga S/N, Barcelona, 08907, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Josep Maria Cruzado
- Nephrology Department, Bellvitge University Hospital. Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Feixa Llarga S/N, Barcelona, 08907, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital. Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Feixa Llarga S/N, Barcelona, 08907, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, 08907, Spain
| | - Juliana Draibe
- Nephrology Department, Bellvitge University Hospital. Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Feixa Llarga S/N, Barcelona, 08907, Spain
| |
Collapse
|
5
|
Rowe JH, Elia I, Shahid O, Gaudiano EF, Sifnugel NE, Johnson S, Reynolds AG, Fung ME, Joshi S, LaFleur MW, Park JS, Pauken KE, Rabinowitz JD, Freeman GJ, Haigis MC, Sharpe AH. Formate Supplementation Enhances Antitumor CD8+ T-cell Fitness and Efficacy of PD-1 Blockade. Cancer Discov 2023; 13:2566-2583. [PMID: 37728660 PMCID: PMC10843486 DOI: 10.1158/2159-8290.cd-22-1301] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
The tumor microenvironment (TME) restricts antitumor CD8+ T-cell function and immunotherapy responses. Cancer cells compromise the metabolic fitness of CD8+ T cells within the TME, but the mechanisms are largely unknown. Here we demonstrate that one-carbon (1C) metabolism is enhanced in T cells in an antigen-specific manner. Therapeutic supplementation of 1C metabolism using formate enhances CD8+ T-cell fitness and antitumor efficacy of PD-1 blockade in B16-OVA tumors. Formate supplementation drives transcriptional alterations in CD8+ T-cell metabolism and increases gene signatures for cellular proliferation and activation. Combined formate and anti-PD-1 therapy increases tumor-infiltrating CD8+ T cells, which are essential for enhanced tumor control. Our data demonstrate that formate provides metabolic support to CD8+ T cells reinvigorated by anti-PD-1 to overcome a metabolic vulnerability in 1C metabolism in the TME to further improve T-cell function. SIGNIFICANCE This study identifies that deficiencies in 1C metabolism limit the efficacy of PD-1 blockade in B16-OVA tumors. Supplementing 1C metabolism with formate during anti-PD-1 therapy enhances CD8+ T-cell fitness in the TME and CD8+ T-cell-mediated tumor clearance. These findings demonstrate that formate supplementation can enhance exhausted CD8+ T-cell function. See related commentary by Lin et al., p. 2507. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Jared H. Rowe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Ilaria Elia
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Osmaan Shahid
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Emily F. Gaudiano
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Natalia E. Sifnugel
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Sheila Johnson
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Amy G. Reynolds
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Megan E. Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin W. LaFleur
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Kristen E. Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215 USA
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lay Institute of Immunology and Inflammation, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Chaudhri A, Bu X, Wang Y, Gomez M, Torchia JA, Hua P, Hung SH, Davies MA, Lizee GA, von Andrian U, Hwu P, Freeman GJ. The CX3CL1-CX3CR1 chemokine axis can contribute to tumor immune evasion and blockade with a novel CX3CR1 monoclonal antibody enhances response to anti-PD-1 immunotherapy. Front Immunol 2023; 14:1237715. [PMID: 37771579 PMCID: PMC10524267 DOI: 10.3389/fimmu.2023.1237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
CX3CL1 secreted in the tumor microenvironment serves as a chemoattractant playing a critical role in metastasis of CX3CR1 expressing cancer cells. CX3CR1 can be expressed in both cancer and immune-inhibitory myeloid cells to facilitate their migration. We generated a novel monoclonal antibody against mouse CX3CR1 that binds to CX3CR1 and blocks the CX3CL1-CX3CR1 interaction. We next explored the immune evasion strategies implemented by the CX3CL1-CX3CR1 axis and find that it initiates a resistance program in cancer cells that results in 1) facilitation of tumor cell migration, 2) secretion of soluble mediators to generate a pro-metastatic niche, 3) secretion of soluble mediators to attract myeloid populations, and 4) generation of tumor-inflammasome. The CX3CR1 monoclonal antibody reduces migration of tumor cells and decreases secretion of immune suppressive soluble mediators by tumor cells. In combination with anti-PD-1 immunotherapy, this CX3CR1 monoclonal antibody enhances survival in an immunocompetent mouse colon carcinoma model through a decrease in tumor-promoting myeloid populations. Thus, this axis is involved in the mechanisms of resistance to anti-PD-1 immunotherapy and the combination therapy can overcome a portion of the resistance mechanisms to anti-PD-1.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Yunfei Wang
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael Gomez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - James A. Torchia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A. Lizee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ulrich von Andrian
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Brito Baleeiro R, Liu P, Chard Dunmall LS, Di Gioia C, Nagano A, Cutmore L, Wang J, Chelala C, Nyambura LW, Walden P, Lemoine N, Wang Y. Personalized neoantigen viro-immunotherapy platform for triple-negative breast cancer. J Immunother Cancer 2023; 11:e007336. [PMID: 37586771 PMCID: PMC10432671 DOI: 10.1136/jitc-2023-007336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) corresponds to approximately 20% of all breast tumors, with a high propensity for metastasis and a poor prognosis. Because TNBC displays a high mutational load compared with other breast cancer types, a neoantigen-based immunotherapy strategy could be effective. One major bottleneck in the development of a neoantigen-based vaccine for TNBC is the selection of the best targets, that is, tumor-specific neoantigens which are presented at the surface of tumor cells and capable of eliciting robust immune responses. In this study, we aimed to set up a platform for identification and delivery of immunogenic neoantigens in a vaccine regimen for TNBC using oncolytic vaccinia virus (VV). METHODS We used bioinformatic tools and cell-based assays to identify immunogenic neoantigens in TNBC patients' samples, human and murine cell lines. Immunogenicity of the neoantigens was tested in vitro (human) and ex vivo (murine) in T-cell assays. To assess the efficacy of our regimen, we used a preclinical model of TNBC where we treated tumor-bearing mice with neoantigens together with oncolytic VV and evaluated the effect on induction of neoantigen-specific CD8+T cells, tumor growth and survival. RESULTS We successfully identified immunogenic neoantigens and generated neoantigen-specific CD8+T cells capable of recognizing a human TNBC cell line expressing the mutated gene. Using a preclinical model of TNBC, we showed that our tumor-specific oncolytic VV was able to change the tumor microenvironment, attracting and maintaining mature cross-presenting CD8α+dendritic cells and effector T-cells. Moreover, when delivered in a prime/boost regimen together with oncolytic VV, long peptides encompassing neoantigens were able to induce neoantigen-specific CD8+T cells, slow tumor growth and increase survival. CONCLUSIONS Our study provides a promising approach for the development of neoantigen-based immunotherapies for TNBC. By identifying immunogenic neoantigens and developing a delivery system through tumor-specific oncolytic VV, we have demonstrated that neoantigen-based vaccines could be effective in inducing neoantigen-specific CD8+T cells response with significant impact on tumor growth. Further studies are needed to determine the safety and efficacy of this approach in clinical trials.
Collapse
Affiliation(s)
- Renato Brito Baleeiro
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Peng Liu
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Carmela Di Gioia
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Ai Nagano
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Lauren Cutmore
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Jun Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Claude Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
| | - Lydon Wainaina Nyambura
- Department of Dermatology, Venerology and Allergology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Walden
- Department of Dermatology, Venerology and Allergology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nicholas Lemoine
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
- Zhengzhou University, Zhengzhou, Henan, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Queen Mary University of London, London, UK
- Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Redmond WL, Kasiewicz MJ, Akporiaye ET. Enhancement of anti-tumor efficacy of immune checkpoint blockade by alpha-TEA. Front Immunol 2023; 14:1057702. [PMID: 36911733 PMCID: PMC9992800 DOI: 10.3389/fimmu.2023.1057702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer immunotherapy such as anti-PD-1/anti-PD-L1 immune checkpoint blockade (ICB) can provide significant clinical benefit in patients with advanced malignancies. However, most patients eventually develop progressive disease, thus necessitating additional therapeutic options. We have developed a novel agent, a-TEA-LS, that selectively induces tumor cell death while sparing healthy tissues, leading to increased activation of tumor-reactive T cells and tumor regression. In the current study, we explored the impact of combined a-TEA-LS + ICB in orthotopic and spontaneously arising murine models of mammary carcinoma. We found that a-TEA-LS + ICB led to increased production of pro-inflammatory cytokines that were associated with a reduction in tumor growth and prolonged survival. Together, these data demonstrate the potential utility of a-TEA-LS + ICB for the treatment of breast cancer and provide the rationale for clinical translation of this novel approach.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Melissa J Kasiewicz
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | | |
Collapse
|
9
|
Kalim M, Ali H, Rehman AU, Lu Y, Zhan J. Bioengineering and computational analysis of programmed cell death ligand-1 monoclonal antibody. Front Immunol 2022; 13:1012499. [PMID: 36341340 PMCID: PMC9633666 DOI: 10.3389/fimmu.2022.1012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
The trans-membrane proteins of the B7 family programmed cell death ligand-1 (PD-L1) and programmed death-1 (PD-1) play important roles in inhibiting immune responses and enhancing self-tolerance via T-cell modulation. Several therapeutic antibodies are used to promote T-cell proliferation by preventing interactions between PD-1/PD-L1. Recombinant technology appears to be quite useful in the production of such potent antibodies. In this study, we constructed recombinant molecules by cloning variable regions of the PD-L1 molecule into pMH3 vectors and transferring them into mammalian cell lines for expression. G418 supplementation was used to screen the recombinant clones, which were then maintained on serum-free medium. The full-length antibody was isolated and purified from the medium supernatant at a concentration of 0.5-0.8 mg/ml. Antibody binding affinity was investigated using ELISA and immunofluorescence methods. The protein-protein interactions (PPI) were determined using a docking approach. The SWISS model was utilized for homology modeling, while ZDOCK, Chimera, and PyMOL were used to validate 3D models. The Ramachandran plots were constructed using the SWISS model, which revealed that high-quality structures had a value of more than 90%. Current technologies allow for the accurate determination of antigen-antibody interactions.
Collapse
Affiliation(s)
- Muhammad Kalim
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Hamid Ali
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Ashfaq Ur Rehman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Yong Lu
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Tongjia Xiang, Nanjing, China
| | - Jinbiao Zhan
- Department of Biochemistry and Cancer Institute of the Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|